US10854227B2 - Magnetic recording medium having characterized magnetic layer - Google Patents

Magnetic recording medium having characterized magnetic layer Download PDF

Info

Publication number
US10854227B2
US10854227B2 US16/038,687 US201816038687A US10854227B2 US 10854227 B2 US10854227 B2 US 10854227B2 US 201816038687 A US201816038687 A US 201816038687A US 10854227 B2 US10854227 B2 US 10854227B2
Authority
US
United States
Prior art keywords
magnetic
magnetic layer
equal
recording medium
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/038,687
Other versions
US20190027168A1 (en
Inventor
Norihito KASADA
Toshio Tada
Eiki OZAWA
Takuto KUROKAWA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018131332A external-priority patent/JP6678205B2/en
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Assigned to FUJIFILM CORPORATION reassignment FUJIFILM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OZAWA, EIKI, TADA, TOSHIO, KASADA, NORIHITO, KUROKAWA, TAKUTO
Publication of US20190027168A1 publication Critical patent/US20190027168A1/en
Application granted granted Critical
Publication of US10854227B2 publication Critical patent/US10854227B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • G11B5/00813Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/708Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by addition of non-magnetic particles to the layer
    • G11B5/7085Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by addition of non-magnetic particles to the layer non-magnetic abrasive particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/71Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the lubricant
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers

Definitions

  • the present invention relates to a magnetic recording medium.
  • either or both of the recording of information on a magnetic recording medium and the reproduction of information performed by causing a magnetic head (hereinafter, simply described as “head” as well) to contact and slide on a surface of the magnetic recording medium (a surface of a magnetic layer).
  • the head In order to continuously or intermittently repeat the reproduction of the information recorded on the magnetic recording medium, the head is caused to repeatedly slide on the surface of the magnetic layer (repeated sliding). For improving the reliability of the magnetic recording medium as a recording medium for data storage, it is desirable to inhibit the deterioration of electromagnetic conversion characteristics during the repeated sliding. This is because a magnetic recording medium in which the electromagnetic conversion characteristics thereof hardly deteriorate during the repeated sliding can keep exhibiting excellent electromagnetic conversion characteristics even though the reproduction is continuously or intermittently repeated.
  • Examples of causes of the deterioration of electromagnetic conversion characteristics during the repeated sliding include the occurrence of a phenomenon (referred to as “spacing loss”) in which a distance between the surface of the magnetic layer and the head increases.
  • Examples of causes of the spacing loss include a phenomenon in which while reproduction is being repeated and the head is continuously sliding on the surface of the magnetic layer, foreign substances derived from the magnetic recording medium are attached to the head.
  • an abrasive has been added to the magnetic layer such that the surface of the magnetic layer performs a function of removing the head attachment (for example, see JP2005-243162A).
  • an abrasive to the magnetic layer, because then it is possible to inhibit the deterioration of the electromagnetic conversion characteristics resulting from the spacing loss that occurs due to the head attachment.
  • the deterioration of the electromagnetic conversion characteristics can be suppressed to a level that is higher than the level achieved by the addition of an abrasive to the magnetic layer as in the related art, it is possible to further improve the reliability of the magnetic recording medium as a recording medium for data storage.
  • the present invention is based on the above circumstances, and an aspect of the oresent invention provides for a magnetic recording medium in which the electromagnetic conversion characteristics thereof hardly deteriorate even though a head repeatedly slides on a surface of a magnetic layer.
  • An aspect of the present invention is a magnetic recording medium comprising a non-magnetic support and a magnetic layer which is provided on the support and contains ferromagnetic powder and a binder, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the magnetic layer contains an abrasive, an intensity ratio (Int (110)/Int (114)) (hereinafter, described as “XRD (X-ray diffraction) intensity ratio” as well) of a peak intensity Int (110) of a diffraction peak of (110) plane of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity Int (114) of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00
  • the squareness ratio in a vertical direction may be equal to or higher than 0.65 and equal to or lower than 0.90.
  • the logarithmic decrement of the magnetic layer surface may be equal to or higher than 0.010 and equal to or lower than 0.050.
  • the magnetic recording medium may further comprise a non-magnetic layer containing non-magnetic powder and a binder between the non-magnetic support and the magnetic layer.
  • the magnetic recording medium may further comprise a back coating layer containing non-magnetic powder and a binder on a surface, which is opposite to a surface provided with the magnetic layer, of the non-magnetic support.
  • the magnetic recording medium may be a magnetic tape.
  • FIG. 1 is a view for illustrating a method for measuring a logarithmic decrement.
  • FIG. 2 is a view for illustrating the method for measuring a logarithmic decrement.
  • FIG. 3 is a view for illustrating the method for measuring a logarithmic decrement.
  • FIG. 4 shows an example (schematic process chart) of a specific aspect of a process for manufacturing a magnetic tape.
  • An aspect of the present invention is a magnetic recording medium including a non-magnetic support and a magnetic layer which is provided on the support and contains ferromagnetic powder and a binder, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the magnetic layer contains an abrasive, an intensity ratio (Int (110)/Int (114)) of a peak intensity Int (110) of a diffraction peak of (110) plane of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity Int (114) of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, and a logarithmic decrement obtained by performing a pendulum viscoelasticity test on a
  • “surface of the magnetic layer” refers to a surface of the magnetic recording medium on the magnetic layer side.
  • “ferromagnetic hexagonal ferrite powder” refers to an aggregate of a plurality of ferromagnetic hexagonal ferrite particles.
  • the ferromagnetic hexagonal ferrite particles are ferromagnetic particles having a hexagonal ferrite crystal structure.
  • the particles constituting the ferromagnetic hexagonal ferrite powder will be described as “hexagonal ferrite particles” or simply as “particles” as well.
  • Aggregate is not limited to an aspect in which the particles constituting the aggregate directly contact each other, and also includes an aspect in which a binder, an additive, or the like is interposed between the particles. The same points as described above will also be applied to various powders such as non-magnetic powder in the present invention and the present specification.
  • the description relating to a direction and an angle includes a margin of error accepted in the technical field to which the present invention belongs.
  • the aforementioned margin of error means a range less than a precise angle ⁇ 10°.
  • the margin of error is preferably within a precise angle ⁇ 5°, and more preferably within a precise angle ⁇ 3°.
  • the magnetic layer of the magnetic recording medium contains an abrasive.
  • the addition of the abrasive to the magnetic layer enables the surface of the magnetic layer to perform a function of removing the head attachment.
  • the abrasive present on the surface of the magnetic layer and/or in the vicinity of the surface of the magnetic layer fails to appropriately permeate the inside of the magnetic layer by the force applied thereto from the head when the head is sliding on the surface of the magnetic layer, the head will be scraped by contacting the abrasive protruding from the surface of the magnetic layer (head scraping).
  • head scraping that occurs as above can be inhibited, it is possible to further inhibit the deterioration of the electromagnetic conversion characteristics caused by the spacing loss.
  • the inventors of the present invention assume that in the ferromagnetic hexagonal ferrite powder contained in the magnetic layer include particles (hereinafter, referred to as “former particles”) which exert an influence on the degree of permeation of the abrasive by supporting the abrasive pushed into the inside of the magnetic layer and particles (hereinafter, referred to as “latter particles”) which are considered not to exert such an influence or to exert such an influence to a small extent. It is considered that the latter particles are fine particles resulting from partial chipping of particles due to the dispersion treatment performed at the time of preparing a composition for forming a magnetic layer, for example.
  • the inventors of the present invention also assume that the more the fine particles contained in the magnetic layer, the further the hardness of the magnetic layer decreases, although the reason is unclear.
  • the hardness of the magnetic layer decreases, the surface of the magnetic layer is scraped when the head slides on the surface of the magnetic layer (magnetic layer scraping), the foreign substances occurring due to the scraping are interposed between the surface of the magnetic layer and the head, and as a result, spacing loss occurs.
  • the inventors of the present invention consider that in the ferromagnetic hexagonal ferrite powder present in the magnetic layer, the former particles are particles resulting in a diffraction peak in X-ray diffraction analysis using an In-Plane method, and the latter particles do not result in a diffraction peak or exert a small influence on a diffraction peak because they are fine.
  • the inventors of the present invention assume that based on the intensity of the diffraction peak determined by X-ray diffraction analysis performed on the magnetic layer by using the In-Plane method, the way the particles, which support the abrasive pushed into the inside of the magnetic layer and exert an influence on the degree of permeation of the abrasive, are present in the magnetic layer can be controlled, and as a result, the degree of permeation of the abrasive can be controlled.
  • the inventors of the present invention consider that the XRD intensity ratio, which will be specifically described later, is a parameter relating to the aforementioned point.
  • the squareness ratio in a vertical direction is a ratio of remnant magnetization to saturation magnetization measured in a direction perpendicular to the surface of the magnetic layer.
  • the inventors of the present invention consider that as the amount of such fine particles contained in the magnetic layer increases, the hardness of the magnetic layer may decrease, and accordingly, the surface of the magnetic layer may be scraped when the head slides on the surface of the magnetic layer, the foreign substances that occur due to the scraping may be interposed between the surface of the magnetic layer and the head, and hence the spacing loss strongly tends to occur.
  • each of the XRD intensity ratio and the squareness ratio in a vertical direction is in the aforementioned range, and this makes a contribution to the inhibition of the deterioration of the electromagnetic conversion characteristics during the repeated sliding. According to the inventors of the present invention, presumably, this is because the control of the XRD intensity ratio mainly makes it possible to inhibit the head scraping, and the control of the squareness ratio in a vertical direction mainly makes it possible to inhibit the magnetic layer scraping.
  • the inventors of the present invention consider that, in the magnetic recording medium, an aspect in which the logarithmic decrement obtained by performing a pendulum viscoelasticity test on a surface of the magnetic layer is equal to or lower than 0.050 makes a contribution to the further inhibition of the deterioration of electromagnetic conversion characteristics during the repeated sliding. This point will be further described below.
  • the logarithmic decrement of the magnetic layer surface is a value obtained by the following method.
  • FIGS. 1 to 3 are views for illustrating a method for measuring a logarithmic decrement.
  • the method for measuring a logarithmic decrement will be described with reference to the drawings.
  • the aspect shown in the drawings is merely an example, and the present invention is not limited thereto.
  • a portion of the magnetic tape which is a measurement target (a measurement sample) 100 is placed on a substrate 103 so that a measurement surface (surface of the back coating layer) faces upwards and the measurement sample 100 is fixed by, for example, fixing tapes 105 in a state where obvious wrinkles which can be visually confirmed are not generated, in a sample stage 101 in a pendulum viscoelasticity tester.
  • a pendulum-attached round-bar type cylinder edge 104 is loaded on the measurement surface of the measurement sample 100 so that a long axis direction of the cylinder edge becomes parallel to a longitudinal direction of the measurement sample 100 .
  • FIG. 1 An example of a state in which the pendulum-attached round-bar type cylinder edge 104 is loaded on the measurement surface of the measurement sample 100 as described above (state seen from the top) is shown in FIG. 1 .
  • a constitution is illustrated in which a holder and temperature sensor 102 is installed such that the surface temperature of the substrate 103 can be monitored.
  • the longitudinal direction of the sample 100 for measurement is a direction indicated by the arrow in the aspect shown in FIG.
  • a pendulum 107 refers to the longitudinal direction in the magnetic recording medium from which the sample for measurement is cut out. Furthermore, as a pendulum 107 (see FIG. 2 ), a pendulum made of a material (for example, a metal, an alloy, or the like) having a property of being adsorbed onto a magnet is used.
  • a material for example, a metal, an alloy, or the like
  • the surface temperature of the substrate 103 , on which the sample 100 for measurement is placed, is increased to 80° C. at a heating rate of equal to or lower than 5° C./min (the heating rate may be arbitrarily set as long as it is equal to or lower than 5° C./min), and the pendulum 107 is desorbed from a magnet 106 are detached from each other such that the pendular movement is initiated (inducing initial oscillation).
  • FIG. 2 shows an example of a state where the pendulum 107 is performing pendular movement (state seen sideways). In the aspect shown in FIG.
  • the electricity conducted to the magnet (electromagnet) 106 disposed below the sample stage is cut off (the switch is turned off) such that the pendulum is desorbed from the magnet and starts to perform pendular movement, and then electricity is conducted again to the electromagnet (the switch is turned on) such that the pendulum 107 is adsorbed onto the magnet 106 and stops the pendular movement.
  • the pendulum 107 while performing pendular movement, the pendulum 107 repeatedly swings. While the pendulum is repeatedly swinging, the displacement of the pendulum is monitored using a displacement sensor 108 .
  • FIG. 3 shows an example of the displacement-time curve.
  • FIG. 3 schematically shows how the state of the pendulum 107 corresponds to the displacement-time curve.
  • the pendular movement is stopped (adsorption) and resumed repeatedly for 10 minutes or longer (the time may be arbitrarily set as long as it is equal to or longer than 10 minutes).
  • a logarithmic decrement ⁇ (without a unit) is obtained from the following equation, and the value is taken as a logarithmic decrement of the surface of a magnetic layer of a magnetic tape.
  • the pendulum is allowed to be adsorbed onto the magnet for 1 second or longer (the time may be arbitrarily set as long as it is equal to or longer than 1 second) whenever it is adsorbed onto the magnet, and the interval from the stop of the adsorption to the initiation of the next adsorption is set to be 6 seconds or longer (the time may be arbitrarily set as long as it is equal to or longer than 6 seconds).
  • the measurement interval is a time interval from the initiation of adsorption to the next initiation of adsorption.
  • the humidity of the environment in which the pendular movement is performed may be a relative humidity that is arbitrarily set as long as it is a relative humidity within a range of 40% to 70%.
  • Temperature of an environment in which the pendulum movement is performed may be random temperature, as long as the temperature is 20° C. to 30° C.
  • the interval from when the displacement becomes minimum and to when the displacement becomes minimum again is taken as one period of a wave.
  • n represents the number of waves included in the displacement-time curve at the measurement interval
  • An represents a difference between the minimum displacement and the maximum displacement in the nth wave.
  • Pn for example, P 1 for the first wave, P 2 for the second wave, and P 3 for the third wave.
  • the portion in which the pendulum 107 stops (is adsorbed) after the maximum displacement is not used for counting the number of waves.
  • the aforementioned logarithmic decrement is considered as a value that becomes a parameter of the amount of a viscous component which is liberated from the surface of the magnetic layer in a case where the head comes into contact with and slide on the surface of the magnetic layer and interposed between the surface of the magnetic layer and the head.
  • the viscous component is attached to and accumulated on the head while the head is repeatedly sliding, spacing loss that causes the deterioration of electromagnetic conversion characteristics may occur.
  • the inventors consider that in a case where the logarithmic decrement of the magnetic layer surface in the aforementioned magnetic recording medium is equal to or lower than 0.050, that is, the state where the amount of the viscous component is reduced makes a contribution to the inhibition of the occurrence of the spacing loss by the attachment and accumulation of the viscous component on the head.
  • the inventors of the present invention assume that the inhibition of the occurrence of spacing loss may lead to the further inhibition of the deterioration of electromagnetic conversion characteristics that is caused during the repeated sliding due to the occurrence of the spacing loss.
  • the viscous component is likely to be derived from the resin used as a binder.
  • the binder is as below.
  • various resins can be used as a binder.
  • the resin is a polymer (including a homopolymer and a copolymer) of two or more kinds of polymerizable compounds.
  • the resin also includes a component having a molecular weight lower than the average molecular weight (hereinafter, described as “low-molecular weight binder component”).
  • the inventors of the present invention consider that in a case where such a low-molecular weight binder component is liberated from the surface of the magnetic layer when the head slides on the surface of the magnetic layer and interposed between the surface of the magnetic layer and the head, the spacing loss may occur.
  • the low-molecular weight binder component is considered to have viscousness.
  • the inventors of the present invention assume that the logarithmic decrement determined by the pendulum viscoelasticity test may be a parameter of the amount of low-molecular weight binder component that is liberated from the surface of the magnetic layer when the head slides on the surface of the magnetic layer.
  • the magnetic layer is formed by coating a non-magnetic support with a composition for forming a magnetic layer containing a curing agent in addition to ferromagnetic hexagonal ferrite powder and a binder directly or through another layer and performing a curing treatment.
  • the binder and the curing agent can perform a curing reaction (crosslinking reaction).
  • the inventors of the present invention consider that the low-molecular weight binder component may exhibit poor reactivity in the curing reaction although the reason is unclear.
  • the inventors of the present invention assume that the property of the low-molecular weight binder component, in which the component does not easily stay in the magnetic layer but is easily liberated from the magnetic layer, may be one of the reasons why the low-molecular weight binder component is interposed between the surface of the magnetic layer and the head when the head slides on the surface of the magnetic layer.
  • the points described so far are assumptions that the inventors of the present invention made regarding the mechanism which makes it possible to inhibit the deterioration of the electromagnetic conversion characteristics in the magnetic recording medium even though the head repeatedly slides on the surface of the magnetic layer.
  • the present invention is not limited to the assumption.
  • the present specification includes the assumption of the inventors of the present invention, and the present invention is not limited to the assumption.
  • the magnetic layer contains ferromagnetic hexagonal ferrite powder.
  • the XRD intensity ratio is determined by performing X-ray diffraction analysis on the magnetic layer containing the ferromagnetic hexagonal ferrite powder by using an In-Plane method.
  • In-Plane XRD is performed by irradiating the surface of the magnetic layer with X-rays by using a thin film X-ray diffractometer under the following conditions.
  • Magnetic recording media are roughly classified into a tape-like magnetic recording medium (magnetic tape) and a disc-like magnetic recording medium (magnetic disc). The magnetic tape is measured in a longitudinal direction, and the magnetic disc is measured in a radius direction.
  • Radiation source used Cu radiation (power of 45 kV, 200 mA)
  • Scan condition 0.05 degree/step within a range of 20 to 40 degree, 0.1 degree/min
  • the above conditions are values set in the thin film X-ray diffractometer.
  • the thin film X-ray diffractometer known instruments can be used.
  • As one of the thin film X-ray diffractometers SmartLab manufactured by Rigaku Corporation can be exemplified.
  • the sample used for In-Plane XRD analysis is not limited in terms of the size and shape, as long as it is a medium sample which is cut from a magnetic recording medium to be measured and enables the confirmation of a diffraction peak which will be described later.
  • Examples of the techniques of X-ray diffraction analysis include thin film X-ray diffraction and powder X-ray diffraction.
  • the powder X-ray diffraction By the powder X-ray diffraction, the X-ray diffraction of a powder sample is measured.
  • the thin film X-ray diffraction it is possible to measure the X-ray diffraction of a layer formed on a substrate and the like.
  • the thin film X-ray diffraction is classified into an In-Plane method and an Out-Of-Plane method. In the Out-Of-Plane method, the X-ray incidence angle during measurement is within a range of 5.00° to 90.00°.
  • the X-ray incidence angle is generally within a range of 0.20° to 0.50°.
  • the X-ray incidence angle in In-Plane XRD is set to be 0.25° as described above.
  • the X-ray incidence angle is smaller than in the Out-Of-Plane method, and hence the X-ray permeation depth is small. Accordingly, by the X-ray diffraction analysis (In-Plane XRD) using the In-Plane method, it is possible to analyze the X-ray diffraction of a surface layer portion of a sample to be measured.
  • the X-ray diffraction of the magnetic layer can be analyzed by In-Plane XRD.
  • the aforementioned XRD intensity ratio is an intensity ratio (Int (110)/Int (114)) of a peak intensity Int (110) of a diffraction peak of (110) plane of a crystal structure of the hexagonal ferrite to a peak intensity Int (114) of a diffraction peak of (114) plane of the crystal structure. Int is used as the abbreviation of intensity.
  • the diffraction peak of (114) plane is a peak detected at 2 ⁇ that is within a range of 33 to 36 degree
  • the diffraction peak of (110) plane is a peak detected at 2 ⁇ that is within a range of 29 to 32 degree.
  • (114) plane of the crystal structure of the hexagonal ferrite is positioned close to a direction of a magnetization easy axis (c-axis direction) of the particles of the ferromagnetic hexagonal ferrite powder (hexagonal ferrite particles).
  • the (110) plane of the hexagonal ferrite crystal structure is positioned in a direction orthogonal the direction of the magnetization easy axis.
  • the inventors of the present invention considered that the more the direction of the particles orthogonal to the magnetization easy axis is parallel to the surface of the magnetic layer, the more difficult it is for the abrasive to permeate the inside of the magnetic layer by being supported by the hexagonal ferrite particles.
  • the inventors of the present invention consider that the more the direction of the particles orthogonal to the magnetization easy axis is perpendicular to the surface of the magnetic layer, the easier it is for the abrasive to permeate the inside of the magnetic layer because it is difficult for the abrasive to be supported by the hexagonal ferrite powder.
  • the inventors of the present invention assume that in the X-ray diffraction spectra determined by In-Plane XRD, in a case where the intensity ratio (Int (110)/Int (114); XRD intensity ratio) of the peak intensity Int (110) of the diffraction peak of (110) plane to the peak intensity Int (114) of the diffraction peak of (114) plane of the hexagonal ferrite crystal structure is high, it means that the magnetic layer contains a large amount of the former particles whose direction orthogonal to the direction of the magnetization easy axis is more parallel to the surface of the magnetic layer; and in a case where the XRD intensity ratio is low, it means that the magnetic layer contains a small amount of such former particles.
  • the inventors consider that in a case where the XRD intensity ratio is equal to or lower than 4.0, it means that the former particles, that is, the particles, which support the abrasive pushed into the inside of the magnetic layer and exert an influence on the degree of the permeation of the abrasive, merely support the abrasive, and as a result, the abrasive can appropriately permeate the inside of the magnetic layer at the time when a head slides on the surface of the magnetic layer.
  • the inventors of the present invention assume that the aforementioned mechanism may make a contribution to hinder the occurrence of the head scraping even though the head repeatedly slides on the surface of the magnetic layer.
  • the inventors of the present invention consider that the state in which the abrasive appropriately protrudes from the surface of the magnetic layer when the head slides on the surface of the magnetic layer may make a contribution to the reduction of the contact area (real contact) between the surface of the magnetic layer and the head.
  • the inventors consider that the larger the real contact area, the stronger the force applied to the surface of the magnetic layer from the head when the head slides on the surface of the magnetic layer, and as a result, the surface of the magnetic layer is damaged and scraped.
  • the inventors of the present invention assume that in a case where the XRD intensity ratio is equal to or higher than 0.5, it shows that the aforementioned former particles are present in the magnetic layer in a state of being able to support the abrasive with allowing the abrasive to appropriately protrude from the surface of the magnetic layer when the head slides on the surface of the magnetic layer.
  • the XRD intensity ratio is preferably equal to or lower than 3.5, and more preferably equal to or lower than 3.0. From the same viewpoint, the XRD intensity ratio is preferably equal to or higher than 0.7, and more preferably equal to or higher than 1.0.
  • the XRD intensity ratio can be controlled by the treatment conditions of the alignment treatment performed in the manufacturing process of the magnetic recording medium. As the alignment treatment, it is preferable to perform a vertical alignment treatment.
  • the vertical alignment treatment can be preferably performed by applying a magnetic field in a direction perpendicular to a surface of the wet (undried) coating layer of the composition for forming a magnetic layer.
  • the treatment conditions of the alignment treatment include the magnetic field intensity in the alignment treatment and the like.
  • the treatment conditions of the alignment treatment are not particularly limited, and may be set such that an XRD intensity ratio of equal to or higher than 0.5 and equal to or lower than 4.0 can be achieved.
  • the magnetic field intensity in the vertical alignment treatment can be set to be 0.10 to 0.80 T or 0.10 to 0.60 T.
  • the value of the XRD intensity ratio tends to increase by the vertical alignment treatment.
  • the squareness ratio in a vertical direction is a squareness ratio measured in a vertical direction of the magnetic recording medium.
  • “Vertical direction” described regarding the squareness ratio refers to a direction orthogonal to the surface of the magnetic layer.
  • the vertical direction is a direction orthogonal to a longitudinal direction of the magnetic tape.
  • the squareness ratio in a vertical direction is measured using a vibrating sample fluxmeter.
  • the squareness ratio in a vertical direction is a value determined by carrying out scanning in the vibrating sample fluxmeter by applying a maximum external magnetic field of 1,194 kA/m (15 kOe) as an external magnetic field to the magnetic recording medium, at a measurement temperature of 23° C. ⁇ 1° C. under the condition of a scan rate of 4.8 kA/m/sec (60 Oe/sec), which is used after being corrected for a demagnetizing field.
  • the measured squareness ratio is a value from which the magnetization of a sample probe of the vibrating sample fluxmeter is subtracted as background noise.
  • the squareness ratio in a vertical direction of the magnetic recording medium is equal to or higher than 0.65.
  • the inventors of the present invention assume that the squareness ratio in a vertical direction of the magnetic recording medium can be a parameter of the amount of the aforementioned latter particles (fine particles) present in the magnetic layer that are considered to induce the reduction in the hardness of the magnetic layer. It is considered that the magnetic layer in the magnetic recording medium having a squareness ratio in a vertical direction of equal to or higher than 0.65 has high hardness because of containing a small amount of such fine particles and is hardly scraped by the sliding of the head on the surface of the magnetic layer.
  • the squareness ratio in a vertical direction is preferably equal to or higher than 0.68, more preferably equal to or higher than 0.70, even more preferably equal to or higher than 0.73, and still more preferably equal to or higher than 0.75.
  • the squareness ratio is 1.00 at most. Accordingly, the squareness ratio in a vertical direction of the magnetic recording medium is equal to or lower than 1.00.
  • the squareness ratio in a vertical direction may be equal to or lower than 0.95, 0.90, 0.87, or 0.85, for example.
  • the larger the value of the squareness ratio in a vertical direction the smaller the amount of the aforementioned fine latter particles in the magnetic layer. Therefore, it is considered that from the viewpoint of the hardness of the magnetic layer, the value of the squareness ratio is preferably large. Accordingly, the squareness ratio in a vertical direction may be higher than the upper limit exemplified above.
  • the inventors of the present invention consider that in order to obtain a squareness ratio in a vertical direction of equal to or higher than 0.65, it is preferable to inhibit fine particles from occurring due to partial chipping of particles in the step of preparing the composition for forming a magnetic layer. Specific means for inhibiting the occurrence of chipping will be described later.
  • the logarithmic decrement obtained by performing a pendulum viscoelasticity test on the surface of the magnetic layer of the magnetic recording medium is equal to or lower than 0.050.
  • the logarithmic decrement of equal to or lower than 0.050 can make a contribution to the inhibition of the deterioration of electromagnetic conversion characteristics during the repeated sliding.
  • the logarithmic decrement is preferably equal to or lower than 0.048, more preferably equal to or lower than 0.045, and even more preferably equal to or lower than 0.040.
  • the lower the logarithmic decrement the more preferable.
  • the lower limit is not particularly limited.
  • the logarithmic decrement can be equal to or higher than 0.010 or equal to or higher than 0.015.
  • the logarithmic decrement may be lower than the value exemplified above. Specific aspects of the means for adjusting the logarithmic decrement will be described later.
  • the magnetic recording medium will be more specifically described.
  • the magnetic layer of the magnetic recording medium contains ferromagnetic hexagonal ferrite powder as ferromagnetic powder.
  • a magnetoplumbite type (referred to as “M type” as well)
  • W type a W type
  • Y type a Y type
  • Z type crystal structures of the hexagonal ferrite.
  • the ferromagnetic hexagonal ferrite powder contained in the magnetic layer may take any of the above crystal structures.
  • the crystal structures of the hexagonal ferrite contain an iron atom and a divalent metal atom as constituent atoms.
  • the divalent metal atom is a metal atom which can become a divalent cation as an ion, and examples thereof include alkali earth metal atoms such as a barium atom, a strontium atom, and a calcium atom, a lead atom, and the like.
  • the hexagonal ferrite containing a barium atom as a divalent metal atom is barium ferrite
  • the hexagonal ferrite containing a strontium atom is strontium ferrite.
  • the hexagonal ferrite may be a mixed crystal of two or more kinds of hexagonal ferrite. As one of the mixed crystals, a mixed crystal of barium ferrite and strontium ferrite can be exemplified.
  • activation volume is the unit of magnetization inversion.
  • the activation volume described in the present invention and the present specification is a value measured using a vibrating sample fluxmeter in an environment with an atmospheric temperature of 23° C. ⁇ 1° C. by setting a magnetic field sweep rate to be 3 minutes and 30 minutes for a coercive force Hc measurement portion, and determined from the following relational expression of Hc and an activation volume V.
  • Hc 2 Ku/Ms ⁇ 1[( kT/KuV )ln( At/ 0.693)] 1/2 ⁇
  • Examples of methods for achieving the high-density recording include a method of increasing a filling rate of ferromagnetic powder in the magnetic layer by reducing the particle size of the ferromagnetic powder contained in the magnetic layer.
  • the activation volume of the ferromagnetic hexagonal ferrite powder is preferably equal to or less than 2,500 nm 3 , more preferably equal to or less than 2,300 nm 3 , and even more preferably equal to or less than 2,000 nm 3 .
  • the activation volume is preferably equal to or greater than 800 nm 3 , more preferably equal to or greater than 1,000 nm 3 , and even more preferably equal to or greater than 1,200 nm 3 , for example.
  • the ferromagnetic hexagonal ferrite powder is imaged using a transmission electron microscope at a 100,000 ⁇ magnification, and the image is printed on photographic paper such that the total magnification thereof becomes 500,000 ⁇ .
  • the outlines of particles are traced using a digitizer so as to identify the particle shape.
  • the primary particles refer to independent particles not being aggregated with each other.
  • the particles are imaged using a transmission electron microscope at an acceleration voltage of 300 kV by using a direct method.
  • plate-like means a shape having two plate surfaces facing each other.
  • a shape having a major axis and a minor axis different from each other is “elliptical”.
  • the major axis is an axis (straight line) which is the longest diameter of a particle.
  • the minor axis is a straight line which is the longest diameter of a particle in a direction orthogonal to the major axis.
  • a shape in which the major axis and the minor axis are the same as each other, that is, a shape in which the major axis length equals the minor axis length is “spherical”.
  • a shape in which the major axis and the minor axis cannot be identified is called “amorphous”.
  • the imaging performed for identifying the particle shape by using a transmission electron microscope is carried out without performing an alignment treatment on the powder to be imaged.
  • the ferromagnetic hexagonal ferrite powder used for preparing the composition for forming a magnetic layer and the ferromagnetic hexagonal ferrite powder contained in the magnetic layer may take any of the plate-like shape, the elliptical shape, the spherical shape and the amorphous shape.
  • the mean particle size relating to various powders described in the present invention and the present specification is an arithmetic mean of sizes determined for 500 particles randomly extracted using a particle image captured as described above.
  • the mean particle size shown in examples which will be described later is a value obtained using a transmission electron microscope H-9000 manufactured by Hitachi High-Technologies Corporation as a transmission electron microscope and image analysis software KS-400 manufactured by Carl Zeiss A G as image analysis software.
  • the content (filling rate) of the ferromagnetic hexagonal ferrite powder in the magnetic layer is preferably within a range of 50% to 90% by mass, and more preferably within a range of 60% to 90% by mass.
  • the magnetic layer contains at least a binder and an abrasive as components other than the ferromagnetic hexagonal ferrite powder, and can optionally contain one or more kinds of additives. From the viewpoint of improving the recording density, the filling rate of the ferromagnetic hexagonal ferrite powder in the magnetic layer is preferably high.
  • the magnetic layer of the magnetic recording medium contains a binder.
  • the binder one or more kinds of resins are used.
  • the resin may be a homopolymer or a copolymer.
  • a binder contained in the magnetic layer a binder selected from an acryl resin obtained by copolymerizing a polyurethane resin, a polyester resin, a polyamide resin, a vinyl chloride resin, styrene, acrylonitrile, or methyl methacrylate, a cellulose resin such as nitrocellulose, an epoxy resin, a phenoxy resin, a polyvinyl alkyral resin such as polyvinyl acetal or polyvinyl butyral can be used singly, or a plurality of resins can be used by being mixed together.
  • a polyurethane resin, an acryl resin, a cellulose resin, and a vinyl chloride resin are preferable. These resins can be used as a binder in a non-magnetic layer and/or a back coating layer which will be described later. Regarding the aforementioned binders, paragraphs “0029” to “0031” in JP2010-24113A can be referred to.
  • the average molecular weight of the resin used as a binder can be equal to or greater than 10,000 and equal to or less than 200,000 in terms of a weight-average molecular weight, for example.
  • the weight-average molecular weight in the present invention and the present specification is a value determined by measuring a molecular weight by gel permeation chromatography (GPC) and expressing the molecular weight in terms of polystyrene.
  • GPC gel permeation chromatography
  • the weight-average molecular weight shown in examples which will be described later is a value determined by measuring a molecular weight under the following measurement conditions and expressing the molecular weight in terms of polystyrene.
  • GPC instrument HLC-8120 (manufactured by Tosoh Corporation)
  • the curing agent can be a thermosetting compound which is a compound experiencing a curing reaction (crosslinking reaction) by heating.
  • the curing agent can be a photocurable compound experiencing a curing reaction (crosslinking reaction) by light irradiation.
  • the curing agent experiences a curing reaction in the manufacturing process of the magnetic recording medium. In this way, at least a portion of the curing agent can be contained in the magnetic layer, in a state of reacting (cross-linked) with other components such as the binder.
  • the curing agent is preferably a thermosetting compound which is suitably polyisocyanate.
  • the curing agent can be used by being added to the composition for forming a magnetic layer, in an amount of 0 to 80.0 parts by mass with respect to 100.0 parts by mass of the binder and preferably in an amount of 50.0 to 80.0 parts by mass from the viewpoint of improving the hardness of the magnetic layer.
  • the magnetic layer of the magnetic recording medium contains an abrasive.
  • the abrasive refers to non-magnetic powder having a Mohs hardness of higher than 8, and is preferably non-magnetic powder having a Mohs hardness of equal to or higher than 9.
  • the abrasive may be powder of an inorganic substance (inorganic powder) or powder of an organic substance (organic powder), and is preferably inorganic powder.
  • the abrasive is preferably inorganic powder having a Mohs hardness of higher than 8, and even more preferably inorganic powder having Mohs hardness of equal to or higher than 9.
  • the maximum value of the Mohs hardness is 10 which is the Mohs hardness of diamond.
  • the abrasive include powder of alumina (Al 2 O 3 ), silicon carbide, boron carbide (B 4 C), TiC, cerium oxide, zirconium oxide (ZrO 2 ), diamond, and the like.
  • alumina powder is preferable.
  • paragraph “0021” in JP2013-229090A can also be referred to.
  • specific surface area can be used as a parameter of the particle size of the abrasive. The larger the specific surface area, the smaller the particle size.
  • an abrasive having a specific surface area (hereinafter, described as “BET specific surface area”) of equal to or greater than 14 m 2 /g, which is measured for primary particles by a Brunauer-Emmett-Teller (BET) method. From the viewpoint of dispersibility, it is preferable to use an abrasive having a BET specific surface area of equal to or less than 40 m 2 /g.
  • the content of the abrasive in the magnetic layer is preferably 1.0 to 20.0 parts by mass with respect to 100.0 parts by mass of the ferromagnetic hexagonal ferrite powder.
  • the magnetic layer contains the ferromagnetic hexagonal ferrite powder, the binder, and the abrasive, and may further contain one or more kinds of additives if necessary.
  • the aforementioned curing agent can be exemplified.
  • the additives that can be contained in the magnetic layer include non-magnetic powder, a lubricant, a dispersant, a dispersion aid, a fungicide, an antistatic agent, an antioxidant, and the like.
  • the dispersant described in paragraphs “0012” to “0022” in JP2013-131285A can be exemplified as a dispersant for improving the dispersibility of the abrasive in the composition for forming a magnetic layer.
  • Examples of the dispersant also include known dispersants such as a carboxy group-containing compound and a nitrogen-containing compound.
  • the nitrogen-containing compound may be any one of a primary amine represented by NH 2 R, a secondary amine represented by NHR 2 , and a tertiary amine represented by NR 3 , for example.
  • R represents any structure constituting the nitrogen-containing compound, and a plurality of R's present in the compound may be the same as or different from each other.
  • the nitrogen-containing compound may be a compound (polymer) having a plurality of repeating structures in a molecule.
  • the inventors of the present invention consider that because the nitrogen-containing portion of the nitrogen-containing compound functions as a portion adsorbed onto the surface of particles of the ferromagnetic hexagonal ferrite powder, the nitrogen-containing compound can act as a dispersant.
  • the carboxy group-containing compound include fatty acids such as oleic acid.
  • the inventors of the present invention consider that because the carboxy group functions as a portion adsorbed onto the surface of particles of the ferromagnetic hexagonal ferrite powder, the carboxy group-containing compound can act as a dispersant. It is also preferable to use the carboxy group-containing compound and the nitrogen-containing compound in combination.
  • non-magnetic powder examples include non-magnetic powder (hereinafter, described as “projection-forming agent” as well) which can contribute to the control of frictional characteristics by forming projections on the surface of the magnetic layer.
  • a non-magnetic powder it is possible to use various non-magnetic powders generally used in a magnetic layer.
  • the non-magnetic powder may be inorganic powder or organic powder.
  • the particle size distribution of the non-magnetic powder is not polydisperse distribution having a plurality of peaks in the distribution but monodisperse distribution showing a single peak.
  • the non-magnetic powder is preferably inorganic powder.
  • the inorganic powder include powder of a metal oxide, a metal carbonate, a metal sulfate, a metal nitride, a metal carbide, a metal sulfide, and the like.
  • the particles constituting the non-magnetic powder are preferably colloidal particles, and more preferably colloidal particles of an inorganic oxide.
  • the inorganic oxide constituting the colloidal particles of an inorganic oxide is preferably silicon dioxide (silica).
  • the colloidal particles of an inorganic oxide are preferably colloidal silica (colloidal silica particles).
  • colloidal particles refer to the particles which can form a colloidal dispersion by being dispersed without being precipitated in a case where the particles are added in an amount of 1 g per 100 mL of at least one organic solvent among methyl ethyl ketone, cyclohexanone, toluene, ethyl acetate, and a mixed solvent containing two or more kinds of the solvents described above at any mixing ratio.
  • the non-magnetic powder is also preferably carbon black.
  • the mean particle size of the non-magnetic powder is 30 to 300 nm for example, and preferably 40 to 200 nm.
  • the content of the non-magnetic powder in the magnetic layer is, with respect to 100.0 parts by mass of the ferromagnetic hexagonal ferrite powder, preferably 1.0 to 4.0 parts by mass and more preferably 1.5 to 3.5 parts by mass, because then the non-magnetic filler can demonstrate better the function thereof.
  • additives that can be optionally contained in the magnetic layer, commercially available products or those manufactured by known methods can be selected and used according to the desired properties.
  • the magnetic layer described so far can be provided on the surface of the non-magnetic support, directly or indirectly through a non-magnetic layer.
  • the magnetic recording medium may have the magnetic layer directly on the surface of the non-magnetic support, or may have a non-magnetic layer containing non-magnetic powder and a binder between the non-magnetic support and the magnetic layer.
  • the non-magnetic powder contained in the non-magnetic layer may be inorganic powder or organic powder. Furthermore, carbon black or the like can also be used. Examples of the inorganic powder include powder of a metal, a metal oxide, a metal carbonate, a metal sulfate, a metal nitride, a metal carbide, a metal sulfide, and the like. These non-magnetic powders can be obtained as commercially available products, or can be manufactured by known methods.
  • the content (filling rate) of the non-magnetic powder in the non-magnetic layer is preferably within a range of 50% to 90% by mass, and more preferably within a range of 60% to 90% by mass.
  • known techniques relating to the non-magnetic layer can be applied.
  • known techniques relating to the magnetic layer can also be applied.
  • the non-magnetic layer also includes a substantially non-magnetic layer which contains non-magnetic powder with a small amount of ferromagnetic powder as an impurity or by intention, for example.
  • the substantially non-magnetic layer refers to a layer having a remnant flux density of equal to or lower than 10 mT or a coercive force of equal to or lower than 7.96 kA/m (100 Oe) or having a remnant flux density of equal to or lower than 10 mT and a coercive force of equal to or lower than 7.96 kA/m (100 Oe). It is preferable that the non-magnetic layer does not have remnant flux density and coercive force.
  • non-magnetic support hereinafter, simply described as “support” as well
  • the non-magnetic support include known supports such as biaxially oriented polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamide imide, and aromatic polyamide.
  • supports such as biaxially oriented polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamide imide, and aromatic polyamide.
  • polyethylene terephthalate, polyethylene naphthalate, and polyamide are preferable.
  • These supports may be subjected to corona discharge, a plasma treatment, an easy adhesion treatment, a heat treatment, and the like in advance.
  • the magnetic recording medium can have a back coating layer containing non-magnetic powder and a binder, on a surface side of the non-magnetic support opposite to a surface side provided with the magnetic layer. It is preferable that the back coating layer contains either or both of carbon black and inorganic powder. Regarding the binder contained in the back coating layer and various additives which can be optionally contained therein, known techniques relating to the back coating layer can be applied, and known techniques relating to the formulation of the magnetic layer and/or the non-magnetic layer can also be applied.
  • the thickness of the non-magnetic support and each layer in the magnetic recording medium will be described below.
  • the thickness of the non-magnetic support is 3.0 to 80.0 ⁇ m for example, preferably 3.0 to 50.0 ⁇ m, and more preferably 3.0 to 10.0 ⁇ m.
  • the thickness of the magnetic layer can be optimized according to the saturation magnetization of the magnetic head to be used, the length of head gap, the band of recording signals, and the like.
  • the thickness of the magnetic layer is generally 10 nm to 100 nm. From the viewpoint of high-density recording, the thickness of the magnetic layer is preferably 20 to 90 nm, and more preferably 30 to 70 nm.
  • the magnetic layer may be constituted with at least one layer, and may be separated into two or more layers having different magnetic characteristics. Furthermore, the constitution relating to known multi-layered magnetic layers can be applied. In a case where the magnetic layer is separated into two or more layers, the thickness of the magnetic layer means the total thickness of the layers.
  • the thickness of the non-magnetic layer is equal to or greater than 50 nm for example, preferably equal to or greater than 70 nm, and more preferably equal to or greater than 100 nm. In contrast, the thickness of the non-magnetic layer is preferably equal to or less than 800 nm, and more preferably equal to or less than 500 nm.
  • the thickness of the back coating layer is preferably equal to or less than 0.9 ⁇ m, and more preferably 0.1 to 0.7 ⁇ m.
  • the thickness of each layer and the non-magnetic support of the magnetic recording medium can be measured by known film thickness measurement methods. For example, a cross section of the magnetic recording medium in a thickness direction is exposed by known means such as ion beams or a microtome, and then the exposed cross section is observed using a scanning electron microscope. By observing the cross section, a thickness of one site in the thickness direction or an arithmetic mean of thicknesses of two or more randomly extracted sites, for example, two sites can be determined as various thicknesses. Furthermore, as the thickness of each layer, a design thickness calculated from the manufacturing condition may be used.
  • the step of preparing a composition for forming the magnetic layer, the non-magnetic layer, or the back coating layer generally includes at least a kneading step, a dispersion step, and a mixing step that is performed if necessary before and after the aforementioned steps.
  • Each of the aforementioned steps may be divided into two or more stages.
  • the components used for preparing the composition for forming each layer may be added at the initial stage or in the middle of any of the above steps.
  • As a solvent it is possible to use one kind of solvent or two or more kinds of solvents generally used for manufacturing a coating-type magnetic recording medium.
  • paragraph “0153” in JP2011-216149A can be referred to.
  • each of the components may be added in divided portions in two or more steps.
  • the binder may be added in divided portions in the kneading step, the dispersion step, and the mixing step performed after dispersion to adjust viscosity.
  • the manufacturing techniques known in the related art can be used in various steps.
  • the kneading step it is preferable to use an instrument having strong kneading force, such as an open kneader, a continuous kneader, a pressurized kneader, or an extruder.
  • JP1989-106338A JP-H01-106338A
  • JP1989-79274A JP-H01-79274A
  • a disperser known ones can be used.
  • the composition for forming each layer may be filtered by a known method before being subjected to a coating step.
  • the filtration can be performed using a filter, for example.
  • the filter used for the filtration for example, it is possible to use a filter having a pore size of 0.01 to 3 ⁇ m (for example, a filter made of glass fiber, a filter made of polypropylene, or the like).
  • the dispersion treatment for the composition for forming a magnetic layer it is preferable to inhibit the occurrence of chipping.
  • the dispersion treatment described above it is possible to achieve both of the improvement of dispersibility of the ferromagnetic hexagonal ferrite powder and the inhibition of occurrence of chipping.
  • Examples of preferred aspects of the aforementioned two-stage dispersion treatment include a dispersion treatment including a first stage of obtaining a dispersion liquid by performing a dispersion treatment on the ferromagnetic hexagonal ferrite powder, the binder, and the solvent in the presence of first dispersion beads, and a second stage of performing a dispersion treatment on the dispersion liquid obtained by the first stage in the presence of second dispersion beads having a bead size and a density smaller than a bead size and a density of the first dispersion beads.
  • the dispersion treatment of the aforementioned preferred aspect will be further described.
  • the first and second stages described above are performed as a dispersion treatment preceding the mixing of the ferromagnetic hexagonal ferrite powder with other powder components.
  • the aforementioned first and second stages are performed as a dispersion treatment for a liquid (magnetic liquid) containing the ferromagnetic hexagonal ferrite powder, the binder, the solvent, and additives optionally added, before the abrasive and the non-magnetic powder are mixed with the liquid.
  • the bead size of the second dispersion beads is preferably equal to or less than 1/100 and more preferably equal to or less than 1/500 of the bead size of the first dispersion beads.
  • the bead size of the second dispersion beads can be, for example, equal to or greater than 1/10,000 of the bead size of the first dispersion beads, but is not limited to this range.
  • the bead size of the second dispersion beads is preferably within a range of 80 to 1,000 nm.
  • the bead size of the first dispersion beads can be within a range of 0.2 to 1.0 mm, for example.
  • the bead size is a value measured by the same method as used for measuring the aforementioned mean particle size of powder.
  • the second stage described above is preferably performed under the condition in which the second dispersion beads are present in an amount equal to or greater than 10 times the amount of the ferromagnetic hexagonal ferrite powder, and more preferably performed under the condition in which the second dispersion beads are present in an amount that is 10 to 30 times the amount of the ferromagnetic hexagonal ferrite powder, based on mass.
  • the amount of the first dispersion beads in the first stage is preferably within the above range.
  • the second dispersion beads are beads having a density smaller than that of the first dispersion beads. “Density” is obtained by dividing mass (unit: g) of the dispersion beads by volume (unit: cm 3 ) thereof. The density is measured by the Archimedean method.
  • the density of the second dispersion beads is preferably equal to or lower than 3.7 g/cm 3 , and more preferably equal to or lower than 3.5 g/cm 3 .
  • the density of the second dispersion beads may be equal to or higher than 2.0 g/cm 3 for example, and may be lower than 2.0 g/cm 3 .
  • examples of the second dispersion beads preferably include diamond beads, silicon carbide beads, silicon nitride beads, and the like.
  • examples of the second dispersion beads preferably include diamond beads.
  • the first dispersion beads are preferably dispersion beads having a density of higher than 3.7 g/cm 3 , more preferably dispersion beads having a density of equal to or higher than 3.8 g/cm 3 , and even more preferably dispersion beads having a density of equal to or higher than 4.0 g/cm 3 .
  • the density of the first dispersion beads may be equal to or lower than 7.0 g/cm 3 for example, and may be higher than 7.0 g/cm 3 .
  • zirconia beads, alumina beads, or the like are preferably used, and zirconia beads are more preferably used.
  • the dispersion time is not particularly limited and may be set according to the type of the disperser used and the like.
  • the magnetic layer can be formed by directly coating the non-magnetic support with the composition for forming a magnetic layer or by performing multilayer coating by sequentially or simultaneously applying the composition for forming a non-magnetic layer.
  • paragraph “0066” in JP2010-231843A can be referred to.
  • the magnetic layer can be formed through a magnetic layer-forming step including a coating step of coating a non-magnetic support with a composition for forming a magnetic layer containing ferromagnetic hexagonal ferrite powder, a binder, an abrasive, a curing agent, and a solvent directly or through a non-magnetic layer so as to form a coating layer, a heating and drying step of drying the coating layer by a heating treatment, and a curing step of performing a curing treatment on the coating layer.
  • the magnetic layer-forming step includes a cooling step of cooling the coating layer between the coating step and the heating and drying step and further includes a burnishing treatment step of performing a burnishing treatment on a surface of the coating layer between the heating and drying step and the curing step.
  • performing the cooling step and the burnishing treatment step in the aforementioned magnetic layer-forming step is preferable means for making the logarithmic decrement equal to or lower than 0.050. Specifically, the reason is as below.
  • performing the cooling step of cooling the coating layer between the coating step and the heating and drying step may make a contribution to the localization of the aforementioned viscous component within the surface of the coating layer and/or a surface layer portion in the vicinity of the surface. It is considered that this is because in a case where the coating layer of the composition for forming a magnetic layer is cooled before the heating and drying step, the viscous component may easily move to the surface of the coating layer and/or the surface layer portion when the solvent is volatilized during the heating and drying step. Here, the reason is unclear.
  • the viscous component in a case where the burnishing treatment is performed on the surface of the coating layer in which the viscous component is localized within the surface thereof and/or the surface layer portion, the viscous component can be removed.
  • the logarithmic decrement may become equal to or lower than 0.050.
  • this is merely a presumption, and the present invention is not limited thereto.
  • the composition for forming a magnetic layer can be used for multilayer coating by being sequentially and simultaneously used with the composition for forming a non-magnetic layer.
  • the magnetic recording medium can be manufactured by sequential multilayer coating.
  • the manufacturing process including the sequential multilayer coating preferably can be performed as below.
  • the non-magnetic layer is formed through a coating step of coating a non-magnetic support with the composition for forming a non-magnetic layer so as to form a coating layer and a heating and drying step of drying the formed coating layer by performing a heating treatment.
  • the magnetic layer is formed through a coating step of coating the formed non-magnetic layer with the composition for forming a magnetic layer so as to form a coating layer and a heating and drying step of drying the formed coating layer by performing a heating treatment.
  • FIG. 4 is a schematic process chart showing a specific aspect of steps for manufacturing a magnetic recording medium which has a non-magnetic layer and a magnetic layer in this order on one surface of a non-magnetic support and has a back coating layer on the other surface of the non-magnetic support.
  • an operation of feeding a non-magnetic support (long film) from a feeding portion and winding up the non-magnetic support in a winding-up portion is continuously performed, various treatments such as coating, drying, and alignment are performed in each portion or each zone shown in FIG.
  • This manufacturing method is the same as the manufacturing method that is usually performed for manufacturing a coating-type magnetic recording medium, except for the manufacturing method mentioned herein includes a cooling zone in the magnetic layer-forming step and includes the burnishing treatment step before the curing treatment.
  • the non-magnetic support fed from the feeding portion is coated with the composition for forming a non-magnetic layer (coating step of the composition for forming a non-magnetic layer).
  • the coating layer of the composition for forming a non-magnetic layer formed by the coating step is heated, thereby drying the coating layer (heating and drying step).
  • the heating and drying step can be performed by causing the non-magnetic support, which has the coating layer of the composition for forming a non-magnetic layer, to pass through a heating environment.
  • the atmospheric temperature of the heating environment can be about 60° C. to 140° C., for example.
  • the atmospheric temperature is not limited to the above range, as long as the temperature enables the coating layer to be dried by causing the volatilization of the solvent.
  • a heated gas may be blown to the surface of the coating layer. The point described so far is true for the heating and drying step in a second heating treatment zone and the heating and drying step in a third heating treatment zone which will be described later.
  • the non-magnetic layer formed by the heating and drying step performed in the first heating treatment zone is coated with the composition for forming a magnetic layer (coating step of the composition for forming a magnetic layer).
  • the coating layer of the composition for forming a magnetic layer formed by the coating step is cooled (cooling step).
  • the cooling step can be performed by causing the non-magnetic support, in which the aforementioned coating layer is formed on the non-magnetic layer, to pass through a cooling environment.
  • the atmospheric temperature of the cooling environment can be preferably within a range of ⁇ 10° C. to 0° C., and more preferably within a range of ⁇ 5° C. to 0° C.
  • the time taken for performing the cooling step (for example, the time from when any portion of the coating layer comes into the cooling zone to when the portion comes out of the cooling zone (hereinafter, referred to as “staying time” as well)) is not particularly limited.
  • a cooled gas may be blown to the surface of the coating layer.
  • an alignment treatment is performed on the ferromagnetic hexagonal ferrite powder in the coating layer in an alignment zone.
  • the alignment treatment it is possible to apply various known techniques including those described in paragraph “0067” in JP2010-231843A without any limitation.
  • the alignment treatment the above description can also be referred to.
  • the coating layer having undergone the alignment treatment is subjected to the heating and drying step in the second heating treatment zone.
  • a surface, which is opposite to the surface on which the non-magnetic layer and the magnetic layer are formed, of the non-magnetic support is coated with a composition for forming a back coating layer, thereby forming a coating layer (coating step of the composition for forming a back coating layer).
  • the coating layer is dried by performing a heating treatment.
  • the heated and dried coating layer of the composition for forming a magnetic layer is provided on the non-magnetic layer on one surface of the non-magnetic support and the back coating layer is provided on the other surface of the non-magnetic support.
  • the magnetic recording medium obtained herein will be subjected to various treatments, which will be described later, and become a magnetic recording medium as a product.
  • the obtained magnetic recording medium is wound up in a winding-up portion and then cut (slit) in the size of the magnetic recording medium as a product. Slitting can be performed using a known cutting machine.
  • the surface of the heated and dried coating layer of the composition for forming a magnetic layer is subjected to the burnishing treatment (burnishing treatment step between the heating and drying step and the curing step).
  • the burnishing treatment it is possible to remove the viscous component that has been cooled in the cooling zone and has moved to the surface of the coating layer and/or the surface layer portion.
  • the inventors of the present invention assume that the removal of the viscous component makes the logarithmic decrement become equal to or lower than 0.050. However, as described above, this is merely an assumption, and the present invention is not limited thereto.
  • the burnishing treatment is a treatment of rubbing the surface of a treatment target with a member (for example, a polishing tape or a grinding tool such as a grinding blade or a grinding foil), and can be performed in the same manner as that adopted for performing a known burnishing treatment for manufacturing a coating-type magnetic recording medium.
  • a member for example, a polishing tape or a grinding tool such as a grinding blade or a grinding foil
  • the burnishing treatment is not performed in the stage before the curing step.
  • the logarithmic decrement can become equal to or lower than 0.050, and this is a point that the inventors of the present invention have newly discovered.
  • the burnishing treatment can be performed preferably by performing either or both of rubbing (polishing) the surface of the coating layer as a treatment target with a polishing tape and rubbing (grinding) the surface of the coating layer as a treatment target with a grinding tool.
  • rubbing polishshing
  • grinding rubbing
  • the composition for forming a magnetic layer contains an abrasive
  • the polishing tape commercially available products may be used, or polishing tapes prepared by known methods may be used.
  • the grinding tool it is possible to use a fixed blade, a diamond foil, a known grinding blade such as a rotary blade, a grinding foil, or the like.
  • a wiping treatment may be performed in which the surface of the coating layer rubbed with the polishing tape and/or the grinding tool is wiped by a wiping material.
  • a wiping material for details of preferred polishing tape, grinding tool, burnishing treatment, and wiping treatment, paragraphs “0034” to “0048”, FIG. 1 , and examples in JP1994-52544A (JP-H06-52544A) can be referred to.
  • the burnishing treatment can be further intensified.
  • the burnishing treatment can be further intensified.
  • the burnishing treatment can be further intensified.
  • the sliding speed can be increased by increasing either or both of the speed at which the member moves and the speed at which the magnetic tape as a treatment target moves.
  • a curing treatment is performed on the coating layer of the composition for forming a magnetic layer.
  • the coating layer of the composition for forming a magnetic layer is subjected to a surface smoothing treatment before the curing treatment is performed after the burnishing treatment.
  • the surface smoothing treatment is preferably performed by a calender treatment.
  • the calender treatment is intensified, the further the surface of the magnetic tape can be smoothened.
  • the calender treatment can be further intensified by either or both of increasing the surface temperature of a calender roll (calender temperature) and increasing a calender pressure.
  • a curing treatment is performed on the coating layer of the composition for forming a magnetic layer according to the type of the curing agent contained in the coating layer (curing step).
  • the curing treatment can be performed by a treatment such as a heating treatment or light irradiation according to the type of the curing agent contained in the coating layer.
  • the conditions of the curing treatment are not particularly limited, and may be appropriately set according to the formulation of the composition for forming a magnetic layer used for forming the coating layer, the type of the curing agent, the thickness of the coating layer, and the like. For example, in a case where the coating layer is formed using a composition for forming a magnetic layer containing polyisocyanate as a curing agent, a heating treatment is preferred as the curing treatment.
  • the curing reaction of such a layer can proceed by the curing treatment mentioned herein.
  • a curing step may be additionally performed.
  • the burnishing treatment may be additionally performed.
  • a magnetic recording medium according to an aspect of the present invention can be obtained.
  • the aforementioned manufacturing method is merely an example.
  • the value of each of the XRD intensity ratio, the squareness ratio in a vertical direction, and the logarithmic decrement of the magnetic layer can be controlled within the aforementioned range by any means that can adjust the value, and this aspect is also included in the present invention.
  • the aforementioned magnetic recording medium can be a tape-like magnetic recording medium (magnetic tape), for example.
  • the magnetic tape is distributed and used in a state of being accommodated in a magnetic tape cartridge.
  • a servo pattern can also be formed by a known method.
  • the magnetic tape In order to continuously or intermittently perform repeated reproduction of the information recorded on the magnetic tape, the magnetic tape is caused to repeatedly run in the drive. According to an aspect of the present invention, it is possible to provide a magnetic tape in which the electromagnetic conversion characteristics thereof hardly deteriorate even though the head repeatedly slides on the surface of the magnetic layer while the tape is repeatedly running.
  • the magnetic recording medium according to an aspect of the present invention is not limited to the magnetic tape.
  • the magnetic recording medium according to an aspect of the present invention is suitable as various magnetic recording media (a magnetic tape, a disc-like magnetic recording medium (magnetic disc), and the like) used in a sliding-type magnetic recording and/or reproduction device.
  • the sliding-type device refers to a device in which a head contacts and slides on a surface of a magnetic layer in a case where information is recorded on a magnetic recording medium and/or the recorded information is reproduced.
  • a device includes at least a magnetic tape and one or more magnetic heads for recording and/or reproducing information.
  • the running speed of the magnetic tape refers to a relative speed of the magnetic tape and the magnetic head.
  • the running speed is set in a control portion of the device.
  • the pressure increases which is applied to both the surface of the magnetic layer and the magnetic head in a case where the surface of the magnetic layer and the magnetic head come into contact with each other.
  • head scraping and magnetic layer scraping tend to easily occur. Accordingly, it is considered that the higher the running speed, the easier it is for the electromagnetic conversion characteristics to deteriorate during the repeated sliding.
  • the improvement of recording density is required.
  • the influence of the signal interference between the adjacent heads becomes stronger, and hence the electromagnetic conversion characteristics tend to be more easily deteriorate when the spacing loss is increased due to the repeated sliding.
  • the running speed and the recording density are increased further, the deterioration of the electromagnetic conversion characteristics during the repeated sliding tends to be more apparent.
  • the magnetic recording medium of an aspect of the present invention it is possible to inhibit the deterioration of the electromagnetic conversion characteristics during the repeated sliding.
  • the magnetic tape according to an aspect of the present invention is suitable for being used in a sliding-type device in which the running speed of the magnetic tape is, for example, equal to or higher than 5 m/sec (for example, 5 to 20 m/sec).
  • the magnetic tape according to an aspect of the present invention is suitable as a magnetic tape for recording and reproducing information at a line recording density of equal to or higher than 250 kfci, for example.
  • the unit kfci is the unit of a line recording density (this unit cannot be expressed in terms of the SI unit system).
  • the line recording density can be equal to or higher than 250 kfci or equal to or higher than 300 kfci, for example.
  • the line recording density can be equal to or lower than 800 kfci or higher than 800 kfci, for example.
  • compositions for forming each layer will be shown below.
  • composition for forming magnetic layer Formulation of composition for forming magnetic layer
  • composition for forming non-magnetic layer Formulation of composition for forming non-magnetic layer
  • composition for forming back coating layer Formulation of composition for forming back coating layer
  • composition for forming a magnetic layer was prepared by the following method.
  • the aforementioned various components of a magnetic liquid were dispersed for 24 hours by a batch-type vertical sand mill by using zirconia beads (first dispersion beads, density: 6.0 g/cm 3 ) having a bead size of 0.5 mm (first stage) and then filtered using a filter having a pore size of 0.5 ⁇ m, thereby preparing a dispersion liquid A.
  • the amount of the used zirconia beads was 10 times the mass of the ferromagnetic hexagonal ferrite powder based on mass.
  • the dispersion liquid A was dispersed for the time shown in Table 1 by a batch-type vertical sand mill by using diamond beads (second dispersion beads, density: 3.5 g/cm 3 ) having a bead size shown in Table 1 (second stage), and the diamond beads were separated using a centrifuge, thereby preparing a dispersion liquid (dispersion liquid B).
  • the following magnetic liquid is the dispersion liquid B obtained in this way.
  • an abrasive liquid was prepared.
  • the prepared magnetic liquid and abrasive liquid as well as the remaining components were introduced into a dissolver stirrer, stirred for 30 minutes at a circumferential speed of 10 m/sec, and then treated in 3 passes with a flow-type ultrasonic disperser at a flow rate of 7.5 kg/min. Thereafter, the resultant was filtered through a filter having a pore size of 1 ⁇ m, thereby preparing a composition for forming a magnetic layer.
  • the activation volume of the ferromagnetic hexagonal ferrite powder described above is a value measured and calculated using the powder that was in the same powder lot as the ferromagnetic hexagonal ferrite powder used for preparing the composition for forming a magnetic layer.
  • the activation volume was measured using a vibrating sample fluxmeter (manufactured by TOEI INDUSTRY, CO., LTD.) by setting a magnetic field sweep rate to be 3 minutes and 30 minutes for a coercive force Hc measurement portion, and calculated from the relational expression described above.
  • the activation volume was measured in an environment with a temperature of 23° C. ⁇ 1° C.
  • composition for forming a non-magnetic layer were dispersed by a batch-type vertical sand mill for 24 hours by using zirconia beads having a bead size of 0.1 mm and then filtered using a filter having a pore size of 0.5 ⁇ m, thereby preparing a composition for forming a non-magnetic layer.
  • a composition for forming a back coating layer the components except for the lubricant (stearic acid and butyl stearate), polyisocyanate, and 200.0 parts of cyclohexanone were kneaded and diluted using an open kneader and then subjected to a dispersion treatment in 12 passes by a horizontal beads mill disperser by using zirconia beads having a bead size of 1 mm by setting a bead filling rate to be 80% by volume, a circumferential speed of the rotor tip to be 10 m/sec, and a retention time per pass to be 2 minutes. Then, other components described above were added thereto, followed by stirring with a dissolver. The obtained dispersion liquid was filtered using a filter having a pore size of 1 ⁇ m, thereby preparing a composition for forming a back coating layer.
  • the lubricant stearic acid and butyl stearate
  • polyisocyanate polyisocyan
  • a magnetic tape was prepared according to the specific aspect shown in FIG. 4 . Specifically, the magnetic tape was prepared as below.
  • a support made of polyethylene naphthalate having a thickness of 5.0 ⁇ m was fed from a feeding portion.
  • one surface of the support was coated with the composition for forming a non-magnetic layer such that the thickness thereof became 100 nm after drying, the composition was dried in the first heating treatment zone (atmospheric temperature: 100° C.), thereby forming a coating layer.
  • the non-magnetic layer was coated with the composition for forming a magnetic layer such that the thickness thereof became 70 nm after drying, thereby forming a coating layer.
  • the cooling step was performed by causing the support to pass through the cooling zone adjusted to have an atmospheric temperature of 0° C. for the staying time shown in Table 1.
  • the vertical alignment treatment was performed by applying a magnetic field having an intensity shown in Table 1 thereto in a direction perpendicular to the surface of the coating layer, and then the coating layer was dried in the second heating treatment zone (atmospheric temperature: 100° C.).
  • the third coating portion a surface, which was opposite to the surface on which the non-magnetic layer and the magnetic layer were formed, of the support made of polyethylene naphthalate was coated with the composition for forming a back coating layer such that the thickness thereof became 0.4 ⁇ m after drying, thereby forming a coating layer.
  • the formed coating layer was dried in the third heating treatment zone (atmospheric temperature: 100° C.).
  • the magnetic tape obtained in this way was slit in a width of 1 ⁇ 2 inches (0.0127 meters), and then the burnishing treatment and the wiping treatment were performed on the surface of the coating layer of the composition for forming a magnetic layer.
  • the burnishing treatment and the wiping treatment were performed using a treatment device constituted as described in FIG.
  • JP1994-52544A JP-H06-52544A
  • a commercially available polishing tape manufactured by FUJIFILM Corporation, trade name: MA22000, abrasive: diamond/Cr 2 O 3 /colcothar
  • a commercially available sapphire blade manufactured by KYOCERA Corporation, width: 5 mm, length: 35 mm, tip angle: 60°
  • a commercially available wiping material manufactured by KURARAY CO., LTD., trade name: WRP736
  • the treatment conditions in Example 12 in JP1994-52544A (JP-H06-52544A) were adopted.
  • a calender treatment (surface smoothing treatment) was performed at a speed of 80 m/min, a line pressure of 300 kg/cm (294 kN/m), and a calender temperature (calender roll surface temperature) of 90° C.
  • the tape was subjected to a heating treatment (curing treatment) for 36 hours in an environment with an atmospheric temperature of 70° C., and then a servo pattern was formed on the magnetic layer by using a commercially available servowriter.
  • a heating treatment curing treatment
  • Example 1 a magnetic tape of Example 1 was obtained.
  • the electromagnetic conversion characteristics of the magnetic tape of Example 1 were measured using a 1 ⁇ 2-inch (0.0127 meters) reel tester, to which a head was fixed, by the following method.
  • the running speed of the magnetic tape was set to be the value shown in Table 1.
  • a Metal-In-Gap (MIG) head (gap length: 0.15 ⁇ m, track width: 1.0 ⁇ m) was used as a recording head, and as a recording current, a recording current optimal for each magnetic tape was set.
  • a reproducing head a Giant-Magnetoresistive (GMR) head having an element thickness of 15 nm, a shield gap of 0.1 ⁇ m, and a lead width of 0.5 ⁇ m was used.
  • GMR Giant-Magnetoresistive
  • each magnetic tape was caused to perform reciprocating running in 5,000 passes at 1,000 m/l pass in an environment with a temperature of 40° C. and a relative humidity of 80%, and then SNR was measured. Then, a difference between SNR of the 1 st pass and SNR of the 5,000 th pass (SNR of the 5,000 th pass-SNR of the 1 st pass) was calculated.
  • the recording and reproduction described above were performed by causing the head to slide on a surface of the magnetic layer of the magnetic tape.
  • Magnetic tapes were prepared in the same manner as in Example 1 except that various items shown in Table 1 were changed as shown in Table 1, and the deterioration of the electromagnetic conversion characteristics (SNR) of the prepared magnetic tapes was evaluated.
  • SNR electromagnetic conversion characteristics
  • the magnetic tape was prepared by a manufacturing process in which a cooling zone is not included in the magnetic layer-forming step and the burnishing treatment as well as the wiping treatment were not performed before the curing treatment.
  • a portion of each of the prepared magnetic tapes was used for the evaluation of the deterioration of electromagnetic conversion characteristics (SNR), and the other portion thereof was used for physical property evaluation described below.
  • SNR electromagnetic conversion characteristics
  • the logarithmic decrement of the magnetic layer surface of the magnetic tape was acquired by the method described above by using a rigid-body pendulum type physical properties testing instrument RPT-3000 W manufactured by A&D Company, Limited (pendulum: rigid-body pendulum FRB-100 manufactured by A&D Company, weight: not employed, round-bar type cylinder edge: RBP-040 manufactured by A&D Company, substrate: glass substrate, a rate of temperature increase of substrate: 5° C./min) as the measurement device.
  • RPT-3000 W manufactured by A&D Company, Limited
  • pendulum rigid-body pendulum FRB-100 manufactured by A&D Company, weight: not employed, round-bar type cylinder edge: RBP-040 manufactured by A&D Company, substrate: glass substrate, a rate of temperature increase of substrate: 5° C./min
  • a commercially available slide glass was cut into a size of 25 mm (short side) ⁇ 50 mm (long side) and employed as the glass substrate.
  • the magnetic tape was placed on the center part of the glass substrate so that the longitudinal direction of the magnetic tape was parallel to the direction of the short side of the glass substrate.
  • four corners of the magnetic tape were fixed on the glass substrate with a fixing tape (Kapton tape manufactured by Du Pont-Toray Co., Ltd.). Then, portions of the magnetic tape protruding from the glass substrate were cut out.
  • the measurement sample was placed on a glass substrate by being fixed at 4 portions as shown in FIG. 1 .
  • the adsorption time was set to be 1 second, the measurement interval was set to be 7 to 10 seconds, and a displacement-time curve was created for the 86 th measurement interval. By using the curve, the logarithmic decrement was determined. The measurement was performed in an environment with a relative humidity of 50%.
  • Dispersion treatment for magnetic liquid Second stage Dispersion beads Formulation amount (mass of beads with respect to Magnetic field Burnishing mass of ferromagnetic hexagonal intensity for vertical Staying time in treatment before Type Bead size ferrite powder)
  • Time alignment treatment cooling zone curing treatment Example 1 Diamond 500 nm 10 times greater 1 h 0.15 T 1 second Performed Example 2 Diamond 500 nm 10 times greater 1 h 0.20 T 1 second Performed Example 3 Diamond 500 nm 10 times greater 1 h 0.30 T 1 second Performed Example 4 Diamond 500 nm 10 times greater 1 h 0.50 T 1 second Performed Example 5 Diamond 500 nm 20 times greater 1 h 0.15 T 1 second Performed Example 6 Diamond 500 nm 10 times greater 1 h 0.30 T 1 second Performed Example 7 Diamond 500 nm 10 times greater 1 h 0.30 T 60 seconds Performed Example 8 Diamond 500 nm 10 times greater 1 h 0.30 T 180 seconds Performed Example 9 N/A N/A N/A N/A N/A Not performed Not performed Example 10 N/A N
  • Examples 9 to 11 magnetic tapes of the same physical properties were used, but the magnetic tapes had different running speeds and different line recording densities. Through the comparison between Examples 9 to 11, it is possible to confirm that as the running speed or the line recording density of the magnetic tape is increased, the deterioration of the electromagnetic conversion characteristics during the repeated sliding becomes more apparent. In Examples 1 to 8, the deterioration of the electromagnetic conversion characteristics during the repeated sliding could be inhibited.
  • One aspect of the present invention can be useful in the technical field of magnetic recording media for data storage such as data backup tapes.

Abstract

The magnetic recording medium includes a non-magnetic support and a magnetic layer which contains ferromagnetic powder and a binder, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the magnetic layer contains an abrasive, Int (110)/Int (114) of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, and a logarithmic decrement obtained by performing a pendulum viscoelasticity test on a surface of the magnetic layer is equal to or lower than 0.050.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority under 35 U.S.C 119 to Japanese Patent Application No. 2017-140016 filed on Jul. 19, 2017 and Japanese Patent Application No. 2018-131332 filed on Jul. 11, 2018. The above application is hereby expressly incorporated by reference, in its entirety, into the present application.
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a magnetic recording medium.
2. Description of the Related Art
Generally, either or both of the recording of information on a magnetic recording medium and the reproduction of information performed by causing a magnetic head (hereinafter, simply described as “head” as well) to contact and slide on a surface of the magnetic recording medium (a surface of a magnetic layer).
In order to continuously or intermittently repeat the reproduction of the information recorded on the magnetic recording medium, the head is caused to repeatedly slide on the surface of the magnetic layer (repeated sliding). For improving the reliability of the magnetic recording medium as a recording medium for data storage, it is desirable to inhibit the deterioration of electromagnetic conversion characteristics during the repeated sliding. This is because a magnetic recording medium in which the electromagnetic conversion characteristics thereof hardly deteriorate during the repeated sliding can keep exhibiting excellent electromagnetic conversion characteristics even though the reproduction is continuously or intermittently repeated.
Examples of causes of the deterioration of electromagnetic conversion characteristics during the repeated sliding include the occurrence of a phenomenon (referred to as “spacing loss”) in which a distance between the surface of the magnetic layer and the head increases. Examples of causes of the spacing loss include a phenomenon in which while reproduction is being repeated and the head is continuously sliding on the surface of the magnetic layer, foreign substances derived from the magnetic recording medium are attached to the head. In the related art, as a countermeasure for the head attachment occurring as above, an abrasive has been added to the magnetic layer such that the surface of the magnetic layer performs a function of removing the head attachment (for example, see JP2005-243162A).
SUMMARY OF THE INVENTION
It is preferable to add an abrasive to the magnetic layer, because then it is possible to inhibit the deterioration of the electromagnetic conversion characteristics resulting from the spacing loss that occurs due to the head attachment. Incidentally, in a case where the deterioration of the electromagnetic conversion characteristics can be suppressed to a level that is higher than the level achieved by the addition of an abrasive to the magnetic layer as in the related art, it is possible to further improve the reliability of the magnetic recording medium as a recording medium for data storage.
The present invention is based on the above circumstances, and an aspect of the oresent invention provides for a magnetic recording medium in which the electromagnetic conversion characteristics thereof hardly deteriorate even though a head repeatedly slides on a surface of a magnetic layer.
An aspect of the present invention is a magnetic recording medium comprising a non-magnetic support and a magnetic layer which is provided on the support and contains ferromagnetic powder and a binder, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the magnetic layer contains an abrasive, an intensity ratio (Int (110)/Int (114)) (hereinafter, described as “XRD (X-ray diffraction) intensity ratio” as well) of a peak intensity Int (110) of a diffraction peak of (110) plane of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity Int (114) of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, and a logarithmic decrement obtained by performing a pendulum viscoelasticity test on a surface of the magnetic layer (hereinafter, described as “logarithmic decrement of the magnetic layer surface” or simply described as “logarithmic decrement” as well) is equal to or lower than 0.050.
In one aspect, the squareness ratio in a vertical direction may be equal to or higher than 0.65 and equal to or lower than 0.90.
In one aspect, the logarithmic decrement of the magnetic layer surface may be equal to or higher than 0.010 and equal to or lower than 0.050.
In one aspect, the magnetic recording medium may further comprise a non-magnetic layer containing non-magnetic powder and a binder between the non-magnetic support and the magnetic layer.
In one aspect, the magnetic recording medium may further comprise a back coating layer containing non-magnetic powder and a binder on a surface, which is opposite to a surface provided with the magnetic layer, of the non-magnetic support.
In one aspect, the magnetic recording medium may be a magnetic tape.
According to an aspect of the present invention, it is possible to provide a magnetic recording medium in which the electromagnetic conversion characteristics thereof hardly deteriorate even though a head is caused to repeatedly slide on a surface of a magnetic layer.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a view for illustrating a method for measuring a logarithmic decrement.
FIG. 2 is a view for illustrating the method for measuring a logarithmic decrement.
FIG. 3 is a view for illustrating the method for measuring a logarithmic decrement.
FIG. 4 shows an example (schematic process chart) of a specific aspect of a process for manufacturing a magnetic tape.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
An aspect of the present invention is a magnetic recording medium including a non-magnetic support and a magnetic layer which is provided on the support and contains ferromagnetic powder and a binder, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the magnetic layer contains an abrasive, an intensity ratio (Int (110)/Int (114)) of a peak intensity Int (110) of a diffraction peak of (110) plane of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity Int (114) of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, and a logarithmic decrement obtained by performing a pendulum viscoelasticity test on a surface of the magnetic layer is equal to or lower than 0.050.
In the present invention and the present specification, “surface of the magnetic layer” refers to a surface of the magnetic recording medium on the magnetic layer side. Furthermore, in the present invention and the present specification, “ferromagnetic hexagonal ferrite powder” refers to an aggregate of a plurality of ferromagnetic hexagonal ferrite particles. The ferromagnetic hexagonal ferrite particles are ferromagnetic particles having a hexagonal ferrite crystal structure. Hereinafter, the particles constituting the ferromagnetic hexagonal ferrite powder (ferromagnetic hexagonal ferrite particles) will be described as “hexagonal ferrite particles” or simply as “particles” as well. “Aggregate” is not limited to an aspect in which the particles constituting the aggregate directly contact each other, and also includes an aspect in which a binder, an additive, or the like is interposed between the particles. The same points as described above will also be applied to various powders such as non-magnetic powder in the present invention and the present specification.
In the present invention and the present specification, unless otherwise specified, the description relating to a direction and an angle (for example, “vertical”, “orthogonal”, or “parallel”) includes a margin of error accepted in the technical field to which the present invention belongs. For example, the aforementioned margin of error means a range less than a precise angle ±10°. The margin of error is preferably within a precise angle ±5°, and more preferably within a precise angle ±3°.
Regarding the aforementioned magnetic recording medium, the inventors of the present invention made assumptions as below.
The magnetic layer of the magnetic recording medium contains an abrasive. The addition of the abrasive to the magnetic layer enables the surface of the magnetic layer to perform a function of removing the head attachment. However, it is considered that in a case where the abrasive present on the surface of the magnetic layer and/or in the vicinity of the surface of the magnetic layer fails to appropriately permeate the inside of the magnetic layer by the force applied thereto from the head when the head is sliding on the surface of the magnetic layer, the head will be scraped by contacting the abrasive protruding from the surface of the magnetic layer (head scraping). It is considered that in a case where the head scraping that occurs as above can be inhibited, it is possible to further inhibit the deterioration of the electromagnetic conversion characteristics caused by the spacing loss.
Regarding the aforementioned point, the inventors of the present invention assume that in the ferromagnetic hexagonal ferrite powder contained in the magnetic layer include particles (hereinafter, referred to as “former particles”) which exert an influence on the degree of permeation of the abrasive by supporting the abrasive pushed into the inside of the magnetic layer and particles (hereinafter, referred to as “latter particles”) which are considered not to exert such an influence or to exert such an influence to a small extent. It is considered that the latter particles are fine particles resulting from partial chipping of particles due to the dispersion treatment performed at the time of preparing a composition for forming a magnetic layer, for example. The inventors of the present invention also assume that the more the fine particles contained in the magnetic layer, the further the hardness of the magnetic layer decreases, although the reason is unclear. In a case where the hardness of the magnetic layer decreases, the surface of the magnetic layer is scraped when the head slides on the surface of the magnetic layer (magnetic layer scraping), the foreign substances occurring due to the scraping are interposed between the surface of the magnetic layer and the head, and as a result, spacing loss occurs.
The inventors of the present invention consider that in the ferromagnetic hexagonal ferrite powder present in the magnetic layer, the former particles are particles resulting in a diffraction peak in X-ray diffraction analysis using an In-Plane method, and the latter particles do not result in a diffraction peak or exert a small influence on a diffraction peak because they are fine. Therefore, the inventors of the present invention assume that based on the intensity of the diffraction peak determined by X-ray diffraction analysis performed on the magnetic layer by using the In-Plane method, the way the particles, which support the abrasive pushed into the inside of the magnetic layer and exert an influence on the degree of permeation of the abrasive, are present in the magnetic layer can be controlled, and as a result, the degree of permeation of the abrasive can be controlled. The inventors of the present invention consider that the XRD intensity ratio, which will be specifically described later, is a parameter relating to the aforementioned point.
Meanwhile, the squareness ratio in a vertical direction is a ratio of remnant magnetization to saturation magnetization measured in a direction perpendicular to the surface of the magnetic layer. The smaller the remnant magnetization, the lower the ratio. Presumably, it is difficult for the latter particles to retain magnetization because they are fine. Therefore, presumably, as the amount of the latter particles contained in the magnetic layer increases, the squareness ratio in a vertical direction tends to be reduced. Accordingly, the inventors of the present invention consider that the squareness ratio in a vertical direction can be a parameter of the amount of the fine particles (the latter particles described above) present in the magnetic layer. The inventors of the present invention consider that as the amount of such fine particles contained in the magnetic layer increases, the hardness of the magnetic layer may decrease, and accordingly, the surface of the magnetic layer may be scraped when the head slides on the surface of the magnetic layer, the foreign substances that occur due to the scraping may be interposed between the surface of the magnetic layer and the head, and hence the spacing loss strongly tends to occur.
The inventors of the present invention consider that in the aforementioned magnetic recording medium, each of the XRD intensity ratio and the squareness ratio in a vertical direction is in the aforementioned range, and this makes a contribution to the inhibition of the deterioration of the electromagnetic conversion characteristics during the repeated sliding. According to the inventors of the present invention, presumably, this is because the control of the XRD intensity ratio mainly makes it possible to inhibit the head scraping, and the control of the squareness ratio in a vertical direction mainly makes it possible to inhibit the magnetic layer scraping.
The inventors of the present invention consider that, in the magnetic recording medium, an aspect in which the logarithmic decrement obtained by performing a pendulum viscoelasticity test on a surface of the magnetic layer is equal to or lower than 0.050 makes a contribution to the further inhibition of the deterioration of electromagnetic conversion characteristics during the repeated sliding. This point will be further described below.
In the present invention and the present specification, the logarithmic decrement of the magnetic layer surface is a value obtained by the following method.
FIGS. 1 to 3 are views for illustrating a method for measuring a logarithmic decrement. Hereinafter, the method for measuring a logarithmic decrement will be described with reference to the drawings. Here, the aspect shown in the drawings is merely an example, and the present invention is not limited thereto.
A portion of the magnetic tape which is a measurement target (a measurement sample) 100 is placed on a substrate 103 so that a measurement surface (surface of the back coating layer) faces upwards and the measurement sample 100 is fixed by, for example, fixing tapes 105 in a state where obvious wrinkles which can be visually confirmed are not generated, in a sample stage 101 in a pendulum viscoelasticity tester.
A pendulum-attached round-bar type cylinder edge 104 is loaded on the measurement surface of the measurement sample 100 so that a long axis direction of the cylinder edge becomes parallel to a longitudinal direction of the measurement sample 100. An example of a state in which the pendulum-attached round-bar type cylinder edge 104 is loaded on the measurement surface of the measurement sample 100 as described above (state seen from the top) is shown in FIG. 1. In the aspect shown in FIG. 1, a constitution is illustrated in which a holder and temperature sensor 102 is installed such that the surface temperature of the substrate 103 can be monitored. However, this constitution is not essential. The longitudinal direction of the sample 100 for measurement is a direction indicated by the arrow in the aspect shown in FIG. 1, and refers to the longitudinal direction in the magnetic recording medium from which the sample for measurement is cut out. Furthermore, as a pendulum 107 (see FIG. 2), a pendulum made of a material (for example, a metal, an alloy, or the like) having a property of being adsorbed onto a magnet is used.
The surface temperature of the substrate 103, on which the sample 100 for measurement is placed, is increased to 80° C. at a heating rate of equal to or lower than 5° C./min (the heating rate may be arbitrarily set as long as it is equal to or lower than 5° C./min), and the pendulum 107 is desorbed from a magnet 106 are detached from each other such that the pendular movement is initiated (inducing initial oscillation). FIG. 2 shows an example of a state where the pendulum 107 is performing pendular movement (state seen sideways). In the aspect shown in FIG. 2, in the pendulum viscoelasticity tester, the electricity conducted to the magnet (electromagnet) 106 disposed below the sample stage is cut off (the switch is turned off) such that the pendulum is desorbed from the magnet and starts to perform pendular movement, and then electricity is conducted again to the electromagnet (the switch is turned on) such that the pendulum 107 is adsorbed onto the magnet 106 and stops the pendular movement. As shown in FIG. 2, while performing pendular movement, the pendulum 107 repeatedly swings. While the pendulum is repeatedly swinging, the displacement of the pendulum is monitored using a displacement sensor 108. From the obtained result, a displacement-time curve plotted by taking the displacement as the ordinate and the elapsed time as the abscissa is obtained. FIG. 3 shows an example of the displacement-time curve. FIG. 3 schematically shows how the state of the pendulum 107 corresponds to the displacement-time curve. At a regular measurement interval, the pendular movement is stopped (adsorption) and resumed repeatedly for 10 minutes or longer (the time may be arbitrarily set as long as it is equal to or longer than 10 minutes). By using a displacement-time curve obtained at the measurement interval after 10 minutes or longer, a logarithmic decrement Δ (without a unit) is obtained from the following equation, and the value is taken as a logarithmic decrement of the surface of a magnetic layer of a magnetic tape. The pendulum is allowed to be adsorbed onto the magnet for 1 second or longer (the time may be arbitrarily set as long as it is equal to or longer than 1 second) whenever it is adsorbed onto the magnet, and the interval from the stop of the adsorption to the initiation of the next adsorption is set to be 6 seconds or longer (the time may be arbitrarily set as long as it is equal to or longer than 6 seconds). The measurement interval is a time interval from the initiation of adsorption to the next initiation of adsorption. The humidity of the environment in which the pendular movement is performed may be a relative humidity that is arbitrarily set as long as it is a relative humidity within a range of 40% to 70%. Temperature of an environment in which the pendulum movement is performed, may be random temperature, as long as the temperature is 20° C. to 30° C.
Δ = ln ( A 1 A 2 ) + ln ( A 2 A 3 ) + ln ( A n A n + 1 ) n
In the displacement-time curve, the interval from when the displacement becomes minimum and to when the displacement becomes minimum again is taken as one period of a wave. n represents the number of waves included in the displacement-time curve at the measurement interval, and An represents a difference between the minimum displacement and the maximum displacement in the nth wave. In FIG. 3, the interval from when the displacement of the nth wave becomes minimum to when the displacement of the nth wave becomes minimum again is represented by Pn (for example, P1 for the first wave, P2 for the second wave, and P3 for the third wave). For calculating the logarithmic decrement, a difference between the minimum displacement and the maximum displacement that appear after the nth wave (An+1 in the above equation, and A4 in the displacement-time curve shown in FIG. 3) is used, but the portion in which the pendulum 107 stops (is adsorbed) after the maximum displacement is not used for counting the number of waves. In addition, the portion in which the pendulum 107 stops (is adsorbed) before the maximum displacement is not used for counting the number of waves. Accordingly, in the displacement-time curve shown in FIG. 3, the number of waves is 3 (n=3).
The aforementioned logarithmic decrement is considered as a value that becomes a parameter of the amount of a viscous component which is liberated from the surface of the magnetic layer in a case where the head comes into contact with and slide on the surface of the magnetic layer and interposed between the surface of the magnetic layer and the head. Presumably, in a case where the viscous component is attached to and accumulated on the head while the head is repeatedly sliding, spacing loss that causes the deterioration of electromagnetic conversion characteristics may occur. In contrast, the inventors consider that in a case where the logarithmic decrement of the magnetic layer surface in the aforementioned magnetic recording medium is equal to or lower than 0.050, that is, the state where the amount of the viscous component is reduced makes a contribution to the inhibition of the occurrence of the spacing loss by the attachment and accumulation of the viscous component on the head. The inventors of the present invention assume that the inhibition of the occurrence of spacing loss may lead to the further inhibition of the deterioration of electromagnetic conversion characteristics that is caused during the repeated sliding due to the occurrence of the spacing loss.
The details of the aforementioned viscous components are unclear. The inventors of the present invention assume that the viscous component is likely to be derived from the resin used as a binder. Specifically, the binder is as below. As a binder, as will be specifically described later, various resins can be used. The resin is a polymer (including a homopolymer and a copolymer) of two or more kinds of polymerizable compounds. Usually, the resin also includes a component having a molecular weight lower than the average molecular weight (hereinafter, described as “low-molecular weight binder component”). The inventors of the present invention consider that in a case where such a low-molecular weight binder component is liberated from the surface of the magnetic layer when the head slides on the surface of the magnetic layer and interposed between the surface of the magnetic layer and the head, the spacing loss may occur. The low-molecular weight binder component is considered to have viscousness. The inventors of the present invention assume that the logarithmic decrement determined by the pendulum viscoelasticity test may be a parameter of the amount of low-molecular weight binder component that is liberated from the surface of the magnetic layer when the head slides on the surface of the magnetic layer. In an aspect, the magnetic layer is formed by coating a non-magnetic support with a composition for forming a magnetic layer containing a curing agent in addition to ferromagnetic hexagonal ferrite powder and a binder directly or through another layer and performing a curing treatment. By the curing treatment mentioned here, the binder and the curing agent can perform a curing reaction (crosslinking reaction). Here, the inventors of the present invention consider that the low-molecular weight binder component may exhibit poor reactivity in the curing reaction although the reason is unclear. Therefore, the inventors of the present invention assume that the property of the low-molecular weight binder component, in which the component does not easily stay in the magnetic layer but is easily liberated from the magnetic layer, may be one of the reasons why the low-molecular weight binder component is interposed between the surface of the magnetic layer and the head when the head slides on the surface of the magnetic layer.
The points described so far are assumptions that the inventors of the present invention made regarding the mechanism which makes it possible to inhibit the deterioration of the electromagnetic conversion characteristics in the magnetic recording medium even though the head repeatedly slides on the surface of the magnetic layer. However, the present invention is not limited to the assumption. The present specification includes the assumption of the inventors of the present invention, and the present invention is not limited to the assumption.
Hereinbelow, various values will be more specifically described.
XRD Intensity Ratio
In the magnetic recording medium, the magnetic layer contains ferromagnetic hexagonal ferrite powder. The XRD intensity ratio is determined by performing X-ray diffraction analysis on the magnetic layer containing the ferromagnetic hexagonal ferrite powder by using an In-Plane method. Hereinafter, the X-ray diffraction analysis performed using an In-Plane method will be described as “In-Plane XRD” as well. In-Plane XRD is performed by irradiating the surface of the magnetic layer with X-rays by using a thin film X-ray diffractometer under the following conditions. Magnetic recording media are roughly classified into a tape-like magnetic recording medium (magnetic tape) and a disc-like magnetic recording medium (magnetic disc). The magnetic tape is measured in a longitudinal direction, and the magnetic disc is measured in a radius direction.
Radiation source used: Cu radiation (power of 45 kV, 200 mA)
Scan condition: 0.05 degree/step within a range of 20 to 40 degree, 0.1 degree/min
Optical system used: parallel optical system
Measurement method: 2 θχ scan (X-ray incidence angle: 0.25°)
The above conditions are values set in the thin film X-ray diffractometer. As the thin film X-ray diffractometer, known instruments can be used. As one of the thin film X-ray diffractometers, SmartLab manufactured by Rigaku Corporation can be exemplified. The sample used for In-Plane XRD analysis is not limited in terms of the size and shape, as long as it is a medium sample which is cut from a magnetic recording medium to be measured and enables the confirmation of a diffraction peak which will be described later.
Examples of the techniques of X-ray diffraction analysis include thin film X-ray diffraction and powder X-ray diffraction. By the powder X-ray diffraction, the X-ray diffraction of a powder sample is measured. In contrast, by the thin film X-ray diffraction, it is possible to measure the X-ray diffraction of a layer formed on a substrate and the like. The thin film X-ray diffraction is classified into an In-Plane method and an Out-Of-Plane method. In the Out-Of-Plane method, the X-ray incidence angle during measurement is within a range of 5.00° to 90.00°. In contrast, in the In-Plane method, the X-ray incidence angle is generally within a range of 0.20° to 0.50°. In the present invention and the present specification, the X-ray incidence angle in In-Plane XRD is set to be 0.25° as described above. In the In-Plane method, the X-ray incidence angle is smaller than in the Out-Of-Plane method, and hence the X-ray permeation depth is small. Accordingly, by the X-ray diffraction analysis (In-Plane XRD) using the In-Plane method, it is possible to analyze the X-ray diffraction of a surface layer portion of a sample to be measured. For the sample of the magnetic recording medium, the X-ray diffraction of the magnetic layer can be analyzed by In-Plane XRD. In an X-ray diffraction spectrum obtained by the aforementioned In-Plane XRD, the aforementioned XRD intensity ratio is an intensity ratio (Int (110)/Int (114)) of a peak intensity Int (110) of a diffraction peak of (110) plane of a crystal structure of the hexagonal ferrite to a peak intensity Int (114) of a diffraction peak of (114) plane of the crystal structure. Int is used as the abbreviation of intensity. In the X-ray diffraction spectrum obtained by In-Plane XRD (ordinate: intensity, abscissa: diffraction angle 2 θχ (degree)), the diffraction peak of (114) plane is a peak detected at 2 θχ that is within a range of 33 to 36 degree, and the diffraction peak of (110) plane is a peak detected at 2 θχ that is within a range of 29 to 32 degree.
Among diffraction planes, (114) plane of the crystal structure of the hexagonal ferrite is positioned close to a direction of a magnetization easy axis (c-axis direction) of the particles of the ferromagnetic hexagonal ferrite powder (hexagonal ferrite particles). The (110) plane of the hexagonal ferrite crystal structure is positioned in a direction orthogonal the direction of the magnetization easy axis.
Regarding the aforementioned former particles among the hexagonal ferrite particles contained in the magnetic layer, the inventors of the present invention considered that the more the direction of the particles orthogonal to the magnetization easy axis is parallel to the surface of the magnetic layer, the more difficult it is for the abrasive to permeate the inside of the magnetic layer by being supported by the hexagonal ferrite particles. In contrast, regarding the former particles in the magnetic layer, the inventors of the present invention consider that the more the direction of the particles orthogonal to the magnetization easy axis is perpendicular to the surface of the magnetic layer, the easier it is for the abrasive to permeate the inside of the magnetic layer because it is difficult for the abrasive to be supported by the hexagonal ferrite powder. Furthermore, the inventors of the present invention assume that in the X-ray diffraction spectra determined by In-Plane XRD, in a case where the intensity ratio (Int (110)/Int (114); XRD intensity ratio) of the peak intensity Int (110) of the diffraction peak of (110) plane to the peak intensity Int (114) of the diffraction peak of (114) plane of the hexagonal ferrite crystal structure is high, it means that the magnetic layer contains a large amount of the former particles whose direction orthogonal to the direction of the magnetization easy axis is more parallel to the surface of the magnetic layer; and in a case where the XRD intensity ratio is low, it means that the magnetic layer contains a small amount of such former particles. In addition, the inventors consider that in a case where the XRD intensity ratio is equal to or lower than 4.0, it means that the former particles, that is, the particles, which support the abrasive pushed into the inside of the magnetic layer and exert an influence on the degree of the permeation of the abrasive, merely support the abrasive, and as a result, the abrasive can appropriately permeate the inside of the magnetic layer at the time when a head slides on the surface of the magnetic layer. The inventors of the present invention assume that the aforementioned mechanism may make a contribution to hinder the occurrence of the head scraping even though the head repeatedly slides on the surface of the magnetic layer. In contrast, the inventors of the present invention consider that the state in which the abrasive appropriately protrudes from the surface of the magnetic layer when the head slides on the surface of the magnetic layer may make a contribution to the reduction of the contact area (real contact) between the surface of the magnetic layer and the head. The inventors consider that the larger the real contact area, the stronger the force applied to the surface of the magnetic layer from the head when the head slides on the surface of the magnetic layer, and as a result, the surface of the magnetic layer is damaged and scraped. Regarding this point, the inventors of the present invention assume that in a case where the XRD intensity ratio is equal to or higher than 0.5, it shows that the aforementioned former particles are present in the magnetic layer in a state of being able to support the abrasive with allowing the abrasive to appropriately protrude from the surface of the magnetic layer when the head slides on the surface of the magnetic layer.
From the viewpoint of further inhibiting the deterioration of the electromagnetic conversion characteristics, the XRD intensity ratio is preferably equal to or lower than 3.5, and more preferably equal to or lower than 3.0. From the same viewpoint, the XRD intensity ratio is preferably equal to or higher than 0.7, and more preferably equal to or higher than 1.0. The XRD intensity ratio can be controlled by the treatment conditions of the alignment treatment performed in the manufacturing process of the magnetic recording medium. As the alignment treatment, it is preferable to perform a vertical alignment treatment. The vertical alignment treatment can be preferably performed by applying a magnetic field in a direction perpendicular to a surface of the wet (undried) coating layer of the composition for forming a magnetic layer. The further the alignment conditions are strengthened, the higher the XRD intensity ratio tends to be. Examples of the treatment conditions of the alignment treatment include the magnetic field intensity in the alignment treatment and the like. The treatment conditions of the alignment treatment are not particularly limited, and may be set such that an XRD intensity ratio of equal to or higher than 0.5 and equal to or lower than 4.0 can be achieved. For example, the magnetic field intensity in the vertical alignment treatment can be set to be 0.10 to 0.80 T or 0.10 to 0.60 T. As the dispersibility of the ferromagnetic hexagonal ferrite powder in the composition for forming a magnetic layer is improved, the value of the XRD intensity ratio tends to increase by the vertical alignment treatment.
Squareness Ratio in Vertical Direction
The squareness ratio in a vertical direction is a squareness ratio measured in a vertical direction of the magnetic recording medium. “Vertical direction” described regarding the squareness ratio refers to a direction orthogonal to the surface of the magnetic layer. For example, in a case where the magnetic recording medium is a tape-like magnetic recording medium, that is, a magnetic tape, the vertical direction is a direction orthogonal to a longitudinal direction of the magnetic tape. The squareness ratio in a vertical direction is measured using a vibrating sample fluxmeter. Specifically, in the present invention and the present specification, the squareness ratio in a vertical direction is a value determined by carrying out scanning in the vibrating sample fluxmeter by applying a maximum external magnetic field of 1,194 kA/m (15 kOe) as an external magnetic field to the magnetic recording medium, at a measurement temperature of 23° C.±1° C. under the condition of a scan rate of 4.8 kA/m/sec (60 Oe/sec), which is used after being corrected for a demagnetizing field. The measured squareness ratio is a value from which the magnetization of a sample probe of the vibrating sample fluxmeter is subtracted as background noise.
The squareness ratio in a vertical direction of the magnetic recording medium is equal to or higher than 0.65. The inventors of the present invention assume that the squareness ratio in a vertical direction of the magnetic recording medium can be a parameter of the amount of the aforementioned latter particles (fine particles) present in the magnetic layer that are considered to induce the reduction in the hardness of the magnetic layer. It is considered that the magnetic layer in the magnetic recording medium having a squareness ratio in a vertical direction of equal to or higher than 0.65 has high hardness because of containing a small amount of such fine particles and is hardly scraped by the sliding of the head on the surface of the magnetic layer. Presumably, because the surface of the magnetic layer is hardly scraped, it is possible to inhibit the electromagnetic conversion characteristics from deteriorating due to the occurrence of spacing loss resulting from foreign substances that occur due to the scraping of the surface of the magnetic layer. From the viewpoint of further inhibiting the deterioration of the electromagnetic conversion characteristics, the squareness ratio in a vertical direction is preferably equal to or higher than 0.68, more preferably equal to or higher than 0.70, even more preferably equal to or higher than 0.73, and still more preferably equal to or higher than 0.75. In principle, the squareness ratio is 1.00 at most. Accordingly, the squareness ratio in a vertical direction of the magnetic recording medium is equal to or lower than 1.00. The squareness ratio in a vertical direction may be equal to or lower than 0.95, 0.90, 0.87, or 0.85, for example. The larger the value of the squareness ratio in a vertical direction, the smaller the amount of the aforementioned fine latter particles in the magnetic layer. Therefore, it is considered that from the viewpoint of the hardness of the magnetic layer, the value of the squareness ratio is preferably large. Accordingly, the squareness ratio in a vertical direction may be higher than the upper limit exemplified above.
The inventors of the present invention consider that in order to obtain a squareness ratio in a vertical direction of equal to or higher than 0.65, it is preferable to inhibit fine particles from occurring due to partial chipping of particles in the step of preparing the composition for forming a magnetic layer. Specific means for inhibiting the occurrence of chipping will be described later.
Logarithmic Decrement
The logarithmic decrement obtained by performing a pendulum viscoelasticity test on the surface of the magnetic layer of the magnetic recording medium is equal to or lower than 0.050. The logarithmic decrement of equal to or lower than 0.050 can make a contribution to the inhibition of the deterioration of electromagnetic conversion characteristics during the repeated sliding. From the viewpoint of further inhibiting the deterioration of electromagnetic conversion characteristics during the repeated sliding, the logarithmic decrement is preferably equal to or lower than 0.048, more preferably equal to or lower than 0.045, and even more preferably equal to or lower than 0.040. In contrast, from the viewpoint of inhibiting the deterioration of electromagnetic conversion characteristics during the repeated sliding, the lower the logarithmic decrement, the more preferable. Therefore, the lower limit is not particularly limited. For example, the logarithmic decrement can be equal to or higher than 0.010 or equal to or higher than 0.015. Here, the logarithmic decrement may be lower than the value exemplified above. Specific aspects of the means for adjusting the logarithmic decrement will be described later.
Hereinafter, the magnetic recording medium will be more specifically described.
Magnetic Layer
Ferromagnetic Hexagonal Ferrite Powder
The magnetic layer of the magnetic recording medium contains ferromagnetic hexagonal ferrite powder as ferromagnetic powder. Regarding the ferromagnetic hexagonal ferrite powder, a magnetoplumbite type (referred to as “M type” as well), a W type, a Y type, and Z type are known as crystal structures of the hexagonal ferrite. The ferromagnetic hexagonal ferrite powder contained in the magnetic layer may take any of the above crystal structures. The crystal structures of the hexagonal ferrite contain an iron atom and a divalent metal atom as constituent atoms. The divalent metal atom is a metal atom which can become a divalent cation as an ion, and examples thereof include alkali earth metal atoms such as a barium atom, a strontium atom, and a calcium atom, a lead atom, and the like. For example, the hexagonal ferrite containing a barium atom as a divalent metal atom is barium ferrite, and the hexagonal ferrite containing a strontium atom is strontium ferrite. The hexagonal ferrite may be a mixed crystal of two or more kinds of hexagonal ferrite. As one of the mixed crystals, a mixed crystal of barium ferrite and strontium ferrite can be exemplified.
As the parameter of a particle size of the ferromagnetic hexagonal ferrite powder, activation volume can be used. “Activation volume” is the unit of magnetization inversion. The activation volume described in the present invention and the present specification is a value measured using a vibrating sample fluxmeter in an environment with an atmospheric temperature of 23° C.±1° C. by setting a magnetic field sweep rate to be 3 minutes and 30 minutes for a coercive force Hc measurement portion, and determined from the following relational expression of Hc and an activation volume V.
Hc=2Ku/Ms{1[(kT/KuV)ln(At/0.693)]1/2}
[In the expression, Ku: anisotropy constant, Ms: saturation magnetization, k: Boltzmann constant, T: absolute temperature, V: activation volume, A: spin precession frequency, t: magnetic field inversion time]
Examples of methods for achieving the high-density recording include a method of increasing a filling rate of ferromagnetic powder in the magnetic layer by reducing the particle size of the ferromagnetic powder contained in the magnetic layer. In this respect, the activation volume of the ferromagnetic hexagonal ferrite powder is preferably equal to or less than 2,500 nm3, more preferably equal to or less than 2,300 nm3, and even more preferably equal to or less than 2,000 nm3. In contrast, from the viewpoint of the stability of magnetization, the activation volume is preferably equal to or greater than 800 nm3, more preferably equal to or greater than 1,000 nm3, and even more preferably equal to or greater than 1,200 nm3, for example.
In order to identify the shape of the particles constituting the ferromagnetic hexagonal ferrite powder, the ferromagnetic hexagonal ferrite powder is imaged using a transmission electron microscope at a 100,000× magnification, and the image is printed on photographic paper such that the total magnification thereof becomes 500,000×. In the image of the particles obtained in this way, the outlines of particles (primary particles) are traced using a digitizer so as to identify the particle shape. The primary particles refer to independent particles not being aggregated with each other. The particles are imaged using a transmission electron microscope at an acceleration voltage of 300 kV by using a direct method. For performing observation and measurement using the transmission electron microscope, for example, it is possible to use a transmission electron microscope H-9000 manufactured by Hitachi High-Technologies Corporation and image analysis software KS-400 manufactured by Carl Zeiss A G. Regarding the shape of the particles constituting the ferromagnetic hexagonal ferrite powder, “plate-like” means a shape having two plate surfaces facing each other. Among particle shapes that do not have such plate surfaces, a shape having a major axis and a minor axis different from each other is “elliptical”. The major axis is an axis (straight line) which is the longest diameter of a particle. The minor axis is a straight line which is the longest diameter of a particle in a direction orthogonal to the major axis. A shape in which the major axis and the minor axis are the same as each other, that is, a shape in which the major axis length equals the minor axis length is “spherical”. A shape in which the major axis and the minor axis cannot be identified is called “amorphous”. The imaging performed for identifying the particle shape by using a transmission electron microscope is carried out without performing an alignment treatment on the powder to be imaged. The ferromagnetic hexagonal ferrite powder used for preparing the composition for forming a magnetic layer and the ferromagnetic hexagonal ferrite powder contained in the magnetic layer may take any of the plate-like shape, the elliptical shape, the spherical shape and the amorphous shape.
The mean particle size relating to various powders described in the present invention and the present specification is an arithmetic mean of sizes determined for 500 particles randomly extracted using a particle image captured as described above. The mean particle size shown in examples which will be described later is a value obtained using a transmission electron microscope H-9000 manufactured by Hitachi High-Technologies Corporation as a transmission electron microscope and image analysis software KS-400 manufactured by Carl Zeiss A G as image analysis software.
For details of the ferromagnetic hexagonal ferrite powder, for example, paragraphs “0134” to “0136” in JP2011-216149A can also be referred to.
The content (filling rate) of the ferromagnetic hexagonal ferrite powder in the magnetic layer is preferably within a range of 50% to 90% by mass, and more preferably within a range of 60% to 90% by mass. The magnetic layer contains at least a binder and an abrasive as components other than the ferromagnetic hexagonal ferrite powder, and can optionally contain one or more kinds of additives. From the viewpoint of improving the recording density, the filling rate of the ferromagnetic hexagonal ferrite powder in the magnetic layer is preferably high.
Binder and Curing Agent
The magnetic layer of the magnetic recording medium contains a binder. As the binder, one or more kinds of resins are used. The resin may be a homopolymer or a copolymer. As the binder contained in the magnetic layer, a binder selected from an acryl resin obtained by copolymerizing a polyurethane resin, a polyester resin, a polyamide resin, a vinyl chloride resin, styrene, acrylonitrile, or methyl methacrylate, a cellulose resin such as nitrocellulose, an epoxy resin, a phenoxy resin, a polyvinyl alkyral resin such as polyvinyl acetal or polyvinyl butyral can be used singly, or a plurality of resins can be used by being mixed together. Among these, a polyurethane resin, an acryl resin, a cellulose resin, and a vinyl chloride resin are preferable. These resins can be used as a binder in a non-magnetic layer and/or a back coating layer which will be described later. Regarding the aforementioned binders, paragraphs “0029” to “0031” in JP2010-24113A can be referred to. The average molecular weight of the resin used as a binder can be equal to or greater than 10,000 and equal to or less than 200,000 in terms of a weight-average molecular weight, for example. The weight-average molecular weight in the present invention and the present specification is a value determined by measuring a molecular weight by gel permeation chromatography (GPC) and expressing the molecular weight in terms of polystyrene. As the measurement conditions, the following conditions can be exemplified. The weight-average molecular weight shown in examples which will be described later is a value determined by measuring a molecular weight under the following measurement conditions and expressing the molecular weight in terms of polystyrene.
GPC instrument: HLC-8120 (manufactured by Tosoh Corporation)
Column: TSK gel Multipore HXL-M (manufactured by Tosoh Corporation, 7.8 mmID (Inner Diameter)×30.0 cm)
Eluent: tetrahydrofuran (THF)
At the time of forming the magnetic layer, it is possible to use a curing agent together with a resin usable as the aforementioned binder. In an aspect, the curing agent can be a thermosetting compound which is a compound experiencing a curing reaction (crosslinking reaction) by heating. In another aspect, the curing agent can be a photocurable compound experiencing a curing reaction (crosslinking reaction) by light irradiation. The curing agent experiences a curing reaction in the manufacturing process of the magnetic recording medium. In this way, at least a portion of the curing agent can be contained in the magnetic layer, in a state of reacting (cross-linked) with other components such as the binder. The curing agent is preferably a thermosetting compound which is suitably polyisocyanate. For details of polyisocyanate, paragraphs “0124” and “0125” in JP2011-216149A can be referred to. The curing agent can be used by being added to the composition for forming a magnetic layer, in an amount of 0 to 80.0 parts by mass with respect to 100.0 parts by mass of the binder and preferably in an amount of 50.0 to 80.0 parts by mass from the viewpoint of improving the hardness of the magnetic layer.
Abrasive
The magnetic layer of the magnetic recording medium contains an abrasive. The abrasive refers to non-magnetic powder having a Mohs hardness of higher than 8, and is preferably non-magnetic powder having a Mohs hardness of equal to or higher than 9. The abrasive may be powder of an inorganic substance (inorganic powder) or powder of an organic substance (organic powder), and is preferably inorganic powder. The abrasive is preferably inorganic powder having a Mohs hardness of higher than 8, and even more preferably inorganic powder having Mohs hardness of equal to or higher than 9. The maximum value of the Mohs hardness is 10 which is the Mohs hardness of diamond. Specific examples of the abrasive include powder of alumina (Al2O3), silicon carbide, boron carbide (B4C), TiC, cerium oxide, zirconium oxide (ZrO2), diamond, and the like. Among these, alumina powder is preferable. Regarding the alumina powder, paragraph “0021” in JP2013-229090A can also be referred to. As a parameter of the particle size of the abrasive, specific surface area can be used. The larger the specific surface area, the smaller the particle size. It is preferable to use an abrasive having a specific surface area (hereinafter, described as “BET specific surface area”) of equal to or greater than 14 m2/g, which is measured for primary particles by a Brunauer-Emmett-Teller (BET) method. From the viewpoint of dispersibility, it is preferable to use an abrasive having a BET specific surface area of equal to or less than 40 m2/g. The content of the abrasive in the magnetic layer is preferably 1.0 to 20.0 parts by mass with respect to 100.0 parts by mass of the ferromagnetic hexagonal ferrite powder.
Additive
The magnetic layer contains the ferromagnetic hexagonal ferrite powder, the binder, and the abrasive, and may further contain one or more kinds of additives if necessary. As one of the additives, the aforementioned curing agent can be exemplified. Examples of the additives that can be contained in the magnetic layer include non-magnetic powder, a lubricant, a dispersant, a dispersion aid, a fungicide, an antistatic agent, an antioxidant, and the like. As one of the additives which can be used in the magnetic layer containing the abrasive, the dispersant described in paragraphs “0012” to “0022” in JP2013-131285A can be exemplified as a dispersant for improving the dispersibility of the abrasive in the composition for forming a magnetic layer.
Examples of the dispersant also include known dispersants such as a carboxy group-containing compound and a nitrogen-containing compound. The nitrogen-containing compound may be any one of a primary amine represented by NH2R, a secondary amine represented by NHR2, and a tertiary amine represented by NR3, for example. R represents any structure constituting the nitrogen-containing compound, and a plurality of R's present in the compound may be the same as or different from each other. The nitrogen-containing compound may be a compound (polymer) having a plurality of repeating structures in a molecule. The inventors of the present invention consider that because the nitrogen-containing portion of the nitrogen-containing compound functions as a portion adsorbed onto the surface of particles of the ferromagnetic hexagonal ferrite powder, the nitrogen-containing compound can act as a dispersant. Examples of the carboxy group-containing compound include fatty acids such as oleic acid. Regarding the carboxy group-containing compound, the inventors of the present invention consider that because the carboxy group functions as a portion adsorbed onto the surface of particles of the ferromagnetic hexagonal ferrite powder, the carboxy group-containing compound can act as a dispersant. It is also preferable to use the carboxy group-containing compound and the nitrogen-containing compound in combination.
Examples of the non-magnetic powder that can be contained in the magnetic layer include non-magnetic powder (hereinafter, described as “projection-forming agent” as well) which can contribute to the control of frictional characteristics by forming projections on the surface of the magnetic layer. As such a non-magnetic powder, it is possible to use various non-magnetic powders generally used in a magnetic layer. The non-magnetic powder may be inorganic powder or organic powder. In an aspect, from the viewpoint of uniformizing the frictional characteristics, it is preferable that the particle size distribution of the non-magnetic powder is not polydisperse distribution having a plurality of peaks in the distribution but monodisperse distribution showing a single peak. From the viewpoint of ease of availability of the monodisperse particles, the non-magnetic powder is preferably inorganic powder. Examples of the inorganic powder include powder of a metal oxide, a metal carbonate, a metal sulfate, a metal nitride, a metal carbide, a metal sulfide, and the like. The particles constituting the non-magnetic powder are preferably colloidal particles, and more preferably colloidal particles of an inorganic oxide. From the viewpoint of ease of availability of the monodisperse particles, the inorganic oxide constituting the colloidal particles of an inorganic oxide is preferably silicon dioxide (silica). The colloidal particles of an inorganic oxide are preferably colloidal silica (colloidal silica particles). In the present invention and the present specification, “colloidal particles” refer to the particles which can form a colloidal dispersion by being dispersed without being precipitated in a case where the particles are added in an amount of 1 g per 100 mL of at least one organic solvent among methyl ethyl ketone, cyclohexanone, toluene, ethyl acetate, and a mixed solvent containing two or more kinds of the solvents described above at any mixing ratio. In another aspect, the non-magnetic powder is also preferably carbon black. The mean particle size of the non-magnetic powder is 30 to 300 nm for example, and preferably 40 to 200 nm. The content of the non-magnetic powder in the magnetic layer is, with respect to 100.0 parts by mass of the ferromagnetic hexagonal ferrite powder, preferably 1.0 to 4.0 parts by mass and more preferably 1.5 to 3.5 parts by mass, because then the non-magnetic filler can demonstrate better the function thereof.
As various additives that can be optionally contained in the magnetic layer, commercially available products or those manufactured by known methods can be selected and used according to the desired properties.
The magnetic layer described so far can be provided on the surface of the non-magnetic support, directly or indirectly through a non-magnetic layer.
Non-Magnetic Layer
Next, a non-magnetic layer will be described.
The magnetic recording medium may have the magnetic layer directly on the surface of the non-magnetic support, or may have a non-magnetic layer containing non-magnetic powder and a binder between the non-magnetic support and the magnetic layer. The non-magnetic powder contained in the non-magnetic layer may be inorganic powder or organic powder. Furthermore, carbon black or the like can also be used. Examples of the inorganic powder include powder of a metal, a metal oxide, a metal carbonate, a metal sulfate, a metal nitride, a metal carbide, a metal sulfide, and the like. These non-magnetic powders can be obtained as commercially available products, or can be manufactured by known methods. For details of the non-magnetic powder, paragraphs “0036” to “0039” in JP2010-24113A can be referred to. The content (filling rate) of the non-magnetic powder in the non-magnetic layer is preferably within a range of 50% to 90% by mass, and more preferably within a range of 60% to 90% by mass.
For other details of the binder, the additives, and the like of the non-magnetic layer, known techniques relating to the non-magnetic layer can be applied. For example, regarding the type and content of the binder, the type and content of the additives, and the like, known techniques relating to the magnetic layer can also be applied.
In the present invention and the present specification, the non-magnetic layer also includes a substantially non-magnetic layer which contains non-magnetic powder with a small amount of ferromagnetic powder as an impurity or by intention, for example. Herein, the substantially non-magnetic layer refers to a layer having a remnant flux density of equal to or lower than 10 mT or a coercive force of equal to or lower than 7.96 kA/m (100 Oe) or having a remnant flux density of equal to or lower than 10 mT and a coercive force of equal to or lower than 7.96 kA/m (100 Oe). It is preferable that the non-magnetic layer does not have remnant flux density and coercive force.
Non-Magnetic Support
Next, a non-magnetic support (hereinafter, simply described as “support” as well) will be described. Examples of the non-magnetic support include known supports such as biaxially oriented polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamide imide, and aromatic polyamide. Among these, polyethylene terephthalate, polyethylene naphthalate, and polyamide are preferable. These supports may be subjected to corona discharge, a plasma treatment, an easy adhesion treatment, a heat treatment, and the like in advance.
Back Coating Layer
The magnetic recording medium can have a back coating layer containing non-magnetic powder and a binder, on a surface side of the non-magnetic support opposite to a surface side provided with the magnetic layer. It is preferable that the back coating layer contains either or both of carbon black and inorganic powder. Regarding the binder contained in the back coating layer and various additives which can be optionally contained therein, known techniques relating to the back coating layer can be applied, and known techniques relating to the formulation of the magnetic layer and/or the non-magnetic layer can also be applied.
Various Thicknesses
The thickness of the non-magnetic support and each layer in the magnetic recording medium will be described below.
The thickness of the non-magnetic support is 3.0 to 80.0 μm for example, preferably 3.0 to 50.0 μm, and more preferably 3.0 to 10.0 μm.
The thickness of the magnetic layer can be optimized according to the saturation magnetization of the magnetic head to be used, the length of head gap, the band of recording signals, and the like. The thickness of the magnetic layer is generally 10 nm to 100 nm. From the viewpoint of high-density recording, the thickness of the magnetic layer is preferably 20 to 90 nm, and more preferably 30 to 70 nm. The magnetic layer may be constituted with at least one layer, and may be separated into two or more layers having different magnetic characteristics. Furthermore, the constitution relating to known multi-layered magnetic layers can be applied. In a case where the magnetic layer is separated into two or more layers, the thickness of the magnetic layer means the total thickness of the layers.
The thickness of the non-magnetic layer is equal to or greater than 50 nm for example, preferably equal to or greater than 70 nm, and more preferably equal to or greater than 100 nm. In contrast, the thickness of the non-magnetic layer is preferably equal to or less than 800 nm, and more preferably equal to or less than 500 nm.
The thickness of the back coating layer is preferably equal to or less than 0.9 μm, and more preferably 0.1 to 0.7 μm.
The thickness of each layer and the non-magnetic support of the magnetic recording medium can be measured by known film thickness measurement methods. For example, a cross section of the magnetic recording medium in a thickness direction is exposed by known means such as ion beams or a microtome, and then the exposed cross section is observed using a scanning electron microscope. By observing the cross section, a thickness of one site in the thickness direction or an arithmetic mean of thicknesses of two or more randomly extracted sites, for example, two sites can be determined as various thicknesses. Furthermore, as the thickness of each layer, a design thickness calculated from the manufacturing condition may be used.
Manufacturing Process
Preparation of Composition for Forming Each Layer
The step of preparing a composition for forming the magnetic layer, the non-magnetic layer, or the back coating layer generally includes at least a kneading step, a dispersion step, and a mixing step that is performed if necessary before and after the aforementioned steps. Each of the aforementioned steps may be divided into two or more stages. The components used for preparing the composition for forming each layer may be added at the initial stage or in the middle of any of the above steps. As a solvent, it is possible to use one kind of solvent or two or more kinds of solvents generally used for manufacturing a coating-type magnetic recording medium. Regarding the solvent, for example, paragraph “0153” in JP2011-216149A can be referred to. Furthermore, each of the components may be added in divided portions in two or more steps. For example, the binder may be added in divided portions in the kneading step, the dispersion step, and the mixing step performed after dispersion to adjust viscosity. In order to manufacture the aforementioned magnetic recording medium, the manufacturing techniques known in the related art can be used in various steps. In the kneading step, it is preferable to use an instrument having strong kneading force, such as an open kneader, a continuous kneader, a pressurized kneader, or an extruder. For details of the kneading treatment, JP1989-106338A (JP-H01-106338A) and JP1989-79274A (JP-H01-79274A) can be referred to. As a disperser, known ones can be used. The composition for forming each layer may be filtered by a known method before being subjected to a coating step. The filtration can be performed using a filter, for example. As the filter used for the filtration, for example, it is possible to use a filter having a pore size of 0.01 to 3 μm (for example, a filter made of glass fiber, a filter made of polypropylene, or the like).
Regarding the dispersion treatment for the composition for forming a magnetic layer, as described above, it is preferable to inhibit the occurrence of chipping. In order to inhibit chipping, in the step of preparing the composition for forming a magnetic layer, it is preferable to perform the dispersion treatment for the ferromagnetic hexagonal ferrite powder in two stages, such that coarse aggregates of the ferromagnetic hexagonal ferrite powder are disintegrated in the first stage of the dispersion treatment and then the second stage of the dispersion treatment is performed in which the collision energy applied to the particles of the ferromagnetic hexagonal ferrite powder due to the collision with dispersion beads is smaller than in the first dispersion treatment. According to the dispersion treatment described above, it is possible to achieve both of the improvement of dispersibility of the ferromagnetic hexagonal ferrite powder and the inhibition of occurrence of chipping.
Examples of preferred aspects of the aforementioned two-stage dispersion treatment include a dispersion treatment including a first stage of obtaining a dispersion liquid by performing a dispersion treatment on the ferromagnetic hexagonal ferrite powder, the binder, and the solvent in the presence of first dispersion beads, and a second stage of performing a dispersion treatment on the dispersion liquid obtained by the first stage in the presence of second dispersion beads having a bead size and a density smaller than a bead size and a density of the first dispersion beads. Hereinafter, the dispersion treatment of the aforementioned preferred aspect will be further described.
In order to improve the dispersibility of the ferromagnetic hexagonal ferrite powder, it is preferable that the first and second stages described above are performed as a dispersion treatment preceding the mixing of the ferromagnetic hexagonal ferrite powder with other powder components. For example, in a case where the magnetic layer containing the abrasive and the aforementioned non-magnetic powder is formed, it is preferable to perform the aforementioned first and second stages as a dispersion treatment for a liquid (magnetic liquid) containing the ferromagnetic hexagonal ferrite powder, the binder, the solvent, and additives optionally added, before the abrasive and the non-magnetic powder are mixed with the liquid.
The bead size of the second dispersion beads is preferably equal to or less than 1/100 and more preferably equal to or less than 1/500 of the bead size of the first dispersion beads. Furthermore, the bead size of the second dispersion beads can be, for example, equal to or greater than 1/10,000 of the bead size of the first dispersion beads, but is not limited to this range. For example, the bead size of the second dispersion beads is preferably within a range of 80 to 1,000 nm. In contrast, the bead size of the first dispersion beads can be within a range of 0.2 to 1.0 mm, for example.
In the present invention and the present specification, the bead size is a value measured by the same method as used for measuring the aforementioned mean particle size of powder.
The second stage described above is preferably performed under the condition in which the second dispersion beads are present in an amount equal to or greater than 10 times the amount of the ferromagnetic hexagonal ferrite powder, and more preferably performed under the condition in which the second dispersion beads are present in an amount that is 10 to 30 times the amount of the ferromagnetic hexagonal ferrite powder, based on mass.
The amount of the first dispersion beads in the first stage is preferably within the above range.
The second dispersion beads are beads having a density smaller than that of the first dispersion beads. “Density” is obtained by dividing mass (unit: g) of the dispersion beads by volume (unit: cm3) thereof. The density is measured by the Archimedean method. The density of the second dispersion beads is preferably equal to or lower than 3.7 g/cm3, and more preferably equal to or lower than 3.5 g/cm3. The density of the second dispersion beads may be equal to or higher than 2.0 g/cm3 for example, and may be lower than 2.0 g/cm3. In view of density, examples of the second dispersion beads preferably include diamond beads, silicon carbide beads, silicon nitride beads, and the like. In view of density and hardness, examples of the second dispersion beads preferably include diamond beads.
The first dispersion beads are preferably dispersion beads having a density of higher than 3.7 g/cm3, more preferably dispersion beads having a density of equal to or higher than 3.8 g/cm3, and even more preferably dispersion beads having a density of equal to or higher than 4.0 g/cm3. The density of the first dispersion beads may be equal to or lower than 7.0 g/cm3 for example, and may be higher than 7.0 g/cm3. As the first dispersion beads, zirconia beads, alumina beads, or the like are preferably used, and zirconia beads are more preferably used.
The dispersion time is not particularly limited and may be set according to the type of the disperser used and the like.
Coating Step, Cooling Step, Heating and Drying Step, Burnishing Treatment Step, and Curing Step
The magnetic layer can be formed by directly coating the non-magnetic support with the composition for forming a magnetic layer or by performing multilayer coating by sequentially or simultaneously applying the composition for forming a non-magnetic layer. For details of coating for forming each layer, paragraph “0066” in JP2010-231843A can be referred to.
In a preferred aspect, the magnetic layer can be formed through a magnetic layer-forming step including a coating step of coating a non-magnetic support with a composition for forming a magnetic layer containing ferromagnetic hexagonal ferrite powder, a binder, an abrasive, a curing agent, and a solvent directly or through a non-magnetic layer so as to form a coating layer, a heating and drying step of drying the coating layer by a heating treatment, and a curing step of performing a curing treatment on the coating layer. It is preferable that the magnetic layer-forming step includes a cooling step of cooling the coating layer between the coating step and the heating and drying step and further includes a burnishing treatment step of performing a burnishing treatment on a surface of the coating layer between the heating and drying step and the curing step.
It is considered that performing the cooling step and the burnishing treatment step in the aforementioned magnetic layer-forming step is preferable means for making the logarithmic decrement equal to or lower than 0.050. Specifically, the reason is as below.
Presumably, performing the cooling step of cooling the coating layer between the coating step and the heating and drying step may make a contribution to the localization of the aforementioned viscous component within the surface of the coating layer and/or a surface layer portion in the vicinity of the surface. It is considered that this is because in a case where the coating layer of the composition for forming a magnetic layer is cooled before the heating and drying step, the viscous component may easily move to the surface of the coating layer and/or the surface layer portion when the solvent is volatilized during the heating and drying step. Here, the reason is unclear. Furthermore, it is considered that in a case where the burnishing treatment is performed on the surface of the coating layer in which the viscous component is localized within the surface thereof and/or the surface layer portion, the viscous component can be removed. Presumably, in a case where the curing step is performed after the viscous component is removed in this way, the logarithmic decrement may become equal to or lower than 0.050. Here, this is merely a presumption, and the present invention is not limited thereto.
As described above, the composition for forming a magnetic layer can be used for multilayer coating by being sequentially and simultaneously used with the composition for forming a non-magnetic layer. In a preferred aspect, the magnetic recording medium can be manufactured by sequential multilayer coating. The manufacturing process including the sequential multilayer coating preferably can be performed as below. The non-magnetic layer is formed through a coating step of coating a non-magnetic support with the composition for forming a non-magnetic layer so as to form a coating layer and a heating and drying step of drying the formed coating layer by performing a heating treatment. Then, the magnetic layer is formed through a coating step of coating the formed non-magnetic layer with the composition for forming a magnetic layer so as to form a coating layer and a heating and drying step of drying the formed coating layer by performing a heating treatment.
Hereinafter, a specific aspect of the aforementioned manufacturing method will be described based on FIG. 4, but the present invention is not limited to the following specific aspect.
FIG. 4 is a schematic process chart showing a specific aspect of steps for manufacturing a magnetic recording medium which has a non-magnetic layer and a magnetic layer in this order on one surface of a non-magnetic support and has a back coating layer on the other surface of the non-magnetic support. In the aspect shown in FIG. 4, an operation of feeding a non-magnetic support (long film) from a feeding portion and winding up the non-magnetic support in a winding-up portion is continuously performed, various treatments such as coating, drying, and alignment are performed in each portion or each zone shown in FIG. 4, and in this way, a non-magnetic layer and a magnetic layer can be formed on one surface of the running non-magnetic support by sequential multilayer coating and a back coating layer can be formed on the other surface thereof. This manufacturing method is the same as the manufacturing method that is usually performed for manufacturing a coating-type magnetic recording medium, except for the manufacturing method mentioned herein includes a cooling zone in the magnetic layer-forming step and includes the burnishing treatment step before the curing treatment.
In a first coating portion, the non-magnetic support fed from the feeding portion is coated with the composition for forming a non-magnetic layer (coating step of the composition for forming a non-magnetic layer).
After the coating step, in a first heating treatment zone, the coating layer of the composition for forming a non-magnetic layer formed by the coating step is heated, thereby drying the coating layer (heating and drying step). The heating and drying step can be performed by causing the non-magnetic support, which has the coating layer of the composition for forming a non-magnetic layer, to pass through a heating environment. The atmospheric temperature of the heating environment can be about 60° C. to 140° C., for example. The atmospheric temperature is not limited to the above range, as long as the temperature enables the coating layer to be dried by causing the volatilization of the solvent. Furthermore, optionally, a heated gas may be blown to the surface of the coating layer. The point described so far is true for the heating and drying step in a second heating treatment zone and the heating and drying step in a third heating treatment zone which will be described later.
Then, in a second coating portion, the non-magnetic layer formed by the heating and drying step performed in the first heating treatment zone is coated with the composition for forming a magnetic layer (coating step of the composition for forming a magnetic layer).
After the coating step, in a cooling zone, the coating layer of the composition for forming a magnetic layer formed by the coating step is cooled (cooling step). For example, the cooling step can be performed by causing the non-magnetic support, in which the aforementioned coating layer is formed on the non-magnetic layer, to pass through a cooling environment. The atmospheric temperature of the cooling environment can be preferably within a range of −10° C. to 0° C., and more preferably within a range of −5° C. to 0° C. The time taken for performing the cooling step (for example, the time from when any portion of the coating layer comes into the cooling zone to when the portion comes out of the cooling zone (hereinafter, referred to as “staying time” as well)) is not particularly limited. The longer the staying time is, the lower the logarithmic decrement tends to be. Therefore, it is preferable to adjust the staying time by performing a preliminary experiment as necessary such that a logarithmic decrement of equal to or lower than 0.050 can be realized. In the cooling step, a cooled gas may be blown to the surface of the coating layer.
Thereafter, in an aspect in which an alignment treatment is performed, while the coating layer of the composition for forming a magnetic layer is remaining wet, an alignment treatment is performed on the ferromagnetic hexagonal ferrite powder in the coating layer in an alignment zone. Regarding the alignment treatment, it is possible to apply various known techniques including those described in paragraph “0067” in JP2010-231843A without any limitation. As described above, from the viewpoint of controlling the XRD intensity ratio, it is preferable to perform a vertical alignment treatment as the alignment treatment. Regarding the alignment treatment, the above description can also be referred to.
The coating layer having undergone the alignment treatment is subjected to the heating and drying step in the second heating treatment zone.
Then, in a third coating portion, a surface, which is opposite to the surface on which the non-magnetic layer and the magnetic layer are formed, of the non-magnetic support is coated with a composition for forming a back coating layer, thereby forming a coating layer (coating step of the composition for forming a back coating layer). Thereafter, in the third heating treatment zone, the coating layer is dried by performing a heating treatment.
In this way, it is possible to obtain a magnetic recording medium in which the heated and dried coating layer of the composition for forming a magnetic layer is provided on the non-magnetic layer on one surface of the non-magnetic support and the back coating layer is provided on the other surface of the non-magnetic support. The magnetic recording medium obtained herein will be subjected to various treatments, which will be described later, and become a magnetic recording medium as a product.
The obtained magnetic recording medium is wound up in a winding-up portion and then cut (slit) in the size of the magnetic recording medium as a product. Slitting can be performed using a known cutting machine.
Before the slit magnetic recording medium is subjected to a curing treatment (heating, light irradiation, or the like) according to the type of the curing agent contained in the composition for forming a magnetic layer, the surface of the heated and dried coating layer of the composition for forming a magnetic layer is subjected to the burnishing treatment (burnishing treatment step between the heating and drying step and the curing step). By the burnishing treatment, it is possible to remove the viscous component that has been cooled in the cooling zone and has moved to the surface of the coating layer and/or the surface layer portion. The inventors of the present invention assume that the removal of the viscous component makes the logarithmic decrement become equal to or lower than 0.050. However, as described above, this is merely an assumption, and the present invention is not limited thereto.
The burnishing treatment is a treatment of rubbing the surface of a treatment target with a member (for example, a polishing tape or a grinding tool such as a grinding blade or a grinding foil), and can be performed in the same manner as that adopted for performing a known burnishing treatment for manufacturing a coating-type magnetic recording medium. Here, in the related art, after the cooling step and the heating and drying step, the burnishing treatment is not performed in the stage before the curing step. By performing the burnishing treatment in the aforementioned stage, the logarithmic decrement can become equal to or lower than 0.050, and this is a point that the inventors of the present invention have newly discovered.
The burnishing treatment can be performed preferably by performing either or both of rubbing (polishing) the surface of the coating layer as a treatment target with a polishing tape and rubbing (grinding) the surface of the coating layer as a treatment target with a grinding tool. In a case where the composition for forming a magnetic layer contains an abrasive, it is preferable to use a polishing tape containing at least one kind of abrasive having Mohs hardness higher than that of the abrasive contained in the composition. As the polishing tape, commercially available products may be used, or polishing tapes prepared by known methods may be used. Furthermore, as the grinding tool, it is possible to use a fixed blade, a diamond foil, a known grinding blade such as a rotary blade, a grinding foil, or the like. In addition, a wiping treatment may be performed in which the surface of the coating layer rubbed with the polishing tape and/or the grinding tool is wiped by a wiping material. For details of preferred polishing tape, grinding tool, burnishing treatment, and wiping treatment, paragraphs “0034” to “0048”, FIG. 1, and examples in JP1994-52544A (JP-H06-52544A) can be referred to. The further the burnishing treatment is intensified, the lower the value of logarithmic decrement tends to be. As the hardness of the abrasive used as an abrasive contained in the polishing tape is increased and as the amount of the abrasive in the polishing tape is increased, the burnishing treatment can be further intensified. In addition, as the hardness of the grinding tool used as a grinding tool is increased, the burnishing treatment can be further intensified. Regarding the conditions of the burnishing treatment, as the sliding speed of the member (for example, the polishing tape or the grinding tool) sliding on the surface of the coating layer as a treatment target is increased, the burnishing treatment can be further intensified. The sliding speed can be increased by increasing either or both of the speed at which the member moves and the speed at which the magnetic tape as a treatment target moves.
After the burnishing treatment (burnishing treatment step), a curing treatment is performed on the coating layer of the composition for forming a magnetic layer. In the aspect shown in FIG. 4, the coating layer of the composition for forming a magnetic layer is subjected to a surface smoothing treatment before the curing treatment is performed after the burnishing treatment. The surface smoothing treatment is preferably performed by a calender treatment. For details of the calender treatment, for example, paragraph “0026” in JP2010-231843A can be referred to. The further the calender treatment is intensified, the further the surface of the magnetic tape can be smoothened. The calender treatment can be further intensified by either or both of increasing the surface temperature of a calender roll (calender temperature) and increasing a calender pressure.
Then, a curing treatment is performed on the coating layer of the composition for forming a magnetic layer according to the type of the curing agent contained in the coating layer (curing step). The curing treatment can be performed by a treatment such as a heating treatment or light irradiation according to the type of the curing agent contained in the coating layer. The conditions of the curing treatment are not particularly limited, and may be appropriately set according to the formulation of the composition for forming a magnetic layer used for forming the coating layer, the type of the curing agent, the thickness of the coating layer, and the like. For example, in a case where the coating layer is formed using a composition for forming a magnetic layer containing polyisocyanate as a curing agent, a heating treatment is preferred as the curing treatment. In a case where the curing agent is contained in a layer other than the magnetic layer, the curing reaction of such a layer can proceed by the curing treatment mentioned herein. Furthermore, a curing step may be additionally performed. After the curing step, the burnishing treatment may be additionally performed.
By the method described so far, a magnetic recording medium according to an aspect of the present invention can be obtained. Here, the aforementioned manufacturing method is merely an example. The value of each of the XRD intensity ratio, the squareness ratio in a vertical direction, and the logarithmic decrement of the magnetic layer can be controlled within the aforementioned range by any means that can adjust the value, and this aspect is also included in the present invention.
The aforementioned magnetic recording medium according to an aspect of the present invention can be a tape-like magnetic recording medium (magnetic tape), for example. Generally, the magnetic tape is distributed and used in a state of being accommodated in a magnetic tape cartridge. In the magnetic tape, in order to enable head tracking servo to be performed in a drive, a servo pattern can also be formed by a known method. By mounting the magnetic tape cartridge on a drive (referred to as “magnetic tape device” as well) and running the magnetic tape in the drive such that a magnetic head contacts and slides on a surface of the magnetic tape (surface of a magnetic layer), information is recorded on the magnetic tape and reproduced. In order to continuously or intermittently perform repeated reproduction of the information recorded on the magnetic tape, the magnetic tape is caused to repeatedly run in the drive. According to an aspect of the present invention, it is possible to provide a magnetic tape in which the electromagnetic conversion characteristics thereof hardly deteriorate even though the head repeatedly slides on the surface of the magnetic layer while the tape is repeatedly running. Here, the magnetic recording medium according to an aspect of the present invention is not limited to the magnetic tape. The magnetic recording medium according to an aspect of the present invention is suitable as various magnetic recording media (a magnetic tape, a disc-like magnetic recording medium (magnetic disc), and the like) used in a sliding-type magnetic recording and/or reproduction device. The sliding-type device refers to a device in which a head contacts and slides on a surface of a magnetic layer in a case where information is recorded on a magnetic recording medium and/or the recorded information is reproduced. Such a device includes at least a magnetic tape and one or more magnetic heads for recording and/or reproducing information.
In the aforementioned sliding-type device, as the running speed of the magnetic tape is increased, it is possible to shorten the time taken for recording information and reproducing the recorded information. The running speed of the magnetic tape refers to a relative speed of the magnetic tape and the magnetic head. Generally, the running speed is set in a control portion of the device. As the running speed of the magnetic tape is increased, the pressure increases which is applied to both the surface of the magnetic layer and the magnetic head in a case where the surface of the magnetic layer and the magnetic head come into contact with each other. As a result, either or both of head scraping and magnetic layer scraping tend to easily occur. Accordingly, it is considered that the higher the running speed, the easier it is for the electromagnetic conversion characteristics to deteriorate during the repeated sliding. In the field of magnetic recording, the improvement of recording density is required. However, as the recording density is increased, the influence of the signal interference between the adjacent heads becomes stronger, and hence the electromagnetic conversion characteristics tend to be more easily deteriorate when the spacing loss is increased due to the repeated sliding. As described so far, as the running speed and the recording density are increased further, the deterioration of the electromagnetic conversion characteristics during the repeated sliding tends to be more apparent. In contrast, even in this case, according to the magnetic recording medium of an aspect of the present invention, it is possible to inhibit the deterioration of the electromagnetic conversion characteristics during the repeated sliding. The magnetic tape according to an aspect of the present invention is suitable for being used in a sliding-type device in which the running speed of the magnetic tape is, for example, equal to or higher than 5 m/sec (for example, 5 to 20 m/sec). In addition, the magnetic tape according to an aspect of the present invention is suitable as a magnetic tape for recording and reproducing information at a line recording density of equal to or higher than 250 kfci, for example. The unit kfci is the unit of a line recording density (this unit cannot be expressed in terms of the SI unit system). The line recording density can be equal to or higher than 250 kfci or equal to or higher than 300 kfci, for example. Furthermore, the line recording density can be equal to or lower than 800 kfci or higher than 800 kfci, for example.
EXAMPLES
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the aspects shown in the examples. In the following description, unless otherwise specified, “part” and “%” represent “part by mass” and “% by mass” respectively. Furthermore, unless otherwise specified, the steps and the evaluations described below were performed in an environment with an atmospheric temperature of 23° C.±1° C.
Example 1
The formulations of compositions for forming each layer will be shown below.
Formulation of composition for forming magnetic layer
    • Magnetic liquid
    • Plate-like ferromagnetic hexagonal ferrite powder (M-type barium ferrite): 100.0 parts
    • (activation volume: 1,500 nm3)
    • Oleic acid: 2.0 parts
    • Vinyl chloride copolymer (MR-104 manufactured by ZEON CORPORATION): 10.0 parts
    • SO3Na group-containing polyurethane resin: 4.0 parts
    • (weight-average molecular weight: 70,000, SO3Na group: 0.07 meq/g)
    • Amine-based polymer (DISPERBYK-102 manufactured by BYK-Chemie GmbH): 6.0 parts
    • Methyl ethyl ketone: 150.0 parts
    • Cyclohexanone: 150.0 parts
    • Abrasive liquid
    • α-Alumina: 6.0 parts
    • (BET specific surface area: 19 m2/g, Mohs hardness: 9)
    • SO3Na group-containing polyurethane resin: 0.6 parts
    • (weight-average molecular weight: 70,000, SO3Na group: 0.1 meq/g)
    • 2,3-Dihydroxynaphthalene: 0.6 parts
    • Cyclohexanone: 23.0 parts
    • Projection-forming agent liquid
    • Colloidal silica: 2.0 parts
      • (mean particle size: 80 nm)
    • Methyl ethyl ketone: 8.0 parts
    • Lubricant and curing agent liquid
    • Stearic acid: 3.0 parts
    • Amide stearate: 0.3 parts
    • Butyl stearate: 6.0 parts
    • Methyl ethyl ketone: 110.0 parts
    • Cyclohexanone: 110.0 parts
    • Polyisocyanate (CORONATE (registered trademark) L manufactured by Tosoh Corporation): 3.0 parts
Formulation of composition for forming non-magnetic layer
    • Non-magnetic inorganic powder α iron oxide: 100.0 parts
      • (mean particle size: 10 nm, BET specific surface area: 75 m2/g)
    • Carbon black: 25.0 parts
      • (mean particle size: 20 nm)
    • SO3Na group-containing polyurethane resin: 18.0 parts
      • (weight-average molecular weight: 70,000, content of SO3Na group: 0.2 meq/g)
    • Stearic acid: 1.0 part
    • Cyclohexanone: 300.0 parts
    • Methyl ethyl ketone: 300.0 parts
Formulation of composition for forming back coating layer
    • Non-magnetic inorganic powder α iron oxide: 80.0 parts
      • (mean particle size: 0.15 μm, BET specific surface area: 52 m2/g)
    • Carbon black: 20.0 parts
      • (mean particle size: 20 nm)
    • Vinyl chloride copolymer: 13.0 parts
    • Sulfonate group-containing polyurethane resin: 6.0 parts
    • Phenyl phosphonate: 3.0 parts
    • Cyclohexanone: 155.0 parts
    • Methyl ethyl ketone: 155.0 parts
    • Stearic acid: 3.0 parts
    • Butyl stearate: 3.0 parts
    • Polyisocyanate: 5.0 parts
    • Cyclohexanone: 200.0 parts
Preparation of Composition for Forming Magnetic Layer
The composition for forming a magnetic layer was prepared by the following method.
The aforementioned various components of a magnetic liquid were dispersed for 24 hours by a batch-type vertical sand mill by using zirconia beads (first dispersion beads, density: 6.0 g/cm3) having a bead size of 0.5 mm (first stage) and then filtered using a filter having a pore size of 0.5 μm, thereby preparing a dispersion liquid A. The amount of the used zirconia beads was 10 times the mass of the ferromagnetic hexagonal ferrite powder based on mass.
Then, the dispersion liquid A was dispersed for the time shown in Table 1 by a batch-type vertical sand mill by using diamond beads (second dispersion beads, density: 3.5 g/cm3) having a bead size shown in Table 1 (second stage), and the diamond beads were separated using a centrifuge, thereby preparing a dispersion liquid (dispersion liquid B). The following magnetic liquid is the dispersion liquid B obtained in this way.
The aforementioned various components of an abrasive liquid were mixed together and put into a horizontal beads mill disperser together with zirconia beads having a bead size of 0.3 mm, and the volume thereof was adjusted such that bead volume/(volume of abrasive liquid)+ bead volume equaled 80%. The mixture was subjected to a dispersion treatment by using the beads mill for 120 minutes, and the liquid formed after the treatment was taken out and subjected to ultrasonic dispersion and filtration treatment by using a flow-type ultrasonic dispersion and filtration device. In this way, an abrasive liquid was prepared.
The prepared magnetic liquid and abrasive liquid as well as the remaining components were introduced into a dissolver stirrer, stirred for 30 minutes at a circumferential speed of 10 m/sec, and then treated in 3 passes with a flow-type ultrasonic disperser at a flow rate of 7.5 kg/min. Thereafter, the resultant was filtered through a filter having a pore size of 1 μm, thereby preparing a composition for forming a magnetic layer.
The activation volume of the ferromagnetic hexagonal ferrite powder described above is a value measured and calculated using the powder that was in the same powder lot as the ferromagnetic hexagonal ferrite powder used for preparing the composition for forming a magnetic layer. The activation volume was measured using a vibrating sample fluxmeter (manufactured by TOEI INDUSTRY, CO., LTD.) by setting a magnetic field sweep rate to be 3 minutes and 30 minutes for a coercive force Hc measurement portion, and calculated from the relational expression described above. The activation volume was measured in an environment with a temperature of 23° C.±1° C.
Preparation of Composition for Forming Non-Magnetic Layer
The aforementioned various components of a composition for forming a non-magnetic layer were dispersed by a batch-type vertical sand mill for 24 hours by using zirconia beads having a bead size of 0.1 mm and then filtered using a filter having a pore size of 0.5 μm, thereby preparing a composition for forming a non-magnetic layer.
Preparation of Composition for Forming Back Coating Layer
Among the aforementioned various components of a composition for forming a back coating layer, the components except for the lubricant (stearic acid and butyl stearate), polyisocyanate, and 200.0 parts of cyclohexanone were kneaded and diluted using an open kneader and then subjected to a dispersion treatment in 12 passes by a horizontal beads mill disperser by using zirconia beads having a bead size of 1 mm by setting a bead filling rate to be 80% by volume, a circumferential speed of the rotor tip to be 10 m/sec, and a retention time per pass to be 2 minutes. Then, other components described above were added thereto, followed by stirring with a dissolver. The obtained dispersion liquid was filtered using a filter having a pore size of 1 μm, thereby preparing a composition for forming a back coating layer.
Preparation of Magnetic Tape
A magnetic tape was prepared according to the specific aspect shown in FIG. 4. Specifically, the magnetic tape was prepared as below.
A support made of polyethylene naphthalate having a thickness of 5.0 μm was fed from a feeding portion. In the first coating portion, one surface of the support was coated with the composition for forming a non-magnetic layer such that the thickness thereof became 100 nm after drying, the composition was dried in the first heating treatment zone (atmospheric temperature: 100° C.), thereby forming a coating layer.
Then, in the second coating portion, the non-magnetic layer was coated with the composition for forming a magnetic layer such that the thickness thereof became 70 nm after drying, thereby forming a coating layer. While the formed coating layer is remaining wet, the cooling step was performed by causing the support to pass through the cooling zone adjusted to have an atmospheric temperature of 0° C. for the staying time shown in Table 1. Thereafter, in the alignment zone, the vertical alignment treatment was performed by applying a magnetic field having an intensity shown in Table 1 thereto in a direction perpendicular to the surface of the coating layer, and then the coating layer was dried in the second heating treatment zone (atmospheric temperature: 100° C.).
Subsequently, in the third coating portion, a surface, which was opposite to the surface on which the non-magnetic layer and the magnetic layer were formed, of the support made of polyethylene naphthalate was coated with the composition for forming a back coating layer such that the thickness thereof became 0.4 μm after drying, thereby forming a coating layer. The formed coating layer was dried in the third heating treatment zone (atmospheric temperature: 100° C.).
The magnetic tape obtained in this way was slit in a width of ½ inches (0.0127 meters), and then the burnishing treatment and the wiping treatment were performed on the surface of the coating layer of the composition for forming a magnetic layer. The burnishing treatment and the wiping treatment were performed using a treatment device constituted as described in FIG. 1 in JP1994-52544A (JP-H06-52544A), in which a commercially available polishing tape (manufactured by FUJIFILM Corporation, trade name: MA22000, abrasive: diamond/Cr2O3/colcothar) was used as a polishing tape, a commercially available sapphire blade (manufactured by KYOCERA Corporation, width: 5 mm, length: 35 mm, tip angle: 60°) was used as a grinding blade, and a commercially available wiping material (manufactured by KURARAY CO., LTD., trade name: WRP736) was used as a wiping material. As the treatment conditions, the treatment conditions in Example 12 in JP1994-52544A (JP-H06-52544A) were adopted.
After the aforementioned burnishing treatment and the wiping treatment, by using a calender rolls constituted solely with metal rolls, a calender treatment (surface smoothing treatment) was performed at a speed of 80 m/min, a line pressure of 300 kg/cm (294 kN/m), and a calender temperature (calender roll surface temperature) of 90° C.
Subsequently, the tape was subjected to a heating treatment (curing treatment) for 36 hours in an environment with an atmospheric temperature of 70° C., and then a servo pattern was formed on the magnetic layer by using a commercially available servowriter.
In this way, a magnetic tape of Example 1 was obtained.
Evaluation of Deterioration of Electromagnetic Conversion Characteristics (Signal-to-Noise-Ratio; SNR)
The electromagnetic conversion characteristics of the magnetic tape of Example 1 were measured using a ½-inch (0.0127 meters) reel tester, to which a head was fixed, by the following method.
The running speed of the magnetic tape (relative speed of magnetic head/magnetic tape) was set to be the value shown in Table 1. A Metal-In-Gap (MIG) head (gap length: 0.15 μm, track width: 1.0 μm) was used as a recording head, and as a recording current, a recording current optimal for each magnetic tape was set. As a reproducing head, a Giant-Magnetoresistive (GMR) head having an element thickness of 15 nm, a shield gap of 0.1 μm, and a lead width of 0.5 μm was used. Signals were recorded at a line recording density shown in Table 1, and the reproduced signals were measured using a spectrum analyzer manufactured by ShibaSoku Co., Ltd. A ratio between an output value of carrier signals and integrated noise in the entire bandwidth of the spectrum was taken as SNR. For measuring SNR, the signals of a portion of the magnetic tape, in which signals were sufficiently stabilized after running, were used.
Under the above conditions, each magnetic tape was caused to perform reciprocating running in 5,000 passes at 1,000 m/l pass in an environment with a temperature of 40° C. and a relative humidity of 80%, and then SNR was measured. Then, a difference between SNR of the 1st pass and SNR of the 5,000th pass (SNR of the 5,000th pass-SNR of the 1st pass) was calculated.
The recording and reproduction described above were performed by causing the head to slide on a surface of the magnetic layer of the magnetic tape.
Examples 2 to 17
Magnetic tapes were prepared in the same manner as in Example 1 except that various items shown in Table 1 were changed as shown in Table 1, and the deterioration of the electromagnetic conversion characteristics (SNR) of the prepared magnetic tapes was evaluated.
In Table 1, in the example for which “N/A” is described in the column of Dispersion beads and the column of Time, the composition for forming a magnetic layer was prepared without performing the second stage in the dispersion treatment for the magnetic liquid.
In Table 1, in the example for which “N/A” is described in the column of Magnetic field intensity for vertical alignment treatment, the magnetic layer was formed without performing the alignment treatment.
In Table 1, in the example for which “not performed” is described in the column of Staying time in cooling zone and in the column of Burnishing treatment before curing treatment, the magnetic tape was prepared by a manufacturing process in which a cooling zone is not included in the magnetic layer-forming step and the burnishing treatment as well as the wiping treatment were not performed before the curing treatment.
A portion of each of the prepared magnetic tapes was used for the evaluation of the deterioration of electromagnetic conversion characteristics (SNR), and the other portion thereof was used for physical property evaluation described below.
Evaluation of Physical Properties of Magnetic Tape
(1) XRD Intensity Ratio
From each of the magnetic tapes of Examples 1 to 17, tape samples were cut.
By using a thin film X-ray diffractometer (SmartLab manufactured by Rigaku Corporation), X-rays were caused to enter a surface of the magnetic layer of the cut tape sample, and In-Plane XRD was performed by the method described above.
From the X-ray diffraction spectrum obtained by In-Plane XRD, a peak intensity Int (114) of a diffraction peak of (114) plane and a peak intensity Int (110) of a diffraction peak of (110) plane of the hexagonal ferrite crystal structure were determined, and the XRD intensity ratio (Int (110)/Int (114)) was calculated.
(2) Squareness Ratio in Vertical Direction
For each of the magnetic tapes of Examples 1 to 17, by using a vibrating sample fluxmeter (manufactured by TOEI INDUSTRY, CO., LTD.), a squareness ratio in a vertical direction was determined by the method described above.
(3) Measurement of Logarithmic Decrement of Magnetic Layer Surface
The logarithmic decrement of the magnetic layer surface of the magnetic tape was acquired by the method described above by using a rigid-body pendulum type physical properties testing instrument RPT-3000 W manufactured by A&D Company, Limited (pendulum: rigid-body pendulum FRB-100 manufactured by A&D Company, weight: not employed, round-bar type cylinder edge: RBP-040 manufactured by A&D Company, substrate: glass substrate, a rate of temperature increase of substrate: 5° C./min) as the measurement device.
A commercially available slide glass was cut into a size of 25 mm (short side)×50 mm (long side) and employed as the glass substrate. In a state where the magnetic tape was placed on the center part of the glass substrate so that the longitudinal direction of the magnetic tape was parallel to the direction of the short side of the glass substrate, four corners of the magnetic tape were fixed on the glass substrate with a fixing tape (Kapton tape manufactured by Du Pont-Toray Co., Ltd.). Then, portions of the magnetic tape protruding from the glass substrate were cut out. In the above manner, the measurement sample was placed on a glass substrate by being fixed at 4 portions as shown in FIG. 1. The adsorption time was set to be 1 second, the measurement interval was set to be 7 to 10 seconds, and a displacement-time curve was created for the 86th measurement interval. By using the curve, the logarithmic decrement was determined. The measurement was performed in an environment with a relative humidity of 50%.
The results obtained as above are shown in Table 1.
TABLE 1
Dispersion treatment for magnetic liquid
Second stage
Dispersion beads
Formulation amount
(mass of beads with respect to Magnetic field Burnishing
mass of ferromagnetic hexagonal intensity for vertical Staying time in treatment before
Type Bead size ferrite powder) Time alignment treatment cooling zone curing treatment
Example 1 Diamond 500 nm 10 times greater 1 h 0.15 T 1 second Performed
Example 2 Diamond 500 nm 10 times greater 1 h 0.20 T 1 second Performed
Example 3 Diamond 500 nm 10 times greater 1 h 0.30 T 1 second Performed
Example 4 Diamond 500 nm 10 times greater 1 h 0.50 T 1 second Performed
Example 5 Diamond 500 nm 20 times greater 1 h 0.15 T 1 second Performed
Example 6 Diamond 500 nm 10 times greater 1 h 0.30 T 1 second Performed
Example 7 Diamond 500 nm 10 times greater 1 h 0.30 T 60 seconds Performed
Example 8 Diamond 500 nm 10 times greater 1 h 0.30 T 180 seconds Performed
Example 9 N/A N/A N/A N/A N/A Not performed Not performed
Example 10 N/A N/A N/A N/A N/A Not performed Not performed
Example 11 N/A N/A N/A N/A N/A Not performed Not performed
Example 12 Diamond 500 nm 10 times greater 1 h 0.15 T Not performed Not performed
Example 13 N/A N/A N/A N/A N/A 1 second Performed
Example 14 N/A N/A N/A N/A 0.15 T 1 second Performed
Example 15 N/A N/A N/A N/A 0.30 T 1 second Performed
Example 16 Diamond 500 nm 10 times greater 1 h 1.00 T 1 second Performed
Example 17 Diamond 500 nm 10 times greater 1 h N/A 1 second Performed
Logarithmic
decrement of
magnetic layer XRD intensity ratio Squareness ratio in Running speed Line recording SNR
surface Int (110)/Int (114) vertical direction of magnetic tape density deterioration
Example 1 0.048 0.5 0.70 6 m/s 270 kfci −0.5 dB
Example 2 0.048 1.5 0.75 6 m/s 270 kfci −0.9 dB
Example 3 0.048 2.3 0.80 6 m/s 270 kfci −0.7 dB
Example 4 0.048 4.0 0.85 6 m/s 270 kfci −0.5 dB
Example 5 0.048 0.7 0.83 6 m/s 270 kfci −0.4 dB
Example 6 0.048 2.3 0.80 8 m/s 300 kfci −0.8 dB
Example 7 0.033 2.3 0.80 8 m/s 300 kfci −0.6 dB
Example 8 0.015 2.3 0.80 8 m/s 300 kfci −0.3 dB
Example 9 0.060 0.2 0.55 4 m/s 200 kfci −1.0 dB
Example 10 0.060 0.2 0.55 6 m/s 270 kfci −3.0 dB
Example 11 0.060 0.2 0.55 8 m/s 300 kfci −4.3 dB
Example 12 0.060 0.5 0.70 6 m/s 270 kfci −2.5 dB
Example 13 0.048 0.2 0.55 6 m/s 270 kfci −2.3 dB
Example 14 0.048 3.8 0.63 6 m/s 270 kfci −2.5 dB
Example 15 0.048 5.0 0.75 6 m/s 270 kfci −2.5 dB
Example 16 0.048 6.1 0.90 6 m/s 270 kfci −2.8 dB
Example 17 0.048 0.3 0.66 6 m/s 270 kfci −2.5 dB
From the results shown in Table 1, it was confirmed that in Examples 1 to 8, in which each of the XRD intensity ratio, the squareness ratio in a vertical direction, and the logarithmic decrement of the magnetic layer surface of the magnetic tape is within the range described above, the electromagnetic conversion characteristics hardly deteriorate even though reproduction is repeated by causing the head to slide on the surface of the magnetic layer, unlike in Examples 9 to 17.
In Examples 9 to 11, magnetic tapes of the same physical properties were used, but the magnetic tapes had different running speeds and different line recording densities. Through the comparison between Examples 9 to 11, it is possible to confirm that as the running speed or the line recording density of the magnetic tape is increased, the deterioration of the electromagnetic conversion characteristics during the repeated sliding becomes more apparent. In Examples 1 to 8, the deterioration of the electromagnetic conversion characteristics during the repeated sliding could be inhibited.
One aspect of the present invention can be useful in the technical field of magnetic recording media for data storage such as data backup tapes.

Claims (7)

What is claimed is:
1. A magnetic recording medium comprising:
a non-magnetic support; and
a magnetic layer which is provided on the support and contains ferromagnetic powder and a binder,
wherein the ferromagnetic powder is ferromagnetic hexagonal ferrite powder,
the magnetic layer contains an abrasive,
an intensity ratio (Int (110)/Int (114)) of a peak intensity Int (110) of a diffraction peak of (110) plane of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity Int (114) of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0,
a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, and
a logarithmic decrement obtained by performing a pendulum viscoelasticity test on a surface of the magnetic layer is equal to or lower than 0.050.
2. The magnetic recording medium according to claim 1,
wherein the squareness ratio in a vertical direction is equal to or higher than 0.65 and equal to or lower than 0.90.
3. The magnetic recording medium according to claim 1,
wherein the logarithmic decrement is equal to or higher than 0.010 and equal to or lower than 0.050, and
the logarithmic decrement is determined by the following method;
securing a measurement sample of the magnetic tape with the measurement surface, which is the surface on the magnetic layer side, facing upward on a substrate in a pendulum viscoelasticity tester;
disposing a columnar cylinder edge which is 4 mm in diameter and equipped with a pendulum 13 g in weight on the measurement surface of the measurement sample such that the long axis direction of the columnar cylinder edge runs parallel to the longitudinal direction of the measurement sample;
raising the surface temperature of the substrate on which the measurement sample has been positioned at a rate of less than or equal to 5° C./min up to 80° C.;
inducing initial oscillation of the pendulum;
monitoring the displacement of the pendulum while it is oscillating to obtain a displacement-time curve for a measurement interval of greater than or equal to 10 minutes; and
obtaining the logarithmic decrement Δ from the following equation:
Δ = ln ( A 1 A 2 ) + ln ( A 2 A 3 ) + ln ( A n A n + 1 ) n
wherein the interval from one minimum displacement to the next minimum displacement is adopted as one wave period; the number of waves contained in the displacement-time curve during one measurement interval is denoted by n, the difference between the minimum displacement and the maximum displacement of the nth wave is denoted by An, and the logarithmic decrement is calculated using the difference between the next minimum displacement and maximum displacement of the nth wave (An+1 in the above equation).
4. The magnetic recording medium according to claim 2,
wherein the logarithmic decrement is equal to or higher than 0.010 and equal to or lower than 0.050, and
the logarithmic decrement is determined by the following method;
securing a measurement sample of the magnetic tape with the measurement surface, which is the surface on the magnetic layer side, facing upward on a substrate in a pendulum viscoelasticity tester;
disposing a columnar cylinder edge which is 4 mm in diameter and equipped with a pendulum 13 g in weight on the measurement surface of the measurement sample such that the long axis direction of the columnar cylinder edge runs parallel to the longitudinal direction of the measurement sample;
raising the surface temperature of the substrate on which the measurement sample has been positioned at a rate of less than or equal to 5° C./min up to 80° C.;
inducing initial oscillation of the pendulum;
monitoring the displacement of the pendulum while it is oscillating to obtain a displacement-time curve for a measurement interval of greater than or equal to 10 minutes; and
obtaining the logarithmic decrement Δ from the following equation:
Δ = ln ( A 1 A 2 ) + ln ( A 2 A 3 ) + ln ( A n A n + 1 ) n
wherein the interval from one minimum displacement to the next minimum displacement is adopted as one wave period; the number of waves contained in the displacement-time curve during one measurement interval is denoted by n, the difference between the minimum displacement and the maximum displacement of the nth wave is denoted by An, and the logarithmic decrement is calculated using the difference between the next minimum displacement and maximum displacement of the nth wave (An+1 in the above equation).
5. The magnetic recording medium according to claim 1, further comprising:
a non-magnetic layer containing non-magnetic powder and a binder between the non-magnetic support and the magnetic layer.
6. The magnetic recording medium according to claim 1, further comprising:
a back coating layer containing non-magnetic powder and a binder on a surface, which is opposite to a surface provided with the magnetic layer, of the non-magnetic support.
7. The magnetic recording medium according to claim 1, which is a magnetic tape.
US16/038,687 2017-07-19 2018-07-18 Magnetic recording medium having characterized magnetic layer Active 2038-12-10 US10854227B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017140016 2017-07-19
JP2017-140016 2017-07-19
JP2018-131332 2018-07-11
JP2018131332A JP6678205B2 (en) 2017-07-19 2018-07-11 Magnetic recording media

Publications (2)

Publication Number Publication Date
US20190027168A1 US20190027168A1 (en) 2019-01-24
US10854227B2 true US10854227B2 (en) 2020-12-01

Family

ID=65023138

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/038,687 Active 2038-12-10 US10854227B2 (en) 2017-07-19 2018-07-18 Magnetic recording medium having characterized magnetic layer

Country Status (1)

Country Link
US (1) US10854227B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11361793B2 (en) * 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316248B2 (en) * 2015-08-21 2018-04-25 富士フイルム株式会社 Magnetic tape and manufacturing method thereof
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
JP6552402B2 (en) 2015-12-16 2019-07-31 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge, magnetic recording / reproducing apparatus, and method of manufacturing magnetic tape
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
JP6430927B2 (en) 2015-12-25 2018-11-28 富士フイルム株式会社 Magnetic tape and manufacturing method thereof
JP6465823B2 (en) 2016-02-03 2019-02-06 富士フイルム株式会社 Magnetic tape and manufacturing method thereof
JP6427127B2 (en) 2016-02-03 2018-11-21 富士フイルム株式会社 Magnetic tape and method of manufacturing the same
JP6474748B2 (en) 2016-02-29 2019-02-27 富士フイルム株式会社 Magnetic tape
JP6467366B2 (en) 2016-02-29 2019-02-13 富士フイルム株式会社 Magnetic tape
JP6472764B2 (en) 2016-02-29 2019-02-20 富士フイルム株式会社 Magnetic tape
JP6556096B2 (en) 2016-06-10 2019-08-07 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6534637B2 (en) 2016-06-13 2019-06-26 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6556100B2 (en) * 2016-06-22 2019-08-07 富士フイルム株式会社 Magnetic tape
JP6534969B2 (en) 2016-06-22 2019-06-26 富士フイルム株式会社 Magnetic tape
JP6498154B2 (en) 2016-06-23 2019-04-10 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6717684B2 (en) * 2016-06-23 2020-07-01 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6549529B2 (en) 2016-06-23 2019-07-24 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6496277B2 (en) 2016-06-23 2019-04-03 富士フイルム株式会社 Magnetic tape
JP6549528B2 (en) 2016-06-23 2019-07-24 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6556102B2 (en) 2016-06-23 2019-08-07 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6556101B2 (en) 2016-06-23 2019-08-07 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6507126B2 (en) 2016-06-23 2019-04-24 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6529933B2 (en) 2016-06-24 2019-06-12 富士フイルム株式会社 Magnetic tape
JP6552467B2 (en) 2016-08-31 2019-07-31 富士フイルム株式会社 Magnetic tape
JP6556107B2 (en) 2016-08-31 2019-08-07 富士フイルム株式会社 Magnetic tape
JP6585570B2 (en) * 2016-09-16 2019-10-02 富士フイルム株式会社 Magnetic recording medium and method for manufacturing the same
JP2018106778A (en) 2016-12-27 2018-07-05 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6701072B2 (en) 2016-12-27 2020-05-27 富士フイルム株式会社 Magnetic tape device and head tracking servo method
JP6684203B2 (en) 2016-12-27 2020-04-22 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6588002B2 (en) 2016-12-27 2019-10-09 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6684236B2 (en) 2017-02-20 2020-04-22 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6684238B2 (en) * 2017-02-20 2020-04-22 富士フイルム株式会社 Magnetic tape
JP6649298B2 (en) 2017-02-20 2020-02-19 富士フイルム株式会社 Magnetic tape device and head tracking servo method
JP6684239B2 (en) * 2017-02-20 2020-04-22 富士フイルム株式会社 Magnetic tape
JP6684237B2 (en) 2017-02-20 2020-04-22 富士フイルム株式会社 Magnetic tape device and head tracking servo method
JP6602806B2 (en) 2017-02-20 2019-11-06 富士フイルム株式会社 Magnetic tape
JP6637456B2 (en) * 2017-02-20 2020-01-29 富士フイルム株式会社 Magnetic tape
JP6684234B2 (en) 2017-02-20 2020-04-22 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6684235B2 (en) 2017-02-20 2020-04-22 富士フイルム株式会社 Magnetic tape device and head tracking servo method
JP6689222B2 (en) * 2017-02-20 2020-04-28 富士フイルム株式会社 Magnetic tape
JP6685248B2 (en) * 2017-02-20 2020-04-22 富士フイルム株式会社 Magnetic tape
JP6649297B2 (en) 2017-02-20 2020-02-19 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6689223B2 (en) 2017-02-20 2020-04-28 富士フイルム株式会社 Magnetic tape
JP6602805B2 (en) 2017-02-20 2019-11-06 富士フイルム株式会社 Magnetic tape
JP6649313B2 (en) 2017-03-29 2020-02-19 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6615814B2 (en) 2017-03-29 2019-12-04 富士フイルム株式会社 Magnetic tape device and head tracking servo method
JP6649314B2 (en) 2017-03-29 2020-02-19 富士フイルム株式会社 Magnetic tape device and head tracking servo method
JP6632562B2 (en) 2017-03-29 2020-01-22 富士フイルム株式会社 Magnetic tape
JP6660336B2 (en) 2017-03-29 2020-03-11 富士フイルム株式会社 Magnetic tape device and head tracking servo method
JP6632561B2 (en) 2017-03-29 2020-01-22 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6626032B2 (en) 2017-03-29 2019-12-25 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6649312B2 (en) 2017-03-29 2020-02-19 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6626031B2 (en) 2017-03-29 2019-12-25 富士フイルム株式会社 Magnetic tape device and magnetic reproducing method
JP6694844B2 (en) 2017-03-29 2020-05-20 富士フイルム株式会社 Magnetic tape device, magnetic reproducing method and head tracking servo method
JP6615815B2 (en) 2017-03-29 2019-12-04 富士フイルム株式会社 Magnetic tape device and head tracking servo method
JP6691512B2 (en) 2017-06-23 2020-04-28 富士フイルム株式会社 Magnetic recording medium
JP6723198B2 (en) 2017-06-23 2020-07-15 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6678135B2 (en) * 2017-07-19 2020-04-08 富士フイルム株式会社 Magnetic recording media
JP6717786B2 (en) * 2017-07-19 2020-07-08 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6707060B2 (en) * 2017-07-19 2020-06-10 富士フイルム株式会社 Magnetic tape
JP6723202B2 (en) * 2017-07-19 2020-07-15 富士フイルム株式会社 Magnetic tape
JP6717785B2 (en) * 2017-07-19 2020-07-08 富士フイルム株式会社 Magnetic recording medium
JP6717787B2 (en) 2017-07-19 2020-07-08 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6723203B2 (en) * 2017-07-19 2020-07-15 富士フイルム株式会社 Magnetic tape
US10839849B2 (en) * 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854230B2 (en) * 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
JP6714548B2 (en) * 2017-07-19 2020-06-24 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6707061B2 (en) * 2017-07-19 2020-06-10 富士フイルム株式会社 Magnetic recording medium
US10854233B2 (en) * 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10854231B2 (en) * 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
JP6884220B2 (en) 2017-09-29 2021-06-09 富士フイルム株式会社 Magnetic tape and magnetic recording / playback device
CN113436654B (en) 2017-09-29 2022-12-02 富士胶片株式会社 Magnetic tape and magnetic recording/reproducing apparatus
US10854234B2 (en) * 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10978105B2 (en) * 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
JP6830930B2 (en) 2018-07-27 2021-02-17 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP6830931B2 (en) 2018-07-27 2021-02-17 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP6784738B2 (en) 2018-10-22 2020-11-11 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP6830945B2 (en) 2018-12-28 2021-02-17 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP7042737B2 (en) 2018-12-28 2022-03-28 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge and magnetic tape device
JP7003073B2 (en) 2019-01-31 2022-01-20 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP6778804B1 (en) 2019-09-17 2020-11-04 富士フイルム株式会社 Magnetic recording medium and magnetic recording / playback device
JP2023030363A (en) * 2021-08-23 2023-03-08 株式会社東芝 Magnetic head and manufacturing method thereof, and magnetic recording/reproducing device and manufacturing thereof

Citations (313)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966686A (en) 1973-12-28 1976-06-29 Toray Industries, Inc. Aromatic polyamide-type films
US4425404A (en) 1982-04-30 1984-01-10 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium
JPS6111924A (en) 1984-06-27 1986-01-20 Toshiba Corp Magnetic recording medium
JPS61139923A (en) 1984-12-12 1986-06-27 Hitachi Maxell Ltd Magnetic recording medium
JPS61139932A (en) 1984-12-12 1986-06-27 Hitachi Maxell Ltd Production of magnetic recording medium
US4693930A (en) 1985-05-03 1987-09-15 Minnesota Mining And Manufacturing Company Smooth, low-friction magnetic recording medium
US4746569A (en) 1985-05-20 1988-05-24 Fujitsu Limited Longitudinal magnetic coated recording medium
JPS63129519A (en) 1986-11-18 1988-06-01 Sanyo Electric Co Ltd Magnetic recording medium and its production
JPS63249932A (en) 1987-04-06 1988-10-17 Fuji Photo Film Co Ltd Magnetic recording medium
JPS63298813A (en) 1987-05-29 1988-12-06 Nippon Shokubai Kagaku Kogyo Co Ltd Magnetic recording medium
JPS6457422A (en) 1987-08-28 1989-03-03 Fujitsu Ltd Production of magnetic coating compound
JPS6460819A (en) 1987-08-31 1989-03-07 Fuji Photo Film Co Ltd Magnetic recording medium
US4825317A (en) 1986-07-25 1989-04-25 Siemens Aktiengesellschaft Mechanism for damping tape vibrations in a magnetic tape recorder
JPH01276424A (en) 1988-04-26 1989-11-07 Kao Corp Magnetic recording medium
JPH02227821A (en) 1989-03-01 1990-09-11 Matsushita Electric Ind Co Ltd Magnetic recording medium
US5006406A (en) 1987-09-16 1991-04-09 Basf Aktiengesellschaft Magnetic recording media
US5242752A (en) 1988-04-14 1993-09-07 Konica Corporation Magnetic recording medium comprising a specified binder resin, specified ferromagnetic metal powder and α-alumina
JPH05258283A (en) 1992-03-13 1993-10-08 Sony Corp Magnetic recording medium
JPH05298653A (en) 1992-04-14 1993-11-12 Fuji Photo Film Co Ltd Magnetic recording medium
JPH0757242A (en) 1993-08-13 1995-03-03 Sony Corp Magnetic recording medium
US5419938A (en) 1992-07-03 1995-05-30 Tdk Corporation Magnetic recording medium comprising two magnetic layers of hexagonal ferrite magnetic particles and binder wherein the easy axes of the particle is specified
US5445881A (en) 1993-09-10 1995-08-29 Minnesota Mining And Manufacturing Company High recording density magnetic tape and process for the production thereof
US5474814A (en) 1992-03-13 1995-12-12 Fuji Photo Film Co., Ltd. Magnetic recording medium and method for producing the same
US5540957A (en) 1992-07-24 1996-07-30 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a magnetic recording medium
EP0520155B1 (en) 1991-04-25 1996-08-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5585032A (en) 1987-04-21 1996-12-17 Ishihara Sangyo Kaisha, Ltd. Ferromagnetic fine powder for magnetic recording
JPH0973626A (en) 1995-09-04 1997-03-18 Sony Corp Magnetic recording medium
US5645917A (en) 1991-04-25 1997-07-08 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5689384A (en) 1994-06-30 1997-11-18 International Business Machines Corporation Timing based servo system for magnetic tape systems
US5728454A (en) 1994-04-07 1998-03-17 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5786074A (en) 1994-01-18 1998-07-28 Hitachi Maxell, Ltd. Magnetic recording medium
US5827600A (en) 1991-01-21 1998-10-27 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5835314A (en) 1996-04-17 1998-11-10 Massachusetts Institute Of Technology Tunnel junction device for storage and switching of signals
JPH11110743A (en) 1997-10-06 1999-04-23 Kao Corp Magnetic recording medium and its manufacture
JPH11175949A (en) 1997-12-11 1999-07-02 Kao Corp Magnetic recording medium
JPH11259849A (en) 1991-07-15 1999-09-24 Fuji Photo Film Co Ltd Magnetic recording medium
JPH11273051A (en) 1998-03-23 1999-10-08 Kao Corp Magnetic recording medium
US6099957A (en) 1997-03-04 2000-08-08 Toda Kogyo Corporation Plate-like ferrite particles with magnetoplumbite structure and magnetic card using the same
JP2000251240A (en) 1999-02-23 2000-09-14 Sony Corp Magnetic recording medium
US6183606B1 (en) 1999-11-03 2001-02-06 National Science Council Of Republic Of China Manufacture method of high coercivity FePt-Si3N4 granular composite thin films
US6207252B1 (en) 1998-06-24 2001-03-27 Verbatim Corporation Magnetic recording medium and production method thereof
US6228461B1 (en) 1998-02-27 2001-05-08 Fuji Photo Film Co., Ltd. Magnetic recording tape
US6254964B1 (en) 1997-02-10 2001-07-03 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6261647B1 (en) 1995-01-02 2001-07-17 Fuji Photo Film Co., Ltd. Method and apparatus for manufacturing magnetic recording medium
US20010038928A1 (en) 1997-03-14 2001-11-08 Junichi Nakamigawa Data recording method
US20010053458A1 (en) 1988-08-10 2001-12-20 Hitachi, Ltd. Magnetic recording media for longitudinal recording, process for producing the same and magnetic memory apparatus
DE10146429A1 (en) 2000-09-20 2002-03-28 Fuji Photo Film Co Ltd Magnetic recording medium used for audio tape, video tape, computer tape and discs in both analogue and digital systems comprises a non-magnetic carrier and a magnetic layer containing ferromagnetic metal particles and a binder resin
JP2002157726A (en) 2000-11-21 2002-05-31 Fuji Photo Film Co Ltd Magnetic recording medium
US20020072472A1 (en) 2000-10-10 2002-06-13 Hiromi Furuya Reversible thermosensitive recording medium and image forming and erasing method using the recording medium
JP2002298332A (en) 2001-03-30 2002-10-11 Tdk Corp Magnetic recording medium
JP2002329605A (en) 2001-05-02 2002-11-15 Sony Corp Magnetic powder and magnetic recording medium
US6496328B1 (en) 1999-12-30 2002-12-17 Advanced Research Corporation Low inductance, ferrite sub-gap substrate structure for surface film magnetic recording heads
JP2002367318A (en) 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Magnetic disk device
JP2002367142A (en) 2001-06-08 2002-12-20 Sony Corp Magnetic recording medium
JP2003077116A (en) 2001-09-03 2003-03-14 Fuji Photo Film Co Ltd Magnetic recording medium
US20030059649A1 (en) 1999-08-17 2003-03-27 Quantum Corporation, A California Corporation Multiple-layer backcoating for magnetic tape
US20030091866A1 (en) 2001-06-01 2003-05-15 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20030128453A1 (en) 2001-08-20 2003-07-10 Fuji Photo Film Co., Ltd. Magnetic recording and reproducing method and magnetic recording medium employed for the same
US20030170498A1 (en) 2002-03-11 2003-09-11 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2003323710A (en) 2002-04-30 2003-11-14 Tdk Corp Magnetic recording medium
US6649256B1 (en) 2000-01-24 2003-11-18 General Electric Company Article including particles oriented generally along an article surface and method for making
US20030228492A1 (en) 2002-05-30 2003-12-11 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20030228493A1 (en) 2002-05-30 2003-12-11 Fuji Photo Film Co., Ltd. Magnetic recording tape
JP2004005820A (en) 2002-05-31 2004-01-08 Fuji Photo Film Co Ltd Magnetic recording medium
US20040053074A1 (en) 2002-03-27 2004-03-18 Nobuhiro Jingu Magnetic recording medium and magnetic recording/reproducing system
JP2004103186A (en) 2002-09-13 2004-04-02 Fuji Photo Film Co Ltd Magnetic recording medium
US20040072025A1 (en) 2002-09-20 2004-04-15 Mikio Kishimoto Magnetic powder, method for producing the same and magnetic recording medium comprising the same
JP2004114492A (en) 2002-09-26 2004-04-15 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film
JP2004133997A (en) 2002-10-09 2004-04-30 Hitachi Maxell Ltd Magnetic tape
JP2004185676A (en) 2002-11-29 2004-07-02 Toshiba Corp Tunnel magneto-resistance effect head and magnetic disk device
US20040197605A1 (en) 2003-03-31 2004-10-07 Tdk Corporation Magnetic recording medium
US20040213948A1 (en) 2003-01-24 2004-10-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20040218304A1 (en) 2002-12-19 2004-11-04 Turguy Goker Method and apparatus for written-in tracking error compensation for linear tape drives
US20040265643A1 (en) 2003-06-23 2004-12-30 Fuji Photo Film Co., Ltd. Magnetic recording medium and magnetic recording and reproducing methods
JP2005038579A (en) 2003-06-30 2005-02-10 Fuji Photo Film Co Ltd Magnetic recording medium
US20050057838A1 (en) 2003-09-11 2005-03-17 Fuji Photo Film Co., Ltd. Magnetic tape and maufacturing method thereof, and servo writer and servo write method
JP2005092967A (en) 2003-09-16 2005-04-07 Sony Corp Magnetic head
US20050153170A1 (en) 2002-07-18 2005-07-14 Hitachi Maxell, Ltd. Magnetic tape and magnetic tape cartridge
US6921592B2 (en) 2000-10-31 2005-07-26 Hitachi Maxell, Ltd. Magnetic recording medium comprising a magnetic layer having specific thickness, surface roughness and friction coefficient
US6939606B2 (en) 2003-03-31 2005-09-06 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2005243162A (en) 2004-02-27 2005-09-08 Fuji Photo Film Co Ltd Magnetic recording medium
US20050196645A1 (en) 2004-02-10 2005-09-08 Hitachi Maxell, Ltd. Magnetic tape
JP2005243063A (en) 2004-02-24 2005-09-08 Fuji Photo Film Co Ltd Magnetic recording medium
US6950269B1 (en) 2002-01-18 2005-09-27 Imation Corp. System and methods for using servopositioning signals
US20050260459A1 (en) 2004-05-19 2005-11-24 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20050260456A1 (en) 2004-05-19 2005-11-24 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20050264935A1 (en) 2004-05-28 2005-12-01 Fuji Photo Film Co., Ltd. Information recording tape
US20060008681A1 (en) 2004-07-08 2006-01-12 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6994925B2 (en) 2003-10-22 2006-02-07 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20060035114A1 (en) 2004-08-12 2006-02-16 Hitachi Maxell, Ltd. Magnetic recording medium
US20060056095A1 (en) 2004-09-10 2006-03-16 Fuji Photo Film Co., Ltd. Servo writer, and write and inspection method of servo signal
US7014927B2 (en) 2002-12-27 2006-03-21 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20060068232A1 (en) 2004-09-24 2006-03-30 Hitachi Maxell, Ltd. Magnetic tape
JP2006092672A (en) 2004-09-24 2006-04-06 Hitachi Maxell Ltd Magnetic tape
US7029726B1 (en) 1999-07-27 2006-04-18 Quantum Corporation Method for forming a servo pattern on a magnetic tape
US20060187589A1 (en) 2005-02-22 2006-08-24 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2006286114A (en) 2005-04-01 2006-10-19 Fuji Photo Film Co Ltd Magnetic recording medium
US20060232883A1 (en) 2005-04-19 2006-10-19 Biskeborn Robert G Filled-gap magnetic recording head and method of making
US7153366B1 (en) 1998-03-24 2006-12-26 Quantum Corporation Systems and method for forming a servo pattern on a magnetic tape
US20070009769A1 (en) 2005-07-08 2007-01-11 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20070020490A1 (en) 2005-07-20 2007-01-25 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20070020489A1 (en) 2004-06-21 2007-01-25 Fuji Photo Film Co., Ltd. Hexagonal ferrite magnetic powder, method for producing the same and magnetic recording medium
US7255908B2 (en) 1997-10-22 2007-08-14 Quantum Corporation Magnetic tape
US20070224456A1 (en) 2006-03-27 2007-09-27 Fujifilm Corporation Magnetic recording medium and method for production thereof
US20070230054A1 (en) 2006-03-29 2007-10-04 Fujifilm Corporation Magnetic tape
US20070231606A1 (en) 2006-03-31 2007-10-04 Fujifilm Corporation Magnetic recording medium and process for producing the same
JP2007265555A (en) 2006-03-29 2007-10-11 Tdk Corp Thin film magnetic head and magnetic medium device
JP2007273039A (en) 2006-03-31 2007-10-18 Fujifilm Corp Magnetic recording medium
JP2007287310A (en) 2006-03-22 2007-11-01 Fujifilm Corp Surface treatment method and apparatus for tape
JP2007297427A (en) 2006-04-27 2007-11-15 Dainippon Printing Co Ltd Adhesive film and manufacturing method
JP2007305197A (en) 2006-04-10 2007-11-22 Fujifilm Corp Magnetic recording medium
JP2008047276A (en) 2006-08-14 2008-02-28 Internatl Business Mach Corp <Ibm> Magnetic head, tape drive system, and magnetic recording tape (high areal density tape/format, and head)
US20080057351A1 (en) 2006-03-29 2008-03-06 Fujifilm Corporation Magnetic recording medium
US20080144211A1 (en) 2006-12-18 2008-06-19 Weber Mark P Servo techniques that mitigate an effect of read and write velocity variations on position error signal calculations
US20080152956A1 (en) 2006-12-22 2008-06-26 Fujifilm Corporation Magnetic recording medium and radiation curing composition
US20080174897A1 (en) 2007-01-18 2008-07-24 Allen Keith Bates Apparatus, system, and method for timing based servo tape formating
JP2008243317A (en) 2007-03-28 2008-10-09 Fujifilm Corp Magnetic recording medium and its manufacturing method
US20080297950A1 (en) 2007-05-31 2008-12-04 Fujifilm Corporation Magnetic signal reproduction system and magnetic signal reproduction method
US20080311308A1 (en) 2004-08-13 2008-12-18 Hae-Wook Lee Composition for Functional Coatings, Film Formed Therefrom and Method for Forming the Composition and the Film
US20090027812A1 (en) 2007-07-27 2009-01-29 Fujifilm Corporation Magnetic signal reproduction system and magnetic signal reproduction method
US7511907B2 (en) 2004-02-17 2009-03-31 Advanced Research Corporation Stepped time based servo pattern and head
US20090087689A1 (en) 2007-09-28 2009-04-02 Hiroaki Doushita Magnetic recording medium
US20090162701A1 (en) 2007-12-21 2009-06-25 Imation Corp. Magnetic recording tape having large particles in magnetic recording layer
US20090161249A1 (en) 2007-12-19 2009-06-25 Sony Corporation Magnetic tape, magnetic tape apparatus, servo pattern recording apparatus, magnetic tape producing method, and magnetic tape recording method
JP2009245515A (en) 2008-03-31 2009-10-22 Fujifilm Corp Magnetic recording medium, surface modifier for magnetic powder, and magnetic coating material including same
JP2009283082A (en) 2008-05-23 2009-12-03 Hitachi Maxell Ltd Magnetic recording medium
US20100000966A1 (en) 2008-01-31 2010-01-07 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
US7656602B2 (en) 2008-05-05 2010-02-02 International Business Machines Corporation Systems and methods for protecting a sensitive device from corrosion
US20100035088A1 (en) 2008-08-05 2010-02-11 Hitachi Maxell, Ltd. Magnetic tape and method for producing the same
US20100035086A1 (en) 2008-08-05 2010-02-11 Hitachi Maxell. Ltd. Iron nitride magnetic powder and magnetic recording medium comprising the same
JP2010036350A (en) 2008-07-31 2010-02-18 Toppan Printing Co Ltd Gas-barrier laminate
JP2010049731A (en) 2008-08-20 2010-03-04 Tdk Corp Magnetic recording medium and method of manufacturing the same
US20100053810A1 (en) 2008-09-04 2010-03-04 Robert Glenn Biskeborn Magnetic head
US20100073816A1 (en) 2008-09-25 2010-03-25 Fujifilm Corporation Magnetic head and method of manufacturing the same, linear tape drive apparatus, and magnetic recording and reproduction method
US20100081011A1 (en) 2008-09-29 2010-04-01 Fujifilm Corporation Magnetic recording medium
US20100134929A1 (en) 2008-12-03 2010-06-03 Tdk Corporation Multi-Channel Thin-Film Magnetic Head And Magnetic Tape Drive Apparatus With The Multi-Channel Thin-Film Magnetic Head
US20100227201A1 (en) 2009-03-03 2010-09-09 Hitachi Maxell, Ltd. Magnetic recording medium
US7803471B1 (en) 2000-12-28 2010-09-28 Hitachi Maxell, Ltd. Magnetic tape, its cleaning method, and optical servotrack forming/cleaning apparatus
US20100246073A1 (en) 2009-03-27 2010-09-30 Fujifilm Corporation Magnetic recording medium, magnetic signal reproduction system and magnetic signal reproduction method
US7839599B2 (en) 2009-03-09 2010-11-23 International Business Machines Corporation Combining information from parallel servo channels
US20110003241A1 (en) 2008-01-31 2011-01-06 Fujifilm Corporation Resin, pigment dispersion, colored curable composition, color filter produced using the same, and method for producing the same
US20110052908A1 (en) 2009-08-27 2011-03-03 Fujifilm Corporation Magnetic recording medium and method of manufacturing the same
US20110051280A1 (en) 2009-08-31 2011-03-03 International Business Machines Corporation Overhead calculation in writing synchronized data to magnetic tape
US20110077902A1 (en) 2009-09-28 2011-03-31 International Business Machines Corporation servo control circuit for detecting analytes via nanoparticle-labeled substances with electromagnetic read-write heads
US20110151281A1 (en) 2009-12-18 2011-06-23 Hitachi Maxell, Ltd. Magnetic recording media
JP2011138566A (en) 2009-12-25 2011-07-14 Fujifilm Corp Method and apparatus for manufacturing magnetic recording medium
JP2011187142A (en) 2010-03-11 2011-09-22 Hitachi Maxell Ltd Magnetic head and magnetic tape device
US20110244272A1 (en) 2010-03-31 2011-10-06 Fujifilm Corporation Hexagonal ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium
JP2011210288A (en) 2010-03-26 2011-10-20 Fujifilm Corp Device and method for manufacturing magnetic recording medium, and magnetic recording medium
JP2012038367A (en) 2010-08-04 2012-02-23 Toda Kogyo Corp Hexagonal ferrite particle powder and magnetic recording medium
US20120045664A1 (en) 2010-08-17 2012-02-23 Kenji Tanaka Magnetic recording medium
US20120152891A1 (en) 2010-12-20 2012-06-21 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing a magnetic tape head using a tmr sensor
US20120177951A1 (en) 2011-01-06 2012-07-12 Fujifilm Corporation Hexagonal barium ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium
US20120183811A1 (en) 2011-01-17 2012-07-19 Fujifilm Corporation Magnetic recording medium
US20120196156A1 (en) 2011-01-27 2012-08-02 Fujifilm Corporation Magnetic tape
US20120243120A1 (en) 2011-03-25 2012-09-27 Fujifilm Corporation Magnetic tape and method of manufacturing the same, and magnetic recording device
US20120244387A1 (en) 2011-03-25 2012-09-27 Fujifilm Corporation Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium and method of manufacturing the same
US20120251845A1 (en) 2011-03-31 2012-10-04 Seagate Technology Llc Exchange coupled magnetic elements
US8318242B2 (en) 2008-05-05 2012-11-27 International Business Machines Corporation Systems and methods for protecting a sensitive device from corrosion
US20130029183A1 (en) 2011-07-29 2013-01-31 Fujifilm Corporation Carbon black composition and usage thereof
JP2013025853A (en) 2011-07-25 2013-02-04 Fujifilm Corp Magnetic tape and magnetic recorder
US20130084470A1 (en) 2011-09-30 2013-04-04 Fujifilm Corporation Magnetic recording medium
GB2495356A (en) 2011-10-06 2013-04-10 Ibm Robust metric computation of longitudinal position (LPOS) data symbol detection
JP2013164889A (en) 2012-02-13 2013-08-22 Hitachi Maxell Ltd Magnetic recording media
US8524108B2 (en) 2010-01-21 2013-09-03 Fujifilm Corporation Magnetic particle and method of preparing the same, and magnetic recording medium
US20130260179A1 (en) 2012-03-30 2013-10-03 Fujifilm Corporation Magnetic recording medium and method of manufacturing the same
US20130256584A1 (en) 2012-03-30 2013-10-03 Fujifilm Corporation Hexagonal strontium ferrite magnetic powder and method of manufacturing the same, and magnetic recording medium and method of manufacturing the same
US20130279040A1 (en) 2012-04-24 2013-10-24 International Business Machines Corporation Combined soft detection/soft decoding in tape drive storage channels
US20130286510A1 (en) 2012-04-26 2013-10-31 Imation Corp. Systems and methods for processing magnetic media
JP2014015453A (en) 2012-06-15 2014-01-30 Rohto Pharmaceut Co Ltd Ophthalmic composition for soft contact lens
US20140130067A1 (en) 2012-11-07 2014-05-08 Oracle International Corporation Rotary Head Data Storage and Retrieval System and Method with Tape Medium Having Transverse Primary Data Tracks and Longitudinal Secondary Data Track
US20140139944A1 (en) 2012-11-16 2014-05-22 Imation Corp. Information storage using servo patterns
US20140272474A1 (en) 2013-03-15 2014-09-18 Fujifilm Corporation Magnetic recording medium
US20140295214A1 (en) 2013-03-26 2014-10-02 Fujifilm Corporation Hexagonal ferrite magnetic particles, magnetic recording powder, and magnetic recording medium
US20140342189A1 (en) 2013-05-17 2014-11-20 Sony Corporation Magnetic recording medium and method of producing the same
US20140366990A1 (en) 2013-06-17 2014-12-18 National Tsing Hua University Method for making an ordered magnetic alloy
US20140374645A1 (en) 2013-06-24 2014-12-25 Fujifilm Corporation Magnetic recording medium and coating composition for magnetic recording medium
US20150043101A1 (en) 2013-08-12 2015-02-12 International Business Machines Corporation High density timing based servo format for use with tilted transducer arrays
JP2015039801A (en) 2013-08-21 2015-03-02 帝人デュポンフィルム株式会社 Laminate polyester film and coat-type magnetic recording tape using the same
US20150098149A1 (en) 2013-10-09 2015-04-09 International Business Machines Corporation Locating data stored on a magnetic medium
US20150111066A1 (en) 2013-10-22 2015-04-23 Sony Corporation Magnetic recording medium
US20150123026A1 (en) 2013-11-01 2015-05-07 Dowa Electronics Materials Co., Ltd. Magnetic powder for magnetic recording medium
US9105294B2 (en) 2010-03-16 2015-08-11 Sony Corporation Composite magnetic recording media
US20150302879A1 (en) 2013-01-31 2015-10-22 Hewlett-Packard Development Company, L.P. Magnetic tape processing
US20150380036A1 (en) 2014-06-30 2015-12-31 Fujifilm Corporation Magnetic tape
US20160064025A1 (en) 2014-08-29 2016-03-03 Fujifilm Corporation Magnetic recording medium
US20160061447A1 (en) 2013-04-27 2016-03-03 Kyocera Corporation Ceramic heater
US20160093323A1 (en) 2014-09-30 2016-03-31 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20160093322A1 (en) 2014-09-29 2016-03-31 Fujifilm Corporation Magnetic tape
US20160092315A1 (en) 2014-09-29 2016-03-31 International Business Machines Corporation File system for rolling back data on tape
US20160093321A1 (en) 2014-09-30 2016-03-31 Fujifilm Corporation Magnetic recording medium and coating composition for magnetic recording medium
JP2016071926A (en) 2014-09-30 2016-05-09 富士フイルム株式会社 Magnetic recording medium and coating composition for magnetic recording medium
US20160189740A1 (en) 2014-12-26 2016-06-30 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20160189739A1 (en) 2014-12-26 2016-06-30 Fujifilm Corporation Magnetic tape and method of manufacturing the same
JP2016126817A (en) 2014-12-26 2016-07-11 富士フイルム株式会社 Magnetic tape and production method thereof
JP2016139451A (en) 2015-01-22 2016-08-04 Dowaエレクトロニクス株式会社 Magnetic powder for magnetic recording medium
US20160247530A1 (en) 2015-02-25 2016-08-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20160260449A1 (en) 2015-03-06 2016-09-08 International Business Machines Corporation Measurement and correction of magnetic writer offset error
US20160276076A1 (en) 2015-03-18 2016-09-22 Fujifilm Corporation Magnetic tape
US9495985B2 (en) 2008-06-18 2016-11-15 International Business Machines Corporation Magnetic tape media having servo patterns
US9542967B2 (en) 2014-01-07 2017-01-10 Sony Corporation Magnetic recording medium
US20170032812A1 (en) 2015-07-28 2017-02-02 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US9564161B1 (en) 2015-11-10 2017-02-07 International Business Machines Corporation Method for controlling the lateral position of a tape head of a magnetic tape drive
US20170053670A1 (en) 2015-08-21 2017-02-23 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170053669A1 (en) 2015-08-21 2017-02-23 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170053671A1 (en) 2015-08-21 2017-02-23 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170058227A1 (en) 2014-05-29 2017-03-02 Dexerials Corporation Ionic liquid, lubricant, and magnetic recording medium
US20170092315A1 (en) 2015-09-30 2017-03-30 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170130156A1 (en) 2014-06-19 2017-05-11 Dexerials Corporation Ionic liquid, lubricant, and magnetic recording medium
US20170178675A1 (en) 2015-12-16 2017-06-22 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170178677A1 (en) 2015-12-16 2017-06-22 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic recording and reproducing device
US20170178676A1 (en) 2015-12-16 2017-06-22 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, magnetic recording and reproducing device, and method of manufacturing magnetic tape
US20170186460A1 (en) 2015-12-25 2017-06-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170186456A1 (en) 2015-12-25 2017-06-29 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US9704425B2 (en) 2013-05-31 2017-07-11 Boe Technology Group Co., Ltd. Gamma curve adjustment method and gamma curve adjustment apparatus
US9721607B2 (en) 2015-06-30 2017-08-01 Fujifilm Corporation Magnetic recording medium and method of manufacturing the same
US20170221517A1 (en) 2016-02-03 2017-08-03 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170221513A1 (en) 2016-02-01 2017-08-03 Hitachi Maxell, Ltd. Magnetic recording medium
US20170221516A1 (en) 2016-02-03 2017-08-03 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US9748026B2 (en) 2013-06-28 2017-08-29 Fujifilm Corporation Hexagonal ferrite magnetic powder for magnetic recording, method for producing hexagonal ferrite magnetic particles, and magnetic recording medium
US20170249966A1 (en) 2014-11-18 2017-08-31 Sony Corporation Magnetic recording medium
US20170249964A1 (en) 2016-02-29 2017-08-31 Fujifilm Corporation Magnetic tape
US20170249965A1 (en) 2016-02-29 2017-08-31 Fujifilm Corporation Magnetic tape
US20170249963A1 (en) 2016-02-29 2017-08-31 Fujifilm Corporation Magnetic tape
US9779772B1 (en) 2016-03-22 2017-10-03 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170287517A1 (en) 2016-03-31 2017-10-05 Fujifilm Corporation Hexagonal ferrite powder and magnetic recording medium
US9837116B2 (en) 2016-03-23 2017-12-05 Fujifilm Corporation Magnetic tape and magnetic tape device
US9837104B1 (en) 2016-10-31 2017-12-05 International Business Machines Corporation Tape head having sensors proximate to an edge
US20170355022A1 (en) 2016-06-13 2017-12-14 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170358318A1 (en) 2016-06-10 2017-12-14 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372727A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372726A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372739A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape
US20170372736A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372741A1 (en) 2016-06-24 2017-12-28 Fujifilm Corporation Magnetic tape
US20170372737A1 (en) 2016-06-22 2017-12-28 Fujifilm Corporation Magnetic tape
US20170372742A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372743A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372740A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372738A1 (en) 2016-06-22 2017-12-28 Fujifilm Corporation Magnetic tape
US20170372744A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20180061446A1 (en) 2016-08-31 2018-03-01 Fujifilm Corporation Magnetic tape
US20180061447A1 (en) 2016-08-31 2018-03-01 Fujifilm Corporation Magnetic tape
US20180082710A1 (en) * 2016-09-16 2018-03-22 Fujifilm Corporation Magnetic recording medium and method for manufacturing same
US9972351B1 (en) * 2016-12-27 2018-05-15 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180137887A1 (en) 2015-05-18 2018-05-17 Sony Corporation Magnetic recording medium
US9978414B1 (en) 2016-12-27 2018-05-22 Fujifilm Corporation Magnetic tape device and head tracking servo method
US9984712B1 (en) 2016-12-27 2018-05-29 Fujifilm Corporation Magnetic tape device and head tracking servo method
US9984716B1 (en) 2016-12-27 2018-05-29 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10008230B1 (en) 2016-12-27 2018-06-26 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180182422A1 (en) 2016-12-28 2018-06-28 Maxell Holdings, Ltd. Magnetic recording medium
US20180182425A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180182417A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180182430A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180182427A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180182428A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180182426A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180182429A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180240493A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240481A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180240479A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180240494A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240475A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240495A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240492A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240488A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240478A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180240476A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and magnetic reproducting method
US20180240489A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180240490A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240491A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US10062403B1 (en) * 2017-02-20 2018-08-28 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286444A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US20180286451A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286453A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286450A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180286452A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286449A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180286448A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180286446A1 (en) * 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286447A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286439A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180286443A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape
US20180286442A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180350398A1 (en) 2017-06-05 2018-12-06 Maxell Holdings, Ltd. High recording density magnetic recording medium and recording/reproduction mechanism for the same
US20180374507A1 (en) 2017-06-23 2018-12-27 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190027177A1 (en) 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190027176A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic recording medium
US20190027175A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape
US20190027167A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic recording medium
US20190027181A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape
US20190027171A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190027179A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic recording medium
US20190027180A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape
US20190027172A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190027174A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape
US20190027178A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic recording medium
US20190035424A1 (en) 2016-01-15 2019-01-31 Sony Corporation Magnetic recording medium
US20190103135A1 (en) * 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US20190103131A1 (en) * 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US20190103133A1 (en) * 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US20190103134A1 (en) * 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US20190103130A1 (en) 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic tape and magnetic recording and reproducing device
US20190259416A1 (en) 2010-12-20 2019-08-22 Fujifilm Corporation Magnetic recording medium
US20190295587A1 (en) * 2018-03-23 2019-09-26 Fujifilm Corporation Magnetic tape and magnetic recording and reproducing device
US20190304496A1 (en) 2018-03-29 2019-10-03 Fujifilm Corporation Magnetic recording medium, manufacturing method of particles of epsilon type iron oxide-based compound, and manufacturing method of magnetic recording medium
US10453913B2 (en) * 2017-04-26 2019-10-22 Samsung Electronics Co., Ltd. Capacitor, semiconductor device and methods of manufacturing the capacitor and the semiconductor device
US20200005827A1 (en) 2018-06-29 2020-01-02 Fujifilm Corporation Magnetic tape apparatus
US20200005818A1 (en) * 2018-06-29 2020-01-02 Fujifilm Corporation Magnetic tape apparatus
US20200005814A1 (en) 2018-06-29 2020-01-02 Fujifilm Corporation Magnetic tape apparatus
US20200005822A1 (en) * 2018-06-29 2020-01-02 Fujifilm Corporation Magnetic tape apparatus
US10543488B2 (en) * 2015-06-12 2020-01-28 The Procter & Gamble Company Discretizer and method of using same
US20200035262A1 (en) 2018-07-27 2020-01-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus

Patent Citations (397)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966686A (en) 1973-12-28 1976-06-29 Toray Industries, Inc. Aromatic polyamide-type films
US4112187A (en) 1973-12-28 1978-09-05 Toray Industries, Inc. Magnetic recording medium supported on aromatic polyamide
US4425404A (en) 1982-04-30 1984-01-10 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium
JPS6111924A (en) 1984-06-27 1986-01-20 Toshiba Corp Magnetic recording medium
JPS61139923A (en) 1984-12-12 1986-06-27 Hitachi Maxell Ltd Magnetic recording medium
JPS61139932A (en) 1984-12-12 1986-06-27 Hitachi Maxell Ltd Production of magnetic recording medium
US4693930A (en) 1985-05-03 1987-09-15 Minnesota Mining And Manufacturing Company Smooth, low-friction magnetic recording medium
US4746569A (en) 1985-05-20 1988-05-24 Fujitsu Limited Longitudinal magnetic coated recording medium
US4825317A (en) 1986-07-25 1989-04-25 Siemens Aktiengesellschaft Mechanism for damping tape vibrations in a magnetic tape recorder
JPS63129519A (en) 1986-11-18 1988-06-01 Sanyo Electric Co Ltd Magnetic recording medium and its production
JPS63249932A (en) 1987-04-06 1988-10-17 Fuji Photo Film Co Ltd Magnetic recording medium
US5585032A (en) 1987-04-21 1996-12-17 Ishihara Sangyo Kaisha, Ltd. Ferromagnetic fine powder for magnetic recording
JPS63298813A (en) 1987-05-29 1988-12-06 Nippon Shokubai Kagaku Kogyo Co Ltd Magnetic recording medium
JPS6457422A (en) 1987-08-28 1989-03-03 Fujitsu Ltd Production of magnetic coating compound
JPS6460819A (en) 1987-08-31 1989-03-07 Fuji Photo Film Co Ltd Magnetic recording medium
US5006406A (en) 1987-09-16 1991-04-09 Basf Aktiengesellschaft Magnetic recording media
US5242752A (en) 1988-04-14 1993-09-07 Konica Corporation Magnetic recording medium comprising a specified binder resin, specified ferromagnetic metal powder and α-alumina
JPH01276424A (en) 1988-04-26 1989-11-07 Kao Corp Magnetic recording medium
US20010053458A1 (en) 1988-08-10 2001-12-20 Hitachi, Ltd. Magnetic recording media for longitudinal recording, process for producing the same and magnetic memory apparatus
JPH02227821A (en) 1989-03-01 1990-09-11 Matsushita Electric Ind Co Ltd Magnetic recording medium
US5827600A (en) 1991-01-21 1998-10-27 Fuji Photo Film Co., Ltd. Magnetic recording medium
EP0520155B1 (en) 1991-04-25 1996-08-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5645917A (en) 1991-04-25 1997-07-08 Fuji Photo Film Co., Ltd. Magnetic recording medium
JPH11259849A (en) 1991-07-15 1999-09-24 Fuji Photo Film Co Ltd Magnetic recording medium
JPH05258283A (en) 1992-03-13 1993-10-08 Sony Corp Magnetic recording medium
US5474814A (en) 1992-03-13 1995-12-12 Fuji Photo Film Co., Ltd. Magnetic recording medium and method for producing the same
US5496607A (en) 1992-04-14 1996-03-05 Fuji Photo Film Co., Ltd. Magnetic recording medium
JPH05298653A (en) 1992-04-14 1993-11-12 Fuji Photo Film Co Ltd Magnetic recording medium
US5419938A (en) 1992-07-03 1995-05-30 Tdk Corporation Magnetic recording medium comprising two magnetic layers of hexagonal ferrite magnetic particles and binder wherein the easy axes of the particle is specified
US5540957A (en) 1992-07-24 1996-07-30 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a magnetic recording medium
JPH0757242A (en) 1993-08-13 1995-03-03 Sony Corp Magnetic recording medium
US5445881A (en) 1993-09-10 1995-08-29 Minnesota Mining And Manufacturing Company High recording density magnetic tape and process for the production thereof
US5786074A (en) 1994-01-18 1998-07-28 Hitachi Maxell, Ltd. Magnetic recording medium
US5728454A (en) 1994-04-07 1998-03-17 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5689384A (en) 1994-06-30 1997-11-18 International Business Machines Corporation Timing based servo system for magnetic tape systems
US6261647B1 (en) 1995-01-02 2001-07-17 Fuji Photo Film Co., Ltd. Method and apparatus for manufacturing magnetic recording medium
JPH0973626A (en) 1995-09-04 1997-03-18 Sony Corp Magnetic recording medium
US5835314A (en) 1996-04-17 1998-11-10 Massachusetts Institute Of Technology Tunnel junction device for storage and switching of signals
US6254964B1 (en) 1997-02-10 2001-07-03 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6099957A (en) 1997-03-04 2000-08-08 Toda Kogyo Corporation Plate-like ferrite particles with magnetoplumbite structure and magnetic card using the same
US20010038928A1 (en) 1997-03-14 2001-11-08 Junichi Nakamigawa Data recording method
JPH11110743A (en) 1997-10-06 1999-04-23 Kao Corp Magnetic recording medium and its manufacture
US7255908B2 (en) 1997-10-22 2007-08-14 Quantum Corporation Magnetic tape
JPH11175949A (en) 1997-12-11 1999-07-02 Kao Corp Magnetic recording medium
US6228461B1 (en) 1998-02-27 2001-05-08 Fuji Photo Film Co., Ltd. Magnetic recording tape
JPH11273051A (en) 1998-03-23 1999-10-08 Kao Corp Magnetic recording medium
US7153366B1 (en) 1998-03-24 2006-12-26 Quantum Corporation Systems and method for forming a servo pattern on a magnetic tape
US6207252B1 (en) 1998-06-24 2001-03-27 Verbatim Corporation Magnetic recording medium and production method thereof
US6268043B1 (en) 1999-02-23 2001-07-31 Sony Corporation Magnetic recording medium
JP2000251240A (en) 1999-02-23 2000-09-14 Sony Corp Magnetic recording medium
US7029726B1 (en) 1999-07-27 2006-04-18 Quantum Corporation Method for forming a servo pattern on a magnetic tape
US20030059649A1 (en) 1999-08-17 2003-03-27 Quantum Corporation, A California Corporation Multiple-layer backcoating for magnetic tape
US6183606B1 (en) 1999-11-03 2001-02-06 National Science Council Of Republic Of China Manufacture method of high coercivity FePt-Si3N4 granular composite thin films
US6496328B1 (en) 1999-12-30 2002-12-17 Advanced Research Corporation Low inductance, ferrite sub-gap substrate structure for surface film magnetic recording heads
US6649256B1 (en) 2000-01-24 2003-11-18 General Electric Company Article including particles oriented generally along an article surface and method for making
DE10146429A1 (en) 2000-09-20 2002-03-28 Fuji Photo Film Co Ltd Magnetic recording medium used for audio tape, video tape, computer tape and discs in both analogue and digital systems comprises a non-magnetic carrier and a magnetic layer containing ferromagnetic metal particles and a binder resin
US20020072472A1 (en) 2000-10-10 2002-06-13 Hiromi Furuya Reversible thermosensitive recording medium and image forming and erasing method using the recording medium
US6579826B2 (en) 2000-10-10 2003-06-17 Ricoh Company Limited Reversible thermosensitive recording medium and image forming and erasing method using the recording medium
US6921592B2 (en) 2000-10-31 2005-07-26 Hitachi Maxell, Ltd. Magnetic recording medium comprising a magnetic layer having specific thickness, surface roughness and friction coefficient
US20020122339A1 (en) 2000-11-21 2002-09-05 Hiroaki Takano Magnetic recording medium
JP2002157726A (en) 2000-11-21 2002-05-31 Fuji Photo Film Co Ltd Magnetic recording medium
US6686022B2 (en) 2000-11-21 2004-02-03 Fuji Photo Film Co., Ltd. Magnetic recording medium
US7803471B1 (en) 2000-12-28 2010-09-28 Hitachi Maxell, Ltd. Magnetic tape, its cleaning method, and optical servotrack forming/cleaning apparatus
JP2002298332A (en) 2001-03-30 2002-10-11 Tdk Corp Magnetic recording medium
JP2002329605A (en) 2001-05-02 2002-11-15 Sony Corp Magnetic powder and magnetic recording medium
US20030091866A1 (en) 2001-06-01 2003-05-15 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2002367318A (en) 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Magnetic disk device
JP2002367142A (en) 2001-06-08 2002-12-20 Sony Corp Magnetic recording medium
US20030128453A1 (en) 2001-08-20 2003-07-10 Fuji Photo Film Co., Ltd. Magnetic recording and reproducing method and magnetic recording medium employed for the same
US6791803B2 (en) 2001-08-20 2004-09-14 Fuji Photo Film Co., Ltd. Magnetic recording and reproducing method and magnetic recording medium employed for the same
US6770359B2 (en) 2001-09-03 2004-08-03 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20030124386A1 (en) 2001-09-03 2003-07-03 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2003077116A (en) 2001-09-03 2003-03-14 Fuji Photo Film Co Ltd Magnetic recording medium
US6950269B1 (en) 2002-01-18 2005-09-27 Imation Corp. System and methods for using servopositioning signals
US20030170498A1 (en) 2002-03-11 2003-09-11 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20040053074A1 (en) 2002-03-27 2004-03-18 Nobuhiro Jingu Magnetic recording medium and magnetic recording/reproducing system
JP2003323710A (en) 2002-04-30 2003-11-14 Tdk Corp Magnetic recording medium
US20040018388A1 (en) 2002-04-30 2004-01-29 Tdk Corporation Magnetic recording medium
US20030228492A1 (en) 2002-05-30 2003-12-11 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2004005793A (en) 2002-05-30 2004-01-08 Fuji Photo Film Co Ltd Magnetic recording medium
US20030228493A1 (en) 2002-05-30 2003-12-11 Fuji Photo Film Co., Ltd. Magnetic recording tape
JP2004005820A (en) 2002-05-31 2004-01-08 Fuji Photo Film Co Ltd Magnetic recording medium
US20050153170A1 (en) 2002-07-18 2005-07-14 Hitachi Maxell, Ltd. Magnetic tape and magnetic tape cartridge
JP2004103186A (en) 2002-09-13 2004-04-02 Fuji Photo Film Co Ltd Magnetic recording medium
US6835451B2 (en) 2002-09-13 2004-12-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20040072025A1 (en) 2002-09-20 2004-04-15 Mikio Kishimoto Magnetic powder, method for producing the same and magnetic recording medium comprising the same
JP2004114492A (en) 2002-09-26 2004-04-15 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film
JP2004133997A (en) 2002-10-09 2004-04-30 Hitachi Maxell Ltd Magnetic tape
JP2004185676A (en) 2002-11-29 2004-07-02 Toshiba Corp Tunnel magneto-resistance effect head and magnetic disk device
US20040218304A1 (en) 2002-12-19 2004-11-04 Turguy Goker Method and apparatus for written-in tracking error compensation for linear tape drives
US7014927B2 (en) 2002-12-27 2006-03-21 Fuji Photo Film Co., Ltd. Magnetic recording medium
US7515383B2 (en) 2003-01-24 2009-04-07 Fujifilm Corporation Magnetic recording medium
US20040213948A1 (en) 2003-01-24 2004-10-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20040197605A1 (en) 2003-03-31 2004-10-07 Tdk Corporation Magnetic recording medium
US6939606B2 (en) 2003-03-31 2005-09-06 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20040265643A1 (en) 2003-06-23 2004-12-30 Fuji Photo Film Co., Ltd. Magnetic recording medium and magnetic recording and reproducing methods
JP2005038579A (en) 2003-06-30 2005-02-10 Fuji Photo Film Co Ltd Magnetic recording medium
US20050057838A1 (en) 2003-09-11 2005-03-17 Fuji Photo Film Co., Ltd. Magnetic tape and maufacturing method thereof, and servo writer and servo write method
JP2005092967A (en) 2003-09-16 2005-04-07 Sony Corp Magnetic head
US6994925B2 (en) 2003-10-22 2006-02-07 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20050196645A1 (en) 2004-02-10 2005-09-08 Hitachi Maxell, Ltd. Magnetic tape
US7511907B2 (en) 2004-02-17 2009-03-31 Advanced Research Corporation Stepped time based servo pattern and head
JP2005243063A (en) 2004-02-24 2005-09-08 Fuji Photo Film Co Ltd Magnetic recording medium
JP2005243162A (en) 2004-02-27 2005-09-08 Fuji Photo Film Co Ltd Magnetic recording medium
US20050260456A1 (en) 2004-05-19 2005-11-24 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20050260459A1 (en) 2004-05-19 2005-11-24 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20050264935A1 (en) 2004-05-28 2005-12-01 Fuji Photo Film Co., Ltd. Information recording tape
US20070020489A1 (en) 2004-06-21 2007-01-25 Fuji Photo Film Co., Ltd. Hexagonal ferrite magnetic powder, method for producing the same and magnetic recording medium
US20060008681A1 (en) 2004-07-08 2006-01-12 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20060035114A1 (en) 2004-08-12 2006-02-16 Hitachi Maxell, Ltd. Magnetic recording medium
US20080311308A1 (en) 2004-08-13 2008-12-18 Hae-Wook Lee Composition for Functional Coatings, Film Formed Therefrom and Method for Forming the Composition and the Film
US20060056095A1 (en) 2004-09-10 2006-03-16 Fuji Photo Film Co., Ltd. Servo writer, and write and inspection method of servo signal
US20060068232A1 (en) 2004-09-24 2006-03-30 Hitachi Maxell, Ltd. Magnetic tape
JP2006092672A (en) 2004-09-24 2006-04-06 Hitachi Maxell Ltd Magnetic tape
US20060187589A1 (en) 2005-02-22 2006-08-24 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2006286114A (en) 2005-04-01 2006-10-19 Fuji Photo Film Co Ltd Magnetic recording medium
US20060232883A1 (en) 2005-04-19 2006-10-19 Biskeborn Robert G Filled-gap magnetic recording head and method of making
US20070009769A1 (en) 2005-07-08 2007-01-11 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20070020490A1 (en) 2005-07-20 2007-01-25 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2007287310A (en) 2006-03-22 2007-11-01 Fujifilm Corp Surface treatment method and apparatus for tape
US20070224456A1 (en) 2006-03-27 2007-09-27 Fujifilm Corporation Magnetic recording medium and method for production thereof
US20080057351A1 (en) 2006-03-29 2008-03-06 Fujifilm Corporation Magnetic recording medium
US20070230054A1 (en) 2006-03-29 2007-10-04 Fujifilm Corporation Magnetic tape
JP2007265555A (en) 2006-03-29 2007-10-11 Tdk Corp Thin film magnetic head and magnetic medium device
US20070231606A1 (en) 2006-03-31 2007-10-04 Fujifilm Corporation Magnetic recording medium and process for producing the same
JP2007273039A (en) 2006-03-31 2007-10-18 Fujifilm Corp Magnetic recording medium
JP2007305197A (en) 2006-04-10 2007-11-22 Fujifilm Corp Magnetic recording medium
JP2007297427A (en) 2006-04-27 2007-11-15 Dainippon Printing Co Ltd Adhesive film and manufacturing method
JP2008047276A (en) 2006-08-14 2008-02-28 Internatl Business Mach Corp <Ibm> Magnetic head, tape drive system, and magnetic recording tape (high areal density tape/format, and head)
US20080144211A1 (en) 2006-12-18 2008-06-19 Weber Mark P Servo techniques that mitigate an effect of read and write velocity variations on position error signal calculations
US20080152956A1 (en) 2006-12-22 2008-06-26 Fujifilm Corporation Magnetic recording medium and radiation curing composition
US20080174897A1 (en) 2007-01-18 2008-07-24 Allen Keith Bates Apparatus, system, and method for timing based servo tape formating
JP2008243317A (en) 2007-03-28 2008-10-09 Fujifilm Corp Magnetic recording medium and its manufacturing method
US20080297950A1 (en) 2007-05-31 2008-12-04 Fujifilm Corporation Magnetic signal reproduction system and magnetic signal reproduction method
US20090027812A1 (en) 2007-07-27 2009-01-29 Fujifilm Corporation Magnetic signal reproduction system and magnetic signal reproduction method
US20090087689A1 (en) 2007-09-28 2009-04-02 Hiroaki Doushita Magnetic recording medium
US20090161249A1 (en) 2007-12-19 2009-06-25 Sony Corporation Magnetic tape, magnetic tape apparatus, servo pattern recording apparatus, magnetic tape producing method, and magnetic tape recording method
US20090162701A1 (en) 2007-12-21 2009-06-25 Imation Corp. Magnetic recording tape having large particles in magnetic recording layer
US20110003241A1 (en) 2008-01-31 2011-01-06 Fujifilm Corporation Resin, pigment dispersion, colored curable composition, color filter produced using the same, and method for producing the same
US20100000966A1 (en) 2008-01-31 2010-01-07 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
JP2009245515A (en) 2008-03-31 2009-10-22 Fujifilm Corp Magnetic recording medium, surface modifier for magnetic powder, and magnetic coating material including same
US8318242B2 (en) 2008-05-05 2012-11-27 International Business Machines Corporation Systems and methods for protecting a sensitive device from corrosion
US9159341B2 (en) 2008-05-05 2015-10-13 International Business Machines Corporation Systems and methods for protecting a sensitive device from corrosion
US9324343B2 (en) 2008-05-05 2016-04-26 International Business Machines Corporation Systems and methods for protecting a sensitive device from corrosion
US7656602B2 (en) 2008-05-05 2010-02-02 International Business Machines Corporation Systems and methods for protecting a sensitive device from corrosion
JP2009283082A (en) 2008-05-23 2009-12-03 Hitachi Maxell Ltd Magnetic recording medium
US9495985B2 (en) 2008-06-18 2016-11-15 International Business Machines Corporation Magnetic tape media having servo patterns
JP2010036350A (en) 2008-07-31 2010-02-18 Toppan Printing Co Ltd Gas-barrier laminate
US20100035088A1 (en) 2008-08-05 2010-02-11 Hitachi Maxell, Ltd. Magnetic tape and method for producing the same
US20100035086A1 (en) 2008-08-05 2010-02-11 Hitachi Maxell. Ltd. Iron nitride magnetic powder and magnetic recording medium comprising the same
JP2010049731A (en) 2008-08-20 2010-03-04 Tdk Corp Magnetic recording medium and method of manufacturing the same
US20100053810A1 (en) 2008-09-04 2010-03-04 Robert Glenn Biskeborn Magnetic head
US20100073816A1 (en) 2008-09-25 2010-03-25 Fujifilm Corporation Magnetic head and method of manufacturing the same, linear tape drive apparatus, and magnetic recording and reproduction method
US20100081011A1 (en) 2008-09-29 2010-04-01 Fujifilm Corporation Magnetic recording medium
US20100134929A1 (en) 2008-12-03 2010-06-03 Tdk Corporation Multi-Channel Thin-Film Magnetic Head And Magnetic Tape Drive Apparatus With The Multi-Channel Thin-Film Magnetic Head
US20100227201A1 (en) 2009-03-03 2010-09-09 Hitachi Maxell, Ltd. Magnetic recording medium
US7839599B2 (en) 2009-03-09 2010-11-23 International Business Machines Corporation Combining information from parallel servo channels
US8000057B2 (en) 2009-03-09 2011-08-16 International Business Machines Corporation Combining information from parallel servo channels
US20100246073A1 (en) 2009-03-27 2010-09-30 Fujifilm Corporation Magnetic recording medium, magnetic signal reproduction system and magnetic signal reproduction method
JP2011048878A (en) 2009-08-27 2011-03-10 Fujifilm Corp Magnetic recording medium and method for manufacturing the same
US20110052908A1 (en) 2009-08-27 2011-03-03 Fujifilm Corporation Magnetic recording medium and method of manufacturing the same
US8535817B2 (en) * 2009-08-27 2013-09-17 Fujifilm Corporation Magnetic recording medium and method of manufacturing the same
US20110051280A1 (en) 2009-08-31 2011-03-03 International Business Machines Corporation Overhead calculation in writing synchronized data to magnetic tape
US20110077902A1 (en) 2009-09-28 2011-03-31 International Business Machines Corporation servo control circuit for detecting analytes via nanoparticle-labeled substances with electromagnetic read-write heads
US20110151281A1 (en) 2009-12-18 2011-06-23 Hitachi Maxell, Ltd. Magnetic recording media
JP2011138566A (en) 2009-12-25 2011-07-14 Fujifilm Corp Method and apparatus for manufacturing magnetic recording medium
US8524108B2 (en) 2010-01-21 2013-09-03 Fujifilm Corporation Magnetic particle and method of preparing the same, and magnetic recording medium
JP2011187142A (en) 2010-03-11 2011-09-22 Hitachi Maxell Ltd Magnetic head and magnetic tape device
US9105294B2 (en) 2010-03-16 2015-08-11 Sony Corporation Composite magnetic recording media
JP2011210288A (en) 2010-03-26 2011-10-20 Fujifilm Corp Device and method for manufacturing magnetic recording medium, and magnetic recording medium
US20140011055A1 (en) 2010-03-31 2014-01-09 Fujifilm Corporation Hexagonal ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium
US20110244272A1 (en) 2010-03-31 2011-10-06 Fujifilm Corporation Hexagonal ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium
JP2011225417A (en) 2010-03-31 2011-11-10 Fujifilm Corp Hexagonal ferrite magnetic particle, method of manufacturing the same, magnetic powder for magnetic recording medium, and magnetic recording medium
JP2012038367A (en) 2010-08-04 2012-02-23 Toda Kogyo Corp Hexagonal ferrite particle powder and magnetic recording medium
US20160180875A1 (en) 2010-08-17 2016-06-23 Hitachi Maxell, Ltd. Magnetic recording medium
US9311946B2 (en) 2010-08-17 2016-04-12 Hitachi Maxell, Ltd. Magnetic recording medium
JP2012043495A (en) 2010-08-17 2012-03-01 Hitachi Maxell Ltd Magnetic recording medium
US20120045664A1 (en) 2010-08-17 2012-02-23 Kenji Tanaka Magnetic recording medium
US20190259416A1 (en) 2010-12-20 2019-08-22 Fujifilm Corporation Magnetic recording medium
US20120152891A1 (en) 2010-12-20 2012-06-21 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing a magnetic tape head using a tmr sensor
US20120177951A1 (en) 2011-01-06 2012-07-12 Fujifilm Corporation Hexagonal barium ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium
US20120183811A1 (en) 2011-01-17 2012-07-19 Fujifilm Corporation Magnetic recording medium
US20120196156A1 (en) 2011-01-27 2012-08-02 Fujifilm Corporation Magnetic tape
JP2012203955A (en) 2011-03-25 2012-10-22 Fujifilm Corp Magnetic tape, manufacturing method thereof, and magnetic recorder
US8681451B2 (en) 2011-03-25 2014-03-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same, and magnetic recording device
US20120243120A1 (en) 2011-03-25 2012-09-27 Fujifilm Corporation Magnetic tape and method of manufacturing the same, and magnetic recording device
US20120244387A1 (en) 2011-03-25 2012-09-27 Fujifilm Corporation Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium and method of manufacturing the same
US20120251845A1 (en) 2011-03-31 2012-10-04 Seagate Technology Llc Exchange coupled magnetic elements
JP2013025853A (en) 2011-07-25 2013-02-04 Fujifilm Corp Magnetic tape and magnetic recorder
US20130029183A1 (en) 2011-07-29 2013-01-31 Fujifilm Corporation Carbon black composition and usage thereof
JP2013077360A (en) 2011-09-30 2013-04-25 Fujifilm Corp Magnetic recording medium
US20130084470A1 (en) 2011-09-30 2013-04-04 Fujifilm Corporation Magnetic recording medium
US8576510B2 (en) 2011-10-06 2013-11-05 International Business Machines Corporation Robust metric computation of longitudinal position (LPOS) data symbol detection
US20130088794A1 (en) 2011-10-06 2013-04-11 International Business Machines Corporation Robust metric computation of longitudinal position (lpos) data symbol detection
GB2495356A (en) 2011-10-06 2013-04-10 Ibm Robust metric computation of longitudinal position (LPOS) data symbol detection
JP2013164889A (en) 2012-02-13 2013-08-22 Hitachi Maxell Ltd Magnetic recording media
US20130260179A1 (en) 2012-03-30 2013-10-03 Fujifilm Corporation Magnetic recording medium and method of manufacturing the same
US20130256584A1 (en) 2012-03-30 2013-10-03 Fujifilm Corporation Hexagonal strontium ferrite magnetic powder and method of manufacturing the same, and magnetic recording medium and method of manufacturing the same
US20130279040A1 (en) 2012-04-24 2013-10-24 International Business Machines Corporation Combined soft detection/soft decoding in tape drive storage channels
US20130286510A1 (en) 2012-04-26 2013-10-31 Imation Corp. Systems and methods for processing magnetic media
JP2014015453A (en) 2012-06-15 2014-01-30 Rohto Pharmaceut Co Ltd Ophthalmic composition for soft contact lens
US20140130067A1 (en) 2012-11-07 2014-05-08 Oracle International Corporation Rotary Head Data Storage and Retrieval System and Method with Tape Medium Having Transverse Primary Data Tracks and Longitudinal Secondary Data Track
US20140139944A1 (en) 2012-11-16 2014-05-22 Imation Corp. Information storage using servo patterns
JP2016502224A (en) 2013-01-31 2016-01-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Magnetic tape processing
US20150302879A1 (en) 2013-01-31 2015-10-22 Hewlett-Packard Development Company, L.P. Magnetic tape processing
US9530444B2 (en) 2013-03-15 2016-12-27 Fujifilm Corporation Magnetic recording medium
JP2014179149A (en) 2013-03-15 2014-09-25 Fujifilm Corp Magnetic recording medium and manufacturing method of the same
US20140272474A1 (en) 2013-03-15 2014-09-18 Fujifilm Corporation Magnetic recording medium
US20140295214A1 (en) 2013-03-26 2014-10-02 Fujifilm Corporation Hexagonal ferrite magnetic particles, magnetic recording powder, and magnetic recording medium
US20160061447A1 (en) 2013-04-27 2016-03-03 Kyocera Corporation Ceramic heater
US20140342189A1 (en) 2013-05-17 2014-11-20 Sony Corporation Magnetic recording medium and method of producing the same
US9704425B2 (en) 2013-05-31 2017-07-11 Boe Technology Group Co., Ltd. Gamma curve adjustment method and gamma curve adjustment apparatus
US20140366990A1 (en) 2013-06-17 2014-12-18 National Tsing Hua University Method for making an ordered magnetic alloy
US20140374645A1 (en) 2013-06-24 2014-12-25 Fujifilm Corporation Magnetic recording medium and coating composition for magnetic recording medium
US9748026B2 (en) 2013-06-28 2017-08-29 Fujifilm Corporation Hexagonal ferrite magnetic powder for magnetic recording, method for producing hexagonal ferrite magnetic particles, and magnetic recording medium
US20150043101A1 (en) 2013-08-12 2015-02-12 International Business Machines Corporation High density timing based servo format for use with tilted transducer arrays
JP2015039801A (en) 2013-08-21 2015-03-02 帝人デュポンフィルム株式会社 Laminate polyester film and coat-type magnetic recording tape using the same
US20150098149A1 (en) 2013-10-09 2015-04-09 International Business Machines Corporation Locating data stored on a magnetic medium
US20150111066A1 (en) 2013-10-22 2015-04-23 Sony Corporation Magnetic recording medium
US20150123026A1 (en) 2013-11-01 2015-05-07 Dowa Electronics Materials Co., Ltd. Magnetic powder for magnetic recording medium
JP2015111484A (en) 2013-11-01 2015-06-18 Dowaエレクトロニクス株式会社 Magnetic powder for magnetic recording media
US9542967B2 (en) 2014-01-07 2017-01-10 Sony Corporation Magnetic recording medium
US20170058227A1 (en) 2014-05-29 2017-03-02 Dexerials Corporation Ionic liquid, lubricant, and magnetic recording medium
US20170130156A1 (en) 2014-06-19 2017-05-11 Dexerials Corporation Ionic liquid, lubricant, and magnetic recording medium
US9601146B2 (en) 2014-06-30 2017-03-21 Fujifilm Corporation Magnetic tape
JP2016015183A (en) 2014-06-30 2016-01-28 富士フイルム株式会社 Magnetic tape
US20150380036A1 (en) 2014-06-30 2015-12-31 Fujifilm Corporation Magnetic tape
JP2016051493A (en) 2014-08-29 2016-04-11 富士フイルム株式会社 Magnetic recording medium
US20160064025A1 (en) 2014-08-29 2016-03-03 Fujifilm Corporation Magnetic recording medium
US20160092315A1 (en) 2014-09-29 2016-03-31 International Business Machines Corporation File system for rolling back data on tape
US10026430B2 (en) 2014-09-29 2018-07-17 Fujifilm Corporation Magnetic tape
US20160093322A1 (en) 2014-09-29 2016-03-31 Fujifilm Corporation Magnetic tape
JP2016071912A (en) 2014-09-29 2016-05-09 富士フイルム株式会社 Magnetic tape
US9959894B2 (en) 2014-09-30 2018-05-01 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20160093323A1 (en) 2014-09-30 2016-03-31 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20160093321A1 (en) 2014-09-30 2016-03-31 Fujifilm Corporation Magnetic recording medium and coating composition for magnetic recording medium
JP2016071926A (en) 2014-09-30 2016-05-09 富士フイルム株式会社 Magnetic recording medium and coating composition for magnetic recording medium
US20170249966A1 (en) 2014-11-18 2017-08-31 Sony Corporation Magnetic recording medium
JP2016126817A (en) 2014-12-26 2016-07-11 富士フイルム株式会社 Magnetic tape and production method thereof
US20160189740A1 (en) 2014-12-26 2016-06-30 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20160189739A1 (en) 2014-12-26 2016-06-30 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US9721605B2 (en) 2014-12-26 2017-08-01 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US9711174B2 (en) 2014-12-26 2017-07-18 Fujifilm Corporation Magnetic tape and method of manufacturing the same
JP2016139451A (en) 2015-01-22 2016-08-04 Dowaエレクトロニクス株式会社 Magnetic powder for magnetic recording medium
US20160247530A1 (en) 2015-02-25 2016-08-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US9704527B2 (en) 2015-02-25 2017-07-11 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20160260449A1 (en) 2015-03-06 2016-09-08 International Business Machines Corporation Measurement and correction of magnetic writer offset error
US20160276076A1 (en) 2015-03-18 2016-09-22 Fujifilm Corporation Magnetic tape
JP2016177851A (en) 2015-03-18 2016-10-06 富士フイルム株式会社 Magnetic tape
US9704525B2 (en) 2015-03-18 2017-07-11 Fujifilm Corporation Magnetic tape
US20180137887A1 (en) 2015-05-18 2018-05-17 Sony Corporation Magnetic recording medium
US10543488B2 (en) * 2015-06-12 2020-01-28 The Procter & Gamble Company Discretizer and method of using same
US9721607B2 (en) 2015-06-30 2017-08-01 Fujifilm Corporation Magnetic recording medium and method of manufacturing the same
US9721606B2 (en) 2015-07-28 2017-08-01 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170032812A1 (en) 2015-07-28 2017-02-02 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170053670A1 (en) 2015-08-21 2017-02-23 Fujifilm Corporation Magnetic tape and method of manufacturing the same
JP2017041291A (en) 2015-08-21 2017-02-23 富士フイルム株式会社 Magnetic tape and method for manufacturing the same
US20180301165A1 (en) * 2015-08-21 2018-10-18 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US10026433B2 (en) * 2015-08-21 2018-07-17 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer and method of manufacturing the same
US10026435B2 (en) 2015-08-21 2018-07-17 Fujifilm Corporation Magnetic tape having controlled surface properties of the backcoat layer and method of manufacturing the same
US20170053669A1 (en) 2015-08-21 2017-02-23 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170053671A1 (en) 2015-08-21 2017-02-23 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US10026434B2 (en) * 2015-08-21 2018-07-17 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer and method of manufacturing the same
US20170092315A1 (en) 2015-09-30 2017-03-30 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US9564161B1 (en) 2015-11-10 2017-02-07 International Business Machines Corporation Method for controlling the lateral position of a tape head of a magnetic tape drive
US20170178676A1 (en) 2015-12-16 2017-06-22 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, magnetic recording and reproducing device, and method of manufacturing magnetic tape
US20170178675A1 (en) 2015-12-16 2017-06-22 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US9984710B2 (en) * 2015-12-16 2018-05-29 Fujifilm Corporation Magnetic tape having controlled surface properties of the backcoat and magnetic layer and method of manufacturing the same
US20170178677A1 (en) 2015-12-16 2017-06-22 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic recording and reproducing device
US20170186456A1 (en) 2015-12-25 2017-06-29 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US9773519B2 (en) 2015-12-25 2017-09-26 Fujifilm Corporation Magnetic tape with specific servo pattern edge shape and magnetic tape device using same
US20170186460A1 (en) 2015-12-25 2017-06-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190035424A1 (en) 2016-01-15 2019-01-31 Sony Corporation Magnetic recording medium
US20170221513A1 (en) 2016-02-01 2017-08-03 Hitachi Maxell, Ltd. Magnetic recording medium
US20170221516A1 (en) 2016-02-03 2017-08-03 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170221517A1 (en) 2016-02-03 2017-08-03 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US20170249965A1 (en) 2016-02-29 2017-08-31 Fujifilm Corporation Magnetic tape
US20170249964A1 (en) 2016-02-29 2017-08-31 Fujifilm Corporation Magnetic tape
US20170249963A1 (en) 2016-02-29 2017-08-31 Fujifilm Corporation Magnetic tape
US9779772B1 (en) 2016-03-22 2017-10-03 Fujifilm Corporation Magnetic tape and magnetic tape device
US9837116B2 (en) 2016-03-23 2017-12-05 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170287517A1 (en) 2016-03-31 2017-10-05 Fujifilm Corporation Hexagonal ferrite powder and magnetic recording medium
US20170358318A1 (en) 2016-06-10 2017-12-14 Fujifilm Corporation Magnetic tape and magnetic tape device
US20180350400A1 (en) 2016-06-13 2018-12-06 Fujifilm Corporation Magnetic tape and magnetic tape device
US10074393B2 (en) 2016-06-13 2018-09-11 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190295590A1 (en) 2016-06-13 2019-09-26 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170355022A1 (en) 2016-06-13 2017-12-14 Fujifilm Corporation Magnetic tape and magnetic tape device
US10515660B2 (en) * 2016-06-22 2019-12-24 Fujifilm Corporation Magnetic tape having controlled surface properties of the back coating layer and magnetic layer
US20170372738A1 (en) 2016-06-22 2017-12-28 Fujifilm Corporation Magnetic tape
US20170372737A1 (en) 2016-06-22 2017-12-28 Fujifilm Corporation Magnetic tape
US20170372742A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372739A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape
US20170372744A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372727A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372740A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372743A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372726A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US10522171B2 (en) * 2016-06-23 2019-12-31 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer
US20170372736A1 (en) 2016-06-23 2017-12-28 Fujifilm Corporation Magnetic tape and magnetic tape device
US20170372741A1 (en) 2016-06-24 2017-12-28 Fujifilm Corporation Magnetic tape
US20180061447A1 (en) 2016-08-31 2018-03-01 Fujifilm Corporation Magnetic tape
US20180061446A1 (en) 2016-08-31 2018-03-01 Fujifilm Corporation Magnetic tape
US20180082710A1 (en) * 2016-09-16 2018-03-22 Fujifilm Corporation Magnetic recording medium and method for manufacturing same
US9837104B1 (en) 2016-10-31 2017-12-05 International Business Machines Corporation Tape head having sensors proximate to an edge
US20180182426A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US9984716B1 (en) 2016-12-27 2018-05-29 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180182428A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180182427A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10403320B2 (en) * 2016-12-27 2019-09-03 Fujifilm Corporation Magnetic tape device with TMR head and specific logarithmic decrement and magnetic reproducing method
US10008230B1 (en) 2016-12-27 2018-06-26 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20190130936A1 (en) 2016-12-27 2019-05-02 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180182430A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180182417A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180182429A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US9984712B1 (en) 2016-12-27 2018-05-29 Fujifilm Corporation Magnetic tape device and head tracking servo method
US9978414B1 (en) 2016-12-27 2018-05-22 Fujifilm Corporation Magnetic tape device and head tracking servo method
US9972351B1 (en) * 2016-12-27 2018-05-15 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180182425A1 (en) 2016-12-27 2018-06-28 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180182422A1 (en) 2016-12-28 2018-06-28 Maxell Holdings, Ltd. Magnetic recording medium
US10460756B2 (en) * 2017-02-20 2019-10-29 Fujifilm Corporation Magnetic tape device and head tracking servo method employing TMR element servo head and magnetic tape with characterized magnetic layer
US10546602B2 (en) * 2017-02-20 2020-01-28 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and tape with characterized XRD intensity ratio
US10062403B1 (en) * 2017-02-20 2018-08-28 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180240490A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240493A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US10403314B2 (en) * 2017-02-20 2019-09-03 Fujifilm Corporation Magnetic tape device employing TMR head and magnetic tape with characterized magnetic layer, and head tracking servo method
US20180240481A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180240479A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180240494A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US10431250B2 (en) * 2017-02-20 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438624B2 (en) * 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438625B2 (en) * 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US20180240475A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240491A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240495A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US10482913B2 (en) * 2017-02-20 2019-11-19 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US20180240489A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10497384B2 (en) * 2017-02-20 2019-12-03 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and magnetic tape with characterized magnetic layer
US20180240492A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240476A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and magnetic reproducting method
US20180358042A1 (en) 2017-02-20 2018-12-13 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180240488A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape
US20180240478A1 (en) 2017-02-20 2018-08-23 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10573338B2 (en) * 2017-02-20 2020-02-25 Fujifilm Corporation Magnetic tape device and magnetic reproducting method employing TMR head and tape with characterized magnetic layer
US20180286439A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20190096437A1 (en) 2017-03-29 2019-03-28 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10170144B2 (en) 2017-03-29 2019-01-01 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403317B2 (en) * 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10515661B2 (en) * 2017-03-29 2019-12-24 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286444A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US10134433B2 (en) 2017-03-29 2018-11-20 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US20180286442A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180286443A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape
US10410665B2 (en) * 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180286447A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20190051325A1 (en) 2017-03-29 2019-02-14 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US20190088278A1 (en) 2017-03-29 2019-03-21 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10546605B2 (en) * 2017-03-29 2020-01-28 Fujifilm Corporation Head tracking servo method for magnetic tape recording device
US20180286451A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286446A1 (en) * 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286448A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180286449A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US20180286452A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286450A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10410666B2 (en) * 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10373639B2 (en) * 2017-03-29 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US20180286453A1 (en) 2017-03-29 2018-10-04 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10453913B2 (en) * 2017-04-26 2019-10-22 Samsung Electronics Co., Ltd. Capacitor, semiconductor device and methods of manufacturing the capacitor and the semiconductor device
US20180350398A1 (en) 2017-06-05 2018-12-06 Maxell Holdings, Ltd. High recording density magnetic recording medium and recording/reproduction mechanism for the same
US10366721B2 (en) * 2017-06-23 2019-07-30 Fujifilm Corporation Head positioning of timing-based servo system for magnetic tape recording device
US20180374507A1 (en) 2017-06-23 2018-12-27 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190027174A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape
US20190027179A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic recording medium
US20190027177A1 (en) 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190027176A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic recording medium
US20190027175A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape
US20190027167A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic recording medium
US20190027181A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape
US10403316B2 (en) * 2017-07-19 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer with servo pattern and magnetic tape device
US20190027171A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190027178A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic recording medium
US20190027172A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape and magnetic tape device
US20190027180A1 (en) * 2017-07-19 2019-01-24 Fujifilm Corporation Magnetic tape
US20190103131A1 (en) * 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US10515657B2 (en) * 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US20190103133A1 (en) * 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US20190103135A1 (en) * 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US20190103130A1 (en) 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic tape and magnetic recording and reproducing device
US20190103134A1 (en) * 2017-09-29 2019-04-04 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US20190295587A1 (en) * 2018-03-23 2019-09-26 Fujifilm Corporation Magnetic tape and magnetic recording and reproducing device
US20190304496A1 (en) 2018-03-29 2019-10-03 Fujifilm Corporation Magnetic recording medium, manufacturing method of particles of epsilon type iron oxide-based compound, and manufacturing method of magnetic recording medium
US20200005827A1 (en) 2018-06-29 2020-01-02 Fujifilm Corporation Magnetic tape apparatus
US20200005822A1 (en) * 2018-06-29 2020-01-02 Fujifilm Corporation Magnetic tape apparatus
US20200005814A1 (en) 2018-06-29 2020-01-02 Fujifilm Corporation Magnetic tape apparatus
US20200005818A1 (en) * 2018-06-29 2020-01-02 Fujifilm Corporation Magnetic tape apparatus
US10643647B2 (en) * 2018-06-29 2020-05-05 Fujifilm Corporation Magnetic tape apparatus
US10643646B2 (en) * 2018-06-29 2020-05-05 Fujifilm Corporation Magnetic tape apparatus
US20200035262A1 (en) 2018-07-27 2020-01-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus

Non-Patent Citations (380)

* Cited by examiner, † Cited by third party
Title
"Introduction to TMR Magnetic Sensors", Anonymous, Mar. 12, 2015, MR Sensor Technology, pp. 1-5 (Year: 2015).
Advisory Action dated Jan. 17, 2020 in U.S. Appl. No. 15/443,094.
Advisory Action dated Jul. 5, 2018 in U.S. Appl. No. 14/838,663.
Notice of Allowance dated Apr. 16, 2019 in U.S. Appl. No. 15/625,428.
Notice of Allowance dated Apr. 25, 2017 which issued during the prosecution of U.S. Appl. No. 15/072,550.
Notice of Allowance dated Apr. 27, 2017, which issued during the prosecution of U.S. Appl. No. 15/052,115.
Notice of Allowance dated Apr. 30, 2019 in U.S. Appl. No. 15/380,309.
Notice of Allowance dated Apr. 5, 2018, which issued during the prosecution of U.S. Appl. No. 14/867,752.
Notice of Allowance dated Aug. 17, 2020 in U.S. Appl. No. 15/443,026.
Notice of Allowance dated Aug. 27, 2018 in U.S. Appl. No. 15/920,635.
Notice of Allowance dated Aug. 28, 2018 from the US Patent & Trademark Office in U.S. Appl. No. 15/422,821.
Notice of Allowance dated Aug. 3, 2020 in U.S. Appl. No. 16/038,847.
Notice of Allowance dated Aug. 3, 2020 in U.S. Appl. No. 16/038,884.
Notice of Allowance dated Aug. 30, 2017, which issued during the prosecution of U.S. Appl. No. 15/466,143.
Notice of Allowance dated Aug. 6, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,768.
Notice of Allowance dated Aug. 9, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,563.
Notice of Allowance dated Dec. 2, 2016 which issued during the prosecution of U.S. Appl. No. 14/753,227.
Notice of Allowance dated Dec. 3, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,518.
Notice of Allowance dated Dec. 4, 2018, which issued during the prosecution of U.S. Appl. No. 15/625,428.
Notice of Allowance dated Feb. 14, 2018, which issued during the prosecution of U.S. Appl. No. 14/870,618.
Notice of Allowance dated Feb. 20, 2020 in U.S. Appl. No. 15/705,531.
Notice of Allowance dated Feb. 7, 2020 in U.S. Appl. No. 16/440,161.
Notice of Allowance dated Jan. 10, 2019 in U.S. Appl. No. 15/848,173.
Notice of Allowance dated Jan. 17, 2019 in U.S. Appl. No. 15/422,944.
Notice of Allowance dated Jan. 17, 2019 in U.S. Appl. No. 15/626,720.
Notice of Allowance dated Jan. 30, 2019 in U.S. Appl. No. 15/854,409.
Notice of Allowance dated Jul. 12, 2017 which issued during the prosecution of U.S. Appl. No. 15/388,864.
Notice of Allowance dated Jul. 13, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,782.
Notice of Allowance dated Jul. 16, 2019 in U.S. Appl. No. 15/900,144.
Notice of Allowance dated Jul. 23, 2020 in U.S. Appl. No. 16/037,573.
Notice of Allowance dated Jul. 23, 2020 in U.S. Appl. No. 16/038,669.
Notice of Allowance dated Jul. 24, 2020 in U.S. Appl. No. 16/037,596.
Notice of Allowance dated Jul. 27, 2020 in U.S. Appl. No. 16/038,771.
Notice of Allowance dated Jul. 29, 2020 in U.S. Appl. No. 16/037,681.
Notice of Allowance dated Jul. 29, 2020 in U.S. Appl. No. 16/142,560.
Notice of Allowance dated Jul. 29, 2020 in U.S. Appl. No. 16/144,428.
Notice of Allowance dated Jul. 29, 2020 in U.S. Appl. No. 16/144,605.
Notice of Allowance dated Jul. 30, 2020 in U.S. Appl. No. 16/038,545.
Notice of Allowance dated Jul. 31, 2019 in U.S. Appl. No. 16/100,289.
Notice of Allowance dated Jul. 31, 2019 in U.S. Appl. No. 16/143,646.
Notice of Allowance dated Jun. 2, 2017, which issued during the prosecution of U.S. Appl. No. 15/218,190.
Notice of Allowance dated Jun. 25, 2019 in U.S. Appl. No. 15/620,916.
Notice of Allowance dated Jun. 27, 2019 in U.S. Appl. No. 15/854,439.
Notice of Allowance dated Jun. 28, 2017, which issued during the prosecution of U.S. Appl. No. 15/464,991.
Notice of Allowance dated Jun. 6, 2019 in U.S. Appl. No. 15/854,383.
Notice of Allowance dated Mar. 13, 2019 in U.S. Appl. No. 16/100,289.
Notice of Allowance dated Mar. 14, 2018 in U.S. Appl. No. 15/854,329.
Notice of Allowance dated Mar. 14, 2018, which issued during the prosecution of U.S. Appl. No. 15/854,474.
Notice of Allowance dated Mar. 16, 2018 which issued during the prosecution of U.S. Appl. No. 15/854,410.
Notice of Allowance dated Mar. 18, 2019 in U.S. Appl. No. 15/626,355.
Notice of Allowance dated Mar. 18, 2019 in U.S. Appl. No. 15/628,814.
Notice of Allowance dated Mar. 18, 2020 in U.S. Appl. No. 16/037,564.
Notice of Allowance dated Mar. 19, 2018 in U.S. Appl. No. 15/378,907.
Notice of Allowance dated Mar. 21, 2018 in U.S. Appl. No. 15/241,286.
Notice of Allowance dated Mar. 21, 2018 in U.S. Appl. No. 15/241,297.
Notice of Allowance dated Mar. 27, 2018 in U.S. Appl. No. 15/241,631.
Notice of Allowance dated Mar. 5, 2019 in U.S. Appl. No. 16/009,603.
Notice of Allowance dated May 10, 2018 which issued during the prosecution of U.S. Appl. No. 15/615,871.
Notice of Allowance dated May 13, 2019 in U.S. Appl. No. 15/900,379.
Notice of Allowance dated May 14, 2019 in U.S. Appl. No. 15/422,821.
Notice of Allowance dated May 14, 2019 in U.S. Appl. No. 15/900,164.
Notice of Allowance dated May 15, 2019 in U.S. Appl. No. 15/900,106.
Notice of Allowance dated May 15, 2019 in U.S. Appl. No. 15/900,242.
Notice of Allowance dated May 16, 2019 in U.S. Appl. No. 15/614,876.
Notice of Allowance dated May 16, 2019 in U.S. Appl. No. 15/621,464.
Notice of Allowance dated May 24, 2019 in U.S. Appl. No. 15/900,345.
Notice of Allowance dated May 24, 2019 in U.S. Appl. No. 16/143,646.
Notice of Allowance dated May 28, 2019 in U.S. Appl. No. 15/920,616.
Notice of Allowance dated May 29, 2019 in U.S. Appl. No. 15/900,160.
Notice of Allowance dated May 29, 2019 in U.S. Appl. No. 15/900,334.
Notice of Allowance dated May 30, 2019 in U.S. Appl. No. 15/900,230.
Notice of Allowance dated May 7, 2020 in U.S. Appl. No. 16/038,514.
Notice of Allowance dated May 8, 2017, which issued during the prosecution of U.S. Appl. No. 14/757,555.
Notice of Allowance dated May 8, 2017, which issued during the prosecution of U.S. Appl. No. 14/978,834.
Notice of Allowance dated Oct. 11, 2018, which issued during the prosecution of U.S. Appl. No. 15/380,336.
Notice of Allowance dated Oct. 11, 2018, which issued during the prosecution of U.S. Appl. No. 15/422,944.
Notice of Allowance dated Oct. 11, 2018, which issued during the prosecution of U.S. Appl. No. 15/624,792.
Notice of Allowance dated Oct. 11, 2018, which issued during the prosecution of U.S. Appl. No. 15/624,897.
Notice of Allowance dated Oct. 12, 2018, which issued during the prosecution of U.S. Appl. No. 15/626,832.
Notice of Allowance dated Oct. 17, 2019 in U.S. Appl. No. 15/388,911.
Notice of Allowance dated Oct. 6, 2016, which issued during the prosecution of U.S. Appl. No. 14/209,065.
Notice of Allowance dated Sep. 17, 2020 in U.S. Appl. No. 16/012,018.
Notice of Allowance dated Sep. 23, 2020 in U.S. Appl. No. 15/443,094.
Notice of Allowance dated Sep. 24, 2018, which issued during the prosecution of U.S. Appl. No. 15/854,438.
Notice of Allowance dated Sep. 4, 2018, which issued during the prosecution of U.S. Appl. No. 15/625,428.
Office Action dated Apr. 1, 2020 in U.S. Appl. No. 15/443,094.
Office Action dated Apr. 15, 2019 in U.S. Appl. No. 16/182,083.
Office Action dated Apr. 16, 2019 in U.S. Appl. No. 16/232,165.
Office Action dated Apr. 19, 2018, which issued during the prosecution of U.S. Appl. No. 15/854,438.
Office Action dated Apr. 23, 2019 in Japanese Application No. 2016-169851.
Office Action dated Apr. 23, 2019 in Japanese Application No. 2016-182230.
Office Action dated Apr. 26, 2017 which issued during the prosecution of U.S. Appl. No. 15/388,864.
Office Action dated Apr. 29, 2020 in U.S. Appl. No. 16/012,018.
Office Action dated Aug. 10, 2017, which issued during the prosecution of U.S. Appl. No. 14/870,618.
Office Action dated Aug. 15, 2016 which issued during the prosecution of U.S. Appl. No. 14/753,227.
Office Action dated Aug. 23, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/614,876.
Office Action dated Aug. 23, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/621,464.
Office Action dated Aug. 23, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/626,720.
Office Action dated Aug. 23, 2019 in U.S. Appl. No. 15/854,409.
Office Action dated Aug. 24, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/620,916.
Office Action dated Aug. 25, 2017 in U.S. Appl. No. 14/838,663.
Office Action dated Aug. 27, 2019 in Japanese Application No. 2016-254428.
Office Action dated Aug. 27, 2019 in Japanese Application No. 2016-254430.
Office Action dated Aug. 27, 2019 in Japanese Application No. 2016-254432.
Office Action dated Aug. 28, 2019 in U.S. Appl. No. 15/854,397.
Office Action dated Aug. 3, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/380,336.
Office Action dated Aug. 3, 2018 which issued during the prosecution of U.S. Appl. No. 15/388,911.
Office Action dated Aug. 6, 2019 in Japanese Application No. 2016-254421.
Office Action dated Aug. 6, 2019 in Japanese Application No. 2016-254427.
Office Action dated Dec. 10, 2019 in Japanese Application No. 2016-254428.
Office Action dated Dec. 14, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,517.
Office Action dated Dec. 17, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,515.
Office Action dated Dec. 17, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,533.
Office Action dated Dec. 17, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,538.
Office Action dated Dec. 17, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,544.
Office Action dated Dec. 17, 2019 in Japanese Application No. 2016-254430.
Office Action dated Dec. 17, 2019 in Japanese Application No. 2016-254432.
Office Action dated Dec. 17, 2019 in Japanese Application No. 2017-029507.
Office Action dated Dec. 19, 2018 in U.S. Appl. No. 15/900,345.
Office Action dated Dec. 19, 2018 in U.S. Appl. No. 15/900,379.
Office Action dated Dec. 20, 2018 in U.S. Appl. No. 15/900,106.
Office Action dated Dec. 20, 2018 in U.S. Appl. No. 15/900,242.
Office Action dated Dec. 20, 2018, which issued during the prosecution of U.S. Appl. No. 15/900,164.
Office Action dated Dec. 21, 2018 in U.S. Appl. No. 15/900,160.
Office Action dated Dec. 21, 2018 in U.S. Appl. No. 15/920,616.
Office Action dated Dec. 21, 2018, which issued during the prosecution of U.S. Appl. No. 15/900,230.
Office Action dated Dec. 24, 2019 in Japanese Application No. 2016-254434.
Office Action dated Dec. 24, 2019 in Japanese Application No. 2017-029510.
Office Action dated Dec. 25, 2018 in Japanese Application No. 2015-245144.
Office Action dated Dec. 25, 2018 in Japanese Application No. 2015-245145.
Office Action dated Dec. 25, 2018 in Japanese Application No. 2015-254192.
Office Action dated Dec. 27, 2018 in U.S. Appl. No. 15/900,334.
Office Action dated Dec. 31, 2018 in U.S. Appl. No. 16/009,603.
Office Action dated Dec. 5, 2016 from the United States Patent and Trademark Office in U.S. Appl. No. 14/978,834.
Office Action dated Dec. 6, 2016 from the United States Patent and Trademark Office in U.S. Appl. No. 14/757,555.
Office Action dated Dec. 7, 2018 in U.S. Appl. No. 15/920,592.
Office Action dated Feb. 11, 2016 in U.S. Appl. No. 14/838,663.
Office Action dated Feb. 21, 2019 in U.S. Appl. No. 15/854,383.
Office Action dated Feb. 21, 2020 in U.S. Appl. No. 16/038,514.
Office Action dated Feb. 25, 2016, which issued during the prosecution of U.S. Appl. No. 14/867,752.
Office Action dated Feb. 26, 2019 in Japanese Application No. 2016-123207.
Office Action dated Feb. 26, 2019 in U.S. Appl. No. 15/380,336.
Office Action dated Feb. 26, 2019 in U.S. Appl. No. 15/624,792.
Office Action dated Feb. 26, 2019 in U.S. Appl. No. 15/624,897.
Office Action dated Feb. 26, 2019 in U.S. Appl. No. 15/626,832.
Office Action dated Feb. 28, 2019 in U.S. Appl. No. 15/920,518.
Office Action dated Feb. 4, 2016 which issued during the prosecution of U.S. Appl. No. 14/753,227.
Office Action dated Feb. 5, 2019 in Japanese Application No. 2016-117339.
Office Action dated Feb. 5, 2019 in Japanese Application No. 2016-123205.
Office Action dated Feb. 5, 2019 in Japanese Application No. 2016-169871.
Office Action dated Feb. 5, 2019 in U.S. Appl. No. 16/038,339.
Office Action dated Feb. 7, 2019 in U.S. Appl. No. 15/621,464.
Office Action dated Jan. 10, 2019 in U.S. Appl. No. 15/899,430.
Office Action dated Jan. 27, 2015 from the Japanese Patent Office in Japanese Application No. 2013-053543.
Office action dated Jan. 28, 2020 in U.S. Appl. No. 15/442,961.
Office Action dated Jan. 29, 2019 in U.S. Appl. No. 15/614,876.
Office Action dated Jan. 30, 2019 in U.S. Appl. No. 15/620,916.
Office Action dated Jan. 31, 2018, which issued during the prosecution of U.S. Appl. No. 14/867,752.
Office Action dated Jul. 16, 2019 in Japanese Application No. 2016-124933.
Office Action dated Jul. 3, 2018, which issued during the prosecution of U.S. Appl. No. 15/920,518.
Office Action dated Jul. 6, 2015, which issued during the prosecution of U.S. Appl. No. 14/209,065.
Office Action dated Jul. 6, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/848,173.
Office Action dated Jul. 8, 2020 in U.S. Appl. No. 15/442,961.
Office Action dated Jun. 10, 2019 in U.S. Appl. No. 15/920,518.
Office Action dated Jun. 25, 2019 in Japanese Application No. 2015-245144.
Office Action dated Jun. 6, 2019 in U.S. Appl. No. 15/899,587.
Office Action dated Jun. 7, 2018 which issued during the prosecution of U.S. Appl. No. 15/380,309.
Office Action dated Jun. 9, 2017 which issued during the prosecution of U.S. Appl. No. 15/388,864.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/037,573.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/037,596.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/037,681.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/038,545.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/038,771.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/038,847.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/038,884.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/142,560.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/143,747.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/144,428.
Office Action dated Mar. 13, 2015, which issued during the prosecution of U.S. Appl. No. 14/209,065.
Office Action dated Mar. 13, 2020 in U.S. Appl. No. 16/038,669.
Office Action dated Mar. 13, 2020 in U.S. Appl. No. 16/144,605.
Office Action dated Mar. 15, 2018 in U.S. Appl. No. 14/838,663.
Office Action dated Mar. 15, 2019 in U.S. Appl. No. 15/280,195.
Office Action dated Mar. 15, 2019 in U.S. Appl. No. 15/619,012.
Office Action dated Mar. 15, 2019 in U.S. Appl. No. 15/627,696.
Office Action dated Mar. 15, 2019 in U.S. Appl. No. 15/690,906.
Office Action dated Mar. 16, 2017, which issued during the prosecution of U.S. Appl. No. 14/867,752.
Office Action dated Mar. 18, 2019 in U.S. Appl. No. 15/442,961.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-116261.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124515.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124529.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124932.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124933.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124935.
Office Action dated Mar. 19, 2019 in U.S. Appl. No. 15/443,094.
Office Action dated Mar. 21, 2019 in U.S. Appl. No. 15/900,144.
Office Action dated Mar. 21, 2019 in U.S. Appl. No. 16/160,377.
Office Action dated Mar. 24, 2016, which issued during the prosecution of U.S. Appl. No. 14/209,065.
Office Action dated Mar. 27, 2019 in U.S. Appl. No. 15/690,400.
Office Action dated Mar. 30, 2017 in U.S. Appl. No. 14/838,663.
Office Action dated Mar. 31, 2020 in U.S. Appl. No. 15/443,026.
Office Action dated Mar. 5, 2019 in U.S. Appl. No. 15/443,026.
Office Action dated Mar. 5, 2019 in U.S. Appl. No. 15/854,397.
Office Action dated Mar. 6, 2019 in U.S. Appl. No. 15/854,403.
Office Action dated Mar. 7, 2019 in U.S. Appl. No. 15/854,439.
Office Action dated May 2, 2018, which issued during the prosecution of U.S. Appl. No. 15/280,195.
Office Action dated May 23, 2019 in U.S. Appl. No. 15/388,911.
Office Action dated May 30, 2018 which issued during the prosecution of U.S. Appl. No. 15/388,911.
Office Action dated May 4, 2018 which issued during the prosecution of U.S. Appl. No. 15/422,821.
Office Action dated May 4, 2018, which issued during the prosecution of U.S. Appl. No. 15/422,944.
Office Action dated May 4, 2018, which issued during the prosecution of U.S. Appl. No. 15/625,428.
Office Action dated May 7, 2018, which issued during the prosecution of U.S. Appl. No. 15/624,792.
Office Action dated May 7, 2018, which issued during the prosecution of U.S. Appl. No. 15/624,897.
Office Action dated May 7, 2018, which issued during the prosecution of U.S. Appl. No. 15/626,832.
Office Action dated Nov. 14, 2018 in U.S. Appl. No. 16/100,289.
Office Action dated Nov. 16, 2016 which issued during the prosecution of U.S. Appl. No. 15/072,550.
Office Action dated Nov. 18, 2016 which issued during the prosecution of U.S. Appl. No. 14/753,227.
Office Action dated Nov. 19, 2018 in U.S. Appl. No. 15/900,141.
Office Action dated Nov. 26, 2019 in Japanese Application No. 2016-254421.
Office Action dated Nov. 26, 2019 in Japanese Application No. 2017-029496.
Office Action dated Nov. 26, 2019 in Japanese Application No. 2017-029502.
Office Action dated Nov. 26, 2019 in Japanese Application No. 2017-065694.
Office Action dated Nov. 28, 2018, which issued during the prosecution of U.S. Appl. No. 15/899,587.
Office Action dated Nov. 28, 2018, which issued during the prosecution of U.S. Appl. No. 15/900,080.
Office Action dated Nov. 28, 2018, which issued during the prosecution of U.S. Appl. No. 15/900,144.
Office Action dated Nov. 29, 2018, which issued during the prosecution of U.S. Appl. No. 15/380,309.
Office Action dated Nov. 29, 2018, which issued during the prosecution of U.S. Appl. No. 15/422,821.
Office Action dated Nov. 8, 2016 from the Japanese Patent Office in Japanese Application No. 2014-199022.
Office Action dated Oct. 1, 2019 in Japanese Application No. 2017-029493.
Office Action dated Oct. 1, 2019 in Japanese Application No. 2017-029494.
Office Action dated Oct. 1, 2019 in Japanese Application No. 2017-029495.
Office Action dated Oct. 10, 2019 in U.S. Appl. No. 15/705,531.
Office Action dated Oct. 12, 2018 in U.S. Appl. No. 15/854,397.
Office Action dated Oct. 12, 2018, which issued during the prosecution of U.S. Appl. No. 15/626,355.
Office Action dated Oct. 12, 2018, which issued during the prosecution of U.S. Appl. No. 15/627,696.
Office Action dated Oct. 15, 2018, which issued during the prosecution of U.S. Appl. No. 15/619,012.
Office Action dated Oct. 15, 2018, which issued during the prosecution of U.S. Appl. No. 15/854,403.
Office Action dated Oct. 19, 2016, which issued during the prosecution of U.S. Appl. No. 14/867,752.
Office Action dated Oct. 2, 2019 in U.S. Appl. No. 15/443,094.
Office Action dated Oct. 22, 2018, which issued during the prosecution of U.S. Appl. No. 15/854,439.
Office Action dated Oct. 22, 2019 in U.S. Appl. No. 16/037,564.
Office Action dated Oct. 3, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/280,195.
Office Action dated Oct. 5, 2017 from the United States Patent and Trademark Office in U.S. Appl. No. 15/241,286.
Office Action dated Oct. 5, 2017 from the United States Patent and Trademark Office in U.S. Appl. No. 15/241,297.
Office Action dated Oct. 5, 2017 from the United States Patent and Trademark Office in U.S. Appl. No. 15/241,631.
Office Action dated Oct. 5, 2017 from the United States Patent and Trademark Office in U.S. Appl. No. 15/378,907.
Office Action dated Oct. 8, 2019 in Japanese Application No. 2017-029492.
Office Action dated Oct. 8, 2019 in Japanese Application No. 2017-065678.
Office Action dated Oct. 8, 2019 in Japanese Application No. 2017-065700.
Office Action dated Oct. 8, 2019 in Japanese Application No. 2017-065708.
Office Action dated Oct. 9, 2018, which issued during the prosecution of U.S. Appl. No. 15/628,814.
Office Action dated Oct. 9, 2019 in U.S. Appl. No. 16/440,161.
Office Action dated Sep. 10, 2015, which issued during the prosecution of U.S. Appl. No. 14/209,065.
Office Action dated Sep. 12, 2016 in U.S. Appl. No. 14/838,663.
Office Action dated Sep. 16, 2019 in U.S. Appl. No. 15/854,403.
Office Action dated Sep. 17, 2019 in Japanese Application No. 2017-029499.
Office Action dated Sep. 19, 2014, which issued during the prosecution of U.S. Appl. No. 14/209,065.
Office Action dated Sep. 19, 2019 in U.S. Appl. No. 15/443,026.
Office Action dated Sep. 20, 2019 in U.S. Appl. No. 15/442,961.
Office Action dated Sep. 24, 2018, which issued during the prosecution of U.S. Appl. No. 15/690,400.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2016-254436.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2016-254439.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2016-254441.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2016-254450.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2017-029491.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2017-029508.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2017-065730.
Office Action dated Sep. 26, 2017 issued by the Japanese Patent Office in JP Appln. No. 2014-265723.
Office Action dated Sep. 26, 2017 issued by the Japanese Patent Office in JP Appln. No. 2015-249264.
Office Action dated Sep. 27, 2018, which issued during the prosecution of U.S. Appl. No. 15/690,906.
Office Action dated Sep. 27, 2018, which issued during the prosecution of U.S. Appl. No. 15/854,383.
Office Action dated Sep. 28, 2018, which issued during the prosecution of U.S. Appl. No. 15/854,409.
Office Action dated Sep. 3, 2019 in Japanese Application No. 2016-254434.
Office Action dated Sep. 7, 2017, which issued during the prosecution of U.S. Appl. No. 14/867,752.
U.S. Appl. No. 14/209,065, Patented as U.S. Pat. No. 9,530,444.
U.S. Appl. No. 14/753,227, Patented as U.S. Pat. No. 9,601,146.
U.S. Appl. No. 14/757,555, Patented as U.S. Pat. No. 9,711,174.
U.S. Appl. No. 14/838,663, Abandoned.
U.S. Appl. No. 14/867,752, Patented as U.S. Pat. No. 10,026,430.
U.S. Appl. No. 14/870,618, Patented as U.S. Pat. No. 9,959,894.
U.S. Appl. No. 14/978,834, Patented as U.S. Pat. No. 9,721,605.
U.S. Appl. No. 15/052,115, Patented as U.S. Pat. No. 9,704,527.
U.S. Appl. No. 15/072,550, Patented as U.S. Pat. No. 9,704,525.
U.S. Appl. No. 15/197,046, Patented as U.S. Pat. No. 9,721,607.
U.S. Appl. No. 15/218,190, Patented as U.S. Pat. No. 9,721,606.
U.S. Appl. No. 15/241,286, Patented as U.S. Pat. No. 10,026,433.
U.S. Appl. No. 15/241,297, Patented as U.S. Pat. No. 10,026,434.
U.S. Appl. No. 15/241,631, Patented as U.S. Pat. No. 10,026,435.
U.S. Appl. No. 15/280,195, Allowed.
U.S. Appl. No. 15/378,907, Patented as U.S. Pat. No. 9,984,710.
U.S. Appl. No. 15/380,309, Patented as U.S. Pat. No. 10,403,319.
U.S. Appl. No. 15/380,336, Patented as U.S. Pat. No. 10,522,180.
U.S. Appl. No. 15/388,864, Patented as U.S. Pat. No. 9,773,519.
U.S. Appl. No. 15/388,911, Allowed.
U.S. Appl. No. 15/422,821, Patented as U.S. Pat. No. 10,475,481.
U.S. Appl. No. 15/422,944, Patented as U.S. Pat. No. 10,347,279.
U.S. Appl. No. 15/442,961, Pending.
U.S. Appl. No. 15/443,026, Pending.
U.S. Appl. No. 15/443,094, Pending.
U.S. Appl. No. 15/464,991, Patented as U.S. Pat. No. 9,779,772.
U.S. Appl. No. 15/466,143, Patented as U.S. Pat. No. 9,837,116.
U.S. Appl. No. 15/614,876, Patented as U.S. Pat. No. 10,431,248.
U.S. Appl. No. 15/615,871, Patented as U.S. Pat. No. 10,074,393.
U.S. Appl. No. 15/619,012, Patented as U.S. Pat. No. 10,515,660.
U.S. Appl. No. 15/620,916, Patented as U.S. Pat. No. 10,477,072.
U.S. Appl. No. 15/621,464, Patented as U.S. Pat. No. 10,431,249.
U.S. Appl. No. 15/624,792, Patented as U.S. Pat. No. 10,497,388.
U.S. Appl. No. 15/624,897, Patented as U.S. Pat. No. 10,510,368.
U.S. Appl. No. 15/625,428, Patented as U.S. Pat. No. 10,403,318.
U.S. Appl. No. 15/626,355, Patented as U.S. Pat. No. 10,510,369.
U.S. Appl. No. 15/626,720, Patented as U.S. Pat. No. 10,347,280.
U.S. Appl. No. 15/626,832, Patented as U.S. Pat. No. 10,510,370.
U.S. Appl. No. 15/627,696, Patented as U.S. Pat. No. 10,522,171.
U.S. Appl. No. 15/628,814, Patented as U.S. Pat. No. 10,504,546.
U.S. Appl. No. 15/690,400, Patented as U.S. Pat. No. 10,529,368.
U.S. Appl. No. 15/690,906, Patented as U.S. Pat. No. 10,522,179.
U.S. Appl. No. 15/705,531, Pending.
U.S. Appl. No. 15/848,173, Patented as U.S. Pat. No. 10,403,320.
U.S. Appl. No. 15/854,329, Patented as U.S. Pat. No. 9,984,712.
U.S. Appl. No. 15/854,383, Patented as U.S. Pat. No. 10,438,628.
U.S. Appl. No. 15/854,397, Pending.
U.S. Appl. No. 15/854,403, Pending.
U.S. Appl. No. 15/854,409, Pending.
U.S. Appl. No. 15/854,410, Patented as U.S. Pat. No. 9,972,351.
U.S. Appl. No. 15/854,438, Patented as U.S. Pat. No. 10,373,633.
U.S. Appl. No. 15/854,439, Patented as U.S. Pat. No. 10,482,915.
U.S. Appl. No. 15/854,474, Patented as U.S. Pat. No. 9,978,414.
U.S. Appl. No. 15/854,506, Patented as U.S. Pat. No. 10,008,230.
U.S. Appl. No. 15/854,507, Patented as U.S. Pat. No. 9,984,716.
U.S. Appl. No. 15/899,430, Patented as U.S. Pat. No. 10,403,314.
U.S. Appl. No. 15/899,587, Allowed.
U.S. Appl. No. 15/900,080, Patented as U.S. Pat. No. 10,460,756.
U.S. Appl. No. 15/900,106, Patented as U.S. Pat. No. 10,438,624.
U.S. Appl. No. 15/900,141, Allowed.
U.S. Appl. No. 15/900,144, Patented as U.S. Pat. No. 10,497,384.
U.S. Appl. No. 15/900,160, Patented as U.S. Pat. No. 10,438,625.
U.S. Appl. No. 15/900,164, Patented as U.S. Pat. No. 10,424,330.
U.S. Appl. No. 15/900,230, Patented as U.S. Pat. No. 10,431,250.
U.S. Appl. No. 15/900,242, Patented as U.S. Pat. No. 10,475,480.
U.S. Appl. No. 15/900,334, Patented as U.S. Pat. No. 10,438,621.
U.S. Appl. No. 15/900,345, Patented as U.S. Pat. No. 10,482,913.
U.S. Appl. No. 15/900,379, Patented as U.S. Pat. No. 10,453,488.
U.S. Appl. No. 15/900,412, Patented as U.S. Pat. No. 10,062,403.
U.S. Appl. No. 15/920,515, Patented as U.S. Pat. No. 10,410,665.
U.S. Appl. No. 15/920,517, Patented as U.S. Pat. No. 10,395,685.
U.S. Appl. No. 15/920,518, Allowed.
U.S. Appl. No. 15/920,533, Patented as U.S. Pat. No. 10,431,251.
U.S. Appl. No. 15/920,538, Patented as U.S. Pat. No. 10,403,317.
U.S. Appl. No. 15/920,544, Patented as U.S. Pat. No. 10,410,666.
U.S. Appl. No. 15/920,563, Patented as U.S. Pat. No. 10,360,937.
U.S. Appl. No. 15/920,592, Patented as U.S. Pat. No. 10,403,312.
U.S. Appl. No. 15/920,616, Patented as U.S. Pat. No. 10,438,623.
U.S. Appl. No. 15/920,635, Patented as U.S. Pat. No. 10,170,144.
U.S. Appl. No. 15/920,768, Patented as U.S. Pat. No. 10,373,639.
U.S. Appl. No. 15/920,782, Patented as U.S. Pat. No. 10,134,433.
U.S. Appl. No. 16/009,603, Patented as U.S. Pat. No. 10,366,721.
U.S. Appl. No. 16/012,018, Pending.
U.S. Appl. No. 16/037,564, Pending.
U.S. Appl. No. 16/037,573, Pending.
U.S. Appl. No. 16/037,596, Pending.
U.S. Appl. No. 16/037,681, Pending.
U.S. Appl. No. 16/038,339, Patented as U.S. Pat. No. 10,403,316.
U.S. Appl. No. 16/038,514, Pending.
U.S. Appl. No. 16/038,545, Pending.
U.S. Appl. No. 16/038,669, Pending.
U.S. Appl. No. 16/038,771, Pending.
U.S. Appl. No. 16/038,847, Pending.
U.S. Appl. No. 16/038,884, Pending.
U.S. Appl. No. 16/044,574, Patented as U.S. Pat. No. 10,438,622.
U.S. Appl. No. 16/100,289, Patented as U.S. Pat. No. 10,497,389.
U.S. Appl. No. 16/142,560, Pending.
U.S. Appl. No. 16/143,646, Patented as U.S. Pat. No. 10,515,657.
U.S. Appl. No. 16/143,747, Pending.
U.S. Appl. No. 16/144,428, Pending.
U.S. Appl. No. 16/144,605, Pending.
U.S. Appl. No. 16/160,377, Patented as U.S. Pat. No. 10,490,220.
U.S. Appl. No. 16/182,083, Patented as U.S. Pat. No. 10,515,661.
U.S. Appl. No. 16/184,312, Patented as U.S. Pat. No. 10,497,386.
U.S. Appl. No. 16/232,165, Patented as U.S. Pat. No. 10,510,366.
U.S. Appl. No. 16/440,161, Pending.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11361793B2 (en) * 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11551716B2 (en) * 2018-03-23 2023-01-10 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device

Also Published As

Publication number Publication date
US20190027168A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
US10854227B2 (en) Magnetic recording medium having characterized magnetic layer
US10839849B2 (en) Magnetic recording medium having characterized magnetic layer
US10714139B2 (en) Magnetic recording medium having characterized magnetic layer
US10854232B2 (en) Magnetic recording medium having characterized magnetic layer
US10692522B2 (en) Magnetic recording medium having characterized magnetic layer and method for manufacturing same
US10839851B2 (en) Magnetic recording medium having characterized magnetic layer
US10854230B2 (en) Magnetic tape having characterized magnetic layer
US10854234B2 (en) Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10482913B2 (en) Magnetic tape having characterized magnetic layer
US10453488B2 (en) Magnetic tape having characterized magnetic layer
US10431250B2 (en) Magnetic tape having characterized magnetic layer
US10910009B2 (en) Magnetic tape having a characterized magnetic layer and method of manufacturing the same
US10854229B2 (en) Magnetic tape having characterized magnetic layer
JP6649297B2 (en) Magnetic tape device and magnetic reproducing method
JP6649298B2 (en) Magnetic tape device and head tracking servo method
US10475480B2 (en) Magnetic tape having characterized back coating and magnetic layers
US10438624B2 (en) Magnetic tape having characterized magnetic layer
US10522171B2 (en) Magnetic tape having controlled surface properties of the magnetic layer
JP6717786B2 (en) Magnetic tape and magnetic tape device
JP6723296B2 (en) Magnetic recording medium
JP6678205B2 (en) Magnetic recording media
JP6678204B2 (en) Magnetic tape

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: FUJIFILM CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KASADA, NORIHITO;TADA, TOSHIO;OZAWA, EIKI;AND OTHERS;SIGNING DATES FROM 20180420 TO 20180424;REEL/FRAME:046397/0260

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STCF Information on status: patent grant

Free format text: PATENTED CASE