JP6426658B2 - 車両の蓄熱放熱システム - Google Patents

車両の蓄熱放熱システム Download PDF

Info

Publication number
JP6426658B2
JP6426658B2 JP2016113814A JP2016113814A JP6426658B2 JP 6426658 B2 JP6426658 B2 JP 6426658B2 JP 2016113814 A JP2016113814 A JP 2016113814A JP 2016113814 A JP2016113814 A JP 2016113814A JP 6426658 B2 JP6426658 B2 JP 6426658B2
Authority
JP
Japan
Prior art keywords
heat
pressure
heat storage
heat medium
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016113814A
Other languages
English (en)
Other versions
JP2017218971A (ja
Inventor
暁拡 本田
暁拡 本田
慎一 大越
慎一 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Toyota Motor Corp
Original Assignee
University of Tokyo NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Toyota Motor Corp filed Critical University of Tokyo NUC
Priority to JP2016113814A priority Critical patent/JP6426658B2/ja
Priority to DE102017109005.3A priority patent/DE102017109005B4/de
Priority to US15/613,566 priority patent/US10544996B2/en
Publication of JP2017218971A publication Critical patent/JP2017218971A/ja
Application granted granted Critical
Publication of JP6426658B2 publication Critical patent/JP6426658B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat the device being thermoelectric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Transportation (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

この発明は、車両の蓄熱放熱システムに関する。
本発明者らは既に、特許文献1(国際公開第2015/050269号)や非特許文献1(S Ohkoshi et al, “External stimulation-controllable heat-storage ceramics”, Nature Communications 6, 2015, Article number: 7037, Doi: 10.1038/ncomms8037)に、Tiの組成を有するものの、一般的な酸化チタンとは異なる結晶構造となる新型の酸化チタン(以下、「新型酸化チタン」ともいう。)を開示している。
新型酸化チタンは、約460Kよりも低い温度域において金属的な性質を有する単斜晶系のλ相となり得るものである。また、新型酸化チタンの結晶構造は、特徴的な相転移をする。すなわち、結晶構造がλ相にある場合には、新型酸化チタンの温度を約460Kよりも低い温度まで下げたとしてもλ相を維持し、その一方で、新型酸化チタンに所定圧力よりも高い圧力が印加されたときに、λ相からβ相に相転移する。また、結晶構造がβ相に相転移した後、新型酸化チタンの温度を約460Kよりも高い温度まで上げた場合、または特定波長の放熱光を新型酸化チタンに照射した場合にβ相からλ相に相転移する。
また、この新型酸化チタンは、相転移に際して興味深い熱特性を示す。すなわち、λ相からβ相への相転移に際しては外部に熱を放出し、β相からλ相への相転移に際しては外部の熱を蓄える。そして、特許文献1には、このような熱特性を利用可能なシステムとして、液体状の蓄熱放熱材に熱を与える蓄熱装置と、蓄熱放熱材から熱を放出させ、これにより得られた熱を利用する機関に送出する放熱装置と、蓄熱装置と放熱装置とを連結する流路とを備える蓄熱放熱システムが開示されている。
国際公開第2015/050269号
S Ohkoshi et al, "External stimulation-controllable heat-storage ceramics", Nature Communications 6, 2015, Article number: 7037, Doi: 10.1038/ncomms8037
しかし、特許文献1に開示された蓄熱放熱システムは、内燃機関を搭載した車両を前提としたものではない。故に、このような車両を前提としたときの具体的構成については、検討の余地がある。
本発明は、上述した課題に鑑みてなされたものであり、その目的は、新型酸化チタンの熱特性を利用した蓄熱放熱システムを、内燃機関が搭載された車両において実用化することにある。
本発明に係る車両の蓄熱放熱システムは、循環流路と、蓄熱放熱材と、圧力制御部と、を備えている。前記循環流路には、車両に搭載される内燃機関およびその関連部品を経由しながら流れる熱媒体が循環する。前記蓄熱放熱材は、前記循環流路を流れる熱媒体と熱交換可能な箇所に設けられると共に、Tiの組成を有する酸化チタンを含む蓄熱放熱材であって、前記酸化チタンは、結晶構造がβ相のときに所定の蓄熱温度以上に加熱されることでλ相に相転移して外部の熱を蓄え、結晶構造がλ相のときに前記蓄熱温度未満まで冷却されたとしてもβ相に相転移せず、所定の放熱圧力以上の圧力が印加されたときにβ相に相転移して外部に熱を放出する特性を有している。前記圧力制御部は、前記内燃機関の始動時に、前記循環流路のうちの前記蓄熱放熱材の設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力以上となるように、前記設置箇所の圧力を上昇させる。
本発明に係るシステムにおいて、前記蓄熱放熱材は、前記内燃機関の排気通路に設けられた蓄熱放熱部に内蔵されている。前記圧力制御部は、前記循環流路のうちの前記内燃機関のウォータージャケットの熱媒体出口から、前記蓄熱放熱部の熱媒体入口までの間に設けられて前記蓄熱放熱部の熱媒体入口に向けて熱媒体を吐き出す機関出口側ポンプと、前記循環流路のうちの前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口までの間に設けられた制御弁と、前記制御弁の開度および前記機関出口側ポンプから吐き出す熱媒体の吐出圧力を調整することで前記設置箇所の圧力を調整する圧力調整部と、を備えている。また、前記圧力調整部は、前記吐出圧力を一定圧に調整すると共に、前記設置箇所の圧力を上昇させるときには前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断するように前記開度を調整し、前記設置箇所の圧力を上昇させた後は、前記制御弁による遮断を解除するように前記開度を調整する。
前記内燃機関の始動時に、前記循環流路のうちの前記蓄熱放熱材の設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力以上となるように、前記設置箇所の圧力を上昇させると、前記酸化チタンの結晶構造がλ相のときにはλ相からβ相への相転移に伴い前記酸化チタンから熱媒体に熱が移動するので熱媒体が温められる。温められた熱媒体が前記循環流路を流れることで、前記内燃機関およびその関連部品が温められる。 前記設置箇所の圧力を上昇させるときに、前記吐出圧力を一定圧に調整すると共に、前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断するように前記開度を調整することで、前記機関出口側ポンプよりも下流側、かつ、前記制御弁よりも上流側を流れる熱媒体に、前記蓄熱放熱材に蓄えられていた排気ガス由来の熱が集中的に移動する。また、前記設置箇所の圧力を上昇させた後、前記吐出圧力を一定圧に調整すると共に、前記制御弁による遮断を解除するように前記開度を調整することで、集中的に温めた熱媒体が前記制御弁の下流側を流れて前記ウォータージャケットに流入し、前記内燃機関を温める。
本発明に係るシステムにおいて、前記圧力制御部は、前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力以上となるように前記設置箇所の圧力を上昇させた後、前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力未満となるように、前記設置箇所の圧力を低下させてもよい。
前記酸化チタンの結晶構造がλ相のときに、前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力以上となることでβ相への相転移が始まる。λ相からβ相への相転移は短時間で完了することから、前記設置箇所の圧力が前記放熱圧力以上となることでこの相転移が完了し、前記酸化チタンから熱媒体への熱移動が起こることになる。前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力以上となるように前記設置箇所の圧力を上昇させた後、前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力未満となるように前記設置箇所の圧力を低下させることで、前記酸化チタンから熱媒体への熱移動に要するエネルギが抑えられる。
本発明に係るシステムにおいて、前記蓄熱放熱材を、前記内燃機関で発生した熱を受け取り可能な箇所に設けてもよい。この場合、前記圧力制御部は、前記酸化チタンの結晶構造がβ相にあると判定された場合、前記設置箇所の圧力を上昇させる前に、前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力未満となるように前記設置箇所の圧力を制御してもよい。
前記酸化チタンの結晶構造がβ相にあると判定された場合、前記設置箇所の圧力を上昇させる前に、前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力未満となるように前記設置箇所の圧力を制御することで、前記内燃機関で発生した熱が前記蓄熱放熱材に移動する。
本発明に係るシステムにおいて、前記圧力制御部が、前記機関出口側ポンプと前記制御弁と前記圧力調整部とを備える場合、前記圧力調整部は、前記ウォータージャケットの熱媒体出口における熱媒体の温度が所定の判定温度未満であると判定されてからの所定の放熱期間に亘り、前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断するように前記開度を調整し、前記放熱期間の終了までに前記設置箇所における熱媒体の温度が前記判定温度以上に上昇したと判定された場合に、前記制御弁による遮断を解除するように前記開度を調整してもよい。
前記ウォータージャケットの熱媒体出口における熱媒体の温度が所定の判定温度未満であると判定されてからの所定の放熱期間に亘り、前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断することで、前記放熱期間において、前記機関出口側ポンプよりも下流側、かつ、前記制御弁よりも上流側を流れる熱媒体に集中的に排気ガス由来の熱が移動する。また、前記放熱期間の終了までに前記設置箇所における熱媒体の温度が前記判定温度以上に上昇したと判定された場合に、前記制御弁による遮断を解除することで、前記判定温度以上に温まった熱媒体が前記制御弁の下流側を流れて前記ウォータージャケットに流入し、前記内燃機関を温める。
本発明に係るシステムが、前記循環流路に設けられて前記ウォータージャケットの熱媒体入口に向けて熱媒体を吐き出す機関入口側ポンプと、前記内燃機関の始動時に、前記ウォータージャケットの熱媒体出口における熱媒体の温度が前記判定温度以上に上昇したと判定されるまでの間、前記機関入口側ポンプからの熱媒体の吐き出しを一時的に停止させる吐出停止部と、を備え、尚且つ、前記圧力制御部が、前記機関出口側ポンプと前記制御弁と前記圧力調整部とを備える場合、前記圧力調整部は、前記放熱期間の終了までに前記設置箇所における熱媒体の温度が前記判定温度以上に上昇したと判定された場合であっても、前記吐出停止部によって前記機関入口側ポンプからの熱媒体の吐き出しが停止されている間は、前記制御弁による遮断の解除を待機してもよい。
前記放熱期間の終了までに前記設置箇所における熱媒体の温度が前記判定温度以上に上昇したと判定された場合であっても、前記吐出停止部によって前記機関入口側ポンプからの熱媒体の吐き出しが停止されている間は、前記制御弁による遮断の解除を待機することで、前記機関入口側ポンプからの熱媒体の吐き出しの一時停止が終了したときに、前記判定温度以上に温まった熱媒体が前記制御弁の下流側を流れて前記ウォータージャケットに流入し、前記内燃機関を温める。
本発明に係るシステムにおいて、前記圧力制御部が、前記機関出口側ポンプと前記制御弁と前記圧力調整部とを備える場合、前記圧力調整部は、前記ウォータージャケットの熱媒体出口における熱媒体の温度が所定の判定温度未満であると判定されてからの所定の放熱期間に亘り、前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断するように前記開度を調整し、前記放熱期間の終了までに前記設置箇所における熱媒体の温度が前記判定温度以上に上昇していないと判定された場合に、前記蓄熱放熱材に異常が発生していると判定してもよい。
本発明に係る別の車両の蓄熱放熱システムは、循環流路と、蓄熱放熱材と、圧力制御部と、を備えている。前記循環流路には、車両に搭載される内燃機関およびその関連部品を経由しながら流れる熱媒体が循環する。前記蓄熱放熱材は、前記循環流路を流れる熱媒体と熱交換可能な箇所に設けられると共に、Ti の組成を有する酸化チタンを含む蓄熱放熱材であって、前記酸化チタンは、結晶構造がβ相のときに所定の蓄熱温度以上に加熱されることでλ相に相転移して外部の熱を蓄え、結晶構造がλ相のときに前記蓄熱温度未満まで冷却されたとしてもβ相に相転移せず、所定の放熱圧力以上の圧力が印加されたときにβ相に相転移して外部に熱を放出する特性を有している。前記圧力制御部は、前記内燃機関の始動時に、前記循環流路のうちの前記蓄熱放熱材の設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力以上となるように、前記設置箇所の圧力を上昇させる。
本発明に係る別のシステムにおいて、前記蓄熱放熱材は、前記内燃機関の排気通路に設けられた蓄熱放熱部に内蔵された第1蓄熱放熱材と、前記内燃機関のウォータージャケットに内蔵された第2蓄熱放熱材と、を備えている。前記圧力制御部は、前記循環流路のうちの前記内燃機関のウォータージャケットの熱媒体出口から、前記蓄熱放熱部の熱媒体入口までの間に設けられて前記蓄熱放熱部の熱媒体入口に向けて熱媒体を吐き出す機関出口側ポンプと、前記循環流路のうちの前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口までの間に設けられた第1制御弁と、前記第1制御弁の開度および前記機関出口側ポンプから吐き出す熱媒体の第1吐出圧力を調整することで前記第1蓄熱放熱材が設置された箇所の圧力を調整する第1圧力調整部と、前記ウォータージャケットの熱媒体入口に向けて熱媒体を吐き出す機関入口側ポンプと、前記ウォータージャケットの熱媒体出口に設けられた第2制御弁と、前記第2制御弁の開度および前記機関入口側ポンプから吐き出す熱媒体の第2吐出圧力を調整することで前記第2蓄熱放熱材が設けられた箇所の圧力を調整する第2圧力調整部と、を備えている。また、前記第1圧力調整部は、前記第1吐出圧力を一定圧に調整すると共に、前記第1蓄熱放熱材が設置された箇所の圧力を上昇させるときには前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断するように前記第1制御弁の開度を調整し、前記第1蓄熱放熱材が設置された箇所の圧力を上昇させた後は、前記第1制御弁による遮断を解除するように前記第1制御弁の開度を調整する。更に、前記第2圧力調整部は、前記第2吐出圧力を一定圧に調整すると共に、前記第2蓄熱放熱材が設置された箇所の圧力を上昇させるときには前記第2制御弁の下流側への熱媒体の流れを遮断するように前記第2制御弁の開度を調整し、前記第2蓄熱放熱材が設置された箇所の圧力を上昇させた後は、前記第2制御弁による遮断を解除するように前記第2制御弁の開度を調整する

本発明に係る車両の蓄熱放熱システムによれば、新型酸化チタンの熱特性を利用した蓄熱放熱システムを、内燃機関が搭載された車両において実用化することができる。
本発明の実施の形態1に係る蓄熱放熱システムの全体構成を示す概略図である。 図1に示した廃熱回収・放出装置50の斜視図である。 図1に示した廃熱回収・放出装置50の断面図である。 新型酸化チタンの温度を変化させたときの熱流量の変化を示した図である。 常温において結晶構造がλ相にある新型酸化チタンに約60MPaの圧力を印加したときの熱流量の変化を示した図である。 内燃機関10の始動時における冷却水の流れを説明する図である。 本発明の実施の形態1においてECU60が実行する処理の一例を示すフローチャートである。 本発明の実施の形態2に係る蓄熱放熱システムの全体構成を示す概略図である。 本発明の実施の形態2において、蓄熱放熱材58に放熱動作を行わせる場合における制御概要を説明するタイミングチャートである。 本発明の実施の形態2においてECU60が実行する処理の一例を示すフローチャートである。 本発明の実施の形態3に係る蓄熱放熱システムの全体構成を示す概略図である。 本発明の実施の形態4においてECU60が実行する処理の一例を示すフローチャートである。 本発明の実施の形態5に適用される廃熱回収・放出装置50の断面図である。 本発明の実施の形態5においてECU60が実行する処理の一例を示すフローチャートである。 本発明の実施の形態6に適用される内燃機関10の構成を示す概略図である。 図15の線A−Aでの縦断面図である。
以下、図面に基づいて本発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。
実施の形態1.
先ず、図1乃至図7を参照して、本発明の実施の形態1について説明する。
[蓄熱放熱システムの構成の説明]
図1は、本発明の実施の形態1に係る蓄熱放熱システムの全体構成を示す概略図である。図1に示す蓄熱放熱システム1は車両に搭載されるシステムであり、当該車両の動力源としての直列4気筒型の内燃機関10を備えている。但し、内燃機関10の気筒数および気筒配列はこれに限定されない。また、内燃機関10の燃焼方式も特に限定されない。
内燃機関10の本体(シリンダブロックやシリンダヘッド)には、冷却水(熱媒体)を流すためのウォータージャケット12が形成されている。冷却水がウォータージャケット12を流れると、冷却水と内燃機関10との間で熱交換が行われる。
ウォータージャケット12の冷却水出口12bには、流路16が接続されている。流路16は、ラジエータ20の冷却水入口20aに接続されている。冷却水がラジエータ20の内部を流れると、外気と冷却水との間で熱交換が行われる。ラジエータ20の冷却水出口20bは、流路22を介して機械式WP24の冷却水入口24aに接続されている。機械式WP24は、内燃機関10の駆動力がベルトを介して伝達されることによって駆動するウォーターポンプである。機械式WP24の冷却水出口24bは、ウォータージャケット12の冷却水入口12aに接続されている。
流路22の途中には、サーモスタット26が設けられている。サーモスタット26は、例えば冷却水の温度の高低に応じて膨張、収縮するサーモワックスを駆動源としてバルブを駆動する装置である。より詳細に述べると、サーモスタット26は、これに流入する冷却水の温度が比較的低い場合(例えば冷却水の温度が80℃未満の場合)、ラジエータ20の内部を流れた冷却水が冷却水出口20bから冷却水入口24aに流入しないようにバルブを駆動する。また、サーモスタット26は、これに流入する冷却水の温度が比較的高い場合(例えば冷却水の温度が80℃以上の場合)、ラジエータ20の内部を流れた冷却水が冷却水出口20bから冷却水入口24aに流入するようにバルブを駆動する。
また、流路16の途中には流路18が接続されている。流路18には電動式WP14が設けられている。電動式WP14は、回転により冷却水を送液するインペラと、このインペラを回転させるモーターとを備えるウォーターポンプである。モーターの回転を電気的に制御することで、電動式WP14から吐き出される冷却水の圧力(以下、「電動式WP14からの冷却水の吐出圧力」ともいう。)が変更される。
ウォータージャケット12および流路16,18,22は、蓄熱放熱システム1が備える冷却水循環流路の一部を構成している。冷却水循環流路を構成する他の流路には、流路28,30が含まれる。流路28,30の両者は何れも、流路16の途中で流路18同様に分岐している。流路28は、ヒーター32の冷却水入口32aに接続されている。ヒーター32の内部に冷却水が流れると、車内暖房用空気と冷却水との間で熱交換が行われる。ヒーター32の冷却水出口32bは、流路34を介してサーモスタット26よりも下流側の流路22に接続されている。
流路30はスロットルボディ36の冷却水入口36aに接続されている。スロットルボディ36の内部に冷却水が流れると、冷却水とスロットルボディ36との間で熱交換が行われる。スロットルボディ36の冷却水出口36bは、流路38を介してヒーター32よりも下流側の流路34に接続されている。流路30の途中には、スロットルボディ36を迂回してヒーター32よりも下流側の流路34と接続される流路40が接続されている。流路34の途中には、流路34の一部を迂回する流路42が接続されている。流路42には、CVT(Continuously Variable Transmission)ウォーマー44が設けられている。CVTウォーマー44の内部に冷却水が流れると、内燃機関10の出力軸に接続されたCVTを作動するための潤滑油と、冷却水との間で熱交換が行われる。
冷却水循環流路を構成する他の流路には、流路46,48が更に含まれる。流路46は、電動式WP14の冷却水出口14bと、廃熱回収・放出装置50の冷却水入口50aとを接続する。流路48は、廃熱回収・放出装置50の冷却水出口50bと、流路22とを接続する。流路22において、流路48が流路22に接続される箇所は、流路34が流路22に接続される箇所よりも下流側に位置している。廃熱回収・放出装置50は、内燃機関10の排気通路52に設けられている。排気通路52において、廃熱回収・放出装置50が設けられる箇所は、触媒54(一例として三元触媒)が設けられる箇所よりも下流側に位置している。廃熱回収・放出装置50は、排気ガスおよび冷却水と熱交換可能な蓄熱放熱材(後述)を内蔵している。廃熱回収・放出装置50の構成と、廃熱回収・放出装置50での熱交換については後述する。
図1に示す蓄熱放熱システム1は、更に、ECU(Electronic Control Unit)60を備えている。ECU60は、少なくとも入出力インタフェースとメモリとCPUとを備えている。入出力インタフェースは、各種センサからセンサ信号を取り込むとともに、アクチュエータに対して操作信号を出力するために設けられる。ECU60が信号を取り込むセンサには、冷却水出口12b付近の流路16に設けられた温度センサ62と、廃熱回収・放出装置50に設けられた温度センサ64と、が少なくとも含まれる。温度センサ62は、冷却水出口12b付近における冷却水の温度Thwを検出するセンサであり、温度センサ64は、廃熱回収・放出装置50が内蔵する蓄熱放熱材の温度Tsを検出するセンサである。ECU60が操作信号を出すアクチュエータには、上述した電動式WP14のモーターが少なくとも含まれる。メモリには、後述する蓄熱放熱ルーチンを定めた制御プログラム、各種マップ等が記憶されている。CPUは、制御プログラム等をメモリから読み出して実行し、取り込んだセンサ信号に基づいて操作信号を生成する。
図2は、図1に示した廃熱回収・放出装置50の斜視図であり、図3は、図1に示した廃熱回収・放出装置50の断面図である。図2に示すように、廃熱回収・放出装置50は、円筒状の本体50cと、本体50cの中心軸方向の両端に設けられたガス入口50dおよびガス出口50eと、を備えている。上述した冷却水入口50aおよび冷却水出口50bは、本体50cの周方向の側面に設けられている。図3に示すように、廃熱回収・放出装置50の内部には、流路50f、ガス流路50gおよびガス流路50hが形成されている。流路50fは、図2に示した冷却水入口50aおよび冷却水出口50bと接続されている。ガス流路50gは、ガス入口50dおよびガス出口50eと接続されている。ガス流路50hは、ガス入口50dおよびガス出口50eと接続されている。
図3の右側に示すように、ガス流路50hの流路壁には、電磁バルブ56が設けられている。電磁バルブ56は常開(ノーマル・オープン)のバルブであり、ECU60が操作信号を出すアクチュエータに含まれる。図3の左側には、電磁バルブ56が開状態にある場合が描かれている。図3の左側に示すように、電磁バルブ56が開状態にある間、ガス入口50dから流入した排気ガスは、ガス流路50gを流れてガス出口50eに向かう。一方、図3の右側には電磁バルブ56が閉状態にある場合が描かれている。図3の右側に示すように、電磁バルブ56が閉状態にある間、ガス入口50dから流入した排気ガスは、ガス流路50gからガス流路50hに流入し、その後、ガス出口50eに向かう。
また、図3に示すように、廃熱回収・放出装置50の内部には、蓄熱放熱材58が設けられている。蓄熱放熱材58は、流路50fを流れる冷却水、および、ガス流路50hを流れる排気ガスと熱交換可能に設けられており、上述した新型酸化チタンを含んでいる。そのため、蓄熱放熱材58は、新型酸化チタンの結晶構造に応じて流路50fを流れる冷却水に熱を放出し、または、ガス流路50hを流れる排気ガスから熱を受け取ることができる。
[新型酸化チタンの結晶構造と熱特性]
ここで、新型酸化チタンの結晶構造と熱特性について、図4乃至図5を参照して簡単に説明する。図4は、新型酸化チタンの温度を変化させたときの熱流量の変化を示した図である。新型酸化チタンは、半導体的な性質を示すβ相と、金属的な性質を有する単斜晶系のλ相との間で結晶構造が相転移し得るものである。図4から理解できるように、結晶構造がβ相にある新型酸化チタン(β−Ti)の温度を上げていくと、約460Kにおいて結晶構造がλ相に相転移すると共に、外部の熱を蓄える。一方、結晶構造がλ相にある新型酸化チタン(λ−Ti)の温度を下げていった場合には、約460Kよりも低い温度まで下げたとしてもλ相を維持し、外部への熱の放出はない。
図5は、常温において結晶構造がλ相にある新型酸化チタンに約60MPaの圧力を印加したときの熱流量の変化を示した図である。なお、圧力の印加は時刻t=0において行われている。図5から理解できるように、常温において結晶構造がλ相にある新型酸化チタン(λ−Ti)に約60MPaの圧力を印加すると、結晶構造がβ相に相転移すると共に、外部に熱を放出する。このように、新型酸化チタンは、結晶構造が一旦λ相になると、温度が下がっても外部にを放出せず、約60MPaの圧力が印加されることではじめて外部に熱を放出するという興味深い熱特性を有している。因みに、ここで説明した新型酸化チタンの結晶構造や熱特性の詳細は、特許文献1または非特許文献1に開示されている。
図4乃至図5の説明を踏まえると、図3に示した蓄熱放熱材58では、新型酸化チタンの結晶構造に応じて次のような熱移動が起こることが分かる。すなわち、新型酸化チタンの結晶構造がλ相である場合に、流路50fを流れる冷却水から蓄熱放熱材58が受ける圧力が所定の圧力PHR(約60MPa)以上まで上昇したとき、蓄熱放熱材58が蓄えていた熱が当該冷却水に放出される。新型酸化チタンの結晶構造がβ相である場合に、ガス流路50hを流れる排気ガスの熱によって蓄熱放熱材58の温度が所定の温度THS(約460K)以上まで上昇したときに、当該排気ガスの熱が蓄熱放熱材58に蓄えられる。
[実施の形態1における蓄熱放熱動作]
本実施の形態では、上述した新型酸化チタンの熱特性を利用し、内燃機関10の始動時に図3示した蓄熱放熱材58に蓄熱動作と放熱動作を行わせるべく、図1に示した電動式WP14から吐き出される冷却水の圧力と、図3に示した電磁バルブ56の開閉状態とをECU60で制御する。
電動式WP14からの吐出圧力の制御は、具体的に次のように行われる。すなわち、蓄熱放熱材58に蓄熱動作を行わせる場合は、冷却水循環流路内の圧力(より正確には、流路50f内の圧力)が圧力PHR未満となるように、電動式WP14からの冷却水の吐出圧力が調整される。また、蓄熱放熱材58に放熱動作を行わせる場合は、冷却水循環流路内の圧力が圧力PHR以上となるように、電動式WP14からの冷却水の吐出圧力が調整される。
電磁バルブ56の開閉状態の制御は、具体的に次のように行われる。すなわち、蓄熱放熱材58に蓄熱動作を行わせる場合に、電磁バルブ56が閉状態に制御される。内燃機関10の始動直後であっても、内燃機関10から排出される排気ガスの温度は約460K(約187℃)よりも高くなるので、電磁バルブ56が閉状態に制御されることで、排気ガスの熱によって蓄熱放熱材58の温度が温度THS以上まで上昇する。因みに、電磁バルブ56は常開のバルブであることから、蓄熱放熱材58に放熱動作を行わせる場合に電磁バルブ56の制御は特段行わない。
図6は、内燃機関10の始動時における冷却水の流れを説明する図である。内燃機関10の始動時において、蓄熱放熱材58から熱を受け取った温かい冷却水は、流路48、流路22の順に流れ、更に、機械式WP24の駆動によってウォータージャケット12に流入する。ウォータージャケット12から流路16に排出された冷却水は、流路18,28,30の何れかに流入する。流路18に流入した冷却水は、電動式WP14に送られる。流路28に流入した冷却水は、ヒーター32、流路42、CVTウォーマー44(または流路34)、流路22の順に流れ、機械式WP24に送られる。流路30に流入した冷却水は、流路38(または流路40)、流路22の順に流れ、機械式WP24に送られる。
[実施の形態1における具体的処理]
図7は、本発明の実施の形態1においてECU60が実行する処理の一例を示すフローチャートである。なお、この図に示すルーチン(蓄熱放熱ルーチン)は、車両の運転者により所定の操作(例えば、イグニッションキーを所定位置まで回す等の操作)がなされてイグニッションがオン(IG ON)にされた後、所定の制御周期毎に繰り返し実行されるものとする。
図7に示すルーチンでは、先ず、蓄熱モード履歴の有無が判定される(ステップS100)。蓄熱モード履歴は、上述した蓄熱放熱材58の蓄熱動作が完了したときにECU60のメモリに「有り」と記録されるものである。本ステップにおいてECU60は、メモリ内に蓄熱モード履歴があるか否かを検索する。その結果、蓄熱モード履歴が「無し」と判定された場合(“No”の場合)、蓄熱放熱材58に含まれる新型酸化チタンの結晶構造がβ相であると判断できるので、ステップS102に進む。一方、蓄熱モード履歴が「有り」と判定された場合(“Yes”の場合)、新型酸化チタンの結晶構造がλ相であると判断できるので、ステップS104に進む。
ステップS102では、蓄熱放熱材58に蓄熱動作を行わせるべく、電磁バルブ56が閉状態とされると共に、流路50f内の圧力が圧力PHR未満となるように、電動式WP14からの冷却水の吐出圧力が調整される。続いて、蓄熱放熱材58の温度Tsと閾値Tについて、Ts>Tが成立するか否かが判定される(ステップS106)。ステップS106においてECU60は、温度センサ64から温度Tsを取得し、閾値Tと比較する。ここで、閾値Tは、温度THS以上の温度であり、予め設定されているものとする。比較の結果、Ts>Tが成立しないと判定された場合(“No”の場合)、ECU60はステップS106に戻る。つまり、ステップS106においてTs>Tが成立すると判定されるまで、ステップS106の処理が繰り返される。
ステップS106においてTs>Tが成立すると判定された場合(“Yes”の場合)、蓄熱放熱材58に含まれる新型酸化チタンの結晶構造がβ相からλ相に相転移したと判断できるので、ECU60はステップS108に進む。ステップS108では、電磁バルブ56が開状態に戻される。なお、電動式WP14からの冷却水の吐出圧力は、流路50f内の圧力が圧力PHR未満となるよう引き続き調整される。続いて、ECU60のメモリに蓄熱モード履歴が「有り」と記録される(ステップS110)。
ステップS104では、冷却水出口12b付近の冷却水の温度Thwと閾値Tについて、Thw>Tが成立するか否かが判定される。ここで、閾値Tは、内燃機関10の暖機が完了したと判断できる温度(例えば80℃)であり、予め設定されているものとする。比較の結果、Thw>Tが成立すると判定された場合(“Yes”の場合)、蓄熱放熱材58に放熱動作を行わせる必要はないと判断できるので、ECU60は本ルーチンを抜ける。一方、Thw>Tが成立しないと判定された場合(“No”の場合)、内燃機関10を温める必要があると判断できる。そのため、蓄熱放熱材58に放熱動作を行わせるべく、流路50f内の圧力が圧力PHR以上となるように、電動式WP14からの冷却水の吐出圧力が調整される(ステップS112)。
ステップS112に続いて、温度Thwと閾値Tについて、Thw>Tが成立するか否かが再度判定される(ステップS114)。本ステップの処理は、ステップS104の処理と同じである。温度Thwと閾値Tの比較の結果、Thw>Tが成立しないと判定された場合(“No”の場合)、ECU60はステップS114に戻る。つまり、Thw>Tが成立すると判定されるまで、ステップS114の処理が繰り返される。
ステップS114においてThw>Tが成立すると判定された場合(“Yes”の場合)、内燃機関10の暖機が完了したと判断できるので、ECU60はステップS116に進む。ステップS116では、流路50f内の圧力が圧力PHR未満となるように、電動式WP14からの冷却水の吐出圧力が調整される。続いて、ECU60のメモリに蓄熱モード履歴が「無し」と記録される(ステップS118)。
以上、図7に示したルーチンによれば、蓄熱モードの有無、および、温度Thwと閾値Tの大小関係に応じて、蓄熱放熱材58に蓄熱動作または放熱動作を行わせることができる。換言すると、内燃機関10の通常運転中の任意のタイミングで蓄熱放熱材58に排気ガスの熱を蓄え、尚且つ、蓄熱放熱材58に蓄えた熱を無駄にすることなく、内燃機関10の始動時に蓄熱放熱材58からこれを放出させて内燃機関10、ヒーター32、スロットルボディ36等を温めることができる。
なお、上記実施の形態1においては、ヒーター32、スロットルボディ36およびCVTウォーマー44が本発明の「関連部品」に、廃熱回収・放出装置50が本発明の「蓄熱放熱部」に、それぞれ相当している。
また、ECU60が図7のステップS112の処理を実行することにより本発明の「圧力制御部」が実現されている。
ところで、上記実施の形態1では、図7のステップS114においてThw>Tが成立すると判定された場合に、ステップS116の処理を行った。しかし、ステップS114の処理をスキップして、ステップS112の処理後にステップS116の処理を行ってもよい。新型酸化チタンの結晶構造のλ相からβ相への相転移は短時間で完了することから、図7のステップS112の処理によって流路50f内の圧力が圧力PHR以上まで上昇すれば、基本的にはその直後に相転移が完了し、新型酸化チタンから冷却水への熱移動が起こることになる。従って、ステップS112の処理後にステップS116の処理を行った場合であっても、新型酸化チタンから冷却水への熱移動が起こり、内燃機関10が暖機される。なお、ステップS114の処理をスキップした場合には、ステップS114の処理を行う場合に比べて、新型酸化チタンから冷却水への熱移動に要するエネルギ(つまり、電動式WP14の駆動に要するエネルギ)を抑えることができる。
実施の形態2.
次に、図8乃至図10を参照して、本発明の実施の形態2について説明する。
[蓄熱放熱システムの構成の説明]
図8は、本発明の実施の形態2に係る蓄熱放熱システムの全体構成を示す概略図である。図8に示す蓄熱放熱システム2は、車両に搭載されるシステムであり、基本的な構成は図1に示した蓄熱放熱システム1の構成と共通する。そのため、両者に共通する構成についての説明は省略する。また、廃熱回収・放出装置50の内部に設けられる蓄熱放熱材の構成も両者に共通することから、新型酸化チタンの結晶構造や熱特性についての説明も省略する。
図8に示す蓄熱放熱システム2は、流路48に電磁バルブ66と温度センサ68を備える点において、図1に示した蓄熱放熱システム1と異なる。なお、説明の便宜上、以下においては、流路48のうちの電磁バルブ66よりも上流側(つまり、廃熱回収・放出装置50と接続される側)を流路48aともいい、電磁バルブ66よりも下流側(つまり、流路22と接続される側)を流路48bともいう。電磁バルブ66は、常開のバルブであり、ECU60が操作信号を出すアクチュエータに含まれる。温度センサ68は、流路48aにおける冷却水の温度Thwを検出するセンサであり、ECU60が信号を取り込むセンサに含まれる。
[実施の形態2における蓄熱放熱動作]
本実施の形態では、上述した新型酸化チタンの熱特性を利用し、内燃機関10の始動時に図3示した蓄熱放熱材58に蓄熱動作と放熱動作を行わせるべく、図8に示した電動式WP14から吐き出される冷却水の圧力と、図8に示した電磁バルブ66の駆動および図3に示した電磁バルブ56の開閉状態と、をECU60で制御する。
電磁バルブ56の開閉状態の制御は、上記実施の形態1の制御と同じである。すなわち、蓄熱放熱材58に蓄熱動作を行わせる場合に、電磁バルブ56が閉状態に制御される。
電動式WP14を常時駆動させる上記実施の形態1の制御とは異なり、本実施の形態の制御では、蓄熱放熱材58に放熱動作を行わせる場合に限り、電動式WP14を駆動させる。また、本実施の形態では、電動式WP14の駆動の開始に合わせて電磁バルブ66を閉状態に制御する。つまり、本実施の形態の制御では、蓄熱放熱材58に放熱動作を行わせる場合に、電磁バルブ66と組み合わせた電動式WP14の駆動によって、電動式WP14から電磁バルブ66までの冷却水循環流路内の圧力を圧力PHR以上に高めている。
上記実施の形態1では、蓄熱放熱材58に放熱動作を行わせる場合に、電動式WP14の駆動によって冷却水循環流路内の圧力を全体的に高めている。これに対し、本実施の形態では、蓄熱放熱材58に放熱動作を行わせる場合に、電磁バルブ66と組み合わせた電動式WP14の駆動によって、電動式WP14から電磁バルブ66までの冷却水循環流路内の圧力を局所的に高めている。そのため、本実施の形態によれば、電動式WP14からの吐出圧力を抑えて、電動式WP14の駆動に伴う電力消費を最小限に留めることができる。すなわち、蓄熱放熱材58からの熱の取り出しを効率的に行って、内燃機関10、ヒーター32、スロットルボディ36等を温めることができる。
図9は、本発明の実施の形態2において、蓄熱放熱材58に放熱動作を行わせる場合における制御概要を説明するタイミングチャートである。図9の上段と中段に示すように、本実施の形態の制御では、時刻tで電動式WP14を駆動して電動式WP14からの吐出圧力を圧力Pに設定し、電磁バルブ66を全閉状態に設定する。そうすると、流路50f内の圧力が上昇して圧力PHR以上となり、蓄熱放熱材58から熱が放出される。よって、図9の下段に示す温度Thwが上昇する。時刻tで電磁バルブ66を開状態に戻す。そうすると、流路48が開放されて、蓄熱放熱材58から熱を受け取った冷却水が一気に流路48bを経由して流路22に流れ込み、その代わりに温度Thwは急激に低下する。
[実施の形態2における蓄熱放熱材58の異常判定]
また、本実施の形態では、蓄熱放熱材58に放熱動作を行わせている間に、温度Thwに基づいて蓄熱放熱材58の異常判定を行う。蓄熱放熱材58が正常であれば放熱動作に伴い熱を放出することから、図9に示した時刻tでの温度Thwは閾値T以上の温度まで上昇しているはずである。これを利用して本実施の形態では、時刻tでの温度Thwが閾値Tよりも低い場合には、蓄熱放熱材58が異常であると判定し、それ以降の蓄熱動作と放熱動作を禁止する。なお、判定時間t(=t−t)については、予め設定されているものとする。
[実施の形態2における具体的処理]
図10は、本発明の実施の形態2においてECU60が実行する処理の一例を示すフローチャートである。なお、この図に示すルーチン(蓄熱放熱ルーチン)は、車両の運転者により所定の操作(例えば、イグニッションキーを所定位置まで回す等の操作)がなされてイグニッションがオン(IG ON)にされた後、所定の制御周期毎に繰り返し実行されるものとする。
図10に示すルーチンでは、先ず、蓄熱モード履歴の有無が判定される(ステップS120)。本ステップの処理は、図7のステップS100の処理と同じである。蓄熱モード履歴が「無し」と判定された場合(“No”の場合)、蓄熱放熱材58に含まれる新型酸化チタンの結晶構造がβ相であると判断できるので、ステップS122に進む。一方、蓄熱モード履歴が「有り」と判定された場合(“Yes”の場合)、新型酸化チタンの結晶構造がλ相であると判断できるので、ステップS124に進む。
ステップS122では、蓄熱放熱材58に蓄熱動作を行わせるべく、電磁バルブ56が閉状態とされる。続いて、蓄熱放熱材58の温度Tsと閾値Tについて、Ts>Tが成立するか否かが判定される(ステップS126)。本ステップの処理は、図7のステップS106の処理と同じである。Ts>Tが成立しないと判定された場合(“No”の場合)、ECU60はステップS126に戻る。つまり、ステップS126においてTs>Tが成立すると判定されるまで、ステップS126の処理が繰り返される。
ステップS126においてTs>Tが成立すると判定された場合(“Yes”の場合)、蓄熱放熱材58に含まれる新型酸化チタンの結晶構造がβ相からλ相に相転移したと判断できるので、ECU60はステップS128に進む。ステップS128では、電磁バルブ56が開状態に戻される。続いて、ECU60のメモリに蓄熱モード履歴が「有り」と記録される(ステップS130)。
ステップS124では、冷却水出口12b付近の冷却水の温度Thwと閾値Tについて、Thw>Tが成立するか否かが判定される。本ステップの処理は、図7のステップS104の処理と同じである。Thw>Tが成立しないと判定された場合(“No”の場合)、内燃機関10を温める必要があると判断できる。そのため、蓄熱放熱材58に放熱動作を行わせるべく、流路50f内の圧力が圧力PHR以上となるように電動式WP14の駆動が開始され、電磁バルブ66が全閉状態とされる(ステップS132)。
ステップS132に続いて、図9で説明した判定時間tの経過後における温度Thwと閾値Tについて、Thw>Tが成立するか否かが判定される(ステップS134)。なお、判定時間t自体は、ステップS132の処理を開始するタイミングからカウントされるものとする。比較の結果、Thw>Tが成立しないと判定された場合(“No”の場合)、蓄熱放熱材58に異常が生じていると判断できる。そのため、それ以降の蓄熱動作と放熱動作を中止するべく、電動式WP14の駆動が停止され、電磁バルブ66が開状態に戻されると共に、電磁バルブ56の制御が禁止される(ステップS136)。
ステップS134において、Thw>Tが成立すると判定された場合(“Yes”の場合)、蓄熱放熱材58から熱が放出されており、ウォータージャケット12に温まった冷却水を導入する準備ができていると判断できる。そのため、電磁バルブ66が開状態に戻される(ステップS138)。
ステップS138に続いて、温度Thwと閾値Tについて、Thw>Tが成立するか否かが判定される(ステップS140)。本ステップの処理は、図7のステップS104の処理と同じである。Thw>Tが成立しないと判定された場合(“No”の場合)、ECU60はステップS140に戻る。つまり、Thw>Tが成立すると判定されるまで、ステップS140の処理が繰り返される。
ステップS140においてThw>Tが成立すると判定された場合(“Yes”の場合)、内燃機関10の暖機が完了したと判断できる。そのため、電動式WP14の駆動が停止される(ステップS142)。続いて、ECU60のメモリに蓄熱モード履歴が「無し」と記録される(ステップS144)。
以上、図10に示したルーチンによれば、Thw>Tが成立する場合に、電磁バルブ66と組み合わせた電動式WP14の駆動によって流路50fを流れる冷却水の圧力を高めることができる。また、図10に示したルーチンによれば、判定時間tの経過後における温度Thwと閾値Tの大小関係に応じて、蓄熱放熱材58の異常判定を行うこともできる。
なお、上記実施の形態2においては、電動式WP14が本発明の「機関出口側ポンプ」に、電磁バルブ66が本発明の「制御弁」に、それぞれ相当している。
また、ECU60が図10のステップS132,S134,S138の処理を実行することにより本発明の「圧力調整部」が実現されている。
実施の形態3.
次に、図11を参照して、本発明の実施の形態3について説明する。
[蓄熱放熱システムの構成の説明]
図11は、本発明の実施の形態3に係る蓄熱放熱システムの全体構成を示す概略図である。図11に示す蓄熱放熱システム3は、車両に搭載されるシステムであり、基本的な構成は図8に示した蓄熱放熱システム2の構成と共通する。そのため、両者に共通する構成についての説明は省略する。また、廃熱回収・放出装置50の内部に設けられる蓄熱放熱材の構成も両者に共通することから、新型酸化チタンの結晶構造や熱特性についての説明も省略する。
図11に示す蓄熱放熱システム3は、流路18に電磁バルブ70を備える点において、図8に示した蓄熱放熱システム2と異なる。電磁バルブ70は、常閉(ノーマル・クローズ)のバルブであり、ECU60が操作信号を出すアクチュエータに含まれる。
[実施の形態3における蓄熱放熱動作]
本実施の形態では、上述した新型酸化チタンの熱特性を利用し、図3に示した蓄熱放熱材58に蓄熱動作と放熱動作を交互に行わせるべく、図11に示した電動式WP14から吐き出される冷却水の圧力と、図11に示した電磁バルブ66,70の開閉状態と、図3に示した電磁バルブ56の開閉状態をECU60で制御する。
電磁バルブ56,66の開閉状態の制御、電動式WP14の駆動の制御については、上記実施の形態2の制御と同じである。但し、本実施の形態の制御では、蓄熱放熱材58に放熱動作を行わせる場合に、電動式WP14の駆動の開始に合わせて電磁バルブ70を開状態に制御する。図9のタイミングチャートを援用して説明すると、本実施の形態の制御では、時刻tで電動式WP14を駆動して電動式WP14からの吐出圧力を圧力Pに設定し、電磁バルブ66を全閉状態に設定し、更に、電磁バルブ70を開状態に設定する。なお、電磁バルブ70を閉状態に戻すのは、例えば、電動式WP14の駆動の停止と同時とすることができる。
図8に示した蓄熱放熱システム2は、図11に示した電磁バルブ70を備えていないことから、蓄熱放熱材58に放熱動作を行わせる場合だけでなく、蓄熱放熱材58に放熱動作を行わせない場合にも、ウォータージャケット12から排出された冷却水が流路18、流路46、流路48の順に流れることができてしまう。この点、図11に示した蓄熱放熱システム3の構成によれば、蓄熱放熱材58に放熱動作を行わせない場合には流路18を閉じることができる。従って、蓄熱放熱材58に放熱動作を行わせない場合における冷却水の流れを効率化することができる。
実施の形態4.
次に、図12を参照して、本発明の実施の形態4について説明する。
[蓄熱放熱システムの構成の説明]
本実施の形態4に係る蓄熱放熱システムは、図11に示した蓄熱放熱システム3において、流路22上に設けられる機械式WP24を電動式WPに置換したものである。従って、システムの構成についての説明は省略する。また、廃熱回収・放出装置50の内部に設けられる蓄熱放熱材の構成も両者に共通することから、新型酸化チタンの結晶構造や熱特性についての説明も省略する。本実施の形態に係る電動式WP(以下、「流路22上WP」ともいう。)は、電動式WP14と同様に構成されている。流路22上WPのモーターは、ECU60が操作信号を出すアクチュエータに含まれている。
[実施の形態4における蓄熱放熱動作]
電磁バルブ56,66,70の開閉状態の制御、電動式WP14の駆動の制御については、上記実施の形態3の制御と同じである。但し、機械式WP24の駆動によって自動的にウォータージャケット12に流す上記実施の形態3とは異なり、本実施の形態では、内燃機関10の暖機が完了するまでの間、流路22からウォータージャケット12に冷却水が流入しないように流路22上WPのモーターの駆動が制御(水止め制御)される。水止め制御が行われると、流路48を開放して蓄熱放熱材58から熱を受け取った冷却水を流路22に送ったとしても、内燃機関10等の暖機に利用できないことになる。
そこで本実施の形態では、図9で説明した判定時間tの経過後であっても、水止め制御が終了するまでは流路48の開放を待機する。換言すると、判定時間tの経過後、水止め制御が終了したタイミングで流路48を開放する。従って、本実施の形態によれば、流路22上WPが設けられるシステムにおいて、蓄熱放熱材58から熱を受け取った冷却水を、ウォータージャケット12への冷却水の流入が許可されるタイミングに合わせて送ることができる。因みに、内燃機関10の暖機完了時には、サーモスタット26のバルブが開状態となっていることが予想される。そのため、水止め制御が終了したタイミングで流路48を開放すれば、蓄熱放熱材58から熱を受け取った高温の冷却水と、ラジエータ20を通過した低温の冷却水とが流路22で混ざり合って中間の温度となった冷却水が、流路22上WPのモーターの駆動によってウォータージャケット12に送られることになる。従って、水止め制御が終了したタイミングでラジエータ20を通過した冷却水のみをウォータージャケット12に送る場合に比べて、暖機完了直後の内燃機関10を緩やかに冷やすことができる。
[実施の形態4における具体的処理]
図12は、本発明の実施の形態4においてECU60が実行する処理の一例を示すフローチャートである。なお、図12に示すルーチンの多くの処理は、図10に示したルーチンの処理と共通する。そのため、両者に共通する処理については同一の符号を付し、それらの説明を省略する。
図12に示すルーチンでは、ステップS124において、Thw>Tが成立しないと判定された場合(“No”の場合)、内燃機関10を温める必要があると判断し、水止め制御を行うべく、流路22上WPのモーターの駆動が制御される(ステップS150)。続いて、ステップS132,S134(図10参照)の処理が行われる。
ステップS134において、Thw>Tが成立すると判定された場合(“Yes”の場合)、温度Thwと閾値Tについて、Thw>Tが成立するか否かが判定される(ステップS152)。本ステップの処理は、図7のステップS114の処理と基本的に同じである。温度Thwと閾値Tの比較の結果、Thw>Tが成立しないと判定された場合(“No”の場合)、ECU60はステップS152に戻る。つまり、Thw>Tが成立すると判定されるまで、ステップS152の処理が繰り返される。
ステップS152においてThw>Tが成立すると判定された場合(“Yes”の場合)、内燃機関10の暖機が完了したと判断できる。そのため、水止め制御を終了すべく、流路22上WPのモーターの駆動が制御される(ステップS154)。続いて、電磁バルブ66が開状態に戻されると共に、電動式WP14の駆動が停止される(ステップS156)。続いて、ECU60のメモリに蓄熱モード履歴が「無し」と記録される(ステップS158)。
以上、図12に示したルーチンによれば、水止め制御が終了するまで流路48の開放を待機し、水止め制御が終了したら蓄熱放熱材58から熱を受け取った冷却水を流路22に送ることができる。従って、蓄熱放熱材58から熱を受け取った冷却水を、ウォータージャケット12への冷却水の流入が許可されるタイミングに合わせて送ることができる。
なお、上記実施の形態においては、流路22上WPが本発明の「機関入口側ポンプ」に相当している。
また、ECU60が図12のステップS150の処理を実行することにより本発明の「吐出停止部」が実現されている。
実施の形態5.
次に、図13乃至図14を参照して、本発明の実施の形態5について説明する。本実施の形態は、図8に示した蓄熱放熱システム2、または、図11に示した蓄熱放熱システム3において、廃熱回収・放出装置50に設置した電流計の検出値に基づいて、新型酸化チタンの結晶構造の判定と、蓄熱放熱材58の異常判定を行うことを特徴としている。そのため、システム構成等についての説明は省略する。
図13は、本発明の実施の形態5に適用される廃熱回収・放出装置50の断面図であり、この図には、閉状態にある電磁バルブ56が描かれている。図13に示すように、廃熱回収・放出装置50には、端子間に電位差を与えたときに蓄熱放熱材58流れる電流を検出する電流計72が取り付けられている。電流計72は、ECU60が信号を取り込むセンサに含まれる。
[新型酸化チタンの結晶構造の判定]
既に述べたように、新型酸化チタンは、結晶構造がβ相にあるときには半導体的な性質を示し、結晶構造がλ相にあるときには金属的な性質を示す。本実施の形態では、この電気的特性を利用し、新型酸化チタンの結晶構造の判定を行う。具体的には、結晶構造がλ相にあるときに計測される電流値を基準とし、電流計72の検出値に基づいて新型酸化チタンの結晶構造がλ相にあるか、それともβ相にあるかを判定する。
[実施の形態5における蓄熱放熱材58の異常判定]
また、本実施の形態では、蓄熱放熱材58に蓄熱動作を行わせた直後のタイミングでの電流計72の検出値に基づいて、蓄熱放熱材58の異常判定を行う。蓄熱放熱材58が正常であれば、蓄熱放熱材58に蓄熱動作を行わせることで新型酸化チタンの結晶構造がλ相となっており、電流計72の検出値が基準値に等しくなるはずである。これを利用して本実施の形態では、電流計72の検出値が基準値から大きく乖離している場合には、蓄熱放熱材58が異常であると判定し、それ以降の蓄熱動作と放熱動作を禁止する。
[実施の形態5における具体的処理]
図14は、本発明の実施の形態5においてECU60が実行する処理の一例を示すフローチャートである。なお、図14に示すルーチンの多くの処理は、図10に示したルーチンの処理と共通する。そのため、両者に共通する処理については同一の符号を付し、それらの説明を省略する。
図14に示すルーチンでは、先ず、電流計72の検出値と基準値の差が閾値A未満であるか否かが判定される(ステップS160)。ステップS160においてECU60は、電流計72の検出値を取得し、閾値Aと比較する。ここで、閾値Aは、蓄熱放熱材58が異常であると判断できる電流値として、予め設定されているものとする。比較の結果、電流値差<Aが成立しないと判定された場合(“No”の場合)、蓄熱放熱材58に含まれる新型酸化チタンの結晶構造がβ相であると判断できるので、ステップS162に進む。一方、電流値差<Aが成立すると判定された場合(“Yes”の場合)、新型酸化チタンの結晶構造がλ相であると判断できるので、ステップS124に進む。
ステップS162では、蓄熱放熱材58に蓄熱動作を行わせるべく、電磁バルブ56が閉状態とされる。続いて、蓄熱放熱材58の温度Tsと閾値Tについて、Ts>Tが成立するか否かが判定される(ステップS164)。本ステップの処理は、図10のステップS126の処理と同じである。Ts>Tが成立しないと判定された場合(“No”の場合)、ECU60はステップS164に戻る。つまり、ステップS164においてTs>Tが成立すると判定されるまで、ステップS164の処理が繰り返される。
ステップS164においてTs>Tが成立すると判定された場合(“Yes”の場合)、電流計72の検出値と基準値の差が閾値A未満であるか否かが再度判定される(ステップS166)。本ステップの処理は、ステップS160の処理と同じである。電流値差と閾値Aの比較の結果、電流値差<Aが成立しないと判定された場合(“No”の場合)、蓄熱放熱材58に異常が生じていると判断できるので、ステップS136に進む。
ステップS166において電流値差<Aが成立すると判定された場合(“Yes”の場合)、蓄熱放熱材58に含まれる新型酸化チタンの結晶構造がβ相からλ相に相転移したと判断できるので、電磁バルブ56が開状態に戻される(ステップS168)。


以上、図14に示したルーチンによれば、電流計72の検出値と基準値の差に基づいて新型酸化チタンの結晶構造の判定や、蓄熱放熱材58の異常判定を行うことができる。
実施の形態6.
次に、図15乃至図16を参照して、本発明の実施の形態6について説明する。本実施の形態は、上記実施の形態4の蓄熱放熱システムにおいて、図1等に示したウォータージャケット12の内部に、蓄熱放熱材58と同様の組成の蓄熱放熱材を設けて、この蓄熱放熱材に蓄熱動作と放熱動作を行わせることを特徴としている。そのため、システム構成等についての説明は省略する。
図15は、本発明の実施の形態6に適用される内燃機関10の構成を示す概略図である。図15に示す流路74は、図1に示した流路16の途中から分岐した流路28または流路30を経由して流路22に戻る流路に相当している。流路74には、電動式WP76が設けられている。電動式WP76は、流路22上WPに相当するウォーターポンプであり、ECU60が操作信号を出すアクチュエータに含まれている。また、冷却水出口12b付近の流路16には、電磁バルブ78が設けられている。電磁バルブ78は常開のバルブであり、ECU60が操作信号を出すアクチュエータに含まれる。
図16は、図15の線A−Aでの縦断面図である。図16に示すように、ウォータージャケット12の内部には、蓄熱放熱材80がウォータージャケットスペーサとして設けられている。蓄熱放熱材80には、温度センサ82が取り付けられている。温度センサ82は、蓄熱放熱材80の温度を検出するセンサであり、ECU60が信号を取り込むセンサに含まれる。
[実施の形態6における蓄熱放熱動作]
本実施の形態では、内燃機関10で発生した熱を、シリンダボア壁面経由で蓄熱放熱材80に蓄える。つまり、蓄熱放熱材80の蓄熱動作は成り行きで行われる。また、本実施の形態では、電磁バルブ78と組み合わせた電動式WP76の駆動によって、電動式WP76から電磁バルブ78までの冷却水循環流路内の圧力を圧力PHR以上に高めている。
上記実施の形態4においては、内燃機関10の暖機が完了するまでの間、水止め制御を行った。これに対し、本実施の形態の制御は、水止め制御を行わずに電動式WP76を積極的に駆動するので、蓄熱放熱材80から熱を放出させてウォータージャケット12内の冷却水を温めることができる。従って、本実施の形態の制御によれば、水止め制御を行う場合に比べて、内燃機関10をより早く暖機することができる。
なお、上記実施の形態6においては、電動式WP76が本発明の「機関出口側ポンプ」に、電磁バルブ66が本発明の「制御弁」に、それぞれ相当している。また、図1等に示した蓄熱放熱材58が本発明の「第1蓄熱放熱材」に、図16に示した蓄熱放熱材80が本発明の「第2蓄熱放熱材」に、それぞれ相当している。
1,2,3 蓄熱放熱システム
10 内燃機関
12 ウォータージャケット
14 電動式WP
12a,14a,20a,24a,32a,36a,50a 冷却水入口
12b,14b,20b,24b,32b,36b,50b 冷却水出口
16,18,22,28,30,34,38,40,42,46,48,50f,74 流路
20 ラジエータ
24 機械式WP
26 サーモスタット
32 ヒーター
36 スロットルボディ
44 CVTウォーマー
50 廃熱回収・放出装置
50c 本体
50d ガス入口
50e ガス出口
50g,50h ガス流路
52 排気通路
56,66,70,78 電磁バルブ
58,80 蓄熱放熱材
60 ECU
62,64,68 温度センサ
72 電流計

Claims (7)

  1. 車両に搭載される内燃機関およびその関連部品を経由しながら流れる熱媒体が循環する循環流路と、
    前記循環流路を流れる熱媒体と熱交換可能な箇所に設けられると共に、Tiの組成を有する酸化チタンを含む蓄熱放熱材であって、前記酸化チタンは、結晶構造がβ相のときに所定の蓄熱温度以上に加熱されることでλ相に相転移して外部の熱を蓄え、結晶構造がλ相のときに前記蓄熱温度未満まで冷却されたとしてもβ相に相転移せず、所定の放熱圧力以上の圧力が印加されたときにβ相に相転移して外部に熱を放出する特性を有する蓄熱放熱材と、
    前記内燃機関の始動時に、前記循環流路のうちの前記蓄熱放熱材の設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力以上となるように、前記設置箇所の圧力を上昇させる圧力制御部と、
    を備え
    前記蓄熱放熱材は、前記内燃機関の排気通路に設けられた蓄熱放熱部に内蔵され、
    前記圧力制御部は、前記循環流路のうちの前記内燃機関のウォータージャケットの熱媒体出口から、前記蓄熱放熱部の熱媒体入口までの間に設けられて前記蓄熱放熱部の熱媒体入口に向けて熱媒体を吐き出す機関出口側ポンプと、前記循環流路のうちの前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口までの間に設けられた制御弁と、前記制御弁の開度および前記機関出口側ポンプから吐き出す熱媒体の吐出圧力を調整することで前記設置箇所の圧力を調整する圧力調整部と、を備え、
    前記圧力調整部は、前記吐出圧力を一定圧に調整すると共に、前記設置箇所の圧力を上昇させるときには前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断するように前記開度を調整し、前記設置箇所の圧力を上昇させた後は、前記制御弁による遮断を解除するように前記開度を調整することを特徴とする車両の蓄熱放熱システム。
  2. 前記圧力制御部は、前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力以上となるように前記設置箇所の圧力を上昇させた後、前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力未満となるように前記設置箇所の圧力を低下させることを特徴とする請求項1に記載の車両の蓄熱放熱システム。
  3. 前記蓄熱放熱材は、前記内燃機関で発生した熱を受け取り可能な箇所に設けられ、
    前記圧力制御部は、前記酸化チタンの結晶構造がβ相にあると判定された場合、前記設置箇所の圧力を上昇させる前に、前記設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力未満となるように前記設置箇所の圧力を制御することを特徴とする請求項1または2に記載の車両の蓄熱放熱システム。
  4. 前記圧力調整部は、前記ウォータージャケットの熱媒体出口における熱媒体の温度が所定の判定温度未満であると判定されてからの所定の放熱期間に亘り、前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断するように前記開度を調整し、前記放熱期間の終了までに前記設置箇所における熱媒体の温度が前記判定温度以上に上昇したと判定された場合に、前記制御弁による遮断を解除するように前記開度を調整することを特徴とする請求項1に記載の車両の蓄熱放熱システム。
  5. 前記循環流路に設けられて前記ウォータージャケットの熱媒体入口に向けて熱媒体を吐き出す機関入口側ポンプと、
    前記内燃機関の始動時に、前記ウォータージャケットの熱媒体出口における熱媒体の温度が前記判定温度以上に上昇したと判定されるまでの間、前記機関入口側ポンプからの熱媒体の吐き出しを一時的に停止させる吐出停止部と、を備え、
    前記圧力調整部は、前記放熱期間の終了までに前記設置箇所における熱媒体の温度が前記判定温度以上に上昇したと判定された場合であっても、前記吐出停止部によって前記機関入口側ポンプからの熱媒体の吐き出しが停止されている間は、前記制御弁による遮断の解除を待機することを特徴とする請求項4に記載の車両の蓄熱放熱システム。
  6. 前記圧力調整部は、前記ウォータージャケットの熱媒体出口における熱媒体の温度が所定の判定温度未満であると判定されてからの所定の放熱期間に亘り、前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断するように前記開度を調整し、前記放熱期間の終了までに前記設置箇所における熱媒体の温度が前記判定温度以上に上昇していないと判定された場合に、前記蓄熱放熱材に異常が発生していると判定することを特徴とする請求項1に記載の車両の蓄熱放熱システム。
  7. 車両に搭載される内燃機関およびその関連部品を経由しながら流れる熱媒体が循環する循環流路と、
    前記循環流路を流れる熱媒体と熱交換可能な箇所に設けられると共に、Ti の組成を有する酸化チタンを含む蓄熱放熱材であって、前記酸化チタンは、結晶構造がβ相のときに所定の蓄熱温度以上に加熱されることでλ相に相転移して外部の熱を蓄え、結晶構造がλ相のときに前記蓄熱温度未満まで冷却されたとしてもβ相に相転移せず、所定の放熱圧力以上の圧力が印加されたときにβ相に相転移して外部に熱を放出する特性を有する蓄熱放熱材と、
    前記内燃機関の始動時に、前記循環流路のうちの前記蓄熱放熱材の設置箇所を流れる熱媒体から前記蓄熱放熱材が受ける圧力が前記放熱圧力以上となるように、前記設置箇所の圧力を上昇させる圧力制御部と、
    を備え、
    前記蓄熱放熱材は、前記内燃機関の排気通路に設けられた蓄熱放熱部に内蔵された第1蓄熱放熱材と、前記内燃機関のウォータージャケットに内蔵された第2蓄熱放熱材と、を備え、
    前記圧力制御部は、
    前記循環流路のうちの前記内燃機関のウォータージャケットの熱媒体出口から、前記蓄熱放熱部の熱媒体入口までの間に設けられて前記蓄熱放熱部の熱媒体入口に向けて熱媒体を吐き出す機関出口側ポンプと、前記循環流路のうちの前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口までの間に設けられた第1制御弁と、前記第1制御弁の開度および前記機関出口側ポンプから吐き出す熱媒体の第1吐出圧力を調整することで前記第1蓄熱放熱材が設置された箇所の圧力を調整する第1圧力調整部と、
    前記ウォータージャケットの熱媒体入口に向けて熱媒体を吐き出す機関入口側ポンプと、前記ウォータージャケットの熱媒体出口に設けられた第2制御弁と、前記第2制御弁の開度および前記機関入口側ポンプから吐き出す熱媒体の第2吐出圧力を調整することで前記第2蓄熱放熱材が設けられた箇所の圧力を調整する第2圧力調整部と、を備え、
    前記第1圧力調整部は、前記第1吐出圧力を一定圧に調整すると共に、前記第1蓄熱放熱材が設置された箇所の圧力を上昇させるときには前記蓄熱放熱部の熱媒体出口から前記ウォータージャケットの熱媒体入口への熱媒体の流れを遮断するように前記第1制御弁の開度を調整し、前記第1蓄熱放熱材が設置された箇所の圧力を上昇させた後は、前記第1制御弁による遮断を解除するように前記第1制御弁の開度を調整し、
    前記第2圧力調整部は、前記第2吐出圧力を一定圧に調整すると共に、前記第2蓄熱放熱材が設置された箇所の圧力を上昇させるときには前記第2制御弁の下流側への熱媒体の流れを遮断するように前記第2制御弁の開度を調整し、前記第2蓄熱放熱材が設置された箇所の圧力を上昇させた後は、前記第2制御弁による遮断を解除するように前記第2制御弁の開度を調整することを特徴とする車両の蓄熱放熱システム。
JP2016113814A 2016-06-07 2016-06-07 車両の蓄熱放熱システム Expired - Fee Related JP6426658B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016113814A JP6426658B2 (ja) 2016-06-07 2016-06-07 車両の蓄熱放熱システム
DE102017109005.3A DE102017109005B4 (de) 2016-06-07 2017-04-27 Verbrennungsmotor
US15/613,566 US10544996B2 (en) 2016-06-07 2017-06-05 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113814A JP6426658B2 (ja) 2016-06-07 2016-06-07 車両の蓄熱放熱システム

Publications (2)

Publication Number Publication Date
JP2017218971A JP2017218971A (ja) 2017-12-14
JP6426658B2 true JP6426658B2 (ja) 2018-11-21

Family

ID=60327789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113814A Expired - Fee Related JP6426658B2 (ja) 2016-06-07 2016-06-07 車両の蓄熱放熱システム

Country Status (3)

Country Link
US (1) US10544996B2 (ja)
JP (1) JP6426658B2 (ja)
DE (1) DE102017109005B4 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014007214A1 (de) * 2014-05-19 2015-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Rückgewinnung von Wärme aus Verbrennungsmotoren sowie zur Umwandlung der rückgewonnenen Wärme in mechanische Energie
JP6915584B2 (ja) * 2018-04-25 2021-08-04 トヨタ自動車株式会社 車両用暖機システム
US11274638B2 (en) 2018-07-24 2022-03-15 Panasonic Intellectual Property Management Co., Ltd. Fluid heating device, motor system, movable object, and hydraulic system
KR102600089B1 (ko) * 2018-10-12 2023-11-07 주식회사 엘지에너지솔루션 배터리 모듈
CN111022236B (zh) * 2019-12-26 2021-11-19 宁波吉利罗佑发动机零部件有限公司 一种发动机热管理系统及车辆
JP2022099632A (ja) * 2020-12-23 2022-07-05 株式会社デンソー 蓄放熱装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032287A (ja) * 2005-07-22 2007-02-08 Toyota Motor Corp 潜熱蓄熱装置及びエンジン
JP4175388B2 (ja) * 2006-06-05 2008-11-05 トヨタ自動車株式会社 蓄熱装置及びエンジン
JP2010054162A (ja) * 2008-08-29 2010-03-11 Honda Motor Co Ltd 蓄熱装置及び車両用暖機システム
JP2010053830A (ja) * 2008-08-29 2010-03-11 Honda Motor Co Ltd 車両用暖機システム
US8661800B2 (en) 2012-04-09 2014-03-04 Ford Global Technologies, Llc Method of collection and reuse of exhaust heat in a diesel-powered vehicle
EP2986830A1 (en) 2013-04-18 2016-02-24 Toyota Jidosha Kabushiki Kaisha Heat transfer apparatus
EP3053981B1 (en) 2013-10-04 2019-04-03 The University of Tokyo Use of heat storage/dissipation material and heat storage/dissipation system
JP6337675B2 (ja) * 2014-07-29 2018-06-06 株式会社デンソー 蓄熱システム
JP2016102433A (ja) * 2014-11-27 2016-06-02 株式会社豊田自動織機 エンジンの排気浄化制御方法
JP6631006B2 (ja) 2014-12-15 2020-01-15 富士通株式会社 データ出力プログラム、データ出力方法及びデータ出力装置

Also Published As

Publication number Publication date
US10544996B2 (en) 2020-01-28
DE102017109005A1 (de) 2017-12-07
JP2017218971A (ja) 2017-12-14
DE102017109005B4 (de) 2018-08-23
US20170350659A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6426658B2 (ja) 車両の蓄熱放熱システム
JP6079766B2 (ja) エンジン冷却システム及びその運転方法
JP4998537B2 (ja) 車両の冷却装置
JP5811797B2 (ja) エンジン冷却システム
JP6096492B2 (ja) エンジンの冷却装置
KR101637779B1 (ko) 차량의 배기열 회수 장치 및 방법
JP2011021482A (ja) 車両用冷却システムの制御装置
CN108699946B (zh) 内燃机冷却系统
JP2004360680A (ja) エンジン冷却水の流れ制御用サーモスタット装置とエンジン温度制御方法およびシステム
JP2008121435A (ja) 車両冷却装置
JP5708060B2 (ja) エンジン
CN110214222B (zh) 发动机的冷却装置
JP2018105185A (ja) 内燃機関の冷却装置
JP6090301B2 (ja) エンジン冷却システムおよびその運転方法
JP2012197729A (ja) エンジン
JP2005188327A (ja) 車両冷却装置
CN111434904B (zh) 内燃机的蓄热散热装置
JP2009097351A (ja) エンジンの冷却装置
WO2015125428A1 (ja) 内燃機関の冷却装置
WO2011089705A1 (ja) 車両の冷却装置
JPH02125910A (ja) 内燃機関の冷却水流量制御装置
JP2004301032A (ja) エンジンの冷却装置
JP6361306B2 (ja) 内燃機関の冷却装置
JP2012197730A (ja) エンジン
JP2004285830A (ja) エンジンの冷却装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R151 Written notification of patent or utility model registration

Ref document number: 6426658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees