JP6421536B2 - ドライバー及び電子機器 - Google Patents

ドライバー及び電子機器 Download PDF

Info

Publication number
JP6421536B2
JP6421536B2 JP2014210366A JP2014210366A JP6421536B2 JP 6421536 B2 JP6421536 B2 JP 6421536B2 JP 2014210366 A JP2014210366 A JP 2014210366A JP 2014210366 A JP2014210366 A JP 2014210366A JP 6421536 B2 JP6421536 B2 JP 6421536B2
Authority
JP
Japan
Prior art keywords
voltage
data
circuit
capacitance
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014210366A
Other languages
English (en)
Other versions
JP2016080806A (ja
Inventor
森田 晶
晶 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014210366A priority Critical patent/JP6421536B2/ja
Priority to US14/870,682 priority patent/US9679529B2/en
Priority to CN201510671939.5A priority patent/CN105528975B/zh
Publication of JP2016080806A publication Critical patent/JP2016080806A/ja
Application granted granted Critical
Publication of JP6421536B2 publication Critical patent/JP6421536B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0828Several active elements per pixel in active matrix panels forming a digital to analog [D/A] conversion circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、ドライバー及び電子機器等に関する。
プロジェクターや情報処理装置、携帯型情報端末等の種々の電子機器において表示装置(例えば液晶表示装置)が用いられている。このような表示装置では高精細化が進んでおり、それに伴ってドライバーが1つの画素を駆動する時間が短くなっている。例えば、電気光学パネル(例えば液晶表示パネル)を駆動する手法として相展開駆動がある。この駆動手法では、例えば1回に8本のソース線を駆動し、それを160回繰り返して1280本のソース線を駆動する。WXGA(1280×768画素)のパネルを駆動する場合、上記160回の駆動(即ち水平走査線1本の駆動)を768回繰り返すことになる。リフレッシュレートを60Hzとすると、単純計算で1画素あたりの駆動時間は約135ナノ秒である。実際には、画素を駆動しない期間(例えばブランキング期間等)があるため、1画素あたりの駆動時間は約70ナノ秒程度と更に短くなる。
上記のような電気光学パネルを駆動する従来のドライバーは、各画素の階調データ(画像データ)をデータ電圧に変換するD/A変換回路と、そのデータ電圧で各画素を駆動するアンプ回路と、を含んでいる。これは、アンプ回路によってインピーダンス変換を行い、電気光学パネル側の容量(例えば配線寄生容量や画素容量)に対して電荷を供給するためである。即ち、従来のドライバーは、データ電圧に対応して必要な電荷を必要に応じて供給する構成となっている。
特開2000−341125号公報 特開2001−156641号公報
しかしながら、上述したような電気光学パネルの高精細化にともなって、アンプ回路によって時間内にデータ電圧の書き込みを終えることが困難になりつつある。例えば上述したWXGAの例では1画素あたり70ナノ秒以内に書き込みを終える必要があり、更に高精細化しようとすれば、更に書き込み時間が短くなる。アンプ回路が高速に画素を駆動するためには、データ電圧の範囲に対応した広い出力レンジと、その出力レンジのどの電圧においても高速に電荷を供給できることが必要である。これらの両立には、例えばアンプ回路のバイアス電圧の増加等が必要であり、高精細化が進めばドライバーの消費電力は更に増えることになる。
このような課題を解決する駆動手法として、キャパシターの電荷再分配により電気光学パネルを駆動する手法(以下、容量駆動と呼ぶ)が考えられる。例えば、特許文献1、2には、キャパシターの電荷再分配をD/A変換に利用した技術が開示されている。D/A変換回路では、駆動側の容量と負荷側の容量が共にICに内蔵されており、それらの容量の間で電荷再分配が生じる。例えば、このようなD/A変換回路の負荷側の容量をIC外部の電気光学パネルの容量に置き換え、ドライバーとして用いたとする。この場合、ドライバー側の容量と電気光学パネル側の容量との間で電荷再分配が行われる。
しかしながら、ドライバーと電気光学パネルは別個の部品であるため、例えば製造過程等において確実に接続されているとは限らない。例えば、部品の実装不良(半田付け不良)や、フレキシブル基板のコネクター外れ等が考えられる。この場合、負荷側の容量が接続されていない(又は接続が不完全である)ことになる。アンプ回路で駆動する場合には、アンプ回路が電荷を供給しないだけなのでドライバーの出力端子の電圧がICの耐圧を超える可能性は小さい。一方、容量駆動の場合には、駆動側の容量から供給された電荷の行き場所がなく、ドライバーの出力端子の電圧がICの耐圧を超えて静電破壊を起こす可能性があるという課題がある。
本発明の幾つかの態様によれば、電気光学パネルの接続不良を検出可能なドライバー及び電子機器等を提供できる。
本発明の一態様は、階調データに対応する第1〜第nのキャパシター駆動電圧(nは2以上の自然数)を第1〜第nのキャパシター駆動用ノードに出力するキャパシター駆動回路と、前記第1〜第nのキャパシター駆動用ノードとデータ電圧出力端子との間に設けられる第1〜第nのキャパシターを有するキャパシター回路と、前記データ電圧出力端子と電気光学パネルとの間の接続状態を検出する第1検出を行う検出回路と、を含むドライバーに関係する。
本発明の一態様によれば、階調データに対応する第1〜第nのキャパシター駆動電圧が出力され、その第1〜第nのキャパシター駆動電圧によって第1〜第nのキャパシターが駆動され、階調データに対応するデータ電圧がデータ電圧出力端子に出力される。このような駆動を行うドライバーにおいて、データ電圧出力端子と電気光学パネルとの間の接続状態を検出する第1検出が行われる。これにより、電気光学パネルの接続不良を検出することが可能となる。例えば、検出された接続状態に応じてドライバーを制御することが可能となり、ドライバーの耐圧を超えるデータ電圧が出力されることを防止できる。
また本発明の一態様では、前記検出回路は、前記データ電圧出力端子の電圧を検出する回路であってもよい。
このようにすれば、データ電圧出力端子の電圧を検出することで、データ電圧出力端子と電気光学パネルとの間の接続状態を検出できる。容量駆動では電気光学パネル側容量が変わった場合、同じ階調データであってもデータ電圧が変わる。そのため、データ電圧出力端子の電圧を検出することで、データ電圧出力端子と電気光学パネルとの間の接続状態を検出することが可能である。
また本発明の一態様では、前記第1検出を行う場合に前記階調データの代わりに第1検出用データを前記キャパシター駆動回路に出力する制御回路を含み、前記制御回路は、前記第1検出用データに対応する前記データ電圧出力端子の電圧の検出結果に基づいて、前記接続状態を判定してもよい。
このようにすれば、第1検出用データをキャパシター駆動回路に出力することで、第1検出用データに対応するデータ電圧をデータ電圧出力端子に出力できる。このデータ電圧は電気光学パネル側容量に応じて変化するので、想定される電気光学パネル側容量の範囲に対応してデータ電圧の範囲が決まる。即ち、検出された電圧が、そのデータ電圧の範囲内であれるか否かで、接続状態を判定できる。
また本発明の一態様では、前記第1〜第nのキャパシターの第iのキャパシターは、2の(i−1)乗で重み付けされた容量値(iはn以下の自然数)を有し、前記キャパシター駆動回路は、前記第1〜第nのキャパシター駆動電圧の各キャパシター駆動電圧として、第1電圧レベル又は前記第1電圧レベルよりも高い第2電圧レベルを出力し、前記制御回路は、前記第1〜第nのキャパシターのうち前記第2電圧レベルが供給されるキャパシターの合計容量を順次増加させていく前記第1検出用データを出力してもよい。
第2電圧レベルが供給されるキャパシターの合計容量が順次増加すると、それと共にデータ電圧出力端子の電圧が順次上昇していく。電気光学パネルが正常に接続されていない場合には、第1検出用データが小さい場合でもデータ電圧出力端子の電圧がすぐに高くなるので、それを検出することで電気光学パネルの接続状態を検出することが可能となる。また、第2電圧レベルが供給されるキャパシターの合計容量が小さい方から始めることで、第1検出において急激にデータ電圧出力端子の電圧が上昇することを防ぎ、静電破壊を防止できる。
また本発明の一態様では、前記接続状態の検出結果が書き込まれ、外部の処理部から前記接続状態の検出結果を読み出し可能なレジスター部を含んでもよい。
このようにすれば、外部の処理部がレジスター部から接続状態の検出結果を読み出すことで、その接続状態の検出結果に応じてドライバーを制御することが可能となる。例えば、読み出したフラグが接続異常を示すフラグである場合には外部の制御部はドライバーに容量駆動をさせないことが可能である。
また本発明の一態様では、前記データ電圧出力端子と基準電圧のノードとの間に設けられる可変容量回路を含み、前記可変容量回路の容量と電気光学パネル側容量を加算した容量と、前記キャパシター回路の容量とが、所与の容量比関係になるように、前記可変容量回路の容量が設定されていてもよい。
このようにすれば、電気光学パネル側容量が異なる場合であっても、それに応じて可変容量回路の容量を調整することによって所与の容量比関係が実現され、その容量比関係に対応した所望のデータ電圧の範囲を実現できる。即ち、種々の接続環境(例えば、ドライバーに接続される電気光学パネルの機種や、ドライバーが実装されるプリント基板の設計等)において汎用可能な容量駆動を実現できる。
また本発明の一態様では、前記検出回路は、前記可変容量回路の容量が各設定値に設定された場合における前記データ電圧出力端子の電圧を検出する第2検出を行い、前記可変容量回路の容量は、前記第2検出の検出結果に基づいて設定されてもよい。
可変容量回路の容量を各設定値に設定すると、その設定値に応じた電圧がデータ電圧出力端子に出力される。この各設定値での電圧を検出することで、可変容量回路の容量を設定できる。例えば、各設定値での電圧のうち、所望のデータ電圧に一致する(又は直近の)電圧を検出することで、階調データに対応した所望のデータ電圧が得られる可変容量回路の容量を決定できる。
また本発明の一態様では、前記第2検出を行う場合に前記階調データの代わりに第2検出用データを前記キャパシター駆動回路に出力する制御回路を含み、前記制御回路は、前記第2検出用データに対応する前記データ電圧出力端子の電圧の検出結果に基づいて、前記可変容量回路の容量を設定してもよい。
このようにすれば、第2検出用データをキャパシター駆動回路に出力することで、第2検出用データに対応するデータ電圧をデータ電圧出力端子に出力できる。このデータ電圧は可変容量回路の容量に応じて変化するので、第2検出用データに対応した所望のデータ電圧が得られる容量を検出することで、可変容量回路の容量を設定できる。
また本発明の一態様では、前記第1〜第nのキャパシターの第iのキャパシターは、2の(i−1)乗で重み付けされた容量値(iはn以下の自然数)を有し、前記制御回路は、前記第1〜第nのキャパシター駆動電圧のうち第nのキャパシター駆動電圧を第1電圧レベルから前記第1電圧レベルよりも高い第2電圧レベルに切り替える前記第2検出用データを出力し、前記検出回路は、前記第nのキャパシター駆動電圧が前記第1電圧レベルから前記第2電圧レベルに切り替えられた場合に前記データ電圧出力端子の電圧が所与の電圧を超えるか否かを、前記可変容量回路の容量の前記各設定値について検出してもよい。
このようにすれば、可変容量回路の容量が各設定値に設定されたときに、第nのキャパシター駆動電圧が第1電圧レベルから第2電圧レベルに切り替えられる。この切り替えを行ったとき、データ電圧出力端子の電圧が所与の電圧を超えるか否かを検出することで、可変容量回路の容量を決定できる。例えば、第2検出用データに対応する所望のデータ電圧を所与の電圧に設定すれば、その所望のデータ電圧が得られる可変容量回路の容量が設定されたときに、データ電圧出力端子の電圧が所与の電圧付近になる。そのときの可変容量回路の容量を、最終的な設定値とすればよい。
また本発明の一態様では、前記検出回路による検出結果に基づいて、前記データ電圧出力端子の電圧がドライバーの耐圧を超えないと判断されることを条件に、前記キャパシター駆動回路と前記キャパシター回路による前記電気光学パネルの駆動を行ってもよい。
また本発明の一態様では、前記検出回路による検出結果に基づいて、前記データ電圧出力端子の電圧が前記電気光学パネルの耐圧を超えないと判断されることを条件に、前記キャパシター駆動回路と前記キャパシター回路による前記電気光学パネルの駆動を行ってもよい。
これらの本発明の一態様によれば、容量駆動によってデータ電圧出力端子の電圧がドライバー又は電気光学パネルの耐圧を超えないことが、検出回路による検出結果に基づいて判断できる場合に、容量駆動を開始することができる。
また本発明の他の態様は、階調データに対応する第1〜第nのキャパシター駆動電圧(nは2以上の自然数)を第1〜第nのキャパシター駆動用ノードに出力するキャパシター駆動回路と、前記第1〜第nのキャパシター駆動用ノードとデータ電圧出力端子との間に設けられる第1〜第nのキャパシターを有するキャパシター回路と、を含み、前記データ電圧出力端子の電圧がドライバーの耐圧又は電気光学パネルの耐圧を超えないと判断されることを条件に、前記キャパシター駆動回路と前記キャパシター回路による前記電気光学パネルの駆動を行うドライバーに関係する。
また本発明の他の態様は、上記のいずれかに記載されたドライバーを含む電子機器に関係する。
ドライバーの第1構成例。 図2(A)、図2(B)は、階調データに対応するデータ電圧の説明図。 ドライバーの第2構成例。 検出回路の詳細な構成例。 図5(A)〜図5(C)は、第1構成例におけるデータ電圧の説明図。 ドライバーの第3構成例。 図7(A)〜図7(C)は、第3構成例におけるデータ電圧の説明図。 ドライバーの詳細な構成例。 接続状態を検出する処理のフローチャート。 図10(A)、図10(B)は、接続状態を検出する処理の説明図。 可変容量回路の容量を設定する処理のフローチャート。 図12(A)、図12(B)は、可変容量回路の容量を設定する処理の説明図。 ドライバーの第2の詳細な構成例と、電気光学パネルの詳細な構成例と、ドライバーと電気光学パネルの接続構成例。 ドライバーと電気光学パネルの動作タイミングチャート。 電子機器の構成例。
以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
1.ドライバーの第1構成例
図1に、本実施形態のドライバーの第1構成例を示す。このドライバー100は、キャパシター回路10、キャパシター駆動回路20、データ電圧出力端子TVQを含む。なお以下では、キャパシターの容量値を表す符号として、そのキャパシターの符号と同一の符号を用いる。
ドライバー100は、例えば集積回路装置(IC)により構成される。集積回路装置は、例えばシリコン基板に回路が形成されたICチップ、或はICチップがパッケージに収納された装置に対応する。ドライバー100の端子(データ電圧出力端子TVQ等)は、ICチップのパッド或はパッケージの端子に対応する。
キャパシター回路10は、第1〜第nのキャパシターC1〜Cn(nは2以上の自然数)を含む。またキャパシター駆動回路20は、第1〜第nの駆動部DR1〜DRnを含む。なお以下では、n=10の場合を例にとって説明するが、nは2以上の自然数であればよい。例えばnは、階調データのビット数と同数に設定すればよい。
キャパシターC1〜C10の第iのキャパシター(iはn=10以下の自然数)の一端は、キャパシター駆動ノードNDRiに接続され、第iのキャパシターの他端は、データ電圧出力ノードNVQに接続される。データ電圧出力ノードNVQはデータ電圧出力端子TVQに接続されるノードである。キャパシターC1〜C10は、2の累乗で重み付けされた容量値を有している。具体的には第iのキャパシターCiの容量値は2(i−1)×C1である。
第1〜第10の駆動部DR1〜DR10の第iの駆動部DRiの入力ノードには、階調データGD[10:1]の第iのビットGDiが入力される。第iの駆動部DRiの出力ノードは、第iのキャパシター駆動ノードNDRiである。階調データGD[10:1]は第1〜第10のビットGD1〜GD10(第1〜第nのビット)で構成され、ビットGD1がLSBに対応し、ビットGD10がMSBに対応する。
第iの駆動部DRiは、ビットGDiが第1論理レベルの場合に第1電圧レベルを出力し、ビットGDiが第2論理レベルの場合に第2電圧レベルを出力する。例えば、第1論理レベルは“0”(ローレベル)、第2論理レベルは“1”(ハイレベル)、第1電圧レベルは低電位側電源VSSの電圧(例えば0V)、第2電圧レベルは高電位側電源VDDの電圧(例えば15V)である。例えば、第iの駆動部DRiは、入力された論理レベル(例えばロジック電源の3V)を駆動部DRiの出力電圧レベル(例えば15V)にレベルシフトするレベルシフターや、そのレベルシフターの出力をバッファリングするバッファー回路で構成される。
以上のように、キャパシターC1〜C10の容量値は、階調データGD[10:1]のビットGD1〜GD10の桁に応じた2の累乗で重み付けされている。そして、駆動部DR1〜DR10が、ビットGD1〜GD10に応じて0V又は15Vを出力することで、その電圧によりキャパシターC1〜C10が駆動される。この駆動によってキャパシターC1〜C10と電気光学パネル側容量CPとの間で電荷再分配が生じ、その結果としてデータ電圧出力端子TVQにデータ電圧が出力される。
電気光学パネル側容量CPは、データ電圧出力端子TVQから見える容量の合計である。例えば、電気光学パネル側容量CPは、プリント基板の寄生容量である基板容量CP1と、電気光学パネル200内の寄生容量や画素容量であるパネル容量CP2と、を加算したものである。
具体的には、ドライバー100は集積回路装置としてリジッド基板に実装され、そのリジッド基板にフレキシブル基板が接続され、そのフレキシブル基板に電気光学パネル200が接続される。このリジッド基板やフレキシブル基板には、ドライバー100のデータ電圧出力端子TVQと電気光学パネル200のデータ電圧入力端子TPNとを接続する配線が設けられている。この配線の寄生容量が基板容量CP1である。また図13で後述するように、電気光学パネル200には、データ電圧入力端子TPNに接続されたデータ線と、ソース線と、データ線をソース線に接続するスイッチ素子と、ソース線に接続される画素回路と、が設けられる。スイッチ素子は例えばTFT(Thin Film Transistor)で構成され、ソース・ゲート間に寄生容量がある。データ線には多数のスイッチ素子が接続されるため、データ線には多数のスイッチ素子の寄生容量が付く。また、データ線やソース線とパネル基板との間に寄生容量が存在する。また、液晶表示パネルでは液晶の画素に容量がある。これらを加算したものがパネル容量CP2である。
電気光学パネル側容量CPは、例えば50pF〜120pFである。後述するように、キャパシター回路10の容量CO(キャパシターC1〜C10の容量の合計)と電気光学パネル側容量CPの比を1:2にするため、キャパシター回路10の容量COは25pF〜60pFとなる。集積回路に内蔵する容量としては大きいが、例えばMIM(Metal Insulation Metal)キャパシターを縦に2〜3段積み上げる断面構造にすることで、キャパシター回路10の容量COを実現できる。
2.データ電圧
次に、階調データGD[10:1]に対してドライバー100が出力するデータ電圧について説明する。ここでは、キャパシター回路10の容量CO(=C1+C2+・・・C10)がCP/2に設定されているとする。
図2(A)に示すように、第iのビットGDiが“0”の場合には駆動部DRiは0Vを出力し、第iのビットGDiが“1”の場合には駆動部DRiは15Vを出力する。図2(A)には、GD[10:1]=“1001111111b”(末尾のbは“”内の数が2進数であることを示す)の場合を例に示している。
まず、駆動の前に初期化を行う。即ち、GD[10:1]=“0000000000b”に設定して駆動部DR1〜DR10に0Vを出力させ、電圧VQ=VC=7.5Vを設定する。VC=7.5Vは初期化電圧である。
この初期化においてデータ電圧出力ノードNVQに蓄積された電荷は、以後の駆動時にも保存されるので、電荷保存から図2(A)の式FEが求められる。式FEにおいて符号GDiはビットGDiの値(“0”又は“1”)を表すものとする。式FEの右辺第2項を見ると、階調データGD[10:1]が1024階調のデータ電圧(5V×0/1023、5V×1/1023、5V×2/1023、・・・、5V×1023/1023)に変換されることが分かる。図2(B)には、一例として階調データGD[10:1]の上位3ビットを変化させたときのデータ電圧(出力電圧VQ)を示す。
なお、以上では正極性駆動を例にとって説明したが、本実施形態では負極性駆動を行ってもよい。また正極性駆動と負極性駆動を交互に行う反転駆動を行ってもよい。負極性駆動では、初期化においてキャパシター駆動回路20の駆動部DR1〜DR10の出力を全て15Vに設定し、出力電圧VQ=VC=7.5Vを設定する。そして、階調データGD[10:1]の各ビットの論理レベルを反転(“0”を“1”に、“1”を“0”に)してキャパシター駆動回路20に入力し、容量駆動を行う。この場合、階調データGD[10:1]=“000h”に対してVQ=7.5Vが出力され、階調データGD[10:1]=“3FFh”に対してVQ=2.5Vが出力され、データ電圧範囲は7.5V〜2.5Vとなる。
3.ドライバーの第2構成例
上記のように、ドライバー100と電気光学パネル200は、ドライバーの端子TVQと基板上の配線と電気光学パネル200の端子TPNを介して接続されている。これらの端子が接続不良であったり、配線が断線していたりすると、ドライバー100と電気光学パネル200が適切に接続されていない状態となる。この場合、容量駆動の負荷側の容量が小さくなる(無くなる)という問題がある。
例えば、ドライバーの端子TVQが非接触の場合、基板容量CP1とパネル容量CP2の両方がドライバー100から見えなくなる。或は、電気光学パネル200の端子TPNが非接続の場合、パネル容量CP2がドライバー100から見えなくなる。このように電気光学パネル200の容量CPが小さくなった場合、出力電圧VQがどうなるかを考える。
上述した図2(A)の式FEでは、右辺第2項の係数が5Vとなっている。この係数5Vは、キャパシター回路10の容量COと電気光学パネル側容量CPの比が1:2のときの係数であり、CPが変わると係数も変わる。例えば、接続不良により電気光学パネル側容量CP=0となったとすると、この係数は15Vとなる。この場合、階調データGD[10:1]の中央値“1FF”でVQ=7.5V+15V/2=15Vとなって電源電圧15Vに達し、階調データGD[10:1]の最大値“3FF”ではVQ=7.5V+15V=22.5Vとなって電源電圧15Vを超えてしまう。
このような状態でドライバー100が通常の容量駆動を開始してしまうと、電源電圧15Vを超える出力電圧VQがデータ電圧出力ノードNVQに印加されることになる。ICの耐圧は電源電圧15Vとおよそ同じであるため、上記のような接続不良によって出力電圧VQが15Vを超えてしまうと、ICの静電破壊を起こす可能性がある。例えば、図6で後述するように、データ電圧出力ノードNVQに接続される可変容量回路30をドライバー100が含んでもよい。この場合、可変容量回路30のスイッチ素子SWA1〜SWA6等が静電破壊に至る可能性がある。
なお、可変容量回路30が設けられた場合、可変容量回路30が負荷側の容量となり、電圧上昇はある程度軽減される。しかしながら、接続不良により電気光学パネル側容量CPが小さくなった場合、負荷側の容量が小さくなり、容量駆動のときの電圧VQが上昇することに変わりはない。例えば、図7(B)に示す式FDは、可変容量回路30を設けたときのデータ電圧の最大値を表している。CAは可変容量回路30の容量である。式FD上段の右辺から分かるように、CPが小さくなるとデータ電圧の最大値が上昇する。
図3に、上記のような課題を解決できる本実施形態のドライバーの第2構成例を示す。このドライバー100は、キャパシター回路10、キャパシター駆動回路20、制御回路40、検出回路50、データ電圧出力端子TVQを含む。なお、既に説明した構成要素と同一の構成要素には同一の符号を付し、その構成要素については適宜説明を省略する。
検出回路50は、データ電圧出力ノードNVQの電圧VQを検出する回路である。具体的には、所与の検出電圧と電圧VQとを比較し、その結果を検出信号DETとして出力する。例えば、電圧VQが検出電圧以上である場合にはDET=“1”を出力し、電圧VQが検出電圧より小さい場合にはDET=“0”を出力する。
制御回路40はドライバー100の各部を制御する回路である。具体的には、電気光学パネル200を駆動するタイミングの制御や、キャパシター駆動回路20への階調データの出力等を行う。また制御回路40は、検出用データAD[10:1]を出力してキャパシター回路10を駆動し、その時の検出信号DETに基づいてドライバー100と電気光学パネル200の接続状態を検出する。そして、適切に接続されている(非接続や不完全な接続ではない)と判断される場合に容量駆動を開始する。適切に接続されていないと判断される場合には、容量駆動を開始しない。この検出処理の詳細については後述する。
図4に、検出回路50の詳細な構成例を示す。検出回路50は、検出電圧Vh1を生成する検出電圧生成回路GCDTと、データ電圧出力ノードNVQの電圧VQと検出電圧Vh1とを比較するコンパレーターOPDTと、を有する。
検出電圧生成回路GCDTは、例えば抵抗素子による電圧分割回路等により予め決められた検出電圧Vh1を出力する。或は、レジスター設定等により可変の検出電圧Vh1を出力してもよい。この場合、検出電圧生成回路GCDTは、レジスター設定値をD/A変換するD/A変換回路であってもよい。
以上の第2構成例によれば、ドライバー100はキャパシター駆動回路20とキャパシター回路10と検出回路50とを含む。
キャパシター駆動回路20は、階調データGD[10:1]に対応する第1〜第10のキャパシター駆動電圧(0V又は15V)を第1〜第10のキャパシター駆動用ノードNDR1〜NDR10に出力する。キャパシター回路10は、第1〜第10のキャパシター駆動用ノードNDR1〜NDR10とデータ電圧出力端子TVQとの間に設けられる第1〜第10のキャパシターC1〜C10を有する。検出回路50は、データ電圧出力端子TVQと電気光学パネル200との間の接続状態を検出する第1検出を行う。
上述したように、ドライバー100に対して適切に電気光学パネル200が接続されていない場合、ドライバー100に耐圧(電源電圧)以上の電圧が印加されるという課題がある。
この点、第2構成例によれば、検出回路50によってデータ電圧出力端子TVQと電気光学パネル200との間の接続状態を検出することができる。これにより、検出された接続状態に応じてドライバー100を制御することが可能となり、ドライバー100に耐圧以上の電圧が印加されることを防ぐことが可能となる。例えば、接続状態の検出結果に基づいてデータ電圧出力端子TVQと電気光学パネル200が非接続であると判断される場合には、ドライバー100を停止させる(容量駆動を行わない)ことが可能である。
また本実施形態では、検出回路50は、データ電圧出力端子TVQの電圧VQを検出する回路である。
このようにすれば、データ電圧出力端子TVQの電圧VQを検出することで、データ電圧出力端子TVQと電気光学パネル200との間の接続状態を検出できる。図5(A)〜図5(C)で後述するように、容量駆動では電気光学パネル側容量CPが変わった場合、同じ階調データであってもデータ電圧が変わる。そのため、データ電圧出力端子TVQの電圧VQを検出することで、データ電圧出力端子TVQに接続された容量の大きさを推定できる。これにより、データ電圧出力端子TVQと電気光学パネル200との間の接続状態を検出することが可能となる。
また本実施形態では、ドライバー100は、第1検出を行う場合に階調データGD[10:1]の代わりに第1検出用データAD[10:1]をキャパシター駆動回路20に出力する制御回路40を含む。そして、制御回路40は、第1検出用データAD[10:1]に対応するデータ電圧出力端子TVQの電圧VQの検出結果に基づいて、接続状態を判定する。
このようにすれば、第1検出用データAD[10:1]をキャパシター駆動回路20に出力することで、第1検出用データAD[10:1]に対応するデータ電圧をデータ電圧出力端子TVQに出力できる。このデータ電圧は電気光学パネル側容量CPに応じて変化するので、想定される電気光学パネル側容量CPの範囲に対応してデータ電圧の範囲が決まる。即ち、検出された電圧VQが、そのデータ電圧の範囲内であれば正常に電気光学パネル200が接続されていると判断できる。一方、検出された電圧VQが、そのデータ電圧の範囲外であれば、接続異常があると判断できる。この判断手法については、図9〜図10(B)で詳細に後述する。
また本実施形態では、第1〜第10のキャパシターC1〜C10の第iのキャパシターCiは、2の(i−1)乗で重み付けされた容量値を有する。キャパシター駆動回路20は、第1〜第10のキャパシター駆動電圧の各キャパシター駆動電圧として、第1電圧レベル(0V)又は第1電圧レベルよりも高い第2電圧レベル(15V)を出力する。そして、制御回路40は、第1〜第10のキャパシターC1〜C10のうち第2電圧レベル(15V)が供給されるキャパシターの合計容量を順次増加させていく第1検出用データAD[10:1]を出力する。
例えば図9で後述するように、第1検出用データAD[10:1]を“1”ずつインクリメントする。図2(A)から分かるように、階調データをインクリメントしていくと15Vが供給されるキャパシターの合計容量が増加していき、それと共に電圧VQが上昇していく。図10(B)で説明するように、電気光学パネル200が接続されていない場合には、第1検出用データAD[10:1]が小さい場合でも電圧VQがすぐに高くなるので、それを検出することで電気光学パネル200の接続状態を検出することが可能となる。
また、15Vが供給されるキャパシターの合計容量が小さい方から始めることで、第1検出において急激に電圧VQが上昇することを防ぎ、静電破壊の可能性を低減できる。即ち、15Vが供給されるキャパシターの合計容量が小さい場合、再分配される電荷が小さいので、電気光学パネル200が接続されていなかったとしても、電圧VQの上昇は小さい。電気光学パネル200が接続されていない場合には、再分配の電荷はICの外に出て行けないのでIC内のトランジスター等に流れようとして静電破壊の原因となり得るが、その電荷の供給量が少ないので静電破壊が起きにくいということである。
また本実施形態では、図8等で後述するように、ドライバー100はレジスター部48を含む。レジスター部48は、接続状態の検出結果が書き込まれ、外部の処理部(表示コントローラー300)から接続状態の検出結果を読み出し可能である。
このようにすれば、外部の処理部がレジスター部48から接続状態の検出結果を読み出すことで、その接続状態の検出結果に応じてドライバー100を制御することが可能となる。例えば、レジスター部48には、正常接続を示すフラグ又は異常接続を示すフラグが検出結果として書き込まれる。そして、外部の処理部は、読み出したフラグが正常接続を示すフラグである場合にはドライバー100に電気光学パネル200を駆動させる(画像を表示させる)。一方、読み出したフラグが異常接続を示すフラグである場合にはドライバー100に電気光学パネル200を駆動させない(画像を表示させない)。
4.ドライバーの第3構成例
次に、図1で説明した第1構成例におけるデータ電圧について再考する。図2(A)では、キャパシター回路10の容量COと電気光学パネル側容量CPの比が1:2に設定されていることを前提としていたが、ここでは比が1:2でない場合も含めてデータ電圧の最大値を考える。以下で説明するように、種々の電気光学パネル200に対して汎用のドライバー100を作ろうとすると、比を1:2に保てなくなり、一定のデータ電圧範囲を出力できないという課題がある。
図5(A)に示すように、まずキャパシター回路10の初期化を行う。即ち、階調データGD[10:1]=“000h”(末尾のhは“”内の数が16進数であることを示す)を設定して駆動部DR1〜DR10の全ての出力を0Vに設定する。また図5(A)の式FAに示すように電圧VQ=VC=7.5Vを設定する。この初期化においてキャパシター回路10の容量COと電気光学パネル側容量CPに蓄積された電荷の総量は、以降のデータ電圧出力において保存される。これにより、初期化電圧VC(コモン電圧)を基準としたデータ電圧が出力されることになる。
図5(B)に示すように、データ電圧の最大値が出力されるのは、階調データGD[10:1]=“3FFh”を設定して駆動部DR1〜DR10の全ての出力を15Vに設定した場合である。このときのデータ電圧は電荷保存の法則から求めることができ、図5(B)の式FBに示す値となる。
図5(C)に示すように、所望のデータ電圧範囲が例えば5Vであるとする。初期化電圧VC=7.5Vが基準なので、最大値は12.5Vである。このデータ電圧が実現されるのは、式FBからCO/(CO+CP)=1/3の場合である。即ち、電気光学パネル側容量CPに対して、キャパシター回路10の容量CO=CP/2(即ち、CP=2CO)に設定しておけばよい。ある特定の電気光学パネル200と実装基板に対しては、このようにCO=CP/2に設計することで、5Vのデータ電圧範囲を実現できる。
しかしながら、電気光学パネル側容量CPは電気光学パネル200の種類や実装基板の設計に応じて50pF〜120pF程度の幅をもっている。また同一種類の電気光学パネル200及び実装基板であっても、複数の電気光学パネルを接続する場合には(例えばプロジェクターではR、G、Bの3つの電気光学パネルを接続する)、各電気光学パネルとドライバーの接続配線の長さが異なるため、基板容量CP1が同一になるとは限らない。
例えば、ある電気光学パネル200と実装基板に対してキャパシター回路10の容量COをCP=2COとなるように設計したとする。このキャパシター回路10に対して別種の電気光学パネルや実装基板を接続した場合、CP=CO/2や、CP=5COとなる可能性がある。CP=CO/2の場合、図5(C)に示すように、データ電圧の最大値が17.5Vになり、電源電圧15Vを超えてしまう。この場合、データ電圧の範囲だけでなくドライバー100や電気光学パネル200の耐圧の観点からも問題がある。また、CP=5COの場合、データ電圧の最大値が10Vとなり、十分なデータ電圧範囲が得られない。
このように、キャパシター回路10の容量COを電気光学パネル側容量CPに応じて設定した場合、その電気光学パネル200や実装基板に対してドライバー100が専用設計になってしまうという課題がある。即ち、電気光学パネル200の種類や実装基板の設計が変わるたびに、それ専用のドライバー100を設計し直さなければならない。
図6に、上記のような課題を解決できる本実施形態のドライバーの第3構成例を示す。このドライバー100は、キャパシター回路10、キャパシター駆動回路20、可変容量回路30を含む。なお、既に説明した構成要素と同一の構成要素には同一の符号を付し、その構成要素については適宜説明を省略する。
可変容量回路30は、データ電圧出力ノードNVQに接続される容量であり、その容量値を可変に設定できる回路である。具体的には、可変容量回路30は、第1〜第mのスイッチ素子SWA1〜SWAm(mは2以上の自然数)、第1〜第mの調整用キャパシターCA1〜CAmを含む。なお以下ではm=6の場合を例に説明する。
第1〜第6のスイッチ素子SWA1〜SWA6は、例えばP型又はN型のMOSトランジスターや、或はP型MOSトランジスターとN型MOSトランジスターを組み合わせたトランスファーゲートで構成される。スイッチ素子SWA1〜SWA6の第sのスイッチ素子SWAs(sはm=6以下の自然数)の一端は、データ電圧出力ノードNVQに接続される。
第1〜第6の調整用キャパシターCA1〜CA6は、2の累乗で重み付けされた容量値を有している。具体的には調整用キャパシターCA1〜CA6の第sの調整用キャパシターCAsの容量値は2(s−1)×CA1である。第sの調整用キャパシターCAsの一端は、第sのスイッチ素子SWAsの他端に接続される。第sの調整用キャパシターCAsの他端は、低電位側電源(広義には、基準電圧のノード)に接続される。
例えば、CA1=1pFに設定した場合、スイッチ素子SWA1のみがオンした状態では可変容量回路30の容量は1pFであり、スイッチ素子SWA1〜SWA6の全てがオンした状態では可変容量回路30の容量は63pF(=1pF+2pF+・・・+32pF)である。容量値が2の累乗で重み付けされているため、スイッチ素子SWA1〜SWA6のオン・オフ状態に応じて1pF〜63pFの間で1pF(CA1)ステップで、可変容量回路30の容量を設定することができる。
5.第3構成例におけるデータ電圧
本実施形態のドライバー100が出力するデータ電圧について説明する。ここではデータ電圧の範囲(データ電圧の最大値)について説明する。
図7(A)に示すように、まずキャパシター回路10の初期化を行う。即ち、駆動部DR1〜DR10の全ての出力を0Vに設定し、電圧VQ=VC=7.5V(式FC)を設定する。この初期化においてキャパシター回路10の容量COと可変容量回路の容量CAと電気光学パネル側容量CPに蓄積された電荷の総量は、以降のデータ電圧出力において保存される。
図7(B)に示すように、データ電圧の最大値が出力されるのは、駆動部DR1〜DR10の全ての出力を15Vに設定した場合である。このときのデータ電圧は図7(B)の式FDに示す値となる。
図7(C)に示すように、所望のデータ電圧範囲が例えば5Vであるとする。データ電圧の最大値12.5Vが実現されるのは、式FDからCO/(CO+(CA+CP))=1/3、即ちCA+CP=2COの場合である。CAは可変容量回路の容量なので、自在に設定可能であり、与えられたCPに対してCA=2CO−CPに設定することができる。即ち、ドライバー100に接続する電気光学パネル200の種類や、実装基板の設計がどのようなものであっても、データ電圧の範囲をいつも7.5V〜12.5Vに設定することが可能となる。
以上の第3構成例によれば、ドライバー100は可変容量回路30を含む。可変容量回路30は、データ電圧出力端子TVQと基準電圧(低電位側電源の電圧、0V)のノードとの間に設けられる。そして、可変容量回路30の容量CAと電気光学パネル側容量CPを加算した容量CA+CP(以下、被駆動側の容量と呼ぶ)と、キャパシター回路10の容量CO(以下、駆動側の容量と呼ぶ)とが、所与の容量比関係(例えばCO:(CA+CP)=1:2)になるように、可変容量回路30の容量CAが設定されている。
ここで、可変容量回路30の容量CAは、可変容量回路30の可変の容量に対して設定された容量値である。図6の例では、スイッチ素子SWA1〜SWA6のうちオンになっているスイッチ素子に接続された調整用キャパシターの容量を合計したものである。また、電気光学パネル側容量CPは、データ電圧出力端子TVQに対して外部に接続される容量(寄生容量、回路素子の容量)である。図6の例では、基板容量CP1とパネル容量CP2である。また、キャパシター回路10の容量COは、キャパシターC1〜C10の容量を合計したものである。
また、所与の容量比関係とは、駆動側の容量COと被駆動側の容量CA+CPとの比の関係である。これは、各容量の値が測定されている(明確に容量値が決定されている)場合の容量比に限定されない。例えば、所与の階調データGD[10:1]に対する出力電圧VQから推定される容量比であってもよい。電気光学パネル側容量CPは通常、事前に測定値が得られているものではないので、そのままでは可変容量回路30の容量CAを決定できない。そのため、図11で後述するように、例えば階調データGD[10:1]の中央値“200h”に対してVQ=10Vが出力されるように可変容量回路30の容量CAを決定する。この場合、結果的に容量比CO:(CA+CP)=1:2になっていると推定され、この比と容量CAから容量CPを推定できる(推定できるが、容量CPは知らなくてよい)。
さて、図1等で説明した第1構成例では、ドライバー100の接続環境(実装基板の設計や電気光学パネル200の種類)が変わると、その度に設計変更が必要であるという課題があった。
この点、第3構成例によれば、可変容量回路30を設けることで、ドライバー100の接続環境に依存しない汎用のドライバー100を実現できる。即ち、電気光学パネル側容量CPが異なる場合であっても、それに応じて可変容量回路30の容量CAを調整することによって、所与の容量比関係(例えばCO:(CA+CP)=1:2)を実現できる。この容量比関係によってデータ電圧の範囲(図7(A)〜図7(C)の例では7.5V〜12.5V)が決まるので、接続環境に依存しないデータ電圧の範囲を実現できる。
また、キャパシター回路10とキャパシター駆動回路20による容量駆動では、電荷再分配によって画素を駆動するため、アンプ駆動に比べて高速にデータ電圧を画素に書き込む(短時間にデータ電圧をセトリングさせる)ことができる。そして、高速化が可能なことで、より画素数が多い(高精細な)電気光学パネルを駆動することが可能となる。容量駆動では、アンプ駆動のように自在に電荷が供給されないが、可変容量回路30を設けることで画素に供給される電荷を調整できる。即ち、可変容量回路30を設けることで、容量駆動による高速化を実現すると共に所望のデータ電圧を出力することが可能となる。
また、本実施形態では、キャパシター駆動回路20は、階調データGD[10:1]の第1〜第10のビットGD1〜GD10に基づいて、前記第1〜第10のキャパシター駆動電圧の各駆動電圧として第1電圧レベル(0V)又は第2電圧レベル(15V)を出力する。そして、所与の容量比関係は、第1電圧レベルと第2電圧レベルの電圧差(15V)と、データ電圧出力端子TVQに出力されるデータ電圧(出力電圧VQ)との間の電圧関係によって決定される。
例えば、図7(A)〜図7(C)の例では、データ電圧出力端子TVQに出力されるデータ電圧の範囲が5V(7.5V〜12.5V)である。この場合、第1電圧レベルと第2電圧レベルの電圧差(15V)とデータ電圧の範囲(5V)との間の電圧関係が実現されるように所与の容量比関係が決定される。即ち、容量COと容量CA+CPによる分圧(電圧分割)によって15Vが5Vに分圧される容量比CO:(CA+CP)=1:2が、所与の容量比関係となる。
このようにすれば、第1電圧レベルと第2電圧レベルの電圧差(15V)と、データ電圧出力端子TVQに出力されるデータ電圧(範囲5V)との間の電圧関係から、所与の容量比関係CO:(CA+CP)=1:2を決定できる。逆に、所与の容量比関係が実現されているか否かは、電圧関係を調べれば判定できることになる。即ち、電気光学パネル側容量CPが分かっていなくても、電圧関係から容量比CO:(CA+CP)=1:2を実現する可変容量回路30の容量CAを決定できることになる(例えば図11のフロー)。
6.ドライバーの詳細な構成例
図8に、本実施形態のドライバーの詳細な構成例を示す。このドライバー100は、データ線駆動回路110、制御回路40を含む。データ線駆動回路110は、キャパシター回路10、キャパシター駆動回路20、可変容量回路30、検出回路50を含む。制御回路40は、データ出力回路42、インターフェース回路44、可変容量制御回路46、レジスター部48を含む。なお、既に説明した構成要素と同一の構成要素には同一の符号を付し、その構成要素については適宜説明を省略する。
データ線駆動回路110は、1つのデータ電圧出力端子TVQに対応して1つ設けられる。ドライバー100は複数のデータ線駆動回路と複数のデータ電圧出力端子を含むが、図8では1つだけ図示している。
インターフェース回路44は、ドライバー100を制御する表示コントローラー300(広義には、処理部)とドライバー100との間のインターフェース処理を行う。例えば、LVDS(Low Voltage Differential Signaling)等のシリアル通信によるインターフェース処理を行う。この場合、インターフェース回路44は、シリアル信号を入出力するI/O回路と、制御データや画像データをシリアル/パラレル変換するシリアル/パラレル変換回路と、を含む。また、表示コントローラー300から入力されてパラレルデータに変換された画像データをラッチするラインラッチを含む。ラインラッチは、例えば1度に1本の水平走査線に対応する画像データをラッチする。
データ出力回路42は、水平走査線に対応する画像データの中から、キャパシター駆動回路20へ出力する階調データGD[10:1]を取り出し、データDQ[10:1]として出力する。データ出力回路42は、例えば、電気光学パネル200の駆動タイミングを制御するタイミングコントローラーと、水平走査線に対応する画像データから階調データGD[10:1]を選択する選択回路と、選択された階調データGD[10:1]をラッチする出力ラッチと、を含む。図13等で後述する相展開駆動を行う場合、出力ラッチは、1度に8画素分(データ線DL1〜DL8の本数分)の階調データGD[10:1]をラッチする。この場合、タイミングコントローラーは、相展開駆動の駆動タイミングに合わせて選択回路や出力ラッチの動作タイミングを制御する。また、インターフェース回路44によって受信された画像データに基づいて水平同期信号や垂直同期信号を生成してもよい。また、電気光学パネル200のスイッチ素子(SWEP1等)のオン・オフを制御するための信号(ENBX)や、ゲート駆動(電気光学パネル200の水平走査線の選択)を制御する信号を、電気光学パネル200に対して出力してもよい。
検出回路50は、上述したように電気光学パネル200の接続状態を検出する(第1検出)。また、検出回路50は、可変容量回路30の容量を設定するための検出を行う(第2検出)。これらの検出処理の結果は検出信号DETとして可変容量制御回路46へ出力する。
可変容量制御回路46は、検出信号DETに基づいて電気光学パネル200の接続状態を判断し、その判断結果をレジスター部48へ記憶させる。この接続状態の検出処理のフローは図9で後述する。この処理を行う場合、可変容量制御回路46は第1の検出用データAD[10:1]を出力する。そして、データ出力回路42は第1の検出用データAD[10:1]を出力データDQ[10:1]としてキャパシター駆動回路20へ出力する。
また可変容量制御回路46は、検出信号DETに基づいて可変容量回路30の容量を設定する。この設定処理のフローは図11で後述する。可変容量制御回路46は、可変容量回路30の制御信号として設定値CSW[6:1]を出力する。この設定値CSW[6:1]は第1〜第6のビットCSW6〜CSW1(第1〜第mのビット)で構成される。ビットCSWs(sはm=6以下の自然数)は、可変容量回路30のスイッチ素子SWAsに入力される。例えばビットCSWs=“0”の場合にはスイッチ素子SWAsがオフになり、ビットCSWs=“1”の場合にはスイッチ素子SWAsがオンになる。設定処理を行う場合、可変容量制御回路46は検出用データBD[10:1]を出力する。そして、データ出力回路42は検出用データBD[10:1]を出力データDQ[10:1]としてキャパシター駆動回路20へ出力する。
レジスター部48は、接続状態の検出処理により検出された電気光学パネル200の接続情報と、設定処理により設定された可変容量回路30の設定値CSW[6:1]とを記憶する。レジスター部48はインターフェース回路44を介して表示コントローラー300からアクセス可能に構成される。即ち、表示コントローラー300はレジスター部48から接続情報や設定値CSW[6:1]を読み出すことができる。或は、表示コントローラー300がレジスター部48に設定値CSW[6:1]を書き込める構成としてもよい。
7.接続状態を検出する処理(第1検出)
図9に、電気光学パネル200の接続状態を検出する処理のフローチャートを示す。この処理は、例えばドライバー100に電源を投入した際の立ち上げ時(ICの初期化処理)において行う。
図9に示すように、処理を開始すると、可変容量回路30の容量を仮設定する(ステップS21)。例えば最大値(設定値CSW[6:1]=“3Fh”)に設定する。
次に、検出用データAD[10:1]=“000h”を出力し、キャパシター駆動回路20の駆動部DR1〜DR10の出力を全て0Vに設定する(ステップS22)。次に、出力電圧VQを初期化電圧VC=7.5Vに設定する(ステップS23)。この初期化電圧VCは、例えば端子を介して外部から供給される。
次に、検出電圧Vh1を所望の電圧に設定する(ステップS24)。例えば、可変容量回路30の仮設定値と、想定される電気光学パネル側容量CPの変化範囲とに対応して、適宜に検出電圧Vh1を設定する。
次に、検出用データAD[10:1]=AD[10:1]+1とする(ステップS25)。次に、検出用データAD[10:1]のMSBがAD10=1であるか否かを判定する(ステップS26)。AD10=1である場合には、想定される電気光学パネル側容量CPの変化範囲よりも大きな容量が接続されていると判断し、処理を終了する(ステップS27)。この場合、接続状態の異常を表す異常フラグ(例えば“1”)をレジスター部48に書き込む。表示コントローラー300は、レジスター部48にアクセスし、異常フラグを確認した場合、エラー制御を行う。例えば容量駆動への移行を行わずに(画像データをドライバー100に転送せずに)ドライバー100を停止させる。
ステップS27においてAD10=0である場合には、出力電圧VQが検出電圧Vh1以上であるか否かを検出する(ステップS28)。出力電圧VQが検出電圧Vh1より小さい場合にはステップS25に戻る。一方、出力電圧VQが検出電圧Vh1以上である場合には、検出用データAD[10:1]が所与の設定データ範囲の範囲内であるか否かを判定する(ステップS29)。設定データ範囲は検出電圧Vh1と共に、可変容量回路30の仮設定値と、想定される電気光学パネル側容量CPの変化範囲とに対応して設定される。検出用データAD[10:1]が設定データ範囲の範囲内でない場合、電気光学パネル200が未接続である(即ち、想定される電気光学パネル側容量CPの変化範囲よりも容量が小さい)と判断し、処理を終了する(ステップS30)。この場合、接続状態の異常を表す異常フラグ(例えば“1”)をレジスター部48に書き込む。ステップS27と同様に、容量駆動は行われない。
ステップS29において検出用データAD[10:1]が設定データ範囲の範囲内である場合には、全てのデータ電圧出力端子について接続状態の検出を終了したか否かを判定する(ステップS31)。終了していない場合には、次のデータ電圧出力端子を選択し(ステップS32)、ステップS22に戻る。終了している場合には、電気光学パネル200が正常に接続されていると判断し、処理を終了する。この場合、接続状態が正常であることを表す正常フラグ(例えば“0”)をレジスター部48に書き込む。表示コントローラー300は、レジスター部48にアクセスし、正常フラグを確認した場合、ドライバー100に電気光学パネル200の駆動を指示し、容量駆動を開始させる。
図10(A)、図10(B)に、上記のステップS25〜S30により接続異常が検出される様子を模式的に示す。
図10(A)は、ステップS27の大容量接続異常に対応している。ステップS28においてVQ≧Vh1と判断されない限り、ステップS25〜S28のループが継続し、検出用データAD[10:1]は“0”から順にインクリメントされて“200h”(AD10=1)に達する。このとき、出力電圧VQはAD[10:1]=“200h”に対応した電圧になっている。この電圧VQが検出電圧Vh1を超えていなければ、想定よりも大きな容量がデータ電圧出力端子TVQに接続されていると判断できる。
即ち、可変容量回路30は仮設定値に固定されているため、図7(B)の式FDから分かるように、電気光学パネル側容量CPに応じて電圧VQは変化する。電気光学パネル側容量CPの範囲は、使用が想定される電気光学パネル200の機種などから予想できる。この予想される電気光学パネル側容量CPの範囲に対応して、AD[10:1]=“200h”のときの電圧VQの範囲を想定することができる。式FDから、電気光学パネル側容量CPが大きいほど電圧VQが小さくなる。即ち、想定される電圧VQの範囲の最小値は、想定される電気光学パネル側容量CPの範囲の最大値に対応する。検出電圧Vh1は、電圧VQの範囲の最小値よりも小さい値に設定されており、この検出電圧Vh1を超えないということは、電気光学パネル側容量CPの範囲の最大値よりも大きな容量が接続されているということである。
次に、図10(B)は、ステップS30のパネル未接続異常に対応している。ステップS29に達するということは、AD[10:1]=“200h”に達する前に電圧VQが検出電圧Vh1を超えたということであり、ステップS29ではAD[10:1]<“200h”である。このときの検出用データAD[10:1]が所与の設定データ範囲内でない場合には、想定よりも小さな容量がデータ電圧出力端子TVQに接続されている(又は全く容量が接続されていない)と判断できる。
例えば、設定データ範囲は、所与の下限値よりも大きく“200h”よりも小さい範囲である。検出用データAD[10:1]が仮に、この所与の下限値であったとする。この場合において、図10(A)の場合と同様にして電気光学パネル側容量CPの範囲に対応する電圧VQの範囲を想定することができる。設定データ範囲の下限値は、この電圧VQの範囲が検出電圧Vh1よりも小さくなるように設定されている。もし検出用データAD[10:1]が所与の下限値に達した時点で電圧VQが検出電圧Vh1を超えている場合、想定される電圧VQの範囲の最大値よりも実際の電圧VQが大きいということである。想定される電圧VQの範囲の最大値は、想定される電気光学パネル側容量CPの範囲の最小値に対応するので、想定よりも小さい容量が接続されている(又は全く容量が接続されていない)と判断できる。
検出用データAD[10:1]をインクリメントしていくと、電圧VQは上昇していく。即ち、検出用データAD[10:1]が所与の下限値に達した時点で電圧VQが検出電圧Vh1を超えているということは、検出用データAD[10:1]が所与の下限値に達する前に(所与の設定データ範囲の範囲外で)電圧VQが検出電圧Vh1を超えるということである。従って、ステップS29、S30においてパネル未接続異常が検出される。
8.可変容量回路の容量を設定する処理(第2検出)
図11に、可変容量回路30の容量を設定する処理のフローチャートを示す。この処理は、例えばドライバー100に電源を投入した際の立ち上げ時(初期化処理)において行う。
図11に示すように、処理を開始すると、設定値CSW[6:1]=“3Fh”を出力し、可変容量回路30のスイッチ素子SWA1〜SWA6を全てオンにする(ステップS1)。次に、検出用データBD[10:1]=“000h”を出力し、キャパシター駆動回路20の駆動部DR1〜DR10の出力を全て0Vに設定する(ステップS2)。次に、出力電圧VQを初期化電圧VC=7.5Vに設定する(ステップS3)。この初期化電圧VCは、例えば端子を介して外部から供給される。
次に、可変容量回路30の容量を仮設定する(ステップS4)。例えば、設定値CSW[6:1]=“1Fh”を設定する。この場合、スイッチ素子SWA6がオフ、スイッチ素子SWA5〜SWA1がオンになるので、容量は最大値の半分になる。次に、出力電圧VQへの初期化電圧VCの供給を解除する(ステップS5)。次に、検出電圧Vh2を所望の電圧に設定する(ステップS6)。例えば、検出電圧Vh2=10Vを設定する。
次に、検出用データBD[10:1]のMSBをBD10=“0”からBD10=“1”に変化させる(ステップS7)。次に、出力電圧VQが検出電圧Vh2=10V以上であるか否かを検出する(ステップS8)。
ステップS8において出力電圧VQが検出電圧Vh2=10Vより小さい場合、ビットBD10=“0”に戻す(ステップS9)。次に、設定値CSW[6:1]=“1Fh”を“−1”して“1Eh”とし、可変容量回路30の容量を1段階小さくする(ステップS10)。次に、ビットBD10=“1”を設定する(ステップS11)。次に、出力電圧VQが検出電圧Vh2=10V以下であるか否かを検出する(ステップS12)。出力電圧VQが検出電圧Vh2=10V以下である場合にはステップS9に戻り、出力電圧VQが検出電圧Vh2=10Vより大きい場合には処理を終了する。
ステップS8において出力電圧VQが検出電圧Vh2=10V以上である場合、ビットBD10=“0”に戻す(ステップS13)。次に、設定値CSW[6:1]=“1Fh”を“+1”して“20h”とし、可変容量回路30の容量を1段階大きくする(ステップS14)。次に、ビットBD10=“1”を設定する(ステップS15)。次に、出力電圧VQが検出電圧Vh2=10V以上であるか否かを検出する(ステップS16)。出力電圧VQが検出電圧Vh2=10V以上である場合にはステップS13に戻り、出力電圧VQが検出電圧Vh2=10Vより小さい場合には処理を終了する。
図12(A)、図12(B)に、上記のステップS8〜S16により設定値CSW[6:1]が決定される様子を模式的に示す。
上記のフローでは検出用データBD[10:1]のMSBをBD10=“1”に設定し、そのときの出力電圧VQと検出電圧Vh2=10Vを比較している。BD[10:1]=“200h”は階調データ範囲“000h”〜“3FFh”の中央値であり、検出電圧Vh2=10Vはデータ電圧範囲7.5V〜12.5Vの中央値である。即ち、BD10=“1”にしたときに出力電圧VQが検出電圧Vh2=10Vに一致していれば、正しい(所望の)データ電圧が得られていることになる。
図12(A)に示すように、仮設定値CSW[6:1]=“1Fh”においてステップS8で“NO”であった場合、VQ<Vh2である。この場合、出力電圧VQを上昇させる必要がある。図7(B)の式FDから可変容量回路30の容量CAを小さくすれば出力電圧VQが上昇することが分かるので、設定値CSW[6:1]を“1”ずつ小さくしていく。そして、最初にVQ≧Vh2となる設定値CSW[6:1]=“1Ah”で停止する。これにより、検出電圧Vh2に直近の出力電圧VQが得られる設定値CSW[6:1]を決定できる。
図12(B)に示すように、仮設定値CSW[6:1]=“1Fh”においてステップS8で“YES”であった場合、VQ≧Vh2である。この場合、出力電圧VQを下降させる必要がある。図7(B)の式FDから可変容量回路30の容量CAを大きくすれば出力電圧VQが上昇することが分かるので、設定値CSW[6:1]を“1”ずつ大きくしていく。そして、最初にVQ<Vh2となる設定値CSW[6:1]=“24h”で停止する。これにより、検出電圧Vh2に直近の出力電圧VQが得られる設定値CSW[6:1]を決定できる。
以上の処理により得られた設定値CSW[6:1]を、最終的な設定値CSW[6:1]として決定し、その設定値CSW[6:1]をレジスター部48に書き込む。容量駆動により電気光学パネル200を駆動する際には、レジスター部48に記憶された設定値CSW[6:1]で可変容量回路30の容量が設定される。
なお、本実施形態では可変容量回路30の設定値CSW[6:1]をレジスター部48に記憶させる場合を例に説明したが、これに限定されるものでない。例えば、設定値CSW[6:1]をRAM等のメモリーに記憶させてもよいし、ヒューズ(例えば、製造時にレーザー等で切断して設定値を設定する)により設定値CSW[6:1]を設定してもよい。
以上の詳細な構成例によれば、検出回路50は、可変容量回路30の容量CAが各設定値に設定された場合におけるデータ電圧出力端子TVQの電圧VQを検出する第2検出を行う。そして、可変容量回路30の容量CAは、第2検出の検出結果に基づいて設定される。
図7(B)の式FDから分かるように、階調データに対応してデータ電圧出力端子TVQに出力される電圧VQは、可変容量回路30の容量CAに応じて変化する。即ち、可変容量回路30の容量CAを各設定値に設定すると、その設定値に応じた電圧VQが出力されることになる。この各設定値での電圧VQのうち、所望のデータ電圧に一致する(又は直近の)電圧VQを検出することで、階調データに対応した所望のデータ電圧が得られる容量CAの設定値を決定できる。
また本実施形態では、ドライバー100は、第2検出を行う場合に階調データGD[10:1]の代わりに第2検出用データBD[10:1]をキャパシター駆動回路20に出力する制御回路40を含む。そして、制御回路40は、第2検出用データBD[10:1]に対応するデータ電圧出力端子TVQの電圧VQの検出結果に基づいて、可変容量回路30の容量CAを設定する。
このようにすれば、第2検出用データBD[10:1]をキャパシター駆動回路20に出力することで、第2検出用データBD[10:1]に対応するデータ電圧をデータ電圧出力端子TVQに出力できる。このデータ電圧は可変容量回路30の容量CAに応じて変化するので、所望のデータ電圧が得られる容量CAの設定値を決定できる。例えば図12(A)の例では、検出用データBD[10:1]=“200h”であり、それに対応する所望のデータ電圧は10Vである。可変容量回路30の容量CAを変化させていくと電圧VQが変化していき、その電圧VQが所望のデータ電圧10Vの直近(直上又は直下)となったときの容量CAの設定値を、最終的な設定値として採用する。このようにして、電圧VQの検出により可変容量回路30の容量CAを決定できる。
また本実施形態では、第1〜第10のキャパシターC1〜C10の第iのキャパシターCiは、2の(i−1)乗で重み付けされた容量値を有する。制御回路40は、第1〜第10のキャパシター駆動電圧のうち第10のキャパシター駆動電圧を第1電圧レベル(0V)から第1電圧レベルよりも高い第2電圧レベル(15V)に切り替える第2検出用データBD[10:1]を出力する。そして、検出回路50は、第10のキャパシター駆動電圧が第1電圧レベル(0V)から第2電圧レベル(15V)に切り替えられた場合にデータ電圧出力端子TVQの電圧VQが所与の電圧(10V)を超えるか否かを、可変容量回路30の容量CAの各設定値について検出する。
このようにすれば、可変容量回路30の容量CAが各設定値に設定されたときに、第10のキャパシター駆動電圧が0Vから15Vに切り替えられる。これは、図11のフローにおいて検出用データBD[10:1]のビットBD10を“0”から“1”に切り替えることに対応している。この切り替えを行ったとき、電圧VQが所与の電圧(検出電圧Vh2=10V)を超えるか否かを検出することで、可変容量回路30の容量CAを決定できる。即ち、図12(A)、図12(B)で説明したように、切り替えを行ったときに電圧VQが10Vを超える設定値と超えない設定値があるので、その境界の設定値を採用することで、容量CAの設定値を決定できる。
また本実施形態では、検出回路50による検出結果に基づいて、データ電圧出力端子TVQの電圧VQがドライバー100の耐圧を超えないと判断されることを条件に、キャパシター駆動回路20とキャパシター回路10による電気光学パネル200の駆動(容量駆動)を行う。
また本実施形態では、検出回路50による検出結果に基づいて、データ電圧出力端子TVQの電圧VQが電気光学パネル200の耐圧を超えないと判断されることを条件に、キャパシター駆動回路20とキャパシター回路10による電気光学パネル200の駆動(容量駆動)を行う。
例えば、図9のフローで説明した接続状態の検出処理(第1検出)では、ドライバー100の耐圧を超えないと判断されるか否かを検出している。即ち、電気光学パネル200の接続状態を検出することで、容量駆動を行った際にドライバー100の耐圧を超えるか否かを間接的に判断している。
或は、図11のフローで説明した可変容量回路30の容量CAの決定処理(第2検出)では、ドライバー100と電気光学パネル200の耐圧を超えないと判断されるか否かを検出している。第2検出では、所望のデータ電圧が得られる容量CAを決定しているが、これはデータ電圧の範囲が適切な範囲である(電源電圧を超えない)ことを意味している。即ち、第2検出により容量CAを決定することで、容量駆動を行った際にドライバー100と電気光学パネル200の耐圧を超えるか否かを間接的に判断している。なお、電気光学パネル200の耐圧は、例えば電気光学パネル200が静電破壊を起こさない電圧、或は、電気光学パネル200の画素が焼き付けを起こさない電圧等である。例えば、電気光学パネル200の耐圧はドライバー100の耐圧と同程度である。
9.相展開駆動の手法
次に、電気光学パネル200の駆動手法について説明する。以下では相展開駆動を例にとって説明するが、本実施形態のドライバー100が行う駆動手法は相展開駆動に限定されない。
図13に、ドライバーの第2の詳細な構成例と、電気光学パネルの詳細な構成例と、ドライバーと電気光学パネルの接続構成例を示す。
ドライバー100は、制御回路40、第1〜第kのデータ線駆動回路DD1〜DDk(kは2以上の自然数)を含む。データ線駆動回路DD1〜DDkは、それぞれ図8のデータ線駆動回路110に対応する。なお以下ではk=8の場合を例に説明する。
制御回路40は、データ線駆動回路DD1〜DD8の各データ線駆動回路に対して、対応する階調データを出力する。また制御回路40は、制御信号(例えば図14のENBX等)を電気光学パネル200に出力する。
データ線駆動回路DD1〜DD8は、階調データをデータ電圧に変換し、そのデータ電圧を出力電圧VQ1〜VQ8として電気光学パネル200のデータ線DL1〜DL8へ出力する。
電気光学パネル200は、データ線DL1〜DL8(第1〜第kのデータ線)、スイッチ素子SWEP1〜SWEP(t×k)、ソース線SL1〜SL(t×k)を含む。tは2以上の自然数であり、以下ではt=160(即ちt×k=160×8=1280(WXGA))の場合を例に説明する。
スイッチ素子SWEP1〜SWEP1280のうちスイッチ素子SWEP((j−1)×k+1)〜SWEP(j×k)の一端は、データ線DL1〜DL8に接続される。jはt=160以下の自然数である。例えばj=1の場合にはスイッチ素子SWEP1〜SWEP8である。
スイッチ素子SWEP1〜SWEP1280は、例えばTFT(Thin Film Transistor)等で構成され、ドライバー100からの制御信号に基づいて制御される。例えば、電気光学パネル200は不図示のスイッチ制御回路を含み、そのスイッチ制御回路がENBX等の制御信号に基づいてスイッチ素子SWEP1〜SWEP1280のオン・オフを制御する。
図14に、図13のドライバー100と電気光学パネル200の動作タイミングチャートを示す。
プリチャージ期間では、信号ENBXがハイレベルになり、スイッチ素子SWEP1〜SWEP1280が全てオンになる。そして、ソース線SL1〜SL1280の全てがプリチャージ電圧VPRに設定される。例えばドライバー100はプリチャージ用アンプ回路を含み、そのプリチャージ用アンプ回路がプリチャージ電圧VPRを出力する。
初期化期間では、信号ENBXがローレベルになり、スイッチ素子SWEP1〜SWEP1280が全てオフになる。そして、データ線DL1〜DL8が初期化電圧VC=7.5Vに設定される。ソース線SL1〜SL1280はプリチャージ電圧VPRのままである。
データ電圧出力期間の第1の出力期間では、ソース線SL1〜SL8に対応する階調データがデータ線駆動回路DD1〜DD8に入力される。そして、キャパシター回路10とキャパシター駆動回路20による容量駆動が行われ、データ線DL1〜DL8がデータ電圧SV1〜SV8で駆動される。容量駆動の開始後、信号ENBXがハイレベルになり、スイッチ素子SWEP1〜SWEP8がオンになる。そして、ソース線SL1〜SL8がデータ電圧SV1〜SV8で駆動される。このとき、不図示のゲートドライバーにより1本のゲート線(水平走査線)が選択されており、その選択されたゲート線とデータ線DL1〜DL8に接続される画素回路にデータ電圧SV1〜SV8が書き込まれる。なお図14には例としてデータ線DL1、ソース線SL1の電位を示す。
第2出力期間では、ソース線SL9〜SL16に対応する階調データがデータ線駆動回路DD1〜DD8に入力される。そして、キャパシター回路10とキャパシター駆動回路20による容量駆動が行われ、データ線DL1〜DL8がデータ電圧SV9〜SV16で駆動される。容量駆動の開始後、信号ENBXがハイレベルになり、スイッチ素子SWEP9〜SWEP16がオンになる。そして、ソース線SL9〜SL16がデータ電圧SV9〜SV16で駆動される。このとき、選択されたゲート線とデータ線DL9〜DL16に接続される画素回路にデータ電圧SV9〜SV16が書き込まれる。なお図14には例としてデータ線DL1、ソース線SL9の電位を示す。
以降、同様にして第3出力期間、第4出力期間、・・・、第160出力期間においてソース線SL17〜SL24、SL25〜SL32、・・・、SL1263〜SL1280が駆動され、ポストチャージ期間に移行する。
10.電子機器
図15に、本実施形態のドライバー100を適用できる電子機器の構成例を示す。本実施形態の電子機器として、例えばプロジェクターや、テレビション装置、情報処理装置(コンピューター)、携帯型情報端末、カーナビゲーションシステム、携帯型ゲーム端末等の、表示装置を搭載する種々の電子機器を想定できる。
図15に示す電子機器は、ドライバー100、電気光学パネル200、表示コントローラー300(第1処理部)、CPU310(第2処理部)、記憶部320、ユーザーインターフェース部330、データインターフェース部340を含む。
電気光学パネル200は例えばマトリックス型の液晶表示パネルである。或は、電気光学パネル200は自発光素子を用いたEL(Electro-Luminescence)表示パネルであってもよい。ユーザーインターフェース部330は、ユーザーからの種々の操作を受け付けるインターフェース部である。例えば、ボタンやマウス、キーボード、電気光学パネル200に装着されたタッチパネル等で構成される。データインターフェース部340は、画像データや制御データの入出力を行うインターフェース部である。例えばUSB等の有線通信インターフェースや、或は無線LAN等の無線通信インターフェースである。記憶部320は、データインターフェース部340から入力された画像データを記憶する。或は、記憶部320は、CPU310や表示コントローラー300のワーキングメモリーとして機能する。CPU310は、電子機器の各部の制御処理や種々のデータ処理を行う。表示コントローラー300はドライバー100の制御処理を行う。例えば、表示コントローラー300は、データインターフェース部340や記憶部320から転送された画像データを、ドライバー100が受け付け可能な形式に変換し、その変換された画像データをドライバー100へ出力する。ドライバー100は、表示コントローラー300から転送された画像データに基づいて電気光学パネル200を駆動する。
なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語(第1論理レベル、第2論理レベル)と共に記載された用語(ローレベル、ハイレベル)は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本発明の範囲に含まれる。またキャパシター回路、キャパシター駆動回路、可変容量回路、検出回路、制御回路、ドライバー、電気光学パネル、電子機器の構成・動作等も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。
10 キャパシター回路、20 キャパシター駆動回路、30 可変容量回路、
40 制御回路、42 データ出力回路、44 インターフェース回路、
46 可変容量制御回路46、48 レジスター部、50 検出回路、
100 ドライバー、110 データ線駆動回路、200 電気光学パネル、
300 表示コントローラー、310 CPU、320 記憶部、
330 ユーザーインターフェース部、340 データインターフェース部、
C1 キャパシター、CA 可変容量回路の容量、
CA1 調整用キャパシター、CO キャパシター回路の容量、
CP 電気光学パネル側容量、DL1 データ線、DR1 駆動部、
GD1 ビット、GD[10:1] 階調データ、
NDR1 キャパシター駆動ノード、SL1 ソース線、
SWA1 スイッチ素子、SWEP1 スイッチ素子、
TPR プリチャージ用端子、TVQ データ電圧出力端子、
VC 初期化電圧、Vh1 第1の検出電圧、Vh2 第2の検出電圧、
VPR プリチャージ電圧

Claims (7)

  1. 階調データに対応する第1〜第nのキャパシター駆動電圧(nは2以上の自然数)を第1〜第nのキャパシター駆動用ノードに出力するキャパシター駆動回路と、
    前記第1〜第nのキャパシター駆動用ノードとデータ電圧出力端子との間に設けられる第1〜第nのキャパシターを有するキャパシター回路と、
    前記データ電圧出力端子と電気光学パネルとの間の接続状態を検出する第1検出を行う検出回路と、
    前記第1検出を行う場合に前記階調データの代わりに第1検出用データを前記キャパシター駆動回路に出力する制御回路と、
    を含み、
    前記第1〜第nのキャパシターの第iのキャパシターは、
    2の(i−1)乗で重み付けされた容量値(iはn以下の自然数)を有し、
    前記キャパシター駆動回路は、
    前記第1〜第nのキャパシター駆動電圧の各キャパシター駆動電圧として、第1電圧レベル又は前記第1電圧レベルよりも高い第2電圧レベルを出力し、
    前記検出回路は、
    前記データ電圧出力端子の電圧を検出する回路であり、
    前記制御回路は、
    前記第1〜第nのキャパシターのうち前記第2電圧レベルが供給されるキャパシターの合計容量を順次増加させていく前記第1検出用データを出力し、前記第1検出用データに対応する前記データ電圧出力端子の電圧の検出結果に基づいて、前記接続状態を判定することを特徴とするドライバー。
  2. 請求項1おいて、
    前記接続状態の検出結果が書き込まれ、外部の処理部から前記接続状態の検出結果を読み出し可能なレジスター部を含むことを特徴とするドライバー。
  3. 請求項1又は2において、
    前記データ電圧出力端子と基準電圧のノードとの間に設けられる可変容量回路を含み、
    前記可変容量回路の容量と電気光学パネル側容量を加算した容量と、前記キャパシター回路の容量とが、所与の容量比関係になるように、前記可変容量回路の容量が設定されていることを特徴とするドライバー。
  4. 請求項において、
    前記検出回路は、
    前記可変容量回路の容量が各設定値に設定された場合における前記データ電圧出力端子の電圧を検出する第2検出を行い、
    前記可変容量回路の容量は、
    前記第2検出の検出結果に基づいて設定されることを特徴とするドライバー。
  5. 請求項において、
    前記制御回路は、
    前記第2検出を行う場合に前記階調データの代わりに第2検出用データを前記キャパシター駆動回路に出力し、前記第2検出用データに対応する前記データ電圧出力端子の電圧の検出結果に基づいて、前記可変容量回路の容量を設定することを特徴とするドライバー。
  6. 請求項において、
    記制御回路は、
    前記第1〜第nのキャパシター駆動電圧のうち第nのキャパシター駆動電圧を第1電圧レベルから前記第1電圧レベルよりも高い第2電圧レベルに切り替える前記第2検出用データを出力し、
    前記検出回路は、
    前記第nのキャパシター駆動電圧が前記第1電圧レベルから前記第2電圧レベルに切り替えられた場合に前記データ電圧出力端子の電圧が所与の電圧を超えるか否かを、前記可変容量回路の容量の前記各設定値について検出することを特徴とするドライバー。
  7. 請求項1乃至のいずれかに記載されたドライバーを含むことを特徴とする電子機器。
JP2014210366A 2014-10-15 2014-10-15 ドライバー及び電子機器 Active JP6421536B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014210366A JP6421536B2 (ja) 2014-10-15 2014-10-15 ドライバー及び電子機器
US14/870,682 US9679529B2 (en) 2014-10-15 2015-09-30 Driver having capacitor circuit including first to nth capacitors provided between first to nth capacitor driving nodes and a data voltage output terminal
CN201510671939.5A CN105528975B (zh) 2014-10-15 2015-10-15 驱动器以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014210366A JP6421536B2 (ja) 2014-10-15 2014-10-15 ドライバー及び電子機器

Publications (2)

Publication Number Publication Date
JP2016080806A JP2016080806A (ja) 2016-05-16
JP6421536B2 true JP6421536B2 (ja) 2018-11-14

Family

ID=55749525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014210366A Active JP6421536B2 (ja) 2014-10-15 2014-10-15 ドライバー及び電子機器

Country Status (3)

Country Link
US (1) US9679529B2 (ja)
JP (1) JP6421536B2 (ja)
CN (1) CN105528975B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750382B2 (ja) * 2016-08-10 2020-09-02 セイコーエプソン株式会社 表示ドライバー、電気光学装置及び電子機器
DE102018215428B3 (de) * 2018-09-11 2019-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Flächenlichtmodulatoren (SLM) mit integrierten Digital / Analog-Konvertern

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332997A (en) * 1992-11-04 1994-07-26 Rca Thomson Licensing Corporation Switched capacitor D/A converter
US5589802A (en) * 1995-06-07 1996-12-31 American Microsystems, Inc. Circuit for detecting the absence of an external component
US5889486A (en) * 1997-09-18 1999-03-30 National Semiconductor Corporation Split capacitor array for digital-to-analog signal conversion
GB9724739D0 (en) * 1997-11-25 1998-01-21 Philips Electronics Nv Digital to analogue converter and method of operating the same
US6420988B1 (en) 1998-12-03 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Digital analog converter and electronic device using the same
US6819305B2 (en) * 1999-01-28 2004-11-16 Conexant Systems, Inc. Method and apparatus for detection of a video display device
JP4485030B2 (ja) 1999-08-16 2010-06-16 株式会社半導体エネルギー研究所 D/a変換回路、半導体装置、及び電子機器
US6486812B1 (en) 1999-08-16 2002-11-26 Semiconductor Energy Laboratory Co., Ltd. D/A conversion circuit having n switches, n capacitors and a coupling capacitor
JP3420148B2 (ja) * 1999-12-20 2003-06-23 山形日本電気株式会社 液晶駆動方法及び液晶駆動回路
US7106318B1 (en) * 2000-04-28 2006-09-12 Jps Group Holdings, Ltd. Low power LCD driving scheme employing two or more power supplies
JP3899817B2 (ja) * 2000-12-28 2007-03-28 セイコーエプソン株式会社 液晶表示装置及び電子機器
JP4255967B2 (ja) * 2001-03-26 2009-04-22 株式会社半導体エネルギー研究所 D/a変換回路
US6600436B2 (en) * 2001-03-26 2003-07-29 Semiconductor Energy Laboratory Co., Ltd, D/A converter having capacitances, tone voltage lines, first switches, second switches and third switches
GB2388725A (en) * 2002-05-17 2003-11-19 Sharp Kk Digital/analog converter, display driver and display
JP3760411B2 (ja) * 2003-05-21 2006-03-29 インターナショナル・ビジネス・マシーンズ・コーポレーション アクティブマトリックスパネルの検査装置、検査方法、およびアクティブマトリックスoledパネルの製造方法
JP2006048131A (ja) * 2004-07-30 2006-02-16 Toshiba Corp 情報処理装置および表示輝度制御方法
GB2425006A (en) * 2005-04-05 2006-10-11 Sharp Kk Switched capacitor digital/analogue converter arrangement
US8159442B2 (en) * 2005-09-16 2012-04-17 Sharp Kabushiki Kaisha Liquid crystal display device
US7432844B2 (en) * 2006-12-04 2008-10-07 Analog Devices, Inc. Differential input successive approximation analog to digital converter with common mode rejection
JP2008139697A (ja) * 2006-12-04 2008-06-19 Nec Electronics Corp 容量性負荷駆動回路および容量性負荷駆動方法、液晶表示装置駆動方法
JP2009003155A (ja) * 2007-06-21 2009-01-08 Hitachi Displays Ltd 表示装置
KR101634286B1 (ko) * 2009-01-23 2016-07-11 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
US8059021B2 (en) * 2009-12-18 2011-11-15 Advantest Corporation Digital-analog converting apparatus and test apparatus
US8629725B2 (en) * 2010-12-05 2014-01-14 Rf Micro Devices (Cayman Islands), Ltd. Power amplifier having a nonlinear output capacitance equalization
JP5231605B2 (ja) * 2011-06-10 2013-07-10 シャープ株式会社 タッチパネルコントローラ、及びこれを用いた電子機器
KR101535825B1 (ko) * 2012-09-25 2015-07-10 엘지디스플레이 주식회사 표시장치 및 이의 라인결함 검출방법
TWI497918B (zh) * 2012-12-28 2015-08-21 Ind Tech Res Inst 類比數位轉換器及其數位類比轉換器的電容權重估算方法
WO2014129375A1 (ja) * 2013-02-25 2014-08-28 シャープ株式会社 電子機器および情報処理システム
JP6407528B2 (ja) * 2013-12-27 2018-10-17 ルネサスエレクトロニクス株式会社 半導体装置

Also Published As

Publication number Publication date
CN105528975B (zh) 2020-07-07
JP2016080806A (ja) 2016-05-16
US20160111058A1 (en) 2016-04-21
CN105528975A (zh) 2016-04-27
US9679529B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
JP6421537B2 (ja) ドライバー及び電子機器
US10339890B2 (en) Driver and electronic device
JP6439393B2 (ja) ドライバー及び電子機器
CN105825825B (zh) 驱动器、电光装置及电子设备
US10297222B2 (en) Driver and electronic device for suppressing a rise or fall in voltage at an output terminal in capacitive driving
JP6455063B2 (ja) ドライバー及び電子機器
JP6421536B2 (ja) ドライバー及び電子機器
JP6578661B2 (ja) ドライバー、電気光学装置及び電子機器
JP6455110B2 (ja) ドライバー及び電子機器
KR20240024405A (ko) 게이트 드라이버 및 이를 포함하는 표시 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R150 Certificate of patent or registration of utility model

Ref document number: 6421536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150