JP6404685B2 - 複極式アルカリ水電解セル、及び電解槽 - Google Patents

複極式アルカリ水電解セル、及び電解槽 Download PDF

Info

Publication number
JP6404685B2
JP6404685B2 JP2014232072A JP2014232072A JP6404685B2 JP 6404685 B2 JP6404685 B2 JP 6404685B2 JP 2014232072 A JP2014232072 A JP 2014232072A JP 2014232072 A JP2014232072 A JP 2014232072A JP 6404685 B2 JP6404685 B2 JP 6404685B2
Authority
JP
Japan
Prior art keywords
alkaline water
anode
cathode
water electrolysis
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014232072A
Other languages
English (en)
Other versions
JP2016094650A (ja
Inventor
兼次 中川
兼次 中川
伸司 長谷川
伸司 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2014232072A priority Critical patent/JP6404685B2/ja
Publication of JP2016094650A publication Critical patent/JP2016094650A/ja
Application granted granted Critical
Publication of JP6404685B2 publication Critical patent/JP6404685B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、アルカリ水からなる電解液を電解することにより酸素と水素を得るための電解槽に組み込まれる複極式アルカリ水電解ユニット、及び電解槽に関する。より詳しくは、気液分離性を高めた複極式アルカリ水電解ユニット、及び電解槽に関する。
近年、地球温暖化、環境、地下資源の減少などの問題がクローズアップされている。この解決策として、再生可能エネルギーや、クリーンなエネルギーとして水素が注目されている。しかし、このような再生可能エネルギーには、地域により偏りがあるばかりでなく、出力の変動が非常に大きい。そのため、自然エネルギーから発電された電力を、一般電力系統に送るには限界があり、更に天候や季節により発電量が大きく変わること等により余剰の電力が発生することなどの問題もある。そこで、現在注目されているのが、水電解による水素の製造と貯蔵・輸送である。安価な余剰電力を用いて、安価で貯蔵可能な水素を製造し、必要に応じて輸送し、クリーンなエネルギー源や原料として利用することである。
水電解により水素を製造する方法としては、電解質としてKOH水溶液やNaOH水溶液を用いた「アルカリ水電解法」が挙げられる。アルカリ水電解装置は、他の水電解装置に比べると設備費が安価であること、すでに商業プラントとして実績があることなどから、大規模水素製造装置として期待されている。しかし、再生可能エネルギーのような短時間で電圧や電流が大きく変動する電力を用いて、従来以上に設備コストが安く、性能の良いアルカリ水電解装置とするにはまだ多くの課題がある。
ここで、図7は、アルカリ水電解システム300の一構成例を模式的に示す図である。
アルカリ水電解システム300は、アルカリ水溶液を電気分解することによって酸素及び水素を製造する複極式電解槽310と、複極式電解槽310に電圧を印加する電源315と、複極式電解槽310から排出される酸素及び水を分離する陽極タンク(気液分離タンク)320と、陽極タンク320で気液分離された酸素を導出する酸素排出ライン321と、排出される酸素の圧力を調整する水封器330と、酸素を外部に導出する酸素導出ライン331を備える。
また、アルカリ水電解システム300は、複極式電解槽310から排出される水素及び水を分離する陰極タンク(気液分離タンク)340と、陰極タンク340で気液分離された水素を導出する水素排出ライン341と、排出される水素の圧力を調整する水封器350と、水素を外部に導出する水素導出ライン351を備える。陰極タンク340には、純水供給配管360及び純水供給ポンプ361が連結される。
さらに、陽極タンク320及び陰極タンク340の底部には分離したアルカリ液を循環する、循環ライン324及び344が接続されており、循環ライン324及び344は、ポンプ371及び電解槽入ライン370を介して複極式電解槽310に連通する。
複極式電解槽310の酸素連通孔311には、酸素ライン312の一端が接続され、この酸素ライン312の他端が陽極タンク320に接続される。陽極タンク320は気液分離タンクであり、陽極タンク320で水と分離された酸素は、酸素排出ライン321、水封器330及び酸素導出ライン331を経て導出される。
複極式電解槽310の水素連通孔313には、水素ライン314の一端が接続され、この水素ライン314の他端が陰極タンク340に接続される。陰極タンク340は気液分離タンクであり、陰極タンク340で水と分離された水素は、水素排出ライン341、水封器350及び水素導出ライン351を経て導出される。
このようなアルカリ水電解システム300において用いられる複極式アルカリ水電解ユニットとしては、例えば特許文献1に示すように、電解ユニットが、酸素発生用の多孔質体からなる陽極と、水素発生用の陰極と、前記陽極と前記陰極とを区画する導電性隔壁と、導電性隔壁の周囲を取り囲む外枠と、導電性隔壁を覆うカバープレートとを備える複極式アルカリ水電解ユニットが開示されている。
電解ユニットを構成する隔壁、外枠は、陽極又は陰極を支えるだけでなく、電流を隔壁から陽極又は陰極へ伝える役割がある。そのため、隔壁及び外枠には一般的に導電性の金属、例えば、ニッケルメッキを施した軟鋼、ステンレススチール、ニッケル等が利用されている。
国際公開第2013/191140号
しかしながら、特許文献1に示すような複極式アルカリ水電解ユニットにおいて、電解ユニットの外枠及びカバープレートの内壁面を構成するニッケルは親水性である。このため、図8に示すように、電解ユニット400内で発生した水素や酸素などの気泡が壁面に付着せず、小さなままユニット上部に上がる。すると、ビール泡のような小さな泡Bが電解ユニット400の上部空間410に溜まってしまう。この小さな泡Bがラインを通じて気液分離タンク(陽極タンク320及び陰極タンク340)に流れてしまう。
泡が小さいと、気液分離タンクにおいても破泡できず、気体の流路(気相ライン)に泡が浸入してしまい、気液分離が良好になされないという問題があった。
本発明は、上述した従来の実情に鑑みてなされたものであり、電解セル上部に溜まる泡を破泡させ、気液分離性を向上させた複極式アルカリ水電解セル、及び電解槽を提供することを目的とする。
[1]
アルカリ水からなる電解液を電解して酸素及び水素を得る電解槽を構成する複極式アルカリ水電解セルであって、
前記複極式アルカリ水電解セルは、
酸素発生用の多孔質体からなる陽極と、
水素発生用の陰極と、
前記陽極と前記陰極とを区画する導電性隔壁と、
前記導電性隔壁の外縁を取り囲む外枠と、
前記導電性隔壁の上部及び下部において該導電性隔壁を覆うカバープレートと、を備え、
前記導電性隔壁及び/又は前記外枠の上部には、ガス及び電解液が通過する第1の通過部が設けられており、
前記導電性隔壁及び/又は前記外枠の下部には、電解液が通過する第2の通過部が設けられており、
前記導電性隔壁の上部と前記外枠の上部と前記カバープレートとで囲まれた上部空間の内壁面が、疎水性樹脂からなるライニング層で被覆されていることを特徴とする複極式アルカリ水電解セル。
[2]
前記第1の通過部の内壁面が、疎水性樹脂からなるライニング層で被覆されている、[1]に記載の複極式アルカリ水電解セル。
[3]
前記カバープレートの外表面において前記第1の通過部の周囲が、疎水性樹脂からなるライニング層で被覆されていることを特徴とする[1]又は[2]に記載の複極式アルカリ水電解セル。
[4]
前記疎水性樹脂は、フッ素系樹脂である、[1]〜[3]のいずれか一項に記載の複極式アルカリ水電解セル。
[5]
前記導電性隔壁及び/又は外枠の上部に設けられたガス及び電解液の通過部は、陽極液及びガス通過パイプと陰極液及びガス通過パイプとであり、前記導電性隔壁及び/又は外枠の下部に設けられた電解液の通過部は、陽極液通過パイプと陰極液通過パイプとである[1]〜[4]のいずれか一項に記載の複極式アルカリ水電解セル。
[6]
アルカリ水からなる電解液を電解して酸素、及び水素を得るための電解槽であって、
[1]〜[5]のいずれか一項に記載の複数の複極式アルカリ水電解セルと、
陽極用給電端子及び陽極が設けられた陽極ターミナルエレメントと、
陰極用給電端子及び陰極が設けられた陰極ターミナルエレメントと、
複数のイオン透過性隔膜と、を備え、
前記複極式アルカリ水電解ユニットは、前記陽極ターミナルエレメントと前記陰極ターミナルエレメントとの間に配置され、
前記イオン透過性隔膜は、前記陽極ターミナルエレメントと前記複極式アルカリ水電解ユニットとの間、隣接して並ぶ複極式アルカリ水電解ユニット同士の間、及び前記複極式アルカリ水電解ユニットと前記陰極ターミナルエレメントとの間に配置されることを特徴とする電解槽。
本発明によれば、電解セルの上部空間の内壁面が、疎水性樹脂からなるライニング層で被覆されているため、セル内で発生した気泡が壁面に付着する。そして、小さな泡が会合して大きな泡となり上部に上がり、上部に溜まる。大きな泡は自然に破泡するため、気体の流路には浸入しない。したがって、本発明の複極式アルカリ水電解セル、及び電解槽では、気液分離性が向上する。
電解槽の主要部である複極式アルカリ電解セルを構成する各部材の配置を示す斜視図である。 電解槽を一部破断して示す側面図である。 本実施形態に係る複極式アルカリ水電解セルを陽極側から見た平面図である。 図3のa−a線断面図である。 図3のb−b線断面図である。 本実施形態の複極式アルカリ電解セル内部で発生する気泡の様子を説明するための図である。 アルカリ水電解システムの一構成例を模式的に示す図である。 従来の複極式アルカリ電解セル内部で発生する気泡の様子を説明するための図である。
本発明の実施形態について図面を参照して説明するが、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
(電解槽の構成)
図1及び図2に示されるように、本実施形態に係る電解槽100は、アルカリ水からなる電解液を電解して酸素、及び水素を得るための装置であり、電解槽100は複極式アルカリ水電解セル200を含む各部材によって構成される複極式電解槽101を備え、複極式電解槽101は、タイロッド15(図2参照)で締め付けられることで各部材が一体化されている。
複極式電解槽101は、端からプレスフランジ5、プレスフランジガスケット6、及び陽極ターミナルエレメント8が順番に並べられ、更に、陽極ガスケット9、イオン透過性隔膜10、陰極ガスケット11、複極式アルカリ水電解セル200が、この順番で並べて配置されている。陽極ガスケット9から複極式アルカリ水電解セル200までは、設計生産量に必要な数だけ繰り返し配置される。なお、図2では、繰り返し配置される陽極ガスケット9、イオン透過性隔膜10、陰極ガスケット11、及び複極式アルカリ水電解セル200のうち、便宜的にイオン透過性隔膜10、及び複極式アルカリ水電解セル200のみを示している。
陽極ガスケット9から複極式アルカリ水電解セル200までを必要数だけ繰り返し配置した後(図1参照)、再度、陽極ガスケット9、イオン透過性隔膜10、陰極ガスケット11を並べて配置し、最後に陰極ターミナルエレメント13、絶縁プレート41、エンドプレスフランジ14をこの順番で配置して複極式電解槽101が構成される。複極式電解槽101は、全体をタイロッド15で締め付けることにより一体化され、電解槽100となる。複極式電解槽101を構成する配置は、陽極側からでも陰極側からでも任意に選択でき、本実施形態の順序に限定されるものではない。つまり、複極式電解槽101は、複極式アルカリ水電解セル200が陽極ターミナルエレメント8と陰極ターミナルエレメント13との間に配置され、イオン透過性隔膜10は、陽極ターミナルエレメント8と複極式アルカリ水電解セル200との間、隣接して並ぶ複極式アルカリ水電解セル200同士の間、及び複極式アルカリ水電解セル200と陰極ターミナルエレメント13との間に配置された態様を具現化している。
プレスフランジ5は、矩形板状のカバー部5aの縁に沿って短筒状の外枠5bが設けられており、さらにカバー部5aには格子状の補強リブ5cが設けられている。また、プレスフランジ5には、陽極液入口ノズル1、陰極液入口ノズル2、陽極液及びガス出口ノズル3、及び陰極液及びガス出口ノズル4がカバー部5aを貫通して設けられており、更に、カバー部5aには、陽極用給電端子7Aが挿通するスリットSaが四か所に形成されている。
プレスフランジガスケット6には、陽極液入口ノズル1に連通する流路孔6a、陰極液入口ノズル2に連通する流路孔6b、陽極液及びガス出口ノズル3に連通する流路孔6c、及び陰極液及びガス出口ノズル4に流路孔6dが設けられており、さらに、陽極用給電端子7Aを避けるための孔部6eが形成されている。
陽極ターミナルエレメント8には、プレスフランジ5側に突き出した四本の陽極用給電端子7Aと、隣接する陽極ガスケット9側に設けられた陽極8a(図2参照)とが設けられている。
一方で、陰極ターミナルエレメント13には、隣接する陰極ガスケット11側に設けられた陰極13aと、エンドプレスフランジ14側に突き出した四本の陰極用給電端子7Bとが設けられており、絶縁プレート41、及びエンドプレスフランジ14には陰極用給電端子7Bが挿通するスリットSbが四か所に形成されている。
<電解セル>
電解セル200について、図3〜図5を参照して説明する。図4は電解の平面図であり、図4は図3のa−a線断面図であり、図5は図3のb−b線断面図である。
電解セル200は、陽極202側と陰極204側とを区画する矩形状の隔壁206を備え、隔壁206の外縁に沿って、隔壁206を取り囲むように矩形状の外枠フレーム208が配置されている。また、隔壁206の上部及び下部において隔壁206を覆うカバープレートと、を備える。
特に、本実施形態の複極式アルカリ水電解セル200では、隔壁206の上部と外枠フレーム208の上部と、カバープレート(陽極上部カバープレート216A及び陰極上部カバープレート216B)で囲まれた上部空間(陽極気液分離室219A及び陰極気液分離室219B)の内壁面が、疎水性樹脂からなるライニング層250aで被覆されていることを特徴とする。
隔壁206の外周には、隔壁206から延びて外枠フレーム208の一部を覆うように当接する陽極側フランジパン210が設けられている。また、隔壁206の外周には、隔壁206から延びて外枠フレーム208の一部を覆うように当接する陰極側フランジパン212が設けられている。陽極側フランジパン210と陰極側フランジパン212とによって、外枠フレーム208に取り付けられる金属薄板部214が構成される。
陽極側フランジパン210は、隔壁206から陽極202側に屈曲して形成される周壁部210aと、周壁部210aから更に屈曲して隔壁206の延在方向に延びるフランジ部210bとを備えている。また、陰極側フランジパン212は、外枠フレーム208を挟んで、陽極側フランジパン210に対して対称形状をなし、具体的には、隔壁206から陰極204側に屈曲して形成される周壁部212aと、周壁部212aから更に屈曲して隔壁22の延在方向向に延びるフランジ部212bとを備えている。
隔壁206は導電性の金属鋼板からなり、陽極側フランジパン210は、その金属鋼板を屈曲することで形成されている。したがって、隔壁206と陽極側フランジパン210とは一体的な部材である。また、陰極側フランジパン212は導電性の金属鋼板からなり、隔壁206に接合することで隔壁206に一体化されている。陰極側フランジパン212を隔壁206に接合する接合方法としては、レーザー溶接やTig溶接などにより電解液やガスが外部に漏れないように接合することが必要である。
また、陽極側フランジパン210と陰極側フランジパン212とは、外枠フレーム208を挟み、その一部を包むように設けられている。具体的には、陽極側フランジパン210の周壁部210aは、矩形状の外枠フレーム208の内周面の陽極202側の半分に当接し、陰極側フランジパン212の周壁部212aは、矩形状の外枠フレーム208の内周面の陰極204側の半分に当接している。また、陽極側フランジパン210のフランジ部210bは外枠フレーム208の陽極202側の側面に当接するように重なっており、陰極側フランジパン212のフランジ部212bは外枠フレーム208の陰極204側の側面に当接するように重なっている。
陽極側フランジパン210、及び陰極側フランジパン212と外枠フレーム208とは、溶接やその他の固定方法により隙間等ができないように固定されているほうが望ましいが、固定されていなくても、離脱しない手段で取り付けられていれば足りる。
隔壁206の上部において、陽極側フランジパン210の内側(下方)には、陽極上部カバープレート216Aが設けられている。陽極上部カバープレート216Aは、陽極側フランジパン210に沿った矩形形状のカバー本体216aと、カバー本体216aの下端で屈曲して隔壁206に当接する出口壁216bとを有し、出口壁216bには陽極上部孔218Aが形成されている。陽極側フランジパン210と、隔壁206と、陽極上部カバープレート216Aとにより陽極気液分離室219A(上部空間)が形成されている。陽極上部孔218Aは陽極室220の上部に連通している。
同様に、隔壁206の上部において、陰極側フランジパン212の内側(下方)には、陰極上部カバープレート216Bが設けられている。陰極上部カバープレート216Bは、陰極側フランジパン212に沿った矩形形状のカバー本体216cと、カバー本体216cの下端で屈曲して隔壁206に当接する出口壁216dとを有し、出口壁216dには陰極上部孔218Bが形成されている。陰極側フランジパン212と、隔壁206と、陰極上部カバープレート216Bとにより陰極気液分離室219B(上部空間)が形成されている。陰極上部孔218Bは陰極室222の上部に連通している。
また、隔壁206の下部において、陽極側フランジパン210の内側には、陽極下部カバープレート224Aが設けられている。陽極下部カバープレート224Aは、陽極側フランジパン210に沿った矩形形状のカバー本体224aと、カバー本体224aの上端で屈曲して隔壁206に当接する入口壁224bとを有し、入口壁224bには陽極下部孔226Aが形成されている。陽極側フランジパン210と、隔壁206と、陽極下部カバープレート224Aとにより陽極室入口空間部228Aが形成されている。陽極下部孔226Aは陽極室220の下部に連通している。
同様に、隔壁206の下部において、陰極側フランジパン212の内側(上方)には、陰極下部カバープレート224Bが設けられている。陰極下部カバープレート224Bは、陰極側フランジパン212に沿った矩形形状のカバー本体224cと、カバー本体224cの上端で屈曲して隔壁206に当接する入口壁224dとを有し、入口壁224dには陰極下部孔226Bが形成されている。陰極側フランジパン212と、隔壁206と、陰極下部カバープレート224Bとにより陰極室入口空間部228Bが形成されている。陰極下部孔226Bは陰極室222の下部に連通している。
陽極室入口空間部228Aには、陽極室220に電解液(陽極液)を導入するための陽極液導入孔230を備えた陽極液通過パイプ232(図3参照)が設けられており、陰極室入口空間部228Bには、陰極室222内に電解液(陰極液)を導入するための陰極液導入孔234を備えた陰極液通過パイプ236が設けられている。
陽極気液分離室219Aには、陽極室220内から電解液(陽極液)とガスを抜き出すための陽極液及びガス排出孔238を備えた陽極液及びガス通過パイプ240(図3参照)が設けられており、陰極気液分離室219Bには、陰極室222内から電解液(陰極液)とガスを抜き出すための陰極液及びガス排出孔242を備えた陰極液及びガス通過パイプ244が設けられている。
隔壁206の上部には、陽極液及びガス通過パイプ240、陰極液及びガス通過パイプ244に対応する位置に一対の開口部が形成されており、一方の開口部には、陽極液及びガス通過パイプ240が挿し込まれるように装着されており、他方の開口部には、陰極液及びガス通過パイプ244が挿し込まれるように装着されている。本実施形態では、陽極液及びガス通過パイプ240と陰極液及びガス通過パイプ244とによって、電解液及びガスの通過部が形成されている。
また、隔壁206の下部には、陽極液通過パイプ232、陰極液通過パイプ236に対応する位置に一対の開口部が形成されており、一方の開口部には、陽極液通過パイプ232が挿し込まれるように装着されており、他方の開口部には、陰極液通過パイプ236が挿し込まれるように装着されている。本実施形態では、陽極液通過パイプ232と陰極液通過パイプ236とによって、電解液の通過部が形成されている。
隔壁206には陽極リブ246と陰極リブ248が取り付けられている。陽極リブ246と陰極リブ248には、陽極202又は陰極204を支えるだけでなく、電流を隔壁206から陽極202又は陰極204へ伝える役割があるので、一般的に導電性の金属が用いられる。例えば、ニッケルメッキを施した軟鋼、ステンレススチール、ニッケル等が利用できる。また陽極リブ246及び陰極リブ248の厚みも、コストや製作性、強度等も考慮して0.5mm〜5mmの範囲から選ばれる。
そして、本実施形態の電解セル200では、図5に示すように、隔壁206の上部と外枠フレーム208の上部と、カバープレート(陽極上部カバープレート216A及び陰極上部カバープレート216B)で囲まれた上部空間(陽極気液分離室219A及び陰極気液分離室219B)の内壁面が、疎水性樹脂からなるライニング層250aで被覆されていることを特徴とする。
図6に示すように、陽極気液分離室219A及び陰極気液分離室219Bの内壁面が、樹脂によりライニングされていると、このライニング層250aの表面は疎水性を有するため、ユニット内で発生した水素や酸素の気泡が陽極気液分離室219A及び陰極気液分離室219Bの内壁面に付着する。そして、小さな泡が会合して大きな泡Bとなって上がり、上部に溜まる。大きな泡Bは自然に破泡し消滅することができる。泡がラインを通じて気液分離タンク(図7における陽極タンク320及び陰極タンク340)に流入しても、気液分離タンクにおいて破泡することができ、気体の導出流路に泡が浸入することが防止される。その結果、気液分離性を向上することができる。
ライニング層250aを構成する材料には、耐アルカリ性を有し、疎水性を有する材料が用いられる。
このような材料としては、例えばゴム、ポリオレフィン樹脂、フッ素系樹脂が挙げられ、好ましくはフッ素系樹脂であり、例えばPTFE,PFA,ETFEである。
ライニング層250aの厚みとしては特に限定されるものではないが、例えば10μm以上程度とすることが好ましく、50μm以上程度にすることが特に好ましい。10μm以上であればライニング層250aの表面に泡を付着させ、破泡性の優れる泡に会合させられる為、気液分離性を向上させることができる。50μm以上であれば、ライニング層の耐性が上がる為、長期で気液分離性を上げることができる。
また、ライニング層250aを形成する範囲は、導電性隔壁206の上部と外枠フレーム208の上部とカバープレートとで囲まれた上部空間の内壁面のうち60%以上が好ましく、80%以上が特に好ましい。60%であればライニング層表面に泡を付着させ、破泡性の優れる泡に会合させられる為、気液分離性を向上させることができる。80%以上であれば、循環液量の乱れが起きた際も安定して気液分離性を向上させることができる。
ライニング層250aの形成方法としては、特に限定されるものではないが、例えば、樹脂微粒子を含むパウダーを吹き付ける方法、樹脂微粒子を含む懸濁溶液を用いたコーティング等の方法が挙げられる。
さらに、図4に示すように、陽極液及びガス通過パイプ240、陰極液及びガス通過パイプ244(第1の通過部)の内壁面が、疎水性樹脂からなるライニング層250bで被覆されていてもよい。
陽極液及びガス通過パイプ240、陰極液及びガス通過パイプ244の内壁面がライニング層250bで被覆されていることにより、ユニット内で発生した水素や酸素の小さな気泡を付着、会合させて大きな泡として破泡することができ、気体の導出流路に泡が浸入することがより確実に防止される。
さらに図3に示すように、カバープレート(陽極上部カバープレート216A及び陰極上部カバープレート216B)の外表面において、陽極液及びガス通過パイプ240、陰極液及びガス通過パイプ244(第1の通過部)の周囲が、疎水性樹脂からなるライニング層250cで被覆されていてもよい。
図1に示すように電解セル200を用いて電解槽100を構成する場合、隣接するガスケット(陽極ガスケット9、陰極ガスケット11)との接合部位も、陽極液、陰極液及びガスの流路の一部を構成する。陽極液及びガス通過パイプ240、陰極液及びガス通過パイプ244の周囲がライニング層250cで被覆されていることにより、ユニット内で発生した水素や酸素の小さな気泡を付着、会合させて大きな泡として破泡することができ、気体の導出流路に泡が浸入することがより確実に防止される。
ライニング層250b及び250cはいずれも、上述したライニング層250aと同様のものを用いることができる。
以上、本発明の実施の形態について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。
なお、上述した説明では、電解セルを初めとして、電解槽を構成する各部材の外観形状が、長方形状を有する場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、電解セル及び各部材の外観形状は、円形、正方形、その他多角形でも良い。
本発明の効果を確認するために、以下のような実験を行った。
(実施例)
図3〜図5に示したような電解セルにおいて、上部空間の内壁面(隔壁の上部、外枠フレームの上部、カバープレートで囲まれた上部空間、陽極液及びガス通過パイプ、陰極液及びガス通過パイプの内壁面及び/又は周囲)に、フッ素系樹脂としてテフロン(登録商標)からなるライニング層を200μmの厚みに形成した。なお、ライニング層の形成は、つぎのようにして行った。
1)ライニング層を形成する基材の汚れや、油分をエタノールで洗浄した。
2)基材を炉中で450℃に加熱し、油脂や汚れを焼却した。
3)モランダム(200メッシュ)の砥粒と空気によりブラストし、錆や汚れ等を除去し
、3〜6ミクロン程度に粗面化した。
4)基材にフッ素樹脂と接着樹脂の混合物(株式会社吉田SKT REO−033−T)
を塗布し、200℃で1時間、焼き付けを炉で行った。
5)ライニング層の厚みが200μmになる様に、4)を繰り返し、ライニング層を形成
した。
ライニング層を形成した電解セルを用いて、図1に示すような電解槽及び図8に示すような電解システムを構成した。
構成した電解槽及び電解システムにより、次の電解条件で電解を行った。電解の条件は、電解液:KOH32.1%、電解液温度:69℃、電流密度:6kA/mで行った。
気液分離能の評価はつぎのようにして行った。すなわち、全長30cmの陰極気液分離タンクにおいて、気液分離タンク底辺から泡がどの高さまで蓄積しているかを、陰極気液分離タンクに備え付けられている、アクリル製の透明窓から目視で測定を行った。電解液の高さは、電解を行う前の状態で、気液分離タンク底辺から15cmになるように設定した。
結果、本実験では底辺から蓄積した泡上部までの高さが19cmとなり、良好に気液分離が行えた。
(比較例)
図3〜図5に示したような電解セルにおいて、上部空間の内壁面にライニング層を形成しなかったものを用意した。
ライニング層を形成してない電解セルを用いて、図1に示すような電解槽及び図8に示すような電解システムを構成した。
構成した電解槽及び電解システムにより、次の電解条件で電解を行った。電解の条件は、電解液:KOH29.7%、電解液温度:59℃、電流密度:6kA/mで行った。
気液分離能の評価はつぎのようにして行った。すなわち、全長30cmの陰極気液分離タンクにおいて、底辺から泡がどの高さまで蓄積しているかを、陰極気液分離タンクに備え付けられている、アクリル製の透明窓から目視で測定を行った。電解液の高さは、電解を行う前の状態で、気液分離タンク底辺から15cmになるように設定した。
結果、本実験では底辺から蓄積した泡上部までの高さが27cmとなり、気液分離能は良好でないことが明らかとなった。
したがって、複極式アルカリ水電解セルにおいて、上部空間の内壁面に、疎水性樹脂、例えばフッ素系樹脂からなるライニング層を形成することにより、電解セル内で発生した水素や酸素の気泡を上部空間の内壁面に付着、会合させて大きな泡とすることができ、破泡し消滅させることができることがわかった。
本発明による複極式アルカリ水電解セル、及び電解槽を用いることで、気液分離性が向上したものとなり、アルカリ水電解により酸素と水素を発生させるための複極式アルカリ水電解セル、及び電解槽として広く利用することができる。
1 陽極液入口ノズル
2 陰極液入口ノズル
3 ガス出口ノズル
4 ガス出口ノズル
5 プレスフランジ
6 プレスフランジガスケット
8 陽極ターミナルエレメント
9 陽極ガスケット
10 イオン透過性隔膜
11 陰極ガスケット
12 電解セル
13 陰極ターミナルエレメント
14 エンドプレスフランジ
15 タイロッド
100 電解槽
101 複極式電解槽
200 複極式アルカリ水電解セル
202 陽極
204 陰極
206 隔壁
208 外枠フレーム
216A 陽極上部カバープレート
216B 陰極上部カバープレート
219A 陽極気液分離室
219B 陰極気液分離室
220 陽極室
222 陰極室
224A 陽極下部カバープレート
224B 陰極下部カバープレート
228A 陽極室入口空間部
228B 陰極室入口空間部
230 陽極液導入孔
232 陽極液通過パイプ
234 陰極液導入孔
236 陰極液通過パイプ
246 陽極リブ
248 陰極リブ
250a〜250c ライニング層
300 アルカリ水電解システム

Claims (6)

  1. アルカリ水からなる電解液を電解して酸素及び水素を得る電解槽を構成する複極式アルカリ水電解セルであって、
    前記複極式アルカリ水電解セルは、
    酸素発生用の多孔質体からなる陽極と、
    水素発生用の陰極と、
    前記陽極と前記陰極とを区画する導電性隔壁と、
    前記導電性隔壁の外縁を取り囲む外枠と、
    前記導電性隔壁の上部及び下部において該導電性隔壁を覆うカバープレートと、を備え、
    前記導電性隔壁及び/又は前記外枠の上部には、ガス及び電解液が通過する第1の通過部が設けられており、
    前記導電性隔壁及び/又は前記外枠の下部には、電解液が通過する第2の通過部が設けられており、
    前記導電性隔壁の上部と前記外枠の上部と前記カバープレートとで囲まれた上部空間の内壁面が、疎水性樹脂からなるライニング層で被覆されていることを特徴とする複極式アルカリ水電解セル。
  2. 前記第1の通過部の内壁面が、疎水性樹脂からなるライニング層で被覆されている、請求項1に記載の複極式アルカリ水電解セル。
  3. 前記カバープレートの外表面において前記第1の通過部の周囲が、疎水性樹脂からなるライニング層で被覆されている、請求項1又は2に記載の複極式アルカリ水電解セル。
  4. 前記疎水性樹脂は、フッ素系樹脂である、請求項1〜3のいずれか一項に記載の複極式アルカリ水電解セル。
  5. 前記導電性隔壁及び/又は外枠の上部に設けられたガス及び電解液の通過部は、陽極液及びガス通過パイプと陰極液及びガス通過パイプとであり、前記導電性隔壁及び/又は外枠の下部に設けられた電解液の通過部は、陽極液通過パイプと陰極液通過パイプとである、請求項1〜4のいずれか一項に記載の複極式アルカリ水電解セル。
  6. アルカリ水からなる電解液を電解して酸素、及び水素を得るための電解槽であって、
    請求項1〜5のいずれか一項に記載の複数の複極式アルカリ水電解セルと、
    陽極用給電端子及び陽極が設けられた陽極ターミナルエレメントと、
    陰極用給電端子及び陰極が設けられた陰極ターミナルエレメントと、
    複数のイオン透過性隔膜と、を備え、
    前記複極式アルカリ水電解ユニットは、前記陽極ターミナルエレメントと前記陰極ターミナルエレメントとの間に配置され、
    前記イオン透過性隔膜は、前記陽極ターミナルエレメントと前記複極式アルカリ水電解ユニットとの間、隣接して並ぶ複極式アルカリ水電解ユニット同士の間、及び前記複極式アルカリ水電解ユニットと前記陰極ターミナルエレメントとの間に配置されることを特徴とする電解槽。
JP2014232072A 2014-11-14 2014-11-14 複極式アルカリ水電解セル、及び電解槽 Active JP6404685B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232072A JP6404685B2 (ja) 2014-11-14 2014-11-14 複極式アルカリ水電解セル、及び電解槽

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232072A JP6404685B2 (ja) 2014-11-14 2014-11-14 複極式アルカリ水電解セル、及び電解槽

Publications (2)

Publication Number Publication Date
JP2016094650A JP2016094650A (ja) 2016-05-26
JP6404685B2 true JP6404685B2 (ja) 2018-10-10

Family

ID=56071410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232072A Active JP6404685B2 (ja) 2014-11-14 2014-11-14 複極式アルカリ水電解セル、及び電解槽

Country Status (1)

Country Link
JP (1) JP6404685B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021002023T5 (de) 2020-03-31 2023-01-12 Tokuyama Corporation Elektrolyse-behälter
WO2023106381A1 (ja) 2021-12-10 2023-06-15 旭化成株式会社 内部マニホールド型複極式電解エレメント、電解槽、及び水素の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6499151B2 (ja) * 2016-12-26 2019-04-10 株式会社イープラン 電解槽
ES2963971T3 (es) * 2017-01-26 2024-04-03 Asahi Chemical Ind Baño electrolítico, dispositivo de electrólisis, procedimiento de electrólisis y procedimiento para producir hidrógeno
WO2018139597A1 (ja) * 2017-01-26 2018-08-02 旭化成株式会社 電解槽、電解装置、電解方法
WO2018139613A1 (ja) * 2017-01-26 2018-08-02 旭化成株式会社 複極式エレメント、複極式電解槽、水素製造方法
JP6895784B2 (ja) * 2017-03-28 2021-06-30 高砂熱学工業株式会社 水電解装置、水電解システム、水電解・燃料電池装置及び水電解・燃料電池システム
JP6912557B2 (ja) * 2017-03-31 2021-08-04 旭化成株式会社 水電解システム、水電解方法、水素の製造方法
JP6294991B1 (ja) * 2017-04-14 2018-03-14 株式会社イープラン 複極式電解槽
GR1009403B (el) * 2017-10-03 2018-11-19 Θεοδωρος Ευσταθιου Καραβασιλης Κυτταρο ηλεκτρολυσης
JP6621970B1 (ja) * 2018-03-27 2019-12-18 株式会社トクヤマ アルカリ水電解用電解槽
ES2981895A2 (es) 2021-10-01 2024-10-11 Tokuyama Corp Recipiente para electrolisis
CN114540835A (zh) * 2022-03-21 2022-05-27 王秉泮 一种碱性水电解制氢系统
JP7364828B1 (ja) * 2022-05-31 2023-10-18 株式会社トクヤマ 電解槽ユニット
WO2023233799A1 (ja) * 2022-05-31 2023-12-07 株式会社トクヤマ 電解槽ユニット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460277A (en) * 1977-10-21 1979-05-15 Asahi Glass Co Ltd Gas-liquid separator for alkali chloride electrolysis
JPS59153888A (ja) * 1983-02-17 1984-09-01 Kanegafuchi Chem Ind Co Ltd 電解方法及び電解槽
JP2013191140A (ja) * 2012-03-15 2013-09-26 Tokai Rika Co Ltd 操作装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021002023T5 (de) 2020-03-31 2023-01-12 Tokuyama Corporation Elektrolyse-behälter
WO2023106381A1 (ja) 2021-12-10 2023-06-15 旭化成株式会社 内部マニホールド型複極式電解エレメント、電解槽、及び水素の製造方法

Also Published As

Publication number Publication date
JP2016094650A (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6404685B2 (ja) 複極式アルカリ水電解セル、及び電解槽
JP6262651B2 (ja) 複極式アルカリ水電解ユニット、及び電解槽
JP6912557B2 (ja) 水電解システム、水電解方法、水素の製造方法
TWI710670B (zh) 電極總成、電極結構和電解器
JP5869440B2 (ja) 電解セル及び電解槽
JP6013448B2 (ja) 電気化学セル、及び電気化学セルの使用
WO2019188261A1 (ja) 隔膜-ガスケット-保護部材複合体、電解エレメント、及び電解槽
CN102618881A (zh) 电解槽
WO2018139613A1 (ja) 複極式エレメント、複極式電解槽、水素製造方法
JP2019099845A (ja) 電解槽
JP2013194296A (ja) 電解槽の保護部材及びそれを用いた電解槽
MXPA01011385A (es) Estructura de electrodo.
RU2623437C1 (ru) Электролизер для получения водорода и кислорода из воды
JP6499151B2 (ja) 電解槽
JP6306879B2 (ja) マニホールドユニット及び電解槽
JP2013204130A (ja) 電解セル及び電解槽
JP6294991B1 (ja) 複極式電解槽
JP2021195597A (ja) 内部マニホールド型複極式水電解エレメント
JP6858841B2 (ja) 外部ヘッダー型複極式エレメント、外部ヘッダー型複極式電解槽、及び水素製造方法
JP2012255200A (ja) 電解装置及び電解方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150