JP6397659B2 - X線画像診断装置及びx線制御方法 - Google Patents

X線画像診断装置及びx線制御方法 Download PDF

Info

Publication number
JP6397659B2
JP6397659B2 JP2014116457A JP2014116457A JP6397659B2 JP 6397659 B2 JP6397659 B2 JP 6397659B2 JP 2014116457 A JP2014116457 A JP 2014116457A JP 2014116457 A JP2014116457 A JP 2014116457A JP 6397659 B2 JP6397659 B2 JP 6397659B2
Authority
JP
Japan
Prior art keywords
ray
line
region
sight
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014116457A
Other languages
English (en)
Other versions
JP2015228994A (ja
Inventor
健司 中村
健司 中村
友治 坂井
友治 坂井
宏一郎 鈴木
宏一郎 鈴木
宏之助 天明
宏之助 天明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014116457A priority Critical patent/JP6397659B2/ja
Publication of JP2015228994A publication Critical patent/JP2015228994A/ja
Application granted granted Critical
Publication of JP6397659B2 publication Critical patent/JP6397659B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、X線画像診断装置及びX線制御方法に係り、詳細には、関心領域の移動に追従してX線を制御する技術に関する。
X線画像診断装置は、X線管で発生させたX線を被検体に照射し、被検体を透過したX線量を検出して画像化する装置である。このX線画像診断装置において、被検体厚が変化しても透視画像の輝度が一定となるようにX線条件を制御する自動輝度制御システム(Auto Brightness System;ABS)を有するものがある。従来のABSでは一般に、X線検出器から出力された透過X線データに基づいて生成された画像に対して、予め関心領域(Region Of Interest;ROI)を設定し、ROI内の平均輝度値をフィードバック信号として用いる。そして、輝度値が予め設定された基準値に近づくように管電圧等を自動制御する。しかし、このような制御においてROIが固定されていると、被検体位置の移動等で操作者が確認したい領域がROIから外れた場合、適切なフィードバック信号を得ることができなくなる。その結果、良好な画像が得られないことがあった。
このような問題を解決するために、特許文献1には、関心領域におけるピクセルの輝度ヒストグラムを生成し、輝度ヒストグラムに応じてX線源の電圧および電流の少なくとも一方を調節する自動被爆制御器を有する透視撮影装置において、操作者がマウス等のポインティングデバイスを使用して透視撮影中にROIを設定することについて記載されている。
特表2005−522237号公報
しかしながら、この方法では撮影位置を変更する都度、ROIを設定する操作が必要であり、操作効率が悪い。また、関心領域の輝度ヒストグラムに基づいてX線条件を調整するため、輝度ヒストグラムを演算する時間が必要であった。
本発明は、前述した問題点に鑑みてなされたものであり、その目的とすることは、操作者の視線の移動に追従して関心領域を設定可能とし、輝度値を適正に制御可能なX線画像診断装置及びX線制御方法を提供することである。
前述した目的を達成するために第1の発明は、所定のX線条件に基づいて被検体にX線を照射するX線源と、前記X線源に対向配置され前記被検体の透過X線を検出するX線検出器と、前記透過X線に基づいて透視画像を生成する画像生成部と、前記透視画像を表示する表示部と、表示されている透視画像に対する操作者の視線位置を検出する視線検出器と、検出した視線位置に追従させて前記透視画像における関心領域を設定する設定部と、設定された関心領域の輝度情報に基づいてX線条件を決定し、前記X線源から照射するX線量を制御するX線制御部と、を備えることを特徴とするX線画像診断装置である。
また、第2の発明は、所定のX線条件に基づいて被検体にX線を照射するX線源と、前記X線源に対向配置され前記被検体の透過X線を検出するX線検出器と、前記透過X線に基づいて透視画像を生成する画像生成部と、前記透視画像を表示する表示部と、を備えたX線画像診断装置のX線制御部が、表示されている透視画像に対する操作者の視線位置を視線検出器により検出するステップと、検出した視線位置に追従させて前記透視画像における関心領域を設定するステップと、設定された関心領域の輝度情報に基づいてX線条件を決定し、前記X線源から照射するX線量を制御するステップと、を含むことを特徴とするX線制御方法である。
本発明により、操作者の視線の移動に追従して関心領域を設定し、輝度値を適正に制御可能なX線画像診断装置及びX線制御方法を提供できる。
本発明に係るX線画像診断装置1の概略構成図 X線画像診断装置1が実行するX線条件決定処理の手順を示すフローチャート X線画像診断装置1により得た透視画像のある時相における1フレームの画像6を模式的に示す図 ROI63の中心位置を視線位置Pdに変更した状態を示す図 第2の実施の形態のX線条件決定処理の手順を示すフローチャート 現在(t=t)の視線位置P0と、現在から遡る各サンプリング時点tn−1、tn−2、tn−3、tn−4における各視線位置P1,P2,P3,P4を示す図 過去の視線位置P1,P2,P3,P4に基づいてサイズが縮小された新たなROI63bを示す図 (a)金属8等のX線を透過しにくい物質がROI63内に入った状態、(b)視線位置を金属等を含まない領域に移動した状態、(c)フィードバック値の算出に使用する領域を視線位置の周辺領域に切り替えた状態について説明する図 任意の時刻tにおける処理の流れを示すフローチャート 図9のフローチャートの各ステップの演算結果を時系列に並べた表
以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
[第1の実施の形態]
まず、図1に基づいて、本発明に係るX線画像診断装置1の構成について説明する。図1は、X線画像診断装置1の一実施の形態であるX線透視撮影装置の概略構成図である。X線透視撮影装置とは、被検体に対してX線を連続的に照射して動画像からなるX線画像(透視画像)を生成する透視機能と、被検体に一瞬だけX線を照射して静止画像からなるX線画像を生成する一般撮影機能とを有する装置である。
図1に示すように、X線画像診断装置1は、高電圧発生器21、X線管球22、及びX線絞り23を有するX線源と、被検体3を載置する天板4と、天板4を介してX線源(X線管球22)に対向配置されたX線検出器24と、操作部11と、システム制御部12と、画像処理部13と、画像表示部14と、視線検出センサ15とを備える。上述の各部はバス(不図示)を介してシステム制御部12に電気的に接続される。
高電圧発生器21は、X線制御部20を備え、システム制御部12により決定されたX線条件または画像処理部13により決定されたX線条件(フィードバック信号)に応じたX線管電流及びX線管電圧をX線管球22に供給・印加する。
X線管球22は、高電圧発生器21から供給・印加されたX線管電流及びX線管電圧に応じた強度のX線を発生する。X線管球22から発生したX線は、X線絞り23によって所定の照射範囲に制限されて被検体3に照射される。被検体3を透過したX線(透過X線)はX線検出器24に入射する。
X線絞り23は、X線管球22から放射するX線を遮る複数の遮蔽板を有し、遮蔽板の位置を移動することでX線照射範囲を制限する。X線絞り23の遮蔽板の位置は、システム制御部12の制御により調節される。
X線検出器24は、被検体3を透過したX線(透過X線)を検出する装置であり、例えば、複数のX線検出素子を体幅方向及び体軸方向の2次元に配列したフラットパネルディテクタやイメージ・インテンシファイア等である。X線検出器24は、検出したX線の強度に応じた電気信号(以下、透視画像データという)を画像処理部13に出力する。
画像処理部13は、透視撮影を行う際、X線検出器24から出力された透視画像データを取得し、透視画像データに基づいて被検体3の透視画像を生成する。生成された透視画像は所定の時間刻みに生成され、動画像として画像表示部14に出力され、順次表示される。
画像表示部14はCRTや液晶パネル等により構成され、画像処理部13により生成された被検体の透視画像を表示する。画像表示部14の表示画面近傍には、操作者の視線位置を検知する視線検出センサ15が設けられる。
視線検出センサ15は、例えば、表示画面の周囲に1または複数個設けられる。視線検出センサ15は、操作者が表示画面上のどこに視線を置いているかを所定のサンプリング間隔で検出し、検出した視線情報を順次画像処理部13に送出する。視線検出センサ15の設置位置は任意であり、画像表示部14と一体的に設けられていてもよいし、画像表示部14の近傍に画像表示部14とは別体に設けられていてもよい。
画像処理部13は、視線検出センサ15から入力される視線位置情報を取得し、各時相における透視画像データとその時相における視線位置情報とを対応づける。また画像処理部13は、後述するX線条件決定処理を実行する。X線条件決定処理において、画像処理部13は、操作者の視線位置に関心領域(ROI)を追従させてX線条件を決定するための処理を行う。すなわち、画像処理部13は、各時相における視線位置に追従してROIを設定する。また画像処理部13は、視線位置に追従して設定されたROI内の輝度値情報に基づいて自動輝度制御のフィードバック信号(主にX線管電圧を制御するフィードバック信号)を生成する。画像処理部13は、生成したフィードバック信号をX線制御部20に送る。これにより、X線管球22から照射されるX線量が調整される。
操作部11は、例えば、キーボードやマウス等の入力装置であり、操作者によって入力される各種の指示や情報をシステム制御部12に出力する。操作者は、画像表示部14及び操作部11等の外部機器を使用して対話的に操作を行う。なお、操作部11は、画像表示部14の表示画面と一体的に構成されたタッチパネル等としてもよい。
システム制御部12は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及びハードディスク等の記憶装置等を備える。
システム制御部12の記憶装置には、撮影(透視撮影及び一般撮影)に関するプログラムや各種撮影条件、各処理に必要なプログラム及びデータ等が記憶される。システム制御部12のCPUは記憶装置に記憶されているプログラムを読み込み、プログラムに従った処理を実行することによりX線画像診断装置1における各種の機能を実現する。
システム制御部12は、操作部11から入力される撮影条件またはシステム制御部12が決定した撮影条件に応じたX線条件を高電圧発生器21のX線制御部20に通知して照射X線量を制御する。またシステム制御部12は、X線絞り23の絞り(遮蔽板)位置を制御したり、X線検出器24におけるデータ収集動作や画像処理部13における画像の生成や表示の制御等、X線画像診断装置1の各部の動作を制御する。
次に、X線画像診断装置1の動作を説明する。
図2は、X線画像診断装置1が実行するX線条件決定処理の手順を示すフローチャートである。
まず、システム制御部12は、関心領域(以下、ROIという)の初期設定を行う(ステップS101)。ステップS101においてシステム制御部12は、操作部11を介して操作者から入力される指示に従って、ROI63のサイズ、中心位置、及び形状等を初期設定する。例えば図3に示すように、形状を矩形とし、任意の時相t=tにおける中心位置をPiとする。
操作部11を介して検査の開始指示が入力されると(ステップS102)、システム制御部12は、操作部11から入力された情報または予め設定されている検査プロトコルに応じて撮影部位や初期X線条件を決定して検査を開始する。
検査が開始されると、まず初期X線条件に応じたX線が被検体3に対して照射される。X線検出器24は、被検体3を透過した透過X線を検出し、透視画像データとして画像処理部13に送る。画像処理部13は、取得した透視画像データに基づいて透視画像を作成し、画像表示部14に出力する。画像表示部14は画像処理部13から入力された透視画像を表示画面に表示する。例えば、図3に示すような透視画像6を得る。図3は、ある時相t=tにおける1フレームの透視画像6を示している。
検査の開始とともに、視線検出センサ15は表示画面上の視線位置を検出する。視線検出センサ15は、検出した視線位置情報を画像処理部13に随時送出する。
検査を開始すると、画像処理部13はX線条件のフィードバック制御を開始する。
画像処理部13は、まず表示中の画像6におけるX線絞りの位置情報を取得する(ステップS103)。図3に示す画像6のように、X線照射領域61とX線遮蔽領域62とは、輝度値の大きさによって区別できる。ステップS103において画像処理部13は、輝度値に大きさに基づいて画像6内のX線遮蔽領域62(X線絞り位置)に該当する画素位置を取得する。
また、画像処理部13は、視線の位置情報を視線検出センサ15から取得する(ステップS104)。
システム制御部12は、ステップS103で取得したX線絞りの位置情報とステップS104で取得した視線位置情報に基づいて、X線照射領域61内に視線位置があるかを否かを判定する(ステップS105)。X線照射領域61内に視線位置がある場合は(ステップS105;Yes)、ステップS106へ進む。
ステップS106において、画像処理部13はROI63の中心位置をステップS104で取得した視線位置Pdに変更する(ステップS106;図4参照)。図4は、ROI63の中心位置が視線位置Pdに変更された状態を示している。
ステップS105において、X線照射領域61内に視線位置がない場合は(ステップS105;No)、ステップS107へ進む。ステップS107において、画像処理部13はROI63の中心位置を現在の位置Piから変更しないものとする(ステップS107)。
その後、画像処理部13は透視撮影用のX線条件に基づきX線(透視X線)を照射するようX線源(高電圧発生器21)を制御する(ステップS108)。透視X線が照射されると、X線検出器24は被検体3を透過したX線を検出し、投影画像データとして画像処理部13へ送る。画像処理部13は取得した透過X線に基づいて当該時相の透視画像6を作成し、画像表示部14に表示する。
また、画像処理部13は、ステップS106またはステップS107で決定したROI63内の各画素の輝度値を取得する(ステップS109)。
このとき、図4に示すようにROI63とX線遮蔽領域62とが重なる領域64がある場合は、ROI63とX線遮蔽領域62とが重なる領域64の輝度値を除き、ROI63内のX線照射領域61の輝度値を取得するようにする。ROI63内のどの画素がX線遮蔽領域62と重なっているかは、ステップS103で取得したX線絞りの位置情報により判定できる。
画像処理部13は、ステップS109で取得した輝度値に基づいてX線管電圧を制御するフィードバック値を算出する(ステップS110)。フィードバック値は、ROI63内の平均輝度値がターゲットとする輝度値(以下、基準値という)に近づくように管電圧の大きさを制御するための信号値である。画像処理部13は、現在設定されているROI63内のX線照射領域61にある画素の平均輝度値を求め、平均輝度値と基準値とを比較し、比較結果をフィードバック値とする。画像処理部13は、ステップS110で算出したフィードバック値をX線源(高電圧発生器21)のX線制御部20に送り、透視X線条件を更新する(ステップS111)。
透視X線条件を更新すると、ステップS103へ戻り、次の時刻t=ti+1においてステップS103〜ステップS111の処理を実行する。時刻t=ti+1における処理で照射される透視X線条件は、前の時刻t=tにおける処理で決定された透視X線条件とする。検査終了まで、所定の時間刻みにステップS103〜ステップS111の処理を繰り返し実行する。
以上説明したように、X線画像診断装置1は表示されている透視画像に対する操作者の視線位置を検知する視線検出センサ15を備え、検出した視線位置に追従させてROI63の位置を設定する。そしてROI63内の輝度値に基づいてX線条件(X線管電圧)のフィードバック値を求め、次のタイミングにおける照射X線の大きさを制御する。
したがって、X線画像診断装置1は、操作者の視線位置に追従して時相毎にROI63を設定するため、手動でROIを設定する操作が不要となり、操作が容易となる。また、操作者が実際に注目している位置にROI63を設定できるため、作成した画像からROI位置を演算により求める場合等と比較して、少ない演算量でROIを追従させることができる。そして視線移動に追従して設定したROI63内の輝度値に基づいてX線条件をフィードバック制御するため、常にROI63を着目部位と一致させ、かつ着目部位の輝度値が最適なものとなるように透視画像を作成することができる。
なお、上述の説明では、時相毎に視線位置情報を取得し、取得した1時相分の視線位置情報に基づいてROIを設定する例について説明したが、複数時相分の視線位置情報を保持しておき、複数時相分の視線位置情報に基づいてROIを設定するものとしてもよい。例えば、現在の時相から遡る10時相分の視線位置情報を保持しておき、保持した各時相における視線位置の平均位置を求め、求めた平均位置を次の時相でのROIの中心点としてもよい。このように、現在及び過去の複数時相分の視線位置の平均値を次の時相のROI中心点とすれば、極端な視線の移動や微細な視線のブレを吸収し、安定したROI設定を行える。
また、ROIの形状は矩形(正方形)としたがこの例に限定されない。例えば、長方形や多角形、円形、楕円形の他、胃の形や骨の形等、撮影部位にフィットした形状のROIを設定してもよい。
[第2の実施の形態]
次にX線画像診断装置1の第2の実施の形態について、図5〜図7を参照して説明する。
X線条件決定処理において、ROIのサイズや形状を操作者の視線の移動量や凝視時間、視線移動速度等に基づいて変更できるものとしてもよい。例えば、視線検出センサ15により検出した視線の動きが所定量より小さい場合は、画像処理部12は、ROI63のサイズを縮小する。
図5は、第2の実施の形態のX線条件決定処理の手順を示すフローチャートである。
ステップS201〜ステップS204の処理は、第1の実施の形態のステップS101〜ステップS104(図2)の処理と同様であるため説明を省略し、ステップS205以降の処理について説明する。
画像処理部13は、透視画像6のX線照射領域61に視線の中心が位置しているか否かを判定する(ステップS205)。ここで「視線の中心」とは現時点及び現時点から遡る複数の時点(過去)における各視線位置P0〜P4の平均位置である。図6において、P0は現在(t=t)の視線位置、P1,P2,P3,P4はそれぞれ現在t=tから遡るサンプリング時点tn−1、tn−2、tn−3、tn−4における各視線位置である。
視線の中心がX線照射領域61にある場合は(ステップS205;Yes)、画像処理部13はROI63の中心位置(図6の「+」の記号)を現在の視線位置P0に変更する(ステップS206)。
視線の中心がX線照射領域61にない場合は(ステップS205;No)、画像処理部13はROI63の位置を変更せず、現状を維持する(ステップS209)。
次に、画像処理部13は、視線の位置が所定時間同じ位置またはROI63の領域内のみの移動であるか否かを判定する(ステップS207)。
視線の位置が所定時間同じ位置にあるか、またはROI63の領域内のみの移動である場合は(ステップS207;Yes)、ROI63のサイズを変更する(ステップS208)。
図6及び図7を用いてROI63のサイズを縮小する場合について説明する。
図6、図7において、P0は現在(t=t)の視線位置、P1,P2,P3,P4はそれぞれ過去の時点(t=tn−1、tn−2、tn−3、tn−4)での各視線位置である。
図6に示すように、現在の視線位置P0と過去の複数時点での視線位置P1,P2,P3,P4が、ROI63の領域内である場合は(ステップS207;Yes)、システム制御装置12はROI63のサイズを変更し(縮小し)、図7に示すように視線位置P0〜P4を含む矩形範囲を新たなROI63bとする。
過去の所定時間分の視線位置が同じ位置にない場合、またはROI63の範囲内の移動ではない場合は(ステップS207;No)、ROI63のサイズは変更しない(ステップS210)。
ステップS205〜ステップS210の処理によりROI63の位置及びサイズを決定するとステップS211へ進む。
画像処理部13は、現在設定されている透視撮影用のX線条件に基づきX線(透視X線)を照射するようX線源(高電圧発生器21)を制御する(ステップS211)。透視X線が照射されると、X線検出器24は被検体を透過した透過X線を取得し、画像処理部13へ送る。画像処理部13は取得した透過X線に基づいて所定時間刻みに被検体の透視画像を順次作成し、画像表示部14に表示する。また、画像処理部13は、ステップS206、ステップS208、ステップS209、またはステップS210で決定したROI63(または63b)内の各画素の輝度値を取得する(ステップS212)。
このとき、図4や図6に示すようにROI63(または63b)とX線遮蔽領域64とが重なる場合は、ROI63(または63b)とX線遮蔽領域64とが重なる部分の輝度値を除き、ROI63(または63b)内のX線照射領域61の輝度値を取得する。
画像処理部13は、ステップS212で取得した輝度値に基づいて透視X線の大きさ(管電圧)を制御するフィードバック値を算出する(ステップS213)。フィードバック値は、第1の実施の形態と同様に算出される。画像処理部13は、ステップS213で算出したフィードバック値をX線源(高電圧発生器21)のX線制御部20に入力し、透視X線条件を更新する(ステップS214)。
透視X線条件を更新すると、ステップS203へ戻る。検査終了まで、所定時間刻みにステップS203〜ステップS214の処理を繰り返し実行する。
以上説明したように、第2の実施の形態においてX線画像診断装置1は、操作者の過去の複数時相分の視線位置に基づいてROI位置及びROIサイズを決定する。そのため、手動でROIのサイズや位置を設定する操作を行う必要がなく操作性が更に向上する。また、過去複数点分の視線位置に基づいてROI位置を移動させたりサイズを変更させるため、視線位置の微細なブレを吸収し、安定したROI設定を行える。
なお、上述の説明では、図6及び図7に示すように正方形のROI63を初期設定のサイズから縮小する場合について説明したが、縮小だけに限定されず、拡大する場合にも応用できる。また、予め定義されている視線移動パターンと同様の視線移動が行われると、ROIの形状を所定の形状に変更するといった処理にも応用可能である。
[第3の実施の形態]
次にX線画像診断装置1の第3の実施の形態について、図8〜図10を参照して説明する。
第1または第2の実施の形態において説明したX線条件決定処理において、画像処理部13は、操作者の視線位置の周辺領域の輝度値に基づいてフィードバック値を求めるようにしてもよい。
例えば、図8(a)に示すように、金属8等のX線を透過しにくい物質がROI63内に存在する場合、第1または第2の実施の形態のようにROI63内の輝度値に基づいてフィードバック値を求めると、金属8が映り込んだ画素の輝度値がフィードバック値の演算対象となる。金属はX線を透過しにくい物質であるため、フィードバック値はX線の管電圧を大きく上昇させるものとなる。そうすると、ROI63内の金属8以外の画素の表示は不適切となり、白飛びした画像となる。このような場合は、金属8を含まない周辺領域の輝度値を参照して、フィードバック値を求める方が、適切な輝度値となる。
第3の実施の形態では、フィードバック値の演算対象とする範囲を、視線位置または視線位置の周辺領域のいずれかに切り替えるものとする。
図9は任意の時刻t=tにおけるX線条件決定処理の流れを示すフローチャートである。また、図10は、図9のフローチャートの各ステップの演算結果を時系列に並べた表である。
操作部11を介して検査の開始指示が入力されると(ステップS301)、画像処理部13は、第1または第2の実施の形態と同様に視線検出センサ15から入力される視線位置情報に応じてROI63の位置(及びサイズ)を設定する(ステップS302)。また、画像処理部13は、第1または第2の実施の形態と同様に、直前の時相t=ti-1におけるROI63内の輝度値に基づいてX線条件のフィードバック値を算出し、セットする(X線制御部20に入力し、透視X線条件を更新する;ステップS303)。
X線制御部20は、画像処理部13から送られたフィードバック値に基づいて透視X線条件を更新し、更新後の透視X線をX線管球22から被検体3に対して照射する(ステップS304)。透視X線が照射されると、X線検出器24は被検体3を透過した透過X線を取得し、透視画像データとして画像処理部13へ送る。画像処理部13は取得した透過画像データに基づいて被検体3の透視画像(t=t)を作成し、画像表示部14に表示する。
画像処理部13は、t=tにおける透視画像から、ステップS302で決定したROI63内の各画素の輝度値とROI63の周辺領域70の輝度値とを取得する(ステップS305)。周辺領域70は、一例として図8に示すように、ROI63の上下左右の4つの矩形領域を合わせた領域とする。なお、この周辺領域70の例は一例であり、周辺領域の範囲やサイズ、形状、領域数等は図8の例に限定されない。検査の内容に応じて、適切な範囲、サイズ、形状、領域数の組み合わせを採用することが望ましい。
画像処理部13は、ステップS305で取得したROI63(視線位置により決定されたROI)内の輝度値に基づくフィードバック値ACiと、ROI63の周辺領域70の輝度値に基づくフィードバック値ARiとを算出する(ステップS306)。
フィードバック値ACiは、視線位置により決定されたROI63内の各画素の輝度値の平均値等とする。
フィードバック値ARiは、ROI63の周辺領域70内の各画素の輝度値の平均値等とする。例えば図8に示すように、ROI63の周囲の4つの矩形領域を周辺領域70とする場合は、各矩形領域内のすべての輝度値の平均値等により求めるものとする。
なお、フィードバック値ACi、ARiを求める際、ROI63内、或いは周辺領域70内のX線遮蔽領域62と重なる領域の輝度値は、フィードバック値を演算する際に除かれることが望ましい。例えば図8(c)の例では、右側の矩形領域70R内にX線遮蔽領域62と重なる部分71があるため、このX線遮蔽領域62との重なる部分71の輝度値はフィードバック値の演算に用いないものとする。
画像処理部13は、ターゲットとするフィードバック値(基準値)Atargetと視線位置領域(ROI63)の輝度値に基づくフィードバック値ACiとの差分の絶対値(|Atarget-ACi|)と、基準値Atargetと周辺領域70の輝度値に基づくフィードバック値ARiとの差分の絶対値(|Atarget-ARi|)とを比較し、差分の絶対値が小さい方のフィードバック値を採用する(ステップS307〜ステップS309)。
すなわち、基準値AtargetとROI63内の輝度値に基づくフィードバック値ACiとの差分の絶対値(|Atarget-ACi|)が、基準値Atargetと周辺領域70の輝度値に基づくフィードバック値ARiとの差分の絶対値(|Atarget-ARi|)以下となる場合は(ステップS307;Yes)、フィードバック値ACiを用いたフィードバック制御を行う(ステップS308)。
図8(b)に示すように、視線位置領域(ROI63)に金属8が含まれず、周辺領域70に金属8が含まれる場合は、視線位置領域(ROI63)内の輝度値の方が基準値に近いことが多い。
基準値AtargetとROI63内の輝度値に基づくフィードバック値ACiとの差分の絶対値(|Atarget-ACi|)が、基準値Atargetと周辺領域70の輝度値に基づくフィードバック値ARiとの差分の絶対値(|Atarget-ARi|)より大きい場合は(ステップS307;No)、フィードバック値ARiを用いたフィードバック制御を行う(ステップS309)。
図8(a)に示すように、視線位置領域(ROI63)に金属8が含まれる場合は、視線位置領域(ROI63)内の方が輝度値が基準値から外れることが多い。その場合は、図8(c)に示すように、周辺領域70の輝度値から算出したフィードバック値ARiを採用する。
画像処理部13は、ステップS308またはステップS309で決定したフィードバック値からフィードバック信号を生成し、X線源(高電圧発生器21)のX線制御部20に入力し、透視X線条件を更新する。透視X線条件を更新すると、ステップS302の処理へ戻る。検査終了まで、所定の時間刻みにステップS302〜ステップS309の処理を繰り返し実行する。
図10を参照して、第3の実施の形態における制御の具体例を説明する。図10の例では、時刻t1〜t3では視線位置により決定されたROI63(視線位置領域)内に金属が含まれない状態であり、時刻t4〜t7はROI63内に金属が含まれる状態となり、時刻t8〜t10でROI63(視線位置領域)内に金属が含まれない状態に戻るものとする。
図10に示すように、時刻t1は検査開始直後であり、フィードバック値がないためX線条件は初期設定時の値(初期値)とする。画像処理部13はステップS305、ステップS306において求めたフィードバック値AC1、AR1を用いてステップS307の判定を行う。判定の結果、視線位置領域(ROI63)のフィードバック値AC1を採用する。
時刻t2のX線条件は、時刻t1で決定されたフィードバック値AC1に基づいて決定される。画像処理部13はステップS305、ステップS306により求めたフィードバック値AC2、AR2を用いてステップS307の判定を行う。判定の結果、視線位置領域(ROI63)のフィードバック値AC2を採用する。
時刻t3のX線条件は、時刻t2で決定されたフィードバック値AC2に基づいて決定される。画像処理部13はステップS305、ステップS306により求めたフィードバック値AC3、AR3を用いてステップS307の判定を行う。判定の結果、視線位置領域(ROI63)のフィードバック値AC3を採用する。
時刻t4で、視線位置が変更され、視線位置領域(ROI63)内に金属が含まれるものとする。
時刻t4のX線条件は、時刻t3で決定されたフィードバック値AC3に基づいて決定されている。金属8はX線が透過しにくく輝度値が低下するため、金属8を含む視線位置領域(ROI63)では輝度値が低下する。すると、時刻t4で取得したフィードバック値AC4、AR4と基準値Atargetとの各差分値は、AR4の方が小さくなる。したがって、周辺領域70のフィードバック値AR4を採用する。
時刻t5のX線条件は、時刻t4で決定されたフィードバック値AR4に基づいて決定されている。視線位置の周辺領域70の画像が最適な輝度値となるように透視X線の大きさが制御される。ステップS305、ステップS306により求めたフィードバック値AC5、AR5を用いてステップS307の判定を行う。判定の結果、周辺領域70のフィードバック値AR5からフィードバック信号を生成する。
時刻t6、t7のX線条件は、時刻t5の処理と同様に、それぞれ直前の時刻t5、t6で決定されたフィードバック値AR5、AR6に基づいて決定されている。視線位置の周辺領域70の画像が最適な輝度値となるように透視X線の大きさが制御される。ステップS307の判定の結果、周辺領域70のフィードバック値AR6からフィードバック信号を生成する。時刻t7では周辺領域70のフィードバック値AR7からフィードバック信号を生成する。
時刻t8で、視線位置が変更され、視線位置領域(ROI63)内に金属が含まれなくなるものとする。
時刻t8のX線条件は、時刻t7で決定されたフィードバック値AR7に基づいて決定されている。したがって視線位置の周辺領域70の画像が最適な輝度値となるように透視X線の大きさが制御されている。ステップS305、ステップS306により求めたフィードバック値AC8、AR8を用いてステップS307の判定を行うと、視線位置領域(ROI63)には金属が含まれないため視線位置領域(ROI63)の輝度値が上昇する。すると、時刻t8で取得したフィードバック値AC8、AR8と基準値Atargetとの各差分値は、AC8の方が小さくなる。したがって、視線位置領域(RO63)のフィードバック値AC8からフィードバック信号を生成する。
時刻t9のX線条件は、時刻t48で決定されたフィードバック値AC8に基づいて決定されている。視線位置領域(ROI63)の画像が最適な輝度値となるように透視X線の大きさが制御される。ステップS305、ステップS306により求めたフィードバック値AC9、AR9を用いてステップS307の判定を行う。判定の結果、視線位置領域(ROI63)のフィードバック値AR9からフィードバック信号を生成する。
時刻t10のX線条件は、時刻t9の処理と同様に、直前の時刻t9で決定されたフィードバック値AC9に基づいて決定されている。視線位置領域(ROI63)の画像が最適な輝度値となるように透視X線の大きさが制御される。ステップS307の判定の結果、視線位置領域(ROI63)のフィードバック値AC10からフィードバック信号を生成する。
以上説明したように、第3の実施の形態では、視線検出センサ15で検出した操作者の視線位置情報を用いて、視線位置の領域(ROI63)で得られた輝度値及び視線位置の周辺領域70で得られた輝度値のうち、どちらをフィードバック値ACi、ARiに用いるかを切り替える。したがって、視線位置に金属8等の輝度制御に不適切なものが含まれる場合は、周辺領域70の輝度値をフィードバック制御に用いることが可能となる。これにより、画像全体の輝度値を適正にすることが可能となる。
なお、第3の実施の形態の処理手順(図9、図10)は、視線位置領域(ROI63)と周辺領域70とでフィードバック値を切り替える処理を説明するために単純化した一例である。実際の処理では、被検体3へのX線の入射線量や被検体3の体厚、或いはX線検出器24の感度等のシステムの状態や被検体3の状態等も考慮してフィードバック値を決定することが望ましい。
また第3の実施の形態の別の処理手順としては、例えば、処理開始後、所定時間は視線位置領域(ROI63)のフィードバック値ACiを採用し、所定時間経過後に基準値Atargetとの比較を行うものとしてもよい。
また、視線位置の周辺領域70は、4つの矩形領域の平均輝度値に基づいてフィードバック値を算出するものとしたが、周辺領域70の形状や範囲や領域数等はその他のものとしてもよく、検査内容(検査部位等)に応じて最適な形状や範囲や領域数を組み合わせることが望ましい。
以上、各実施の形態において、本発明の好適なX線画像診断装置について説明したが、本発明は上述の実施形態に限定されるものではない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
1・・・・・・・X線画像診断装置
11・・・・・・操作部
12・・・・・・システム制御部
13・・・・・・画像処理部
14・・・・・・画像表示部
15・・・・・・視線検出センサ
20・・・・・・X線制御部
21・・・・・・高電圧発生器
22・・・・・・X線管球
23・・・・・・X線絞り
24・・・・・・X線検出器
3・・・・・・・被検体
4・・・・・・・天板
5・・・・・・・操作者
6・・・・・・・透視画像
61・・・・・・X線照射領域
62・・・・・・X線遮蔽領域
63・・・・・・ROI(関心領域)
63b・・・・・サイズ変更後のROI
64・・・・・・X線遮蔽領域62とROI63とが重なる領域
Pi・・・・・・ROIの中心位置(初期設定位置)
Pd・・・・・・視線に追従して移動させたROIの中心位置
P0・・・・・・現在の視線位置
P1〜P4・・・過去の視線位置
70・・・・・・周辺領域
8・・・・・・・金属

Claims (4)

  1. 所定のX線条件に基づいて被検体にX線を照射するX線源と、
    前記X線源に対向配置され前記被検体の透過X線を検出するX線検出器と、
    前記透過X線に基づいて透視画像を生成する画像生成部と、
    前記透視画像を表示する表示部と、
    関心領域の初期設定のサイズの入力を操作者から受け付ける操作部と、
    表示されている透視画像に対する操作者の視線位置を所定の間隔で繰り返し検出する視線検出器と、
    繰り返し検出される前記視線位置に対して追従するように、前記視線位置を中心に、前記初期設定のサイズの関心領域を前記透視画像に設定する設定部と、
    前記透視画像における前記関心領域の輝度情報に基づいてX線条件を決定し、前記X線源から照射するX線量を制御するX線制御部と、
    を備え、
    前記設定部は、前記視線検出器により検出された現在および現在から所定時間内の視線位置が、同じ位置または現在設定されている関心領域内に収まる場合、前記関心領域のサイズを縮小して、前記現在および前記所定時間内に検出された視線位置を含む範囲を新たな関心領域とすることを特徴とするX線画像診断装置。
  2. 前記X線制御部は、
    前記関心領域内にX線遮蔽領域を含む場合は、前記関心領域からX線遮蔽領域を除外した領域の輝度情報に基づいて前記X線条件を決定することを特徴とする請求項1に記載のX線画像診断装置。
  3. 前記設定部は、前記現在および前記所定時間内に検出された前記視線位置の平均位置が前記透視画像のX線照射領域に位置している場合、前記視線位置を中心に前記初期設定のサイズの関心領域を設定し、前記関心領域を繰り返し検出される前記視線位置に対して追従させることを特徴とする請求項1に記載のX線画像診断装置。
  4. 所定のX線条件に基づいて被検体にX線を照射するX線源と、前記X線源に対向配置され前記被検体の透過X線を検出するX線検出器と、前記透過X線に基づいて透視画像を生成する画像生成部と、前記透視画像を表示する表示部と、関心領域の初期設定のサイズの入力を操作者から受け付ける操作部と、を備えたX線画像診断装置のX線制御部が、
    表示されている透視画像に対する操作者の視線位置を視線検出器により所定の間隔で繰り返し検出するステップと、
    検出した視線位置に対して追従するように、当該視線位置を中心に、前記初期設定のサイズの関心領域を前記透視画像に設定するステップと、
    前記視線検出器により検出された現在および現在から所定時間内の視線位置が、同じ位置または現在設定されている関心領域内に収まる場合、前記関心領域のサイズを縮小して、前記現在および前記所定時間内に検出された視線位置を含む範囲を新たな関心領域とするステップと、
    設定された関心領域の輝度情報に基づいてX線条件を決定し、前記X線源から照射するX線量を制御するステップと、
    を行うことを特徴とするX線制御方法。
JP2014116457A 2014-06-05 2014-06-05 X線画像診断装置及びx線制御方法 Active JP6397659B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116457A JP6397659B2 (ja) 2014-06-05 2014-06-05 X線画像診断装置及びx線制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116457A JP6397659B2 (ja) 2014-06-05 2014-06-05 X線画像診断装置及びx線制御方法

Publications (2)

Publication Number Publication Date
JP2015228994A JP2015228994A (ja) 2015-12-21
JP6397659B2 true JP6397659B2 (ja) 2018-09-26

Family

ID=54886115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116457A Active JP6397659B2 (ja) 2014-06-05 2014-06-05 X線画像診断装置及びx線制御方法

Country Status (1)

Country Link
JP (1) JP6397659B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737337B2 (ja) * 2016-08-03 2020-08-05 株式会社島津製作所 X線透視撮影装置
JP6798325B2 (ja) * 2017-01-20 2020-12-09 株式会社島津製作所 X線透視装置
KR20220149348A (ko) * 2021-04-30 2022-11-08 삼성전자주식회사 객체의 깊이 정보를 획득하는 증강 현실 디바이스 및 그 동작 방법
CN118175963A (zh) * 2021-11-25 2024-06-11 株式会社岛津制作所 X射线摄影装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482497A (en) * 1987-09-24 1989-03-28 Shimadzu Corp X-ray automatic exposing device
JP4776798B2 (ja) * 2000-03-29 2011-09-21 東芝医用システムエンジニアリング株式会社 X線診断装置
US6768784B1 (en) * 2001-11-07 2004-07-27 Koninklijke Philips Electronics N.V. X-ray image enhancement
WO2011074471A1 (ja) * 2009-12-18 2011-06-23 株式会社 日立メディコ X線画像診断装置、x線露出制御方法及びプログラム
US9820709B2 (en) * 2012-11-29 2017-11-21 Controlrad Systems, Inc. X-ray reduction system

Also Published As

Publication number Publication date
JP2015228994A (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
US10092260B2 (en) X-ray device and method for controlling X-ray irradiation area using the same
JP6397659B2 (ja) X線画像診断装置及びx線制御方法
JP2012050848A (ja) マルチ放射線発生装置を用いた放射線撮影制御装置
JP2013176551A (ja) 医用画像診断装置
JP2011030778A (ja) 医用画像撮影装置およびその撮影方法
JP4368350B2 (ja) X線画像診断装置
US11213268B2 (en) X-ray system with computer implemented methods for image processing
JP2007105345A (ja) X線画像診断装置
CN107405125B (zh) X射线透视摄影装置
JP2011067436A (ja) 放射線撮影装置、放射線撮影方法、及び記憶媒体
US7572057B2 (en) Radiography control apparatus and radiography control method
WO2011074471A1 (ja) X線画像診断装置、x線露出制御方法及びプログラム
KR102058102B1 (ko) 엑스선 장치 및 이를 이용한 엑스선 조사영역 조절방법
JP2010269081A (ja) X線画像診断装置
JP2008125610A (ja) X線透視撮影装置
JP2010220838A (ja) 放射線撮影装置
JP2009189667A (ja) X線画像診断装置
JP5880854B2 (ja) 画像処理装置およびそれを備えた放射線撮影装置
JP6397554B2 (ja) 制御装置、放射線撮影装置、制御方法及びプログラム
JPWO2016190219A1 (ja) X線画像生成装置およびその制御方法
JP2004135860A (ja) X線ct装置
JP2007213979A (ja) X線診断装置
JP5985010B2 (ja) 制御装置、制御システム、制御方法及びプログラム
JP2022170111A (ja) 動態品質管理装置、動態品質管理プログラム及び動態品質管理方法
JP2015164608A (ja) 放射線撮影装置、放射線撮影方法、及び記憶媒体

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171030

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6397659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350