JP2022099632A - 蓄放熱装置 - Google Patents

蓄放熱装置 Download PDF

Info

Publication number
JP2022099632A
JP2022099632A JP2020213509A JP2020213509A JP2022099632A JP 2022099632 A JP2022099632 A JP 2022099632A JP 2020213509 A JP2020213509 A JP 2020213509A JP 2020213509 A JP2020213509 A JP 2020213509A JP 2022099632 A JP2022099632 A JP 2022099632A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage
heat dissipation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020213509A
Other languages
English (en)
Inventor
健二 服部
Kenji Hattori
慎一 大越
Shinichi Ogoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
University of Tokyo NUC
Original Assignee
Denso Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, University of Tokyo NUC filed Critical Denso Corp
Priority to JP2020213509A priority Critical patent/JP2022099632A/ja
Priority to PCT/JP2021/037809 priority patent/WO2022137743A1/ja
Publication of JP2022099632A publication Critical patent/JP2022099632A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】蓄熱状態の精度よい推定を行って、所望の蓄熱状態となるように、蓄放熱を制御可能な蓄放熱装置を提供する。【解決手段】蓄放熱装置1は、蓄放熱体2と、蓄放熱制御部10と、を備える。蓄放熱体2は、β相からλ相への相転移に伴って蓄熱し、λ相からβ相への相転移に伴って放熱する特性を有する蓄放熱酸化チタンである。蓄放熱制御部10は、蓄放熱体2の電気抵抗又は電気抵抗の変化を示す値を検出する抵抗検出部3と、抵抗検出部3による検出値と、蓄放熱酸化チタンに含まれるλ相の比率を表す相転移率との関係に基づいて、蓄放熱体2の蓄熱状態を推定する蓄熱状態推定部と、を有しており、推定される蓄熱状態に基づいて、蓄放熱体2の蓄放熱を制御する、蓄放熱装置。【選択図】図1

Description

本発明は、蓄放熱セラミックスを用いた蓄放熱装置に関する。
従来、車両用エンジンの始動時に、エンジンを流通する作動流体を利用して、エンジンの暖機を行う熱交換システムが知られている。作動流体の加熱には、例えば、バッテリ電源を利用した電気ヒータや、エンジン排熱を利用した蓄放熱装置が提案されている。蓄放熱装置は、作動流体が吸収したエンジン排熱を蓄熱可能に設けられており、蓄熱した熱量を、次回のエンジン始動時に、作動流体へ吸収させてエンジンへ供給することができる。
蓄放熱装置において、作動流体との熱交換を効率よく行うために、蓄熱用の材料として、潜熱蓄熱材料を利用することが検討されている。潜熱蓄熱材料としては、固液相転移を利用したものが一般的であり、例えば、パラフィンや脂肪酸等の有機化合物系蓄熱材料、無機塩や無機水和塩等の無機化合物系蓄熱材料が知られている。このような潜熱蓄熱材料は、相転移による状態変化や体積変化を伴うことから、熱交換部の構成に工夫が必要であり、通常は、これら変化を吸収可能な収容部に収容された状態で用いられる。また、潜熱蓄熱材料を容器に封入した蓄熱カプセルとして収容部に収容したものや、蓄熱カプセルを液体と混合した流動性蓄熱材として循環させるようにしたものも提案されているが、取り扱いが必ずしも容易でない。
一方、近年、固体状態で使用できるセラミックス系の潜熱蓄熱材料が注目されている。セラミックス系蓄熱材料は、例えば、V、Mn、Ni、Fe、Ti等の遷移金属を含む酸化物セラミックスであり、固相-固相間の相転移を利用しているために、体積変化が小さく、形状の安定性に優れる。セラミックス系蓄熱材料の応用例として、例えば、特許文献1には、圧力又は放熱光を受けてλ相からβ相へ相転移し、蓄熱していた熱を放出する性質をもつ蓄放熱酸化チタン(すなわち、Ti35)を含む蓄放熱材を用いた蓄放熱システムが開示されている。この蓄放熱システムは、太陽光や炉等を熱源とする加熱又は蓄熱光の照射によって熱を蓄えさせる蓄熱装置と、圧力印加又は放熱光の照射によって熱を放出させる放熱装置とを備える。そして、蓄放熱酸化チタンの粉末を伝熱オイルに分散させた蓄放熱材を循環させて、蓄熱と放熱とを繰り返し行うように構成されている。
国際公開第2015/050269号
蓄放熱酸化チタンは、圧力や放熱光といった外部刺激を受けない限り、蓄熱状態を保持することから、蓄熱効率に優れている。また、外部刺激により容易に放熱することから、所望のタイミングで蓄えた熱を放出させることが可能となり、種々の用途への応用が期待される。一方、特許文献1に記載される蓄放熱システムは、蓄熱装置と放熱装置とが一対の流路によって連結され、液体状の蓄放熱材が装置間を繰り返し循環する構成であることから、例えば、車両用としてそのまま用いるには適さない。また、蓄放熱の具体的な制御手法は示されておらず、実用化に際して、蓄放熱セラミックスの蓄熱状態を把握し、車両の使用環境や運転状態に応じた制御を可能とすることが課題となっている。
本発明は、かかる課題に鑑みてなされたものであり、蓄熱状態の精度よい推定を行って、所望の蓄熱状態となるように、蓄放熱を制御可能な蓄放熱装置を提供しようとするものである。
本発明の一態様は、
蓄放熱体(2)と、蓄放熱制御部(10)と、を備える蓄放熱装置(1)であって、
上記蓄放熱体は、β相からλ相への相転移に伴って蓄熱し、λ相からβ相への相転移に伴って放熱する特性を有する蓄放熱酸化チタンを含み、
上記蓄放熱制御部は、
上記蓄放熱体の電気抵抗又は電気抵抗の変化を示す値を検出する抵抗検出部(3)と、
上記抵抗検出部による検出値(R、R1)と、上記蓄放熱酸化チタンに含まれるλ相の比率を表す相転移率との関係に基づいて、上記蓄放熱体の蓄熱状態を推定する蓄熱状態推定部(4)と、を有しており、
上記蓄放熱制御部は、上記蓄熱状態推定部にて推定される上記蓄熱状態に基づいて、上記蓄放熱体の蓄放熱を制御する、蓄放熱装置にある。
上記蓄放熱装置の蓄放熱制御部には、蓄熱状態推定部が設けられており、抵抗検出部による検出値を用いて、蓄放熱体の蓄熱状態を推定することができる。蓄放熱体を構成する蓄放熱酸化チタンは、結晶構造がβ相からλ相へ相転移するのに伴い、潜在的に熱を蓄えることができる材料であり、λ相からβ相へ相転移する際には、蓄えた熱を放出することができる。このとき、結晶構造の変化に伴って電気的特性が変化し、蓄放熱酸化チタンに含まれるλ相の比率が高くなるほど、電気的抵抗が低下する特性を示す。蓄放熱制御部は、この関係を利用して、蓄放熱酸化チタンの相転移率に対応する蓄熱状態を知ることができ、蓄熱状態の推定結果に基づく蓄放熱制御を行うことができる。
以上のごとく、上記態様によれば、蓄熱状態の精度よい推定を行って、所望の蓄熱状態となるように、蓄放熱を制御可能な蓄放熱装置を提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
実施形態1における、蓄放熱装置の全体構成を示す概略図である。 実施形態1における、蓄放熱装置の要部構成を示す模式図である。 実施形態1における、蓄放熱体の相転移率と電気抵抗値及び相転移率と蓄熱量の関係を示すグラフ図である。 実施形態2における、蓄放熱装置を含むエンジンの潤滑システムの主要部構成を示す概略図である。 実施形態2における、蓄放熱体の構成例を示す模式図である。 実施形態2における、蓄放熱体の相転移率と電気抵抗値及び電気抵抗閾値との関係を示すグラフ図である。 実施形態2における、蓄放熱装置の要部構成の他の例を示す模式図である。 実施形態2における、蓄放熱体の相転移率と電気抵抗値との関係を算出する手順を説明するための図である。 実施形態2における、蓄放熱体の相転移率と電気抵抗率との関係をパーコレーションモデルから求めた結果を示すグラフ図である。 実施形態2における、蓄放熱装置の蓄放熱制御の手順を示すフローチャート図である。 実施形態2における、蓄放熱装置の蓄放熱制御による油温の時間推移を示す図である。 実施形態3における、蓄放熱装置の主要部構成を示す概略図である。 実施形態3における、蓄放熱体の相転移率と電気抵抗率及び抵抗変化率との関係に示す図である。 実施形態3における、蓄熱制御時の電気抵抗値の時間推移を示す図である。 実施形態3における、放熱制御時の電気抵抗値の時間推移を示す図である。
(実施形態1)
蓄放熱装置に係る実施形態1について、図1~図3を参照して説明する。
図1、図2に示すように、蓄放熱装置1は、蓄放熱体2と、蓄放熱制御部10と、を備える。蓄放熱体2は、β相からλ相への相転移に伴って蓄熱し、λ相からβ相への相転移に伴って放熱する特性を有する蓄放熱酸化チタンを含んで構成される。蓄放熱制御部10は、蓄放熱体2の電気抵抗又は電気抵抗の変化を示す値を検出する抵抗検出部3と、蓄熱状態推定部4と、を有している。
蓄熱状態推定部4は、抵抗検出部3の検出値と、蓄放熱酸化チタンの相転移率との関係に基づいて、蓄放熱体2の蓄熱状態を推定する。ここで、「相転移率」とは、蓄放熱酸化チタンに含まれるλ相の比率を表し、具体的には、β相とλ相とを含む蓄放熱酸化チタンの全体に占めるλ相の割合を示している。蓄放熱制御部10は、例えば、図3に一例を示すこれらの関係を予め記憶しておくことにより、蓄熱状態を推定することができる。蓄放熱制御部10は、蓄熱状態推定部4にて推定される蓄熱状態に基づいて、蓄放熱体2の蓄放熱を制御する。
好適には、蓄放熱制御部10は、蓄熱状態推定部4にて推定される蓄熱状態と、目標とする上記蓄放熱体の蓄熱状態とに基づいて、蓄放熱体2の蓄放熱を制御することができる。具体的には、「蓄熱状態」を表す値として、蓄放熱酸化チタンに蓄熱される熱量(すなわち、蓄熱量)の演算値を用いてもよいし、あるいは、蓄熱量と相関を有する指標値を用いることもできる。このような指標値としては、例えば、抵抗検出部3の検出値を用いることができる。
蓄放熱体2は、蓄放熱酸化チタンの結晶粒子を含んで構成されており、蓄放熱酸化チタンの結晶構造に応じた電気的特性を示す。蓄放熱酸化チタンは、β相からλ相への相転移が進むほど、すなわち、相転移率が高くなるほど、潜在的な蓄熱量が増加することから、相転移率に基づいて、蓄放熱体2の蓄熱状態を知ることができる。このとき、詳細を後述するように、蓄放熱酸化チタンの電気的特性と相転移率との関係に基づいて、蓄放熱体2の蓄熱状態を推定することができる。
蓄放熱酸化チタンは、外部エネルギを付与されて、β相よりも低電気抵抗率の電気的特性を示すλ相へ相転移し、また、外部刺激を受けてλ相からβ相へ相転移する際に、熱エネルギを放出する特性を有するチタン酸化物である。具体的には、このような蓄放熱酸化チタンとして、五酸化三チタン系材料が用いられる。外部エネルギは、好適には、電気エネルギ、熱エネルギ及び光エネルギのうちの少なくとも1つであり、外部刺激は、圧力、光及び電流のうちの少なくとも1つとすることができる。
五酸化三チタン系材料は、Ti35の組成を有する五酸化三チタンを主成分とする材料であり、Tiの一部がTi以外の元素で置換された置換型の五酸化三チタンを含むこともできる。置換型の五酸化三チタンは、例えば、置換元素を適宜選択することにより、相転移温度を調整することが可能であり、蓄放熱装置1の使用環境に応じて蓄放熱セラミックス材料を選択することができる。このような置換元素としては、例えば、Mg,Mn、Al、V、Nb、Hf、Zr、Si、Sc、Y等が挙げられ、非置換型の場合よりもλ相への相転移温度を低くすることが可能となる。
好適には、蓄放熱制御部10は、蓄熱制御部11を有することができる。蓄熱制御部11は、蓄熱状態を表す値が目標値を満たさないと判定されるときに、蓄放熱体2へ外部エネルギを付与することにより、蓄放熱酸化チタンの蓄熱量を増加させることができる。蓄放熱体2は、例えば、図示のように、スイッチSWを介して電源Bに接続されており、蓄熱制御部11は、所望のタイミングでスイッチSWをオン状態とすることにより、蓄放熱体2への通電を可能として電気エネルギを付与する通電制御を行うことができる。
また、蓄放熱制御部10は、放熱制御部12を有することができる。放熱制御部12は、放熱が要求されたときに、蓄放熱体2への外部刺激の付与によって、蓄積した熱量を放出させることができる。例えば、蓄放熱体2を備える蓄放熱部20に、図示しない加圧装置を設けることにより、放熱制御部12によって、所望のタイミングで蓄放熱体2へ圧力を印加する加圧制御を行うことができる。
これら、蓄熱制御部11及び放熱制御部12における具体的な制御手法については、後述する。
潜熱蓄放熱材料である蓄放熱酸化チタンは、国際公開第2015/050269号に記載されているように、還元型酸化チタンの一種として知られているものであり、Ti35(すなわち、五酸化三チタン)の組成を有する。Ti35の結晶構造は、β相、λ相及びα相等を含む多形を有し、非磁性半導体の特性を示すβ相から、常磁性金属の特性を示すλ相へ相転移することにより、電気的抵抗が低下する。例えば、λ-Ti35の粉末試料は、通常、0.01Ωcm~0.1Ω・cmの電気抵抗率(室温)を示し、β-Ti35の単結晶試料は、通常、30Ω・cmの電気抵抗率(室温)を示す。
五酸化三チタンは、460K(すなわち、187℃)以下の温度領域において、常磁性金属の状態を保つ単斜晶系の結晶相(すなわち、λ相)となり、外部刺激を受けない限り、その状態を維持することができる。λ相である五酸化三チタンに、圧力等の外部刺激を与えると、潜在的に蓄えていた熱を放出し、非磁性半導体の特性を有する単斜晶系の結晶相(すなわち、β相)へ相転移する。五酸化三チタンは、λ相にあるときに温度を上げていくと、460Kを超える温度領域で、常磁性金属の状態を保つ斜方晶系の結晶相(すなわち、α相)へ相転移し、その後、温度を下げていくと、λ相へ相転移する。β相にあるときに外部エネルギを与えると、λ相へ直接相転移し、又は、α相を経由してλ相へ相転移する。
λ相の五酸化三チタンは、結合エネルギとしてエネルギを保存し、外部刺激によりTi-O結合の切断と再結合によりβ相への相転移が発生する際に、熱エネルギとして放出することができる。そのため、五酸化三チタンを構成原料とする蓄放熱体2は、蓄放熱時の制御性が良好であり、固体間の相転移であることから、取り扱いが容易である。また、五酸化三チタンは、低温・長期保存が可能であり、安価な原料から製造可能である、といった利点を有する。なお、五酸化三チタンは、例えば、二酸化チタン(すなわち、TiO2)の粉末を、水素雰囲気下にて1100℃~1400℃の温度で焼成することにより生成することができる。
蓄放熱体2の構造は特に限定されず、蓄放熱部20に収容又は支持されて、蓄放熱制御のために、外部エネルギ又は外部刺激を付加可能に構成されていればよい。蓄放熱部20には、蓄放熱体2への通電経路に抵抗検出部3が接続されており、所望のタイミングで抵抗検出部3により電気抵抗又は電気抵抗の変化を示す値が検出される。これにより、抵抗検出部3にて検出される検出値と、相転移率との関係を用いて、蓄放熱体2の蓄熱状態を知ることができる。なお、「電気抵抗又は電気抵抗の変化を示す値」は、蓄放熱体2の電気的な抵抗特性を示す値又は電気抵抗の変化を示す値であればよく、例えば、蓄放熱体2の電気抵抗を示す値は、電気抵抗値又は電気抵抗率であり、電気抵抗の変化を示す値は、電気抵抗値の変化率又は変化量、又は、電気抵抗率の変化率又は変化量等を用いることができる。
図2に模式的に示すように、蓄放熱体2は、例えば、バルク状の構造体(以下、適宜、バルク体と称する)として構成することができる。バルク体は、具体的には、蓄放熱酸化チタンの粒子集合体からなり、蓄放熱酸化チタンの粉末を加圧成形したものを焼成して得られる。バルク体の形状は、特に制限されるものではなく、図示する円盤状の他、任意の形状とすることができる。
このように、蓄放熱体2の構成材料として、固相から固相へ相転移する蓄放熱酸化チタンを用いることにより、蓄放熱体2や蓄放熱体2を備える蓄放熱部20の構成を簡易にすることができる。図2に示すバルク体では、例えば、蓄放熱体2の対向する一対の表面21、22にそれぞれ電極を形成して、電源Bに接続することにより、蓄放熱体2への通電経路を形成し、外部エネルギとしての電気エネルギを効率よく供給可能となる。また、通電経路に抵抗検出部3を接続して、蓄放熱体2の電気抵抗又は電気抵抗の変化を示す値を容易に検出することが可能になる。
蓄放熱体2は、蓄放熱酸化チタンの結晶粒子と、それ以外の材料とを含む構成とすることもできる。その場合には、蓄放熱体2の電気的抵抗への影響を抑制する観点から、β相蓄放熱酸化チタンよりも高電気抵抗率の材料を用いることが望ましい。具体的には、蓄放熱酸化チタンの結晶粒子を含むバルク体を樹脂封止した樹脂封止体や、蓄放熱酸化チタンの結晶粒子を、オイルや樹脂等のマトリックス材料中に分散させた複合体としてもよい。マトリックス材料は、固体状、液体状、スラリー状、ペースト状等の任意の状態のものを用いることができ、流動性を有する材料である場合は、例えば、容器等に収容して複合体とするとよい。蓄放熱体2の製造に際して、蓄放熱酸化チタンの電気的特性を妨げない範囲で、その他の材料や添加剤が添加されていてもよい。
このような蓄放熱体2は、例えば、エンジンオイル等の作動流体と熱交換可能に構成された蓄放熱部20の主要部を構成し、熱源となるエンジン排熱等により高温となった作動流体の熱エネルギを吸収して、蓄熱することができる。また、エンジン始動時に低温の作動流体へ放熱して、被加熱体となるエンジン本体の暖機等に用いることができる。蓄放熱部20において、蓄放熱体2は、図示しない流路を流通する作動流体と直接又は間接的に接触して、蓄放熱を行うことができる。
図3の左図に示すように、蓄放熱体2において、蓄放熱酸化チタンにおけるβ相からλ相への相転移率(以下、適宜、λ比率と称する)と、蓄放熱酸化チタンの電気抵抗又は電気抵抗の変化を示す値(ここでは、電気抵抗値R)とは、相関関係を有する。具体的には、λ比率が低い領域(すなわち、半導体特性を有するβ相が多い領域)では電気抵抗値が高く、λ比率が高い領域(すなわち、金属特性を有するλ相が多い領域)では電気抵抗値が低くなる。その間の領域においては、λ比率が増加するほど(すなわち、金属特性を有するλ相が多くなるほど)、電気抵抗値が低下する関係にあり、λ比率が低い領域又はλ比率が高い領域へ近づくほど電気抵抗値の変化は緩やかとなる。
図3の右図に示すように、蓄放熱体2の蓄熱量と相転移率との関係は、電気抵抗値との関係とは逆となり、λ比率が高くなるほど、蓄熱量が増加する関係にある。このとき、λ比率が低く蓄熱量が少ない領域から、λ比率の増加と共に蓄熱量が急増する領域を経て、λ比率が高く蓄熱量が多い領域へ至る。したがって、これらの関係を用いて、検出される電気抵抗値に対応するλ比率を求め、さらに、λ比率から蓄放熱体2の蓄熱量を求めることができる。
蓄放熱制御部10は、これらの関係から求められる蓄放熱体2の蓄熱量が、所望の蓄熱量となるように、蓄熱制御部11を作動させる。具体的には、蓄熱可能な蓄熱量の上限値や被加熱体の加熱に必要となる蓄熱量等から、蓄熱量の目標値を任意に設定し、抵抗検出部3の検出値から求められる蓄熱量が、目標蓄熱量となるように、蓄熱動作を行うことができる。制御値としては、蓄熱状態を表す値であればよく、蓄熱量に対応する抵抗検出部3の検出値、例えば、電気抵抗値を用いるようにしてもよい。
図1において、蓄放熱装置1は、蓄放熱制御部10によって、蓄放熱部20を監視すると共に、蓄放熱体2の蓄熱状態に応じて、蓄熱制御を行い又は放熱制御を行う。蓄熱状態推定部4には、抵抗-相転移率の関係を予め記憶している記憶部41と、抵抗-相転移率の関係を利用して、相転移率さらには蓄熱量を演算する演算部42とが設けられる。蓄熱状態推定部4に接続される抵抗検出部3には、例えば、抵抗値演算部31と、電圧値検出部32及び電流値検出部33が設けられ、蓄放熱体2への通電時に印加される電圧値及び電流値から電気抵抗値を演算する。
蓄熱状態推定部4において、記憶部41は、図3に示される抵抗-相転移率の関係を、例えば、マップ値又は演算式等として記憶している。演算部42は、これらマップ値又は演算式等を用い、抵抗値演算部31にて演算される電気抵抗値に基づいて、相転移率を演算により求める。また、相転移率に応じてλ相に蓄えられる蓄熱量が定まることから、これらの関係についても、記憶部41に予めマップ値又は演算式等として記憶しておくことができ、相転移率に基づいて、さらに蓄熱量を演算により求めることができる。なお、電気抵抗値は、温度等に依存性を有するため、記憶部41に予め温度特性マップ等として記憶しておき、温度等に応じて補正を行うようにすることもできる。
このように、蓄放熱制御部10において、蓄放熱体2の蓄熱量を正確に把握することができるので、蓄熱量が不足する場合には、蓄熱制御部11を用いた通電制御により、所望の蓄熱量となるように電気エネルギを投入することができる。また、被加熱体からの加熱要求等により、蓄放熱体2の放熱が必要な場合には、放熱制御部12を用いた加圧制御を行って、所定の圧力を加えることにより容易に潜熱を取り出すことが可能となる。
このような構成の蓄放熱装置1は、蓄放熱酸化チタンの特性に基づいて、蓄熱制御及び放熱制御を効果的に行うことができ、必要な蓄熱量を確保して放熱時まで蓄熱量を維持し、所望のタイミングで放熱を行うことができる。また、蓄熱量を監視することにより、過剰な蓄熱による温度上昇を抑制して、蓄放熱酸化チタンの劣化等を防止することができる。
(実施形態2)
蓄放熱装置に係る実施形態2について、図4~図12を参照して説明する。
本形態は、蓄放熱部20及び蓄放熱制御部10を含む蓄放熱装置1を、車両エンジン用のシステムへ適用した具体例であり、蓄放熱体2と熱交換可能な作動流体としてエンジンオイルを用いている。蓄放熱装置1の基本構成は、上記実施形態と同様であり、以下、相違点を中心に説明する。
なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
図4に示すように、蓄放熱装置1は、エンジンEの潤滑システム100に組み込まれて、潤滑用のエンジンオイルを利用した蓄放熱装置を構成している。エンジンEと、エンジンオイルが貯留されるオイルパンPとの間には、エンジンオイルの供給路102と回収路103とを含むオイル循環路101が設けられている。オイル循環路101は、供給路102及び回収路103が、蓄放熱装置1の蓄放熱部20を通過するように構成されており、オイル循環路101を流通するエンジンオイルと蓄放熱部20との間で熱交換可能となっている。
オイル循環路101には、オイルパンPからエンジンオイルを供給路102へ汲み上げるためのオイルポンプ104が配置されている。供給路102は、オイルポンプ104よりもエンジンE側において、蓄放熱部20を通過しないバイパス路102aを有し、供給路102への合流部に制御弁105が設けられる。制御弁105は、例えば、エンジンオイルの供給経路を、供給路102又はバイパス路102aに切り替える流路切替弁として構成される。あるいは、供給路102及びバイパス路102aを流通するエンジンオイルの流量比率を調整可能な流量調整弁として構成されてもよい。
エンジンEへ供給されたエンジンオイルは、エンジン各部の潤滑に用いられた後、回収路103を経て、オイルパンPへ回収される。回収路103は、蓄放熱部20を通過しないバイパス路103aを有し、回収路103からの分岐部に制御弁106が設けられる。制御弁106は、例えば、エンジンオイルの回収経路を切り替える流路切替弁として構成される。あるいは、回収路103及びバイパス路103aの流量比率を調整可能な流量制御弁として構成されてもよい。
蓄放熱部20は、供給路102を流通するエンジンオイルを、必要に応じて加熱し、あるいは、回収路103を流通するエンジンオイルから、その熱を回収することができる。例えば、エンジンEの冷間始動時には、オイルポンプ104を作動させると共に、制御弁105を供給路102側へ切り替えることにより、蓄放熱部20に蓄えられた熱を利用して、エンジンオイルを温度上昇させ、エンジンEの暖機を行うことが可能となる。エンジンオイルの温度や外気温等の使用環境等から、暖機不要と判断される場合には、制御弁105をバイパス路102a側へ切り替えて、蓄放熱部20を経由せずに、エンジンオイルを直接、エンジンEへ供給することができる。
また、例えば、エンジンEの通常運転時には、エンジンEの内部を通過する間にエンジンオイルが温度上昇するので、制御弁106を回収路103側へ切り替えることにより、エンジンオイルの熱を吸収して蓄放熱部20に蓄えることが可能となる。エンジンオイルの温度や使用環境等から、蓄熱に適さないと判断される場合には、制御弁105をバイパス路103a側へ切り替えて、蓄放熱部20を経由せずに、エンジンオイルを直接、オイルパンPへ回収することができる。
図5に示すように、蓄放熱部20を構成する蓄放熱体2は、蓄放熱酸化チタンの粉末を焼結させた所定形状のバルク体とすることができる。このとき、例えば、バルク体に一対の貫通穴を設けた筒状形状として、供給路102及び回収路103がバルク体の内部を通過するように構成することができ、供給路102又は回収路103を流通するエンジンオイルとの熱交換を効率よく行うことができる。また、貫通方向の両端面となる一対の表面21、22にそれぞれ電極を設けることにより、通電経路が容易に形成できる。蓄放熱体2となるバルク体の形状、供給路102及び回収路103の通路形状は、それらの一例を模式的に示すものであって、任意に変更することができる。
図4において、蓄放熱制御部10は、蓄放熱部20の蓄熱及び放熱を制御する。ここでは、蓄熱制御について主に説明するために、蓄放熱部20への蓄熱を制御する蓄熱制御部11とその周辺部を含む簡略図としており、蓄放熱部20からの放熱を制御する放熱制御部12(図1参照)については、図示を省略している。蓄熱制御部11は、電源Bから蓄放熱部20への通電経路に介設されるスイッチSW1のオンオフを切り替えて、蓄放熱体2への通電を制御する。具体的には、スイッチSW1がオン状態となっている間、蓄放熱体2へ電気エネルギが供給され、その大きさに応じて蓄熱量が増加する。電源Bは、例えば、車両バッテリとすることができる。
蓄放熱制御部10は、蓄放熱体2の蓄熱状態を推定する蓄熱状態推定部4と、蓄熱状態の推定に用いられる抵抗検出部3とを備える。抵抗検出部3は、蓄放熱部20への通電経路に、スイッチSW2を介して接続されており、測定時にオン状態に切り替えられて、蓄放熱体2へ印加される電圧値Vを検出すると共に(図1の電圧検出部32参照)、蓄放熱体2を流れる電流値Iを検出する(図1の電流検出部33参照)。抵抗値演算部31は、これら検出値に基づいて、蓄放熱体2の電気抵抗値Rを演算により求める(すなわち、R=V/I)。
図6に示すように、蓄放熱体2の電気抵抗値Rと、蓄放熱体2を構成する蓄放熱酸化チタンの相転移率との関係は、予め調べられており、蓄熱状態推定部4の記憶部41にマップ値又は演算式等として記憶されている。演算部42は、この関係に基づいて、抵抗検出部3の検出値である蓄放熱体2の電気抵抗値Rから、相転移率を演算することができる。さらに、相転移率と蓄熱量との関係に基づいて、蓄放熱体2の蓄熱量を演算により求めることができる。
図4において、蓄熱制御部11は、蓄熱状態推定部4による推定結果に基づいて、蓄放熱体2の蓄熱量が、所望の目標蓄熱量となっているかを判定する。蓄熱量が不足であると判定される場合には、必要に応じて、外部エネルギを投入する蓄熱制御を行い、蓄放熱体2に蓄熱することができる。ここでは、スイッチSW1をオン状態とすることにより、蓄放熱体2へ通電し、外部エネルギとしての電気エネルギを供給する。
このとき、図7に示すように、蓄放熱体2への蓄熱制御用の電源B1と、抵抗検出用の電源B2とを、それぞれ別体に設けることもできる。電源B1と電源B2とは、蓄放熱体2に対して並列に接続されており、電源B1への通電経路にスイッチSWが設けられる。蓄熱時には、蓄熱制御部11によって、スイッチSWをオン状態とすることにより、蓄放熱体2が電源B1と接続されて蓄熱電流が流れる。一方、抵抗検出部3に電源B2が設けられることにより、抵抗検出を随時行って、蓄熱状態を監視することができる。
蓄放熱体2の蓄熱状態は、例えば、図6における抵抗-相転移率の関係を用いて、判定することができる。具体的には、電気抵抗値Rが所定の電気抵抗閾値Rth以下であるときに、蓄放熱酸化チタンのβ相からλ相への相転移が進んで相転移率が上昇し、所望の蓄熱状態にあると判断される。電気抵抗閾値Rthは、蓄熱量の目標値に応じて、任意に設定することができる。蓄熱量の目標値は、例えば、放熱時に蓄放熱体2に要求される蓄熱量に応じて、蓄放熱体2に蓄熱可能な蓄熱量の範囲で、適宜設定することができる。電気抵抗閾値Rthに代えて、蓄熱量の目標値に相当する蓄熱量閾値Qthを用い、電気抵抗値Rから求められる蓄熱量と比較することもできる。例えば、図中に示す電気抵抗閾値Rthは、相転移率の上昇により電気抵抗値Rが急低下している領域から、λ比率が高くなり電気抵抗値Rの変化が緩やかとなる領域へ移行する境界領域となるように、相転移率に対応する電気抵抗値Rに基づいて設定されている。
図6に示される抵抗-相転移率の関係は、具体的には、図8中に[1]~[4]として示される手順によって導かれる。[1]、[2]は、蓄放熱体2を構成する蓄放熱酸化チタンの材料による影響を、[3]は、蓄放熱体2の構造による影響を考慮したもので、これらのデータから、[4]において関係マップが作製される。まず、[1]において、予め、蓄放熱酸化チタンの粉末試料を用いて、示差走査熱量測定(DSC:Differencial Scanning Calorimetry)を行い、温度-吸熱特性を調べておく。具体的には、粉末試料を所定の昇温温度で加熱したときの各温度における吸熱量を、熱流束μ(すなわち、単位時間当たりの入力熱量;dQ/dt)として測定する。
得られた温度-吸熱特性において、加熱前の初期状態を相転移率=0とし、全熱量が吸熱された加熱後の状態を相転移率=1と仮定する。[1]のグラフ中に斜線で示す面積は、対応する温度における初期状態からの吸熱量に相当するので、β相からλ相への相転移に必要な熱エネルギ(230kJL-1)から、相転移率の関係を知ることができる。そこで、[2]において、各温度における相転移率αを、下記式を用いて算出する。
式:α=1/Q∫u(T)dT
これにより、温度と相転移率の関係が得られる。
一方、[3]において、蓄放熱体2を所定の形状に製作し、測定に先立って、蓄放熱体2を加圧により放熱させて、室温まで冷却させる。これにより、蓄放熱酸化チタンに含まれるλ相をβ相に相転移させた後、蓄放熱体2を所定の温度まで加熱してλ相に相転移させる。このときの各温度における電気抵抗値を測定することにより、温度と電気抵抗値の関係が得られる。さらに、[4]において[2]で得られた温度と相転移率の関係を示すデータと、[3]で得られた温度と電気抵抗値の関係を示すデータとに基づいて、相転移率と電気抵抗値の関係を示すマップを作製することができる。
このようにして得られたマップは、図9に示すように、公知のパーコレーションモデルから計算により得られた抵抗-相転移率の関係と、ほぼ同等の関係を示しており、マップに基づいて精度よい蓄放熱制御が可能となる。なお、図9は、電気伝導率に関するbruggmanの式を用いた計算により、蓄放熱酸化チタンの相転移率と、蓄放熱体2の電気抵抗率(単位:Ω・cm)との関係を求めたものであり、相転移率(λ比率)は、体積比率として計算されたものである。
次に、図10に示すフローチャートに基づいて、蓄放熱制御部10にて実施される蓄放熱制御の一例を説明する。蓄放熱制御部10は、好適には、被加熱体であるエンジンオイル又はエンジンオイルによって潤滑されるエンジンEの運転状態に応じて、適時、蓄放熱制御を行う。具体的には、冷間始動時において、エンジンEの暖機が必要とされるときに、放熱制御部12による放熱制御がなされ、それに先立つエンジンEの停止時に、蓄熱状態に応じて、蓄熱制御部11による蓄熱制御がなされる。
図4において、蓄放熱制御部10には、エンジンEの図示しない制御装置から、エンジン運転状態や外気温等の装置使用環境を示す種々の情報が入力されており、エンジンEの運転中は、蓄熱制御部11及び放熱制御部12による制御はなされない。エンジンオイルは、オイルポンプ104が駆動されることによって、オイル循環路101を流通し、エンジンEの排熱を吸収して、オイル循環路101に配置される蓄放熱部20を通過するときに放熱する。エンジンEの停止が検出されると、次回のエンジン暖機を可能とするために、蓄熱制御部11による蓄熱制御が開始される。
図10のステップS1において、例えば、イグイッションスイッチのオフ判定により、装置停止時としてのエンジンEの停止が検出されると、ステップS2以降へ進んで、蓄熱状態推定部4による蓄熱状態の推定が行われる。ステップS1が否定判定されたときには、本処理を一旦終了する。ステップS2では、スイッチSW1、SW2をオンとして、蓄放熱体2に通電し、抵抗検出部3において、蓄放熱体2へ印加される電圧値Vと電流値Iを取得する。ステップS3では、抵抗値演算部31において、電圧値V及び電流値Iから電気抵抗値Rを演算する(すなわち、R=V/I))。
次いで、ステップS4へ進んで、得られた電気抵抗値Rを、予め設定された電気抵抗閾値Rthと比較する(例えば、図6参照)。ここで、電気抵抗閾値Rthは、例えば、次回のエンジンEの始動時に、蓄放熱体2に要求される目標蓄熱量と対応するように設定することができる。一般には、電気抵抗閾値Rthは、最大抵抗値の100分の1以下となるように設定されることが望ましく、全体的に蓄熱が完了した状態とすることができる。ステップS2において算出される電気抵抗値Rは、エンジンEの停止時における残蓄熱量QRに相当するものであり、電気抵抗値Rと、目標蓄熱量に対応する電気抵抗閾値Rthと比較することにより、蓄熱制御が必要か否かを判定することができる。
ステップS4では、電気抵抗値Rが電気抵抗閾値Rth以下か否か(すなわち、R≦Rth)を判定し、否定判定されたときは、ステップS5へ進む。ステップS4が、肯定判定されたときは、残蓄熱量QRが目標蓄熱量に到達しており、蓄熱制御は不要と判断されるので、本処理を終了する。残蓄熱量QRが目標蓄熱量に相当する蓄熱量閾値Qth以上か否か(すなわち、QR≧Qth?)を、直接比較するようにしてもよい。
ステップS5では、スイッチSW1をオンとして、蓄放熱体2に通電し、所定の電気エネルギを供給する。その後、ステップS2へ戻って、以降のステップを繰り返し、算出した電気抵抗値Rが、電気抵抗閾値Rth以下となって、ステップS4が肯定判定されるまで、蓄放熱体2への通電を行う。
ステップS5における通電量は、任意に設定することができ、例えば、予め一定の通電量となるように通電時間を定めてもよいし、算出された電気抵抗値Rに応じて、通電量を可変としてもよい。通電量を可変とする場合には、例えば、残蓄熱量QRと目標蓄熱量との差が大きいほど、通電量が大きくなるようにすることで、電気抵抗値Rの演算や通電を繰り返すことを抑制し、効率よい蓄熱制御が可能になる。
エンジンEの停止中は、オイルポンプ104が停止され、蓄放熱体2は、目標蓄熱量以上の蓄熱状態を保つことができる。その後、装置起動時としてのエンジンEの始動時には、例えば、イグイッションスイッチのオンにより、放熱制御部12を作動させて、蓄放熱体2からエンジンオイルへ放熱させることができる。蓄放熱制御部10は、オイル循環路101の制御弁105を、予め供給路102側へ切り替えて、オイルポンプ104を駆動し、エンジンオイルが供給路102から蓄放熱体2の内部を通過するようにして、熱交換を可能とする。
放熱制御部12は、エンジオイルの温度や使用環境等から知られるエンジンEの状態に基づいて、放熱制御の要否を判定することができる。そして、エンジン冷間始動時と判断されるときには、蓄放熱体2へ所定の圧力を印加することにより、蓄えられた熱量を放出させることができる。放熱制御後に、抵抗検出部3の検出値を用いて蓄熱状態を調べることにより、放熱の終了を判定することもできる。
圧力を印加するための構成は、特に制限されず、例えば、蓄放熱体2に接して設けた押圧部材を駆動して、蓄放熱体2を構成する蓄放熱酸化チタンをλ相からβ相へ相転移させるために必要な圧力を加えることができればよい。このような圧力としては、1MPa以上、例えば、60MPa以上とすることができ、蓄放熱体2の構成等に応じて設定することができる。
図11に示すように、このような蓄放熱制御を行うことにより、エンジンEの暖機が短時間で可能になる。すなわち、イグイッションスイッチのオン時点(すなわち、図中に示すIG On)において、圧力印加により放熱制御が開始されると、図中の実線で示すようにエンジンオイルの温度が急上昇して、例えば、60℃を超える。その後、暖機の促進によりエンジンオイルの温度がさらに上昇し、例えば、80℃を超える領域では、回収路103を通過するエンジンオイルから放熱体2へ熱を蓄える蓄熱動作が進行する。
これに対して、図中の点線で示すように、放熱制御を行わない場合には、エンジンオイルの温度が緩やかに上昇するために、例えば、60℃に到達するまでに、放熱制御を行う場合と大きな時間差を有する。その後、エンジンオイルの温度は安定し、イグイッションスイッチがオフされると(すなわち、図中に示すIG Off)、エンジンオイルの温度は徐々に低下する。一方、イグイッションスイッチのオフ時点において、蓄熱量計測がなされ、次回のエンジン暖機のために、通電による蓄熱制御が実施される。
(実施形態3)
蓄放熱装置に係る実施形態3について、図12~図16を参照して説明する。
本形態では、上記実施形態1における抵抗検出部3及び蓄放熱制御部10の構成の一部が異なっており、電気抵抗の変化を利用して蓄熱状態を推定し、蓄放熱を制御するように構成される。蓄放熱装置1の基本構成は、上記実施形態と同様であり、以下、相違点を中心に説明する。
図12に示すように、蓄放熱制御部10において、抵抗検出部3は、抵抗値演算部31に代えて、電気抵抗値Rの変化率である電気抵抗値変化率Rcを演算する抵抗変化率演算部34を備えている。蓄熱状態推定部4は、記憶部41に代えて、前回状態記憶部43を備え、前回までの検出状態を記憶している。また、演算部42に代えて、判定部44を備え、今回の電気抵抗値変化率Rcに基づく蓄熱状態の判定を行う。
抵抗変化率演算部34は、抵抗検出部3によって、今回の電圧値V及び電流値Iから検出される電気抵抗値Rと、前回状態記憶部43に記憶される検出値を用いて、電気抵抗値変化率Rcを演算する。電気抵抗値変化率Rcは、例えば、前回の電気抵抗値R0に対する変化率とすることができ、以下の式を用いて算出される。
電気抵抗値変化率Rc=今回の電気抵抗値R/前回の電気抵抗値R0
図13には、上記図9に示した電気抵抗率-相転移率の関係に基づく抵抗変化率(すなわち、相転移率に対する電気抵抗率の変化率;単位:Ω・cm/体積%)を点線で示している。図13において、相転移率(すなわち、λ比率)が低い領域Aでは、電気抵抗率が高いために、相転移率の変化に対する抵抗変化が大きくなり、相転移率が高い領域Bでは、電気抵抗率が低いために、抵抗変化が小さくなっている。また、これらの領域の間において、抵抗変化率が急減している。したがって、これらの関係から、電気抵抗値の前回からの変化を、所定の閾値(例えば、抵抗変化閾値Rcth)と比較して、蓄熱状態を判定可能となる。抵抗変化閾値Rcthは、例えば、相転移率が領域Bとなる抵抗変化率から、予め設定される。
蓄熱状態推定部4は、判定部44において、抵抗変化率演算部34にて求めた電気抵抗値変化率Rcの大きさから、上記図13に示す関係を用いて、蓄放熱体2の蓄熱状態を判定することができる。具体的には、相転移率に対応する蓄熱量が低い領域Aにある状態、又は、相転移率に対応する蓄熱量が高い領域Bにある状態か否かを判定することができる。あるいは、未蓄熱の状態、蓄熱中の状態及び蓄熱完了の状態のうち、いずれの状態にあるかを判定するようにすることができる。
蓄放熱制御部10は、蓄熱状態推定部4による推定結果に基づいて、蓄熱制御部11において蓄熱制御を行い、所望の蓄熱状態とすることができる。具体的には、電気抵抗値変化率Rcと抵抗変化閾値Rcthとを比較して蓄熱制御の要否を判定し、電気抵抗値変化率Rcが抵抗変化閾値Rcth以下となったときに、蓄熱制御が必要と判定することができる。また、蓄熱状態推定部4による推定結果に基づいて、放熱制御部12において放熱制御を行い、所望のタイミングで放熱させることができる。
図14に模式的に示すように、電気抵抗値Rの大きさとその変化を考慮して、蓄熱状態を推定することもできる。図14において、蓄放熱体2が未蓄熱の状態では、抵抗検出部3によって検出される電気抵抗値Rは一定の高い状態にあり、時間経過に伴い、蓄放熱酸化チタンの相転移が発生すると、電気抵抗値Rが低下していく。このように。電気抵抗値Rが低下している間は、相転移が進行して蓄熱中であることが判定可能となる。その後、電気抵抗値Rが低下し、抵抗変化が見られなくなると、蓄熱がほぼ完了したものと判定可能となる。
ここで、未蓄熱で抵抗変化がない状態においても、例えば、電気抵抗値変化率Rcが抵抗変化閾値Rcth以下となり得るが、電気抵抗値Rが高い状態にあることで、未蓄熱と判定することができる。一方、蓄熱完了状態では、電気抵抗値Rが低い状態にあることで、蓄熱後の状態と判定することが可能になる。これにより、放熱制御の終了を判定することができる。
また、図15に模式的に示すように、放熱制御部12による放熱動作の前後において、電気抵抗値Rが変化する関係を利用して、放熱完了の判定を行うこともできる。図15において、放熱制御部12は、例えば、被加熱体からの加熱要求に対して、所定のタイミングで、蓄放熱体2へ所定の圧力を印加することにより、蓄えられた熱量を放出させる。このとき、加圧前の電気抵抗値Rに対して、加圧後の電気抵抗値Rが大きく低下するので、放熱後の電気抵抗値Rの大きさ、又は、放熱前後の電気抵抗値変化率Rcを用いて、放熱が完了した否かの判定を行うことができる。
このように、実施形態2の蓄放熱装置1によっても、抵抗検出部3の検出部に基づく蓄熱状態の推定を行い、その結果に基づいて、蓄放熱制御部10による蓄放熱制御を行うことができる。また、蓄熱状態の推定に際して、電気抵抗値変化率Rcを用いることにより、蓄放熱体2の構造に依存するマップ等を用意することなく、蓄熱制御部11又は放熱制御部12を用いた蓄放熱制御を効果的に実施して、所望の蓄熱状態とすることができる。
なお、上記実施形態2においては、電気抵抗値変化率Rcを、電気抵抗値Rの前回値と今回値によって求めたが、初期状態(例えば、放熱直後の未蓄熱状態)からの変化率等としてもよい。また、実施形態2に示した電気抵抗値変化率Rcに基づく放熱制御の手法等を、上記実施形態1に適用してもよい。上記実施形態1、2では、放熱制御部12において、圧力を用いた放熱制御の例を示したが、外部刺激として、光又は電流等の用いるように、蓄放熱部20を構成してもよい。
本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。例えば、上記各実施形態では、蓄放熱装置1を、エンジンオイルを用いたエンジンEの暖機へ適用した場合について説明したが、エンジンオイル以外の作動油や、エンジン冷却水等の流体を、作動流体としてもよい。また、エンジン停止時や始動時に限らず、任意のタイミングで蓄放熱体2の蓄放熱制御を行ってもよいし、エンジン本体に限らず、エンジン補機や車両に搭載される各種装置を、任意の作動流体を用いて加熱する場合に適用してもよい。さらに、車両用に限らない各種内燃機関その他の装置へ適用してもよい。
1 蓄放熱装置
10 蓄放熱制御部
11 蓄熱制御部
12 放熱制御部
2 蓄放熱体
20 蓄放熱部
3 抵抗検出部
4 蓄熱状態推定部
41 記憶部
42 演算部

Claims (9)

  1. 蓄放熱体(2)と、蓄放熱制御部(10)と、を備える蓄放熱装置(1)であって、
    上記蓄放熱体は、β相からλ相への相転移に伴って蓄熱し、λ相からβ相への相転移に伴って放熱する特性を有する蓄放熱酸化チタンを含み、
    上記蓄放熱制御部は、
    上記蓄放熱体の電気抵抗又は電気抵抗の変化を示す値を検出する抵抗検出部(3)と、
    上記抵抗検出部による検出値(R、Rc)と、上記蓄放熱酸化チタンに含まれるλ相の比率を表す相転移率との関係に基づいて、上記蓄放熱体の蓄熱状態を推定する蓄熱状態推定部(4)と、を有しており、
    上記蓄放熱制御部は、上記蓄熱状態推定部にて推定される上記蓄熱状態に基づいて、上記蓄放熱体の蓄放熱を制御する、蓄放熱装置。
  2. 上記蓄放熱制御部は、上記蓄熱状態推定部にて推定される上記蓄熱状態と、目標とする上記蓄放熱体の蓄熱状態とに基づいて、上記蓄放熱体の蓄放熱を制御する、請求項1に記載の蓄放熱装置。
  3. 上記蓄放熱酸化チタンは、外部エネルギを付与されてβ相よりも低電気抵抗率のλ相へ相転移し、外部刺激を受けてλ相からβ相へ相転移する際に熱エネルギを放出する特性を有する、五酸化三チタン系材料である、請求項1又は2に記載の蓄放熱装置。
  4. 上記外部エネルギは、電気エネルギ、熱エネルギ及び光エネルギのうちの少なくとも1つであり、上記外部刺激は、圧力、光及び電流のうちの少なくとも1つである、請求項3に記載の蓄放熱装置。
  5. 上記蓄放熱制御部は、上記蓄熱状態を表す値が目標値に満たないと判定されるときに、上記蓄放熱体へ上記外部エネルギを付与することにより、上記蓄放熱酸化チタンの蓄熱量を増加させる蓄熱制御部(11)を有する、請求項3又は4に記載の蓄放熱装置。
  6. 上記蓄熱制御部は、装置停止時点における上記蓄熱状態を表す残蓄熱量(QR)又は上記残蓄熱量に対応する上記検出値を、次の装置起動時における目標蓄熱量に基づいて設定される閾値(Qth、Rth、Rcth)と比較して、蓄熱制御の要否を判定する、請求項5に記載の蓄放熱装置。
  7. 上記蓄放熱制御部は、放熱が要求されたときに、上記蓄放熱体への上記外部刺激の付与によって、蓄積した熱量を放出させる放熱制御部(12)を有する、請求項3~6のいずれか1項に記載の蓄放熱装置。
  8. 上記放熱制御部は、放熱後の上記蓄熱状態に基づいて、放熱制御の終了を判定する、請求項7に記載の蓄放熱装置。
  9. 上記蓄放熱体は、上記蓄放熱酸化チタンの結晶粒子、又は、上記蓄放熱酸化チタンの結晶粒子とβ相蓄放熱酸化チタンよりも高電気抵抗率の材料とを含む、請求項1~8のいずれか1項に記載の蓄放熱装置。
JP2020213509A 2020-12-23 2020-12-23 蓄放熱装置 Pending JP2022099632A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020213509A JP2022099632A (ja) 2020-12-23 2020-12-23 蓄放熱装置
PCT/JP2021/037809 WO2022137743A1 (ja) 2020-12-23 2021-10-13 蓄放熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020213509A JP2022099632A (ja) 2020-12-23 2020-12-23 蓄放熱装置

Publications (1)

Publication Number Publication Date
JP2022099632A true JP2022099632A (ja) 2022-07-05

Family

ID=82158974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020213509A Pending JP2022099632A (ja) 2020-12-23 2020-12-23 蓄放熱装置

Country Status (2)

Country Link
JP (1) JP2022099632A (ja)
WO (1) WO2022137743A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569557B2 (ja) * 2016-02-16 2019-09-04 コニカミノルタ株式会社 定着装置、画像形成装置、制御方法、および制御プログラム
JP6426658B2 (ja) * 2016-06-07 2018-11-21 トヨタ自動車株式会社 車両の蓄熱放熱システム
JP2018159002A (ja) * 2017-03-23 2018-10-11 シャープ株式会社 蓄熱部材、ならびに暖房装置および自動車用暖房装置、ならびに鍋および加熱調理器
US11274638B2 (en) * 2018-07-24 2022-03-15 Panasonic Intellectual Property Management Co., Ltd. Fluid heating device, motor system, movable object, and hydraulic system
JPWO2020195957A1 (ja) * 2019-03-27 2020-10-01

Also Published As

Publication number Publication date
WO2022137743A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
Yang et al. Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock
Shao et al. Figure-of-merit for phase-change materials used in thermal management
Atouei et al. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials
Wang et al. Experimental investigation on EV battery cooling and heating by heat pipes
EP2235379B1 (en) Landing gear uplock mechanism employing thermal phase-change actuation
US20160006088A1 (en) Battery thermal management for hybrid electric vehicles using a phase-change material cold plate
CN105219638B (zh) 一种基于相变蓄热材料和热管的pcr仪器
Arora et al. A novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse
CN107492697A (zh) 电池温度控制方法和装置
EP2554804A3 (en) Energy storage system with an intermediate storage tank and method for storing thermoelectric energy
WO2022137743A1 (ja) 蓄放熱装置
KR101207815B1 (ko) 열전 발전 시스템 및 그 제어 방법
CN207834511U (zh) 一种大温差环境下动力电池热管理装置
CN112531184B (zh) 用于燃料电池的热管理装置、控制方法和存储介质
JP4396351B2 (ja) 熱電発電装置
Zhang et al. Effect of inventory on the heat performance of copper–water loop heat pipe
Gurrum et al. Thermal management of high temperature pulsed electronics using metallic phase change materials
Casano et al. Parametric analysis of a PCM energy storage system
Liu et al. Assessing the impact of current control on the thermal management performance of thermoelectric cooling systems
CN105744804A (zh) 大热耗高稳定性单机的控温系统
CN204462046U (zh) 材料自动化热循环实验装置
WO2015094097A1 (en) Arrangement and method for regulating the temperature of an electrical energy storage in a vehicle
Zhang et al. Heat transfer in phase change materials for integrated batteries and power electronics systems
Jadal et al. Experimental determination of crystallization kinetic model of CENG-PCM composite material. Validation at macro and meso scales
Li et al. Thermal management of Li-ion batteries with passive thermal regulators based on composite PCM materials