JP6433449B2 - 磁気テープおよび磁気テープ装置 - Google Patents

磁気テープおよび磁気テープ装置 Download PDF

Info

Publication number
JP6433449B2
JP6433449B2 JP2016056850A JP2016056850A JP6433449B2 JP 6433449 B2 JP6433449 B2 JP 6433449B2 JP 2016056850 A JP2016056850 A JP 2016056850A JP 2016056850 A JP2016056850 A JP 2016056850A JP 6433449 B2 JP6433449 B2 JP 6433449B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic tape
servo
magnetic layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016056850A
Other languages
English (en)
Other versions
JP2017174475A (ja
Inventor
成人 笠田
成人 笠田
徹也 金子
徹也 金子
栄貴 小沢
栄貴 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2016056850A priority Critical patent/JP6433449B2/ja
Priority to US15/464,991 priority patent/US9779772B1/en
Publication of JP2017174475A publication Critical patent/JP2017174475A/ja
Application granted granted Critical
Publication of JP6433449B2 publication Critical patent/JP6433449B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • G11B5/588Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads
    • G11B5/592Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads
    • G11B5/5921Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads using auxiliary signals, e.g. pilot signals
    • G11B5/5926Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads using auxiliary signals, e.g. pilot signals recorded in separate tracks, e.g. servo tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers

Description

本発明は、磁気テープおよび磁気テープ装置に関する。
磁気記録媒体にはテープ状のものとディスク状のものがあり、データバックアップ、アーカイブ等のデータストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている。磁気テープへの情報の記録は、通常、磁気テープのデータバンド上に磁気信号を記録することにより行われる。これによりデータバンドにデータトラックが形成される。
近年の情報量の莫大な増大に伴い、磁気テープには記録容量を高めること(高容量化)が求められている。この高容量化のための手段としては、データトラックの幅を狭くすることにより、磁気テープの幅方向に、より多くのデータトラックを形成して記録密度を高めることが挙げられる。
しかしデータトラックの幅を狭くすると、磁気テープを磁気テープ装置(一般に、「ドライブ」と呼ばれる。)内で走行させ磁気信号の記録および/または再生を行う際、磁気テープの幅方向の位置変動によって、磁気ヘッドがデータトラックに正確に追従することが困難となり、記録および/または再生時にエラーを起こし易くなってしまう。そこで、かかるエラーの発生を低減するための手段として、近年、サーボ信号を利用するヘッドトラッキングサーボを用いたシステム(以下、「サーボシステム」と記載する。)が提案され、実用化されている(例えば特許文献1参照)。
米国特許第5689384号
サーボシステムの中で、磁気サーボ方式のサーボシステムでは、サーボ信号(サーボパターン)を磁気テープの磁性層に形成し、このサーボパターンを磁気的に読み取ってヘッドトラッキングを行う。より詳しくは、次の通りである。
まずサーボヘッドで、磁性層に形成されているサーボ信号を読み取る。読み取ったサーボ信号に応じて、磁気テープの幅方向における磁気ヘッドの位置をコントロールする。これにより、磁気信号(情報)の記録および/または再生のために磁気テープ装置内で磁気テープを走行させる際、磁気テープの位置が磁気ヘッドに対して幅方向に変動しても、磁気ヘッドがデータトラックに追従する精度を高めることができる。こうして、磁気テープに正確に情報を記録すること、および/または、磁気テープに記録されている情報を正確に再生すること、が可能となる。
上記の磁気サーボ方式のサーボシステムとしては、近年、タイミングベースサーボ方式が広く用いられている。タイミングベースサーボ方式のサーボシステム(以下、「タイミングベースサーボシステム」と記載する。)では、二種以上の異なる形状の複数のサーボパターンを磁性層に形成し、サーボヘッドが、異なる形状の2つのサーボパターンを再生した(読み取った)時間間隔と、同じ形状の2つのサーボパターンを再生した時間間隔と、によりサーボヘッドの位置を認識する。こうして認識されたサーボヘッドの位置に基づき、磁気テープの幅方向における磁気ヘッドの位置がコントロールされる。
ところで、近年、磁気テープには、磁性層の表面平滑性を高めることが求められている。磁性層の表面平滑性を高めることは、電磁変換特性の向上につながるためである。
しかるに本発明者らが検討を重ねる中で、磁気テープの磁性層の表面平滑性が高くなると、タイミングベースサーボシステムにおいて磁気ヘッドをデータトラックに追従させる精度(以下、「ヘッド位置決め精度」という。)が低下してしまうという、従来知られていなかった現象が発生することが明らかとなった。
そこで本発明の目的は、磁気テープにおける磁性層の表面平滑性の向上とタイミングベースサーボシステムにおけるヘッド位置決め精度向上とを両立することにある。
本発明の一態様は、
非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、
磁性層は、タイミングベースサーボパターンを有し、
磁性層の表面において測定される中心線平均表面粗さRaは、1.8nm以下であり、かつ
磁性層の表面の素地部分において測定される摩擦係数は、0.35以下である磁気テープ、
に関する。
本発明および本明細書における「タイミングベースサーボパターン」とは、タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンをいう。タイミングベースサーボシステムについては、先に記載した通りである。タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンは、サーボパターン記録ヘッド(「サーボライトヘッド(servo write head)」とも呼ばれる。)により、磁性層に二種以上の異なる形状の複数のサーボパターンとして形成される。一例では、二種以上の異なる形状の複数のサーボパターンが、同種の形状の複数のサーボパターンごとに連続して一定の間隔をもって配置される。他の一例では、異なる種類のサーボパターンが交互に配置される。なおサーボパターンが同種の形状であることは、完全に同一の形状であることのみを意味するものではなく、サーボライトヘッド等の装置に起因して発生し得る形状誤差は許容されるものとする。タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンの形状および磁性層における配置は公知であり、具体的態様は後述する。以下、タイミングベースサーボパターンを、単にサーボパターンとも記載する。本明細書には、ヘッドとして、「サーボライトヘッド」、「サーボヘッド」、および「磁気ヘッド」が記載されている。サーボライトヘッドとは、上記の通りサーボ信号の記録(即ち、サーボパターンの形成)を行うヘッドである。サーボヘッドとは、サーボ信号の再生(即ち、サーボパターンの読み取り)を行うヘッドであり、磁気ヘッドとは、特記しない限り、情報の記録および/または再生を行うヘッドである。
本発明および本明細書において、磁気テープの磁性層表面において測定される中心線平均表面粗さRa(以下、「磁性層表面Ra」とも記載する。)とは、原子間力顕微鏡(Atomic Force Microscope;AFM)により面積40μm×40μmの領域で測定される値とする。測定条件の一例としては、下記の測定条件を挙げることができる。後述の実施例に示す中心線平均表面粗さRaは、下記測定条件下での測定によって求めた値である。本発明および本明細書において、磁気テープの「磁性層(の)表面」とは、磁気テープの磁性層側表面と同義である。
AFM(Veeco社製Nanoscope4)で磁気テープの磁性層表面の面積40μm×40μmの領域を測定する。スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとする。
本発明および本明細書における素地部分とは、磁気テープの磁性層表面において、以下の方法により特定される部分をいうものとする。
原子間力顕微鏡(Atomic Force Microscope:AFM)によって測定された、視野中の凸成分と凹成分の体積が等しくなる面を基準面として定め、その基準面から15nm以上の高さの突起を、突起と定義する。そして、かかる突起の数がゼロ個である部分、即ち磁気テープの磁性層表面において基準面から15nm以上の高さの突起が検出されない部分を、素地部分と特定する。
また、素地部分において測定される摩擦係数とは、以下の方法により測定される値とする。
素地部分において(測定箇所:磁気テープの長手方向10μm長)、半径1μmのダイヤモンド製球状圧子を荷重100μNおよび速度1μm/秒で1回往復させて摩擦力(水平力)および垂直抗力を測定する。ここで測定される摩擦力および垂直抗力は、上記1回の往復中に摩擦力および垂直抗力を常時測定して得られる算術平均である。以上の測定は、例えばHysitron社TI−950型トライボインデンターにて行うことができる。そして、測定された摩擦力の算術平均および垂直抗力の算術平均から、摩擦係数μ値を算出する。なお摩擦係数は、摩擦力(水平力)F(単位:ニュートン(N))と垂直抗力N(単位:ニュートン(N))から、次式:F=μN、により求められる値である。上記の測定および摩擦係数μ値の算出を、磁気テープの磁性層表面で無作為に決定した素地部分の3箇所において行い得られた3つの測定値の算術平均を、素地部分において測定される摩擦係数とする。以下において、素地部分において測定される摩擦係数を、「素地摩擦」ともいう。
一態様では、素地摩擦は、0.15〜0.35の範囲である。
一態様では、素地摩擦は、0.15〜0.30の範囲である。
一態様では、上記中心線平均表面粗さRaは、1.2〜1.8nmの範囲である。
一態様では、上記中心線平均表面粗さRaは、1.2〜1.6nmの範囲である。
一態様では、上記磁気テープは、非磁性支持体と磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有する。
本発明の更なる態様は、上記磁気テープと、磁気ヘッドと、サーボヘッドと、を含む磁気テープ装置に関する。
本発明の一態様によれば、表面平滑性が高い磁性層にタイミングベースサーボパターンを有する磁気テープであって、タイミングベースサーボシステムにおけるヘッド位置決め精度が向上した磁気テープ、およびこの磁気テープへ磁気信号を記録および/または再生する磁気テープ装置を提供することができる。
データバンドおよびサーボバンドの配置例を示す。 LTO(Linear−Tape−Open) Ultriumフォーマットテープのサーボパターン配置例を示す。
[磁気テープ]
本発明の一態様は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、磁性層は、タイミングベースサーボパターンを有し、磁性層の表面において測定される中心線平均表面粗さRaは、1.8nm以下であり、かつ磁性層の表面の素地部分において測定される摩擦係数は、0.35以下である磁気テープに関する。
以下、上記磁気テープについて、更に詳細に説明する。なお以下の記載には、本発明者らの推察が含まれる。かかる推察によって本発明は限定されるものではない。また、以下では、図面に基づき例示的に説明することがある。ただし、例示される態様に本発明は限定されるものではない。
<タイミングベースサーボパターン>
上記磁気テープは、磁性層にタイミングベースサーボパターンを有する。タイミングベースサーボパターンとは、先に説明したサーボパターンである。例えば、磁気テープ装置の記録方式として広く用いられているリニア記録方式に適用される磁気テープには、通常、磁性層に、サーボパターンが形成された領域(「サーボバンド」と呼ばれる)が磁気テープの長手方向に沿って複数存在する。2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。情報(磁気信号)の記録はデータバンド上で行われ、各データバンドには複数のデータトラックが長手方向に沿って形成される。
図1に、データバンドおよびサーボバンドの配置例を示す。図1中、磁気テープ1の磁性層には、複数のサーボバンド10が、ガイドバンド12に挟まれて配置されている。2本のサーボバンドに挟まれた複数の領域11が、データバンドである。サーボパターンは、磁化領域であって、サーボライトヘッドにより磁性層の特定の領域を磁化することによって形成される。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められており、例えば業界標準規格であるLTOUltriumフォーマットテープには、磁気テープ製造時に、図2に示すようにテープ幅方向に対して傾斜した複数のサーボパターンが、サーボバンド上に形成される。詳しくは、図2中、データバンド10上のサーボフレームSFは、サーボサブフレーム1(SSF1)およびサーボサブフレーム2(SSF2)から構成される。サーボサブフレーム1は、Aバースト(図2中、符号A)およびBバースト(図2中、符号B)から構成される。AバーストはサーボパターンA1〜A5から構成され、BバーストはサーボパターンB1〜B5から構成される。一方、サーボサブフレーム2は、Cバースト(図2中、符号C)およびDバースト(図2中、符号D)から構成される。CバーストはサーボパターンC1〜C4から構成され、DバーストはサーボパターンD1〜D4から構成される。このような18本のサーボパターンが5本と4本のセットで、5、5、4、4、の配列で並べられたサブフレームに配置され、サーボフレームを識別するために用いられる。図2には、1つのサーボフレームを示したが、各データバンドには、複数のサーボフレームが走行方向に配置される。図2中、矢印は走行方向を示している。
タイミングベースサーボシステムでは、異なる形状の2つのサーボパターンをサーボヘッドが再生した(読み取った)時間間隔と、同じ形状の2つのサーボパターンを再生した時間間隔と、によりサーボヘッドの位置を認識する。時間間隔は、通常、サーボ信号の再生波形のピークの時間間隔として求められる。例えば、図2に示す態様では、AバーストのサーボパターンとCバーストのサーボパターンが同じ形状のサーボパターンであり、BバーストのサーボパターンとDバーストのサーボパターンが同じ形状のサーボパターンである。AバーストのサーボパターンおよびCバーストのサーボパターンは、BバーストのサーボパターンおよびDバーストのサーボパターンとは形状が異なるサーボパターンである。異なる形状の2つのサーボパターンをサーボヘッドが再生した時間間隔とは、例えば、Aバーストのいずれかのサーボパターンを再生した時間とBバーストのいずれかのサーボパターンを再生した時間との間隔である。同じ形状の2つのサーボパターンをサーボヘッドが再生した時間間隔とは、例えば、Aバーストのいずれかのサーボパターンを再生した時間とCバーストのいずれかのサーボパターンを再生した時間との間隔である。
タイミングベースサーボシステムは、上記の時間間隔が設定値からずれた場合、時間間隔のズレは磁気テープの幅方向の位置変動に起因して発生することを前提とするシステムである。設定値とは、磁気テープが幅方向で位置変動を起こさずに走行する場合の時間間隔である。タイミングベースサーボシステムでは、求められた時間間隔の設定値からのズレの程度に応じて、磁気ヘッドを幅方向に移動させる。詳しくは、時間間隔の設定値からのズレが大きいほど、磁気ヘッドを幅方向に大きく移動させる。この点は、図1および図2に示す態様に限定されずタイミングベースサーボシステム全般に当てはまる。
以上の点に関して、本発明者らは、上記磁気テープについて、次のように推察している。
磁性層表面の平滑性を高めた磁気テープにおいて、タイミングベースサーボシステムにおけるヘッド位置決め精度の低下が生じる理由は、上記の時間間隔の設定値からのズレの要因が、磁気テープの幅方向の位置変動以外の要因(以下、「他の要因」と記載する。)も含むことにあると考えられる。タイミングベースサーボシステムが、他の要因によってもたらされるズレも磁気テープの幅方向の位置変動によりもたらされるズレと認識する結果、磁気ヘッドを、磁気テープの幅方向の位置変動に追従させるために要する移動距離より多く移動させてしまうことが、タイミングベースサーボシステムにおけるヘッド位置決め精度の要因と推察される。
本発明者らは、上記の他の要因について、サーボヘッドの走行速度の変動が生じることが、他の要因となる(即ち、上記の時間間隔の設定値からのズレの要因となる)と考え、更に検討を重ねた。その結果、素地摩擦を0.35以下とすることにより、磁性層表面Raが1.8nm以下の磁気テープにおいて、タイミングベースサーボシステムにおけるヘッド位置決め精度を向上することが可能になることを、新たに見出した。この点について更に説明する。
磁性層表面Raが1.8nm以下の磁気テープでは、これより磁性層表面が粗い磁気テープと比べて、サーボヘッドが走行時に素地部分と接触する確率が高いと考えられる。したがって、磁性層表面Raが1.8nm以下の磁気テープでは、サーボヘッドの走行速度の変動に素地摩擦が与える影響が、磁性層表面Raが1.8nmを超える磁気テープと比べて大きいと、本発明者らは考えている。素地摩擦の値が大きいほど、素地部分と接触したサーボヘッドの摺動性が低下し、走行速度の変動が生じると考えられる。これに対し、素地摩擦を0.35以下とすることが、磁性層表面Raが1.8nm以下の磁気テープ上を走行するサーボヘッドが素地部分と接触する際の摺動性を高めることに寄与し、サーボヘッドの走行速度の変動が抑制されると、本発明者らは推察している。これにより上記の時間間隔の設定値からのズレに対する他の要因の影響を低減できることが、磁性層表面Raが1.8nm以下の磁気テープにおいて、タイミングベースサーボシステムにおけるヘッド位置決め精度向上をもたらすと、本発明者らは考えている。
ただし、以上は本発明者らの推察であって、本発明を何ら限定するものではない。
以下、上記磁気テープについて、更に詳細に説明する。
<磁性層表面Ra>
上記磁気テープの磁性層表面において測定される中心線平均表面粗さRa(磁性層表面Ra)は、1.8nm以下である。磁性層表面Raが1.8nm以下の磁気テープは、何ら対策を施さなければ、タイミングベースサーボシステムにおいてヘッド位置決め精度が低下する現象が発生してしまう。これに対し、素地摩擦が0.35以下である上記磁気テープは、磁性層表面Raが1.8nm以下であるにもかかわらず、タイミングベースサーボシステムにおけるヘッド位置決め精度の低下を抑制することができる。この点に関する本発明者らの推察は、先に記載した通りである。磁性層表面Raが1.8nm以下である上記磁気テープは、優れた電磁変換特性を示すことができる。電磁変換特性の更なる向上の観点からは、磁性層表面Raは、1.7nm以下であることが好ましく、1.6nm以下であることが更に好ましく、1.5nm以下であることが一層好ましい。また、磁性層表面Raは、例えば1.2nm以上であることができる。ただし電磁変換特性向上の観点からは磁性層表面Raが低いほど好ましいため、上記例示した値を下回ってもよい。
磁性層表面Raは、公知の方法により制御することができる。例えば、磁性層に含まれる各種粉末(例えば、強磁性粉末、任意に含まれ得る非磁性粉末等)のサイズ、磁気テープの製造条件等により磁性層表面Raは変わり得るため、これらを調整することにより、磁性層表面Raが1.8nm以下の磁気テープを得ることができる。
<素地摩擦>
上記磁気テープの磁性層表面の素地部分において測定される摩擦係数(素地摩擦)は、0.35以下である。先に記載したように、素地摩擦が0.35以下であることが、タイミングベースサーボシステムにおけるヘッド位置決め精度向上に寄与すると、本発明者らは推察している。タイミングベースサーボシステムにおけるヘッド位置決め精度を更に向上する観点から、素地摩擦は0.33以下であることが好ましく、0.30以下であることがより好ましい。また、素地摩擦は、例えば0.10以上、0.15以上または0.20以上であることができる。ただし、磁性層表面Raが1.8nm以下の磁気テープにおいて、タイミングベースサーボシステムにおけるヘッド位置決め精度の低下を抑制する観点からは、素地摩擦は低いほど好ましいため、上記例示した値を下回ってもよい。
先に素地摩擦の測定方法に関して、基準面から15nm以上の高さの突起を突起と定義した理由は、通常、磁性層表面に存在する突起と認識される突起が、主に基準面から15nm以上の高さの突起だからである。かかる突起は、例えば研磨剤等の非磁性粉末により磁性層表面に形成されている。これに対し、本発明者らは、磁性層表面には、かかる突起により形成された凹凸よりも微視的な凹凸が存在すると考えている。そして、この微視的な凹凸の形状制御によって素地摩擦を調整することができると、本発明者らは推察している。この推察に基づき、本発明者らが、素地部分の凹凸の形状を制御すべく平均粒子サイズの異なる二種以上の強磁性粉末を用いて磁性層を形成したところ、素地摩擦を様々な値に制御することが可能であった。したがって、素地摩擦を調整するための手段の1つとしては、強磁性粉末として平均粒子サイズの異なる二種以上の強磁性粉末を用いることが挙げられる。より詳しくは、平均粒子サイズがより大きな強磁性粉末が凸部となることで素地部分に上記の微視的な凹凸を形成することができ、平均粒子サイズがより大きな強磁性粉末の混合比を高めることにより素地部分における凸部の存在率を高めることができる(または逆に混合比を下げることにより素地部分における凸部の存在率を低下させることができる)と、本発明者らは考えている。詳細は更に後述する。
また他の手段として、本発明者らは、素地部分の凹凸の形状を制御すべく、磁性層表面に基準面から15nm以上の高さの突起を形成可能な研磨剤等の非磁性粉末に加えて、強磁性粉末より平均粒子サイズの大きな他の非磁性粉末を用いて磁性層を形成したところ、素地摩擦を様々な値に制御することが可能であった。したがって、素地摩擦を調整するための手段の1つとしては、磁性層形成時に上記の他の非磁性粉末を用いることが挙げられる。より詳しくは、上記の他の非磁性粉末が凸部となることで素地部分に上記の微視的な凹凸を形成することができ、かかる非磁性粉末の混合比を高めることにより素地部分における凸部の存在率を高めることができる(または逆に混合比を下げることにより素地部分における凸部の存在率を低下させることができる)と、本発明者らは考えている。詳細は更に後述する。
加えて、上記二種の手段を組み合わせることにより、素地摩擦を調整することも可能である。
ただし上記の調整手段は例示であって、素地摩擦を調整可能な任意の手段によって、0.35以下の素地摩擦を実現することができ、そのような態様も本発明に包含される。
以下、上記磁気テープについて、更により詳細に説明する。
<磁性層>
(強磁性粉末)
上記の通り、素地摩擦の調整手段の1つとしては、強磁性粉末によって調整することが挙げられる。上記磁気テープの磁性層に含有される強磁性粉末としては、磁気テープの磁性層において強磁性粉末として通常用いられる各種粉末を使用することができる。
強磁性粉末によって調整する具体的態様は、強磁性粉末として平均粒子サイズの異なる二種以上の強磁性粉末を用いて磁性層を形成することである。この場合、二種以上の強磁性粉末の中で、最も多くの割合で用いる強磁性粉末として、平均粒子サイズの小さいものを使用することが、磁気テープの記録密度向上の観点から好ましい。この点から、平均粒子サイズの異なる二種以上の強磁性粉末を磁性層の強磁性粉末として用いる場合には、最も多くの割合で用いる強磁性粉末として、平均粒子サイズが50nm以下の強磁性粉末を用いることが好ましい。一方、磁化の安定性の観点からは、最も多くの割合で用いる強磁性粉末の平均粒子サイズは10nm以上であることが好ましい。なお平均粒子サイズが異なる二種以上の強磁性粉末を用いずに一種の強磁性粉末を用いる場合には、用いる強磁性粉末の平均粒子サイズは、上記の理由から、50nm以下であることが好ましく、10nm以上であることが好ましい。
これに対し、最も多くの割合で用いる強磁性粉末とともに用いる強磁性粉末は、最も多くの割合で用いる強磁性粉末より平均粒子サイズが大きなものであることが好ましい。平均粒子サイズが大きな強磁性粉末により素地部分に形成される凸部によって、素地摩擦を低減することができると考えられるからである。この点から、最も多くの割合で用いる強磁性粉末の平均粒子サイズと、これとともに用いる強磁性粉末の平均粒子サイズは、「(後者の平均粒子サイズ)−(前者の平均粒子サイズ)」として求められる差が、10〜80nmの範囲であることが好ましく、10〜50nmの範囲であることがより好ましく、10〜40nmの範囲であることが更に好ましく、12〜35nmの範囲であることが一層好ましい。なお最も多くの割合で用いる強磁性粉末とともに用いる強磁性粉末として、平均粒子サイズの異なる二種以上の強磁性粉末を用いることも、もちろん可能である。この場合には、最も多くの割合で用いる強磁性粉末の平均粒子サイズに対して、上記二種以上の強磁性粉末の少なくとも一種の強磁性粉末の平均粒子サイズが上記の差を満たすことが好ましく、より多くの種類の強磁性粉末の平均粒子サイズが上記の差を満たすことがより好ましく、すべての強磁性粉末の平均粒子サイズが上記の差を満たすことが更に好ましい。
また、平均粒子サイズの異なる二種以上の強磁性粉末については、素地摩擦の制御の観点から、最も多くの割合で用いる強磁性粉末と、他の強磁性粉末(他の強磁性粉末として平均粒子サイズの異なる二種以上を用いる場合にはそれらの合計)との混合比は、質量基準で、前者:後者=90.0:10.0〜99.9:0.1の範囲とすることが好ましく、95.0:5.0〜99.5:0.5の範囲とすることがより好ましい。
ここで平均粒子サイズの異なる強磁性粉末とは、平均粒子サイズが異なる強磁性粉末ロット全体またはその一部をいう。このように平均粒子サイズの異なる強磁性粉末を用いて形成された磁気テープの磁性層に含まれる強磁性粉末の個数基準または体積基準の粒度分布を、動的光散乱法、レーザー回折法等の公知の測定方法により測定すると、測定により得られる粒度分布曲線に、通常、最も多くの割合で用いた強磁性粉末の平均粒子サイズまたはその近傍に極大ピークを確認することができる。また、各強磁性粉末の平均粒子サイズまたはその近傍にピークを確認することができる場合もある。したがって、例えば平均粒子サイズが10〜50nmの強磁性粉末を最も多くの割合で用いて形成された磁気テープの磁性層に含まれる強磁性粉末の粒度分布を測定すると、通常、粒度分布曲線において、粒子サイズ10〜50nmの範囲に極大ピークを確認することができる。
なお上記の他の強磁性粉末の一部を、後述する他の非磁性粉末に置き換えてもよい。
本発明および本明細書における強磁性粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定する値とする。
強磁性粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして強磁性粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、強磁性粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H−9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS−400を用いて行うことができる。
本発明および本明細書において、強磁性粉末、およびその他の粉末についての平均粒子サイズとは、特記しない限り、上記方法により求められる平均粒子サイズをいうものとする。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H−9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS−400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している態様に限定されず、後述する結合剤および/または添加剤等が、粒子同士の間に介在している態様も包含される。粒子との語を、粉末を表すために用いることもある。
粒子サイズ測定のために磁性層から強磁性粉末等の試料粉末を採取する方法としては、例えば特開2011−048878号公報の段落0015に記載の方法を採用することができる。
本発明および本明細書において、強磁性粉末等の粉末を構成する粒子のサイズ(以下、「粒子サイズ」と言う)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚さまたは高さが板面または底面の最大長径より小さい)場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚さまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径であり、平均板状比とは、(最大長径/厚さまたは高さ)の算術平均である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
強磁性粉末の好ましい具体例としては、強磁性六方晶フェライト粉末を挙げることができる。最も多くの割合で用いる強磁性粉末が強磁性六方晶フェライト粉末である場合、その平均粒子サイズ(平均板径)は、高密度記録化と磁化の安定性の観点から、10nm以上50nm以下であることが好ましく、20nm以上50nm以下であることがより好ましい。強磁性六方晶フェライト粉末の詳細については、例えば、特開2011−225417号公報の段落0012〜0030、特開2011−216149号公報の段落0134〜0136、および特開2012−204726号公報の段落0013〜0030を参照できる。
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。最も多くの割合で用いる強磁性粉末が強磁性金属粉末である場合、その平均粒子サイズ(平均長軸長)は、高密度記録化と磁化の安定性の観点から、10nm以上50nm以下であることが好ましく、20nm以上50nm以下であることがより好ましい。強磁性金属粉末の詳細については、例えば特開2011−216149号公報の段落0137〜0141、および特開2005−251351号公報の段落0009〜0023を参照できる。
上記磁気テープは、強磁性粉末として、強磁性六方晶フェライト粉末および強磁性金属粉末のいずれか一方のみを含んでもよく、両方を含んでもよく、これらの一方または両方とともに他の種類の強磁性粉末を含んでもよい。
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。磁性層の強磁性粉末以外の成分は、少なくとも結合剤であり、任意に一種以上の添加剤が含まれ得る。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤、硬化剤)
上記磁気テープは塗布型磁気テープであって、磁性層に、強磁性粉末とともに結合剤を含む。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から単独または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、後述する非磁性層やバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010−24113号公報の段落0028〜0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。なお本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算の値である。測定条件としては、下記条件を挙げることができる。後述の実施例に示す重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC−8120(東ソー製)
カラム:TSK gel Multipore HXL−M(東ソー製、7.8mmID(inner diameter(内径))×30.0cm)
溶離液:テトラヒドロフラン(THF)
また、上記結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011−216149号公報の段落0124〜0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0〜80.0質量部、塗膜強度向上の観点からは好ましくは50.0〜80.0質量部の量で添加し使用することができる。
(添加剤)
磁性層には、強磁性粉末および結合剤が含まれ、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。なお硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。また、磁性層に含まれ得る添加剤としては、非磁性粉末、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤、カーボンブラック等を挙げることができる。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。
磁性層には、一種または二種以上の非磁性粉末が含まれることが好ましい。非磁性粉末としては、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(以下、「突起形成剤」と記載する。)を挙げることができる。突起形成剤は、磁気テープの磁性層表面の摩擦特性制御に寄与し得る成分である。また、磁性層には、研磨剤として機能することができる非磁性粉末(以下、「研磨剤」と記載する。)が含まれてもよい。上記磁気テープの磁性層には、突起形成剤および研磨剤の少なくとも一方が含まれることが好ましく、両方が含まれることがより好ましい。
突起形成剤としては、一般に突起形成剤として使用される各種非磁性粉末を用いることができる。これらは、無機物質であっても有機物質であってもよい。一態様では、摩擦特性の均一化の観点からは、突起形成剤の粒度分布は、分布中に複数のピークを有する多分散ではなく、単一ピークを示す単分散であることが好ましい。単分散粒子の入手容易性の点からは、磁性層に含まれる非磁性粉末は無機物質の粉末(無機粉末)であることが好ましい。無機粉末としては、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の各粉末を挙げることができ、無機酸化物の粉末であることが好ましい。突起形成剤は、より好ましくはコロイド粒子であり、更に好ましくは無機酸化物コロイド粒子である。また、単分散粒子の入手容易性の観点からは、無機酸化物コロイド粒子を構成する無機酸化物は二酸化ケイ素(シリカ)であることが好ましい。無機酸化物コロイド粒子は、コロイダルシリカ(シリカコロイド粒子)であることがより好ましい。本発明および本明細書において、「コロイド粒子」とは、少なくとも、メチルエチルケトン、シクロヘキサノン、トルエンもしくは酢酸エチル、または上記溶媒の二種以上を任意の混合比で含む混合溶媒の少なくとも1つの有機溶媒100mLあたり1g添加した際に、沈降せず分散しコロイド分散体をもたらすことのできる粒子をいうものとする。コロイド粒子については、平均粒子サイズは、特開2011−048878号公報の段落0015に平均粒径の測定方法として記載されている方法により求められる値とする。また、他の一態様では、突起形成剤は、カーボンブラックであることも好ましい。
突起形成剤の平均粒子サイズは、例えば30〜300nmであり、好ましくは40〜200nmである。
一方、研磨剤は、好ましくはモース硬度8超の非磁性粉末であり、モース硬度9以上の非磁性粉末であることがより好ましい。なおモース硬度の最大値は、ダイヤモンドの10である。具体的には、アルミナ(Al)、炭化ケイ素、ボロンカーバイド(BC)、SiO、TiC、酸化クロム(Cr)、酸化セリウム、酸化ジルコニウム(ZrO)、酸化鉄、ダイヤモンド等の各粉末を挙げることができ、中でもα−アルミナ等のアルミナ粉末および炭化ケイ素粉末が好ましい。また、研磨剤の粒子サイズに関しては、粒子サイズの指標である比表面積として、例えば14m/g以上、好ましくは16m/g以上、より好ましくは18m/g以上である。また、研磨剤の比表面積は、例えば40m/g以下であることができる。比表面積とは、窒素吸着法(BET(Brunauer−Emmett−Teller)1点法とも呼ばれる。)により求められる値であって、一次粒子について測定する値とする。以下において、かかる方法により求められる比表面積を、BET比表面積とも記載する。
また、突起形成剤および研磨剤が、各機能をより良好に発揮することができるという観点から、磁性層における突起形成剤の含有量は、好ましくは強磁性粉末100.0質量部に対して、1.0〜4.0質量部であり、より好ましくは1.5〜3.5質量部である。一方、研磨剤については、磁性層における含有量は、好ましくは強磁性粉末100.0質量部に対して1.0〜20.0質量部であり、より好ましくは3.0〜15.0質量部であり、更に好ましくは4.0〜10.0質量部である。
なお、研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013−131285号公報の段落0012〜0022に記載の分散剤を、磁性層形成用組成物における研磨剤の分散性を向上するための分散剤として挙げることができる。研磨剤等の非磁性粉末の磁性層形成用組成物における分散性を向上することは、磁性層表面Raを小さくするうえで好ましい。
更に先に記載したように、素地摩擦を0.35以下に制御するために、以上説明した非磁性粉末に加えて、他の非磁性粉末を用いることもできる。そのような非磁性粉末は、モース硬度8以下であることが好ましく、非磁性層に通常使用される各種の非磁性粉末を用いることができる。詳細については、非磁性層について後述する通りである。より好ましい非磁性粉末としては、ベンガラを挙げることができる。ベンガラのモース硬度は、約6である。
上記の他の非磁性粉末は、先に記載した、最も多くの割合で用いる強磁性粉末とともに用いる強磁性粉末と同様に、強磁性粉末より平均粒子サイズが大きなものであることが好ましい。上記の他の非磁性粉末により素地部分に形成される凸部によって、素地摩擦を低減することができると考えられるからである。この点から、強磁性粉末の平均粒子サイズと、これとともに用いる上記の他の非磁性粉末の平均粒子サイズは、「(後者の平均粒子サイズ)−(前者の平均粒子サイズ)」として求められる差が、10〜80nmの範囲であることが好ましく、10〜50nmの範囲であることがより好ましい。なお強磁性粉末として平均粒子サイズの異なる二種以上の強磁性粉末を用いる場合には、上記の他の非磁性粉末の平均粒子サイズとの差を算出する強磁性粉末は、二種以上の強磁性粉末の中で、最も多くの割合で用いる強磁性粉末とする。また、上記の他の非磁性粉末として、平均粒子サイズの異なる二種以上の非磁性粉末を用いることも、もちろん可能である。この場合には、強磁性粉末の平均粒子サイズに対して、上記の他の非磁性粉末の二種以上の少なくとも一種の非磁性粉末の平均粒子サイズが上記の差を満たすことが好ましく、より多くの種類の非磁性粉末の平均粒子サイズが上記の差を満たすことがより好ましく、上記の他の非磁性粉末のすべての平均粒子サイズが上記の差を満たすことが更に好ましい。
また、素地摩擦の制御の観点から、強磁性粉末と、上記の他の非磁性粉末(上記の他の非磁性粉末として平均粒子サイズの異なる二種以上を用いる場合にはそれらの合計)との混合比は、質量基準で、前者:後者=90.0:10.0〜99.9:0.1の範囲とすることが好ましく、95.0:5.0〜99.5:0.5の範囲とすることがより好ましい。
<非磁性層>
次に非磁性層について説明する。上記磁気テープは、非磁性支持体表面に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に、非磁性粉末と結合剤を含む非磁性層を有することもできる。非磁性層に使用される非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011−216149号公報の段落0146〜0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010−24113号公報の段落0040〜0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。
非磁性層の結合剤、添加剤等のその他詳細は、非磁性層に関する公知技術が適用できる。また、例えば、結合剤含有量および種類、添加剤含有量および種類に関しては、磁性層に関する公知技術も適用できる。
上記磁気テープの非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい
<非磁性支持体>
次に、非磁性支持体(単に「支持体」とも記載する。)について説明する。非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリアミドが好ましい。これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
<非磁性支持体の厚み、各層の厚み>
非磁性支持体の厚みは、好ましくは3.00〜20.00μm、より好ましくは3.00〜10.00μm、更に好ましくは3.00〜6.00μmであり、特に好ましくは3.00〜4.50μmである。
磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等に基づき最適化することが好ましい。高密度記録化のためには、磁性層の厚みは、10〜100nmであることが好ましく、20〜90nmであることがより好ましい。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
非磁性層の厚みは、例えば0.05μm以上であり、好ましくは0.07μm以上であり、より好ましくは0.10μm以上である。一方、非磁性層の厚みは、0.80μm以下であることが好ましく、0.50μm以下であることがより好ましい。
<バックコート層>
上記磁気テープは、非磁性支持体の磁性層を有する側とは反対側にバックコート層を有することもできる。バックコート層は、非磁性粉末および結合剤を含む層である。バックコート層は、非磁性粉末として、カーボンブラックと無機粉末のいずれか一方または両方を含むことが好ましい。バックコート層形成用組成物の処方(例えば結合剤、各種添加剤の種類、含有量等)については、バックコート層に関する公知の処方を適用することができる。バックコート層の厚みは、0.90μm以下が好ましく、0.10〜0.70μmが更に好ましい。
磁気テープの各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気テープの厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡を用いて断面観察を行う。断面観察において厚み方向の1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
<製造方法>
<<サーボパターンが形成される磁気テープの製造>>
(各層形成用組成物の調製)
磁性層、または任意に設けられる非磁性層もしくはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、一般に塗布型磁気記録媒体製造のために使用される有機溶媒を挙げることができる。各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含む。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる強磁性粉末、非磁性粉末、結合剤、各種添加剤、溶媒等のすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、磁性層形成用組成物については、一態様では、強磁性粉末を含有する分散液(磁性液)と研磨剤を含有する分散液(研磨剤液)とをそれぞれ別分散して調製した後、同時または順次、他の成分と混合し磁性層形成用組成物を調製することができる。その他、各層形成用組成物の調製については、特開2010−231843号公報の段落0065も参照できる。
素地摩擦の制御に関しては、先に説明した通り、一態様では、平均粒子サイズが異なる二種以上の強磁性粉末を用いて磁気テープを製造することができる。即ち、磁性層を、強磁性粉末として、第一の強磁性粉末と、第一の強磁性粉末より平均粒子サイズの大きい強磁性粉末の一種以上と、を用いて形成することができる。かかる磁性層の形成方法の好ましい態様としては、下記(1)〜(3)の態様を挙げることができる。下記態様の2つ以上の組み合わせは、上記磁性層の形成方法のより好ましい態様である。なお第一の強磁性粉末とは、二種以上用いられる強磁性粉末の中の一種の強磁性粉末をいい、先に記載した、最も多くの割合で用いる強磁性粉末であることが好ましい。その他の上記磁性層の形成方法の詳細は、先に記載した通りである。
(1)第一の強磁性粉末の平均粒子サイズは、10〜80nmの範囲である。
(2)第一の強磁性粉末より平均粒子サイズの大きい強磁性粉末の平均粒子サイズと第一の強磁性粉末の平均粒子サイズとの差は、10〜50nmの範囲である。
(3)第一の強磁性粉末と第一の強磁性粉末より平均粒子サイズの大きい強磁性粉末との混合比は、質量基準で、前者:後者=90.0:10.0〜99.9:0.1の範囲である。
また他の一態様では、磁性層の非磁性粉末として、研磨剤および突起形成剤以外の他の非磁性粉末を用いて磁気テープを製造することもできる。即ち、磁性層を、上記の他の非磁性粉末を用いて形成することができる。かかる磁性層の形成方法の好ましい態様としては、下記(4)〜(6)の態様を挙げることができる。下記態様の2つ以上の組み合わせは、上記磁性層の形成方法のより好ましい態様である。その他の上記磁性層の形成方法の詳細は、先に記載した通りである。
(4)上記の他の非磁性粉末の平均粒子サイズは、強磁性粉末の平均粒子サイズより大きい。
(5)強磁性粉末の平均粒子サイズと上記の他の非磁性粉末の平均粒子サイズとの差は、10〜80nmの範囲である。
(6)強磁性粉末と上記の他の非磁性粉末との混合比は、質量基準で、前者:後者=90.0:10.0〜99.9:0.1の範囲である。
(塗布工程)
磁性層は、磁性層形成用組成物を非磁性支持体表面に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側の表面に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010−231843号公報の段落0066を参照できる。
(その他工程)
磁気テープ製造のためのその他の各種工程については、特開2010−231843号公報の段落0067〜0070を参照できる。その他工程で行われる処理の一例としては、磁性層表面の表面処理を挙げることもできる。表面処理することは、磁性層の表面平滑性を高めるうえで好ましい。一例として、磁性層表面の表面処理としては、特開平5−62174号公報に記載の研磨手段を用いる研磨処理を挙げることができる。上記表面処理については、同公報の段落0005〜0032および全図面を参照できる。
<<サーボパターンの形成>>
上記磁気テープは、磁性層に、タイミングベースサーボパターンを有する。タイミングベースサーボパターンが形成された領域(サーボバンド)および2本のサーボバンドに挟まれた領域(データバンド)の配置例が、図1に示されている。タイミングベースサーボパターンの配置例は、図2に示されている。ただし、各図面に示す配置例は例示であって、磁気テープ装置(ドライブ)の方式に応じた配置でサーボパターン、サーボバンドおよびデータバンドを配置すればよい。また、タイミングベースサーボパターンの形状および配置については、例えば、米国特許第5689384号のFIG.4、FIG.5、FIG.6、FIG.9、FIG.17、FIG.20等に例示された配置例等の公知技術を何ら制限なく適用することができる。
サーボパターンは、磁性層の特定の領域をサーボライターに搭載されたサーボライトヘッドにより磁化することによって形成することができる。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。サーボライターとしては、市販のサーボライターまたは公知の構成のサーボライターを用いることができる。サーボライターの構成については、例えば特開2011−175687号公報、米国特許第5689384号、米国特許第6542325号等に記載の技術等の公知技術を何ら制限なく採用できる。
以上説明した本発明の磁気テープは、磁性層表面Raが1.8nm以下の高い表面平滑性を有し、かつタイミングベースサーボシステムにおけるヘッド位置決め精度の向上が可能である。
[磁気テープ装置]
本発明の一態様は、上記磁気テープと、磁気ヘッドと、サーボヘッドと、を含む磁気テープ装置に関する。
上記磁気テープ装置に搭載される磁気テープの詳細は、先に記載した通りである。かかる磁気テープは、タイミングベースサーボパターンを有する。したがって、磁気ヘッドによりデータバンド上に磁気信号を記録してデータトラックを形成し、および/または、記録された信号を再生する際、サーボヘッドによりサーボパターンを読み取りながら読み取られたサーボパターンに基づきタイミングベースサーボ方式のヘッドトラッキングを行うことによって、磁気ヘッドをデータトラックに高精度に追従させることができる。ヘッド位置決め精度の指標としては、後述の実施例に示す方法により求められるPES(Position Error Signal)を挙げることができる。PESは、磁気テープが磁気テープ装置内を走行する際、サーボシステムによりヘッドトラッキングを行ったとしても、磁気ヘッドが走行すべき位置からずれて走行したことの指標であって、値が大きいほどズレが大きくサーボシステムにおけるヘッド位置決め精度が低いことを意味する。本発明の一態様にかかる磁気テープは、例えば9.0nm以下(例えば7.0〜9.0nmの範囲)のPESを達成することができる。
上記磁気テープ装置に搭載される磁気ヘッドとしては、磁気テープへの磁気信号の記録および/または再生を行うことが可能な公知の磁気ヘッドを用いることができる。記録ヘッドと再生ヘッドは、1つの磁気ヘッドであってもよく分離した磁気ヘッドであってもよい。サーボヘッドとしては、上記磁気テープのタイミングベースサーボパターンを読み取り可能な公知のサーボヘッドを用いることができる。サーボヘッドは、上記磁気テープ装置に少なくとも1つ含まれ、2つ以上含まれてもよい。
タイミングベースサーボシステムにおけるヘッドトラッキングの詳細については、例えば、米国特許第5689384号、米国特許第6542325号、および米国第7876521号に記載の技術をはじめとする公知技術を何ら制限なく適用することができる。
なお市販の磁気テープ装置には、通常、規格に応じた磁気ヘッドおよびサーボヘッドが備えられている。また、市販の磁気テープ装置には、通常、規格に応じたタイミングベースサーボシステムにおけるヘッドトラッキングを可能にするためのサーボ制御機構が備えられている。本発明の一態様にかかる磁気テープ装置は、例えば、市販の磁気テープ装置に本発明の一態様にかかる磁気テープを組み込むことにより構成することができる。
以下に、本発明を実施例に基づき説明する。但し、本発明は実施例に示す態様に限定されるものではない。なお、以下に記載の「部」の表示は、特に断らない限り、「質量部」を示す。
[磁気テープ作製例]
<実施例1>
各層形成用組成物の処方を、下記に示す。
(磁性層形成用組成物)
(磁性液)
強磁性六方晶バリウムフェライト粉末(1):表1参照
(平均粒子サイズ(平均板径):表1参照)
強磁性六方晶バリウムフェライト粉末(2):表1参照
(平均粒子サイズ(平均板径):表1参照)
オレイン酸:2.0部
塩化ビニル共重合体(日本ゼオン製MR−104):10.0部
SONa基含有ポリウレタン樹脂:4.0部
(重量平均分子量70,000、SONa基:0.07meq/g)
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
α−アルミナ(BET比表面積19m/g):6.0部
SONa基含有ポリウレタン樹脂
(重量平均分子量70,000、SONa基:0.1meq/g):0.6部
2,3−ジヒドロキシナフタレン:0.6部
シクロヘキサノン:23.0部
(突起形成剤液)
コロイダルシリカ(平均粒子サイズ120nm):2.0部
メチルエチルケトン:8.0部
(潤滑剤、硬化剤液)
ステアリン酸:3.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(日本ポリウレタン製コロネート(登録商標)L):3.0部
(非磁性層形成用組成物)
カーボンブラック(平均粒子サイズ16nm、DBP(Dibutyl phthalate)吸油量74cm/100g):100.0部
トリオクチルアミン:4.0部
塩化ビニル共重合体(日本ゼオン製MR−104):19.0部
SONa基含有ポリウレタン樹脂
(重量平均分子量50,000、SONa基:0.07meq/g):12.0部
メチルエチルケトン:370.0部
シクロヘキサノン:370.0部
ステアリン酸:2.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:2.0部
(バックコート層形成用組成物)
ベンガラ(平均粒子サイズ:0.15μm、平均針状比:7、BET比表面積:52m/g):80.0部
カーボンブラック(平均粒子サイズ16nm、DBP吸油量74cm/100g):20.0部
フェニルホスホン酸:3.0部
塩化ビニル共重合体(日本ゼオン製MR−104):12.0部
SONa基含有ポリウレタン樹脂
(重量平均分子量50,000、SONa基:0.07meq/g):8.0部
α−アルミナ(BET比表面積17m/g):5.0部
メチルエチルケトン:370.0部
シクロヘキサノン:370.0部
ステアリン酸:1.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:2.0部
ポリイソシアネート(日本ポリウレタン製コロネートL):5.0部
(磁性層形成用組成物の調製)
磁性層形成用組成物は以下の方法によって調製した。
上記磁性液をオープンニーダにより混練および希釈処理後、横型ビーズミル分散機により、ビーズ径0.1mmのジルコニア(ZrO)ビーズ(以下、「Zrビーズ」と記載する。)を用い、ビーズ充填率80体積%、ローター先端周速10m/秒で、1パス滞留時間を2分とし、30パスの分散処理を行った。
研磨剤液については、上記成分を混合してビーズ径0.3mmのZrビーズとともに横型ビーズミル分散機に入れ、ビーズ体積/(研磨剤液体積+ビーズ体積)が80%になるように調整し、120分間ビーズミル分散処理を行った。処理後の液を取り出し、フロー式の超音波分散濾過装置を用いて、超音波分散濾過処理を施した。
磁性液、研磨剤液および突起形成剤液と、その他の成分としての潤滑剤、硬化剤液をディゾルバー攪拌機に導入し、周速10m/秒で30分間攪拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタで濾過して磁性層形成用組成物を調製した。
(非磁性層形成用組成物の調製)
非磁性層形成用組成物は以下の方法によって調製した。
潤滑剤(ステアリン酸、ステアリン酸アミド、およびステアリン酸ブチル)を除く上記成分を、オープンニーダにより混練および希釈処理して、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸、ステアリン酸アミド、およびステアリン酸ブチル)を添加して、ディゾルバー攪拌機にて攪拌および混合処理を施して非磁性層形成用組成物を調製した。
(バックコート層形成用組成物の調製)
バックコート層形成用組成物は以下の方法によって調製した。
ポリイソシアネートおよび潤滑剤(ステアリン酸、ステアリン酸アミド、およびステアリン酸ブチル)を除く上記成分を、ディゾルバー攪拌機に導入し、周速10m/秒で30分間攪拌した後、横型ビーズミル分散機により分散処理を実施した。その後、ポリイソシアネートおよび潤滑剤(ステアリン酸、ステアリン酸アミド、およびステアリン酸ブチル)を添加して、ディゾルバー攪拌機にて攪拌および混合処理を施し、バックコート層形成用組成物を調製した。
(磁気テープの作製)
厚さ4.00μmの非磁性支持体(ポリアミド支持体)の一方の表面上に、乾燥後の厚さが0.10μmになるように非磁性層形成用組成物を塗布し乾燥させた。その後、バックコート層形成用組成物を、非磁性支持体の反対側の表面上に乾燥後の厚さが0.50μmになるように塗布し乾燥させた。一度巻き取りロールに巻き取った非磁性支持体を雰囲気温度70℃の環境下で36時間熱処理した。
熱処理後の非磁性層上に、乾燥後の厚さが70nmになるように磁性層形成用組成物を塗布し乾燥させた。
上記の各層の厚さは、製造条件から算出された設計厚みである。
その後、金属ロールのみから構成されるカレンダで速度100m/min、線圧300kg/cm(294kN/m)、カレンダロールの表面温度100℃で表面平滑化処理(カレンダ処理)を行った。カレンダ処理条件を強化するほど(例えばカレンダロールの表面温度を高くするほど)、磁性層表面Raは小さくなる傾向がある。
その後、雰囲気温度70℃の環境下で36時間熱処理を行った。熱処理後、1/2インチ(0.0127メートル)幅にスリットを行った。
続いて、特開平5−62174号公報に記載のダイヤモンドホイールを用いる表面処理(同公報の図1〜図3に示されている態様)を行って得られた磁気テープをロール状にリールに巻き取った後、下記の評価方法によりその特性を評価した。
(タイミングベースサーボパターンの形成)
作製した磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッドによって、LTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを磁性層に形成した。これにより、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する磁気テープを得た。
<実施例2〜6、比較例1〜5>
表1に示すように磁性層形成用組成物の処方および/または製造条件を変更した点以外、実施例1と同様の方法で磁気テープを作製した。
表1に記載の強磁性六方晶バリウムフェライト粉末の処方率とは、強磁性粉末全量100.0質量部に対する各強磁性六方晶バリウムフェライト粉末の質量基準の含有率である。表1に示す強磁性六方晶バリウムフェライト粉末の平均粒子サイズは、磁気テープの作製に用いる粉末ロットから必要量を採取し、先に記載した方法によって平均粒子サイズを測定した値である。測定後の強磁性六方晶バリウムフェライト粉末を、磁気テープの作製のための磁性液の調製に用いた。
[評価方法]
(1)磁性層表面Ra
原子間力顕微鏡(AFM、Veeco社製Nanoscope4)を用い、測定面積40μm×40μmの範囲を測定し、磁気テープの磁性層表面において、中心線平均表面粗さRaを求めた。スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとした。
(2)素地摩擦
まず、測定面に予めレーザーマーカーで罫書きをいれ、そこから一定距離(約100μm)離れた部分の原子間力顕微鏡(AFM)像を測定した。視野面積は7μm×7μmで行った。このとき、後述するように同一箇所の走査型電子顕微鏡(SEM(Scanning Electron Microscope))画像を撮りやすいように、カンチレバーを硬いもの(単結晶シリコン)に変えて、AFM上で罫書きを入れた。こうして測定したAFM画像から、基準面から15nm以上の高さにある突起を全て抽出した。そして突起が存在しないと判定された箇所を素地部分と特定し、Hysitron社TI−950型トライボインデンターを用いて先に記載した方法により素地摩擦を測定した。
更に、AFMを測定したところと同一箇所のSEM画像を測定して成分マップを取得し、抽出した基準面から15nm以上の高さの突起がアルミナまたはコロイダルシリカにより形成された突起であることを確認した。また、実施例1〜6では、上記SEMを用いた成分マップにおいて、素地部分にアルミナおよびコロイダルシリカは確認されなかった。なお、ここではSEMにより成分分析を行ったが、成分分析は、SEMに限らず、エネルギー分散型X線分光法(EDS:Energy Dispersive X−ray Spectrometry)、オージェ電子分光法(AES:Auger Electron Spectroscopy)等の公知の方法により行うことができる。
(3)PESの測定
上記タイミングベースサーボパターンが形成された磁気テープについて、サーボパターンの形成に用いたサーボライター上のベリファイ(verify)ヘッドでサーボパターンを読み取った。ベリファイヘッドは、磁気テープに形成されたサーボパターンの品質を確認するための読取用磁気ヘッドであり、公知の磁気テープ装置(ドライブ)の磁気ヘッドと同様に、サーボパターンの位置(磁気テープの幅方向の位置)に対応した位置に読取用の素子が配置されている。
ベリファイヘッドには、ベリファイヘッドでサーボパターンを読み取って得た電気信号から、サーボシステムにおけるヘッド位置決め精度をPESとして演算する公知のPES演算回路が接続されている。PES演算回路は、入力された電気信号(パルス信号)から磁気テープの幅方向への変位を随時計算し、この変位の時間的変化情報(信号)に対してハイパスフィルタ(カットオフ:500cycles/m)を適用した値を、PESとして算出した。
(4)電磁変換特性(SNR(Signal−to−Noise−Ratio))の評価
雰囲気温度23℃±1℃、相対湿度50%の環境下にて、上記で作製した磁気テープについて、記録ヘッド(MIG(Metal−in−gap)ヘッド、ギャップ長0.15μm、1.8T)と再生用GMR(Giant Magnetoresistive)ヘッド(再生トラック幅1μm)をループテスターに取り付けて、線記録密度325kfciの信号を記録した。その後、再生出力を測定し、再生出力とノイズとの比としてSNRを求めた。比較例1のSNRを0dBとした時にSNRが2.0dB以上であれば、高密度記録化に伴う今後の厳しいニーズに対応し得る性能を有すると評価することができる。
以上の結果を、表1に示す。
上記方法により求められるPESが9.0nm以下であることは、タイミングベースサーボシステムにおけるヘッドトラッキングによって、記録ヘッドを高精度に位置決め可能であることを意味する。
比較例1〜3と比較例4との対比により、磁性層表面Raが1.8nm以下の磁気テープでは、PESが9.0nmを大きく超える現象(ヘッド位置決め精度の低下)が発生することが確認された。
比較例5の磁気テープは、サーボヘッドの摺動性がきわめて低く、サーボヘッドを走行させることができなかったため、PESを評価することができなかった。磁性層表面Raが1.5nm以下であり磁性層表面の平滑性が高いためサーボヘッドが素地部分と接触する確率が高いにもかかわらず、素地摩擦が0.45と高いことが原因と考えられる。
これに対し実施例1〜6の磁気テープは、磁性層表面Raが1.8nm以下であるものの、9.0nm以下のPESを達成すること、即ちタイミングベースサーボシステムにおけるヘッド位置決め精度の向上が可能であった。
更に、実施例1〜6の磁気テープが2.0nm以上のSNRを示したことには、磁性層表面Raが1.8nm以下であり磁性層の表面平滑性が高いことが寄与していると考えられる。
本発明は、高密度記録用磁気テープの技術分野において有用である。

Claims (7)

  1. 非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、
    前記磁性層は、タイミングベースサーボパターンを有し、
    前記磁性層の表面において測定される中心線平均表面粗さRaは、1.8nm以下であり、かつ
    前記磁性層の表面の素地部分において測定される摩擦係数は、0.35以下である磁気テープ。
  2. 前記素地部分において測定される摩擦係数は、0.15〜0.35の範囲である請求項1に記載の磁気テープ。
  3. 前記素地部分において測定される摩擦係数は、0.15〜0.30の範囲である請求項1または2に記載の磁気テープ。
  4. 前記中心線平均表面粗さRaは、1.2〜1.8nmの範囲である請求項1〜3のいずれか1項に記載の磁気テープ。
  5. 前記中心線平均表面粗さRaは、1.2〜1.6nmの範囲である請求項1〜4のいずれか1項に記載の磁気テープ。
  6. 前記非磁性支持体と磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有する請求項1〜5のいずれか1項に記載の磁気テープ。
  7. 請求項1〜6のいずれか1項に記載の磁気テープと、磁気ヘッドと、サーボヘッドと、を含む磁気テープ装置。
JP2016056850A 2016-03-22 2016-03-22 磁気テープおよび磁気テープ装置 Active JP6433449B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016056850A JP6433449B2 (ja) 2016-03-22 2016-03-22 磁気テープおよび磁気テープ装置
US15/464,991 US9779772B1 (en) 2016-03-22 2017-03-21 Magnetic tape and magnetic tape device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056850A JP6433449B2 (ja) 2016-03-22 2016-03-22 磁気テープおよび磁気テープ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018209059A Division JP6592166B2 (ja) 2018-11-06 2018-11-06 磁気テープおよび磁気テープ装置

Publications (2)

Publication Number Publication Date
JP2017174475A JP2017174475A (ja) 2017-09-28
JP6433449B2 true JP6433449B2 (ja) 2018-12-05

Family

ID=59896500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056850A Active JP6433449B2 (ja) 2016-03-22 2016-03-22 磁気テープおよび磁気テープ装置

Country Status (2)

Country Link
US (1) US9779772B1 (ja)
JP (1) JP6433449B2 (ja)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316248B2 (ja) 2015-08-21 2018-04-25 富士フイルム株式会社 磁気テープおよびその製造方法
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
JP6552402B2 (ja) * 2015-12-16 2019-07-31 富士フイルム株式会社 磁気テープ、磁気テープカートリッジ、磁気記録再生装置および磁気テープの製造方法
US10403319B2 (en) * 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
JP6430927B2 (ja) 2015-12-25 2018-11-28 富士フイルム株式会社 磁気テープおよびその製造方法
JP6427127B2 (ja) 2016-02-03 2018-11-21 富士フイルム株式会社 磁気テープおよびその製造方法
JP6465823B2 (ja) * 2016-02-03 2019-02-06 富士フイルム株式会社 磁気テープおよびその製造方法
JP6474748B2 (ja) 2016-02-29 2019-02-27 富士フイルム株式会社 磁気テープ
JP6472764B2 (ja) 2016-02-29 2019-02-20 富士フイルム株式会社 磁気テープ
JP6467366B2 (ja) 2016-02-29 2019-02-13 富士フイルム株式会社 磁気テープ
JP6556096B2 (ja) 2016-06-10 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6534637B2 (ja) 2016-06-13 2019-06-26 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6556100B2 (ja) 2016-06-22 2019-08-07 富士フイルム株式会社 磁気テープ
JP6534969B2 (ja) 2016-06-22 2019-06-26 富士フイルム株式会社 磁気テープ
JP6507126B2 (ja) 2016-06-23 2019-04-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6556101B2 (ja) 2016-06-23 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6717684B2 (ja) 2016-06-23 2020-07-01 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6496277B2 (ja) 2016-06-23 2019-04-03 富士フイルム株式会社 磁気テープ
JP6549528B2 (ja) 2016-06-23 2019-07-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6549529B2 (ja) 2016-06-23 2019-07-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6556102B2 (ja) 2016-06-23 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6498154B2 (ja) 2016-06-23 2019-04-10 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6529933B2 (ja) 2016-06-24 2019-06-12 富士フイルム株式会社 磁気テープ
JP6552467B2 (ja) 2016-08-31 2019-07-31 富士フイルム株式会社 磁気テープ
JP6556107B2 (ja) 2016-08-31 2019-08-07 富士フイルム株式会社 磁気テープ
JP6585570B2 (ja) 2016-09-16 2019-10-02 富士フイルム株式会社 磁気記録媒体およびその製造方法
JP6588002B2 (ja) 2016-12-27 2019-10-09 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6684203B2 (ja) 2016-12-27 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6701072B2 (ja) 2016-12-27 2020-05-27 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP2018106778A (ja) 2016-12-27 2018-07-05 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6685248B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6684238B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6684236B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6637456B2 (ja) 2017-02-20 2020-01-29 富士フイルム株式会社 磁気テープ
JP6602806B2 (ja) 2017-02-20 2019-11-06 富士フイルム株式会社 磁気テープ
JP6684235B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6602805B2 (ja) 2017-02-20 2019-11-06 富士フイルム株式会社 磁気テープ
JP6684239B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6689222B2 (ja) 2017-02-20 2020-04-28 富士フイルム株式会社 磁気テープ
JP6649297B2 (ja) 2017-02-20 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6684237B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649298B2 (ja) 2017-02-20 2020-02-19 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6689223B2 (ja) 2017-02-20 2020-04-28 富士フイルム株式会社 磁気テープ
JP6684234B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6649312B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6626031B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6694844B2 (ja) 2017-03-29 2020-05-20 富士フイルム株式会社 磁気テープ装置、磁気再生方法およびヘッドトラッキングサーボ方法
JP6615814B2 (ja) 2017-03-29 2019-12-04 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649313B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6660336B2 (ja) 2017-03-29 2020-03-11 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649314B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6626032B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6632561B2 (ja) 2017-03-29 2020-01-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6615815B2 (ja) 2017-03-29 2019-12-04 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6632562B2 (ja) 2017-03-29 2020-01-22 富士フイルム株式会社 磁気テープ
JP6691512B2 (ja) 2017-06-23 2020-04-28 富士フイルム株式会社 磁気記録媒体
JP6723198B2 (ja) 2017-06-23 2020-07-15 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6707061B2 (ja) 2017-07-19 2020-06-10 富士フイルム株式会社 磁気記録媒体
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
JP6714548B2 (ja) 2017-07-19 2020-06-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6707060B2 (ja) 2017-07-19 2020-06-10 富士フイルム株式会社 磁気テープ
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
JP6717785B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気記録媒体
JP6717786B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6723203B2 (ja) 2017-07-19 2020-07-15 富士フイルム株式会社 磁気テープ
JP6717787B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6723202B2 (ja) 2017-07-19 2020-07-15 富士フイルム株式会社 磁気テープ
JP6678135B2 (ja) * 2017-07-19 2020-04-08 富士フイルム株式会社 磁気記録媒体
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854231B2 (en) * 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
JP6884220B2 (ja) 2017-09-29 2021-06-09 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
CN113436654B (zh) 2017-09-29 2022-12-02 富士胶片株式会社 磁带及磁记录回放装置
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP6812479B2 (ja) * 2018-03-23 2021-01-13 富士フイルム株式会社 磁気テープおよび磁気テープ装置
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
JP6812480B2 (ja) * 2018-03-23 2021-01-13 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP7009414B2 (ja) * 2018-06-29 2022-01-25 富士フイルム株式会社 磁気テープ装置
JP6830931B2 (ja) 2018-07-27 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6830930B2 (ja) * 2018-07-27 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6784738B2 (ja) 2018-10-22 2020-11-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7042737B2 (ja) 2018-12-28 2022-03-28 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6830945B2 (ja) 2018-12-28 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003073B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6778804B1 (ja) 2019-09-17 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693930A (en) * 1985-05-03 1987-09-15 Minnesota Mining And Manufacturing Company Smooth, low-friction magnetic recording medium
US5689384A (en) 1994-06-30 1997-11-18 International Business Machines Corporation Timing based servo system for magnetic tape systems
JPH11175949A (ja) * 1997-12-11 1999-07-02 Kao Corp 磁気記録媒体
JP2002092849A (ja) * 2000-09-20 2002-03-29 Fuji Photo Film Co Ltd 磁気記録媒体
US7511907B2 (en) * 2004-02-17 2009-03-31 Advanced Research Corporation Stepped time based servo pattern and head
JP4459248B2 (ja) * 2006-03-31 2010-04-28 富士フイルム株式会社 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
JP6175422B2 (ja) * 2014-09-29 2017-08-02 富士フイルム株式会社 磁気テープ

Also Published As

Publication number Publication date
US9779772B1 (en) 2017-10-03
US20170278533A1 (en) 2017-09-28
JP2017174475A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6433449B2 (ja) 磁気テープおよび磁気テープ装置
JP6556096B2 (ja) 磁気テープおよび磁気テープ装置
JP6701072B2 (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6556101B2 (ja) 磁気テープおよび磁気テープ装置
JP6615816B2 (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6694844B2 (ja) 磁気テープ装置、磁気再生方法およびヘッドトラッキングサーボ方法
JP6556102B2 (ja) 磁気テープおよび磁気テープ装置
JP6632561B2 (ja) 磁気テープ装置および磁気再生方法
JP6615815B2 (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6714548B2 (ja) 磁気テープおよび磁気テープ装置
JP6660336B2 (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6684237B2 (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6717787B2 (ja) 磁気テープおよび磁気テープ装置
JP6717786B2 (ja) 磁気テープおよび磁気テープ装置
JP6701073B2 (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6521855B2 (ja) 磁気テープおよび磁気テープ装置
JP6717684B2 (ja) 磁気テープおよび磁気テープ装置
JP2018106781A (ja) 磁気テープ装置および磁気再生方法
JP2018106783A (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP2018106782A (ja) 磁気テープ装置および磁気再生方法
JP2018170053A (ja) 磁気テープ装置および磁気再生方法
JP2018137010A (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP2018106790A (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP2018137011A (ja) 磁気テープ装置および磁気再生方法
JP2018106784A (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181106

R150 Certificate of patent or registration of utility model

Ref document number: 6433449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250