JP6382157B2 - 回転センサ - Google Patents

回転センサ Download PDF

Info

Publication number
JP6382157B2
JP6382157B2 JP2015118517A JP2015118517A JP6382157B2 JP 6382157 B2 JP6382157 B2 JP 6382157B2 JP 2015118517 A JP2015118517 A JP 2015118517A JP 2015118517 A JP2015118517 A JP 2015118517A JP 6382157 B2 JP6382157 B2 JP 6382157B2
Authority
JP
Japan
Prior art keywords
shaft
magnetic field
signal
magnet
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015118517A
Other languages
English (en)
Other versions
JP2016004039A5 (ja
JP2016004039A (ja
Inventor
ディートマー スピッツァー,
ディートマー スピッツァー,
ペーター スラーマ,
ペーター スラーマ,
ハーラルト ヴィッシュニッヒ,
ハーラルト ヴィッシュニッヒ,
レオ アイヒリードラー,
レオ アイヒリードラー,
フリートリッヒ ラスボルニク,
フリートリッヒ ラスボルニク,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of JP2016004039A publication Critical patent/JP2016004039A/ja
Publication of JP2016004039A5 publication Critical patent/JP2016004039A5/ja
Application granted granted Critical
Publication of JP6382157B2 publication Critical patent/JP6382157B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/246Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains by varying the duration of individual pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B7/315Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本出願は、センサデバイス、およびセンサデバイスを含むシステムに関する。
シャフトの回転検知は、各種技術分野で行われているさまざまな制御機能の信頼性が、シャフトの検知された回転を拠り所にしている。例えば、伝動装置のシャフトの回転速度または角速度を用いて、伝動装置の動作を制御する。例えば、車輪軸のシャフトの角速度を用いて、対応する車輪の摩擦を監視するために用いられてもよく、これは車両内のアンチブロッキングシステムまたは電子安定システムのために有用となり得る。
シャフトの回転を検知する周知の方法では、シャフト上に強磁性歯車を配置し、センサを用いて歯車の歯の通過を検出する。通例、センサはシャフトの回転軸から少し離れて配置される。多くの場合、センサは強磁性歯車から半径方向にオフセットされて配置される。このようなセンサの出力は通例、回転のスピードに応じてパルスの周波数が変化するパルスのパターンに対応する。歯車のそれぞれの歯を、歯車の他の歯とは異なるサイズにすることによって、シャフトの単一の回転の途中の異なる角度位置を区別することが可能になる。例えば、歯のうち1つだけを他と異なるものにし、それにより、歯車の角度位置が特定され得るようにすることが考えられる。いかなる限定をするものでもないが、歯のうち2本以上を特定可能にし、それによって、角度位置のうち2つ以上を特定可能にしてもよい。
しかし、このような歯車を用いた回転角度の評価は、シャフトが実際に回転していることを必要とする。時として、絶対配向を判定するためには、少なくとも1回の完全な回転が必要とされる。さらに、パルスの検知されたパターンから回転角度を正確に推定するためには、複雑なアルゴリズムが必要となり得る。同様に、達成可能な精度は、歯車の製作精度、およびセンサを歯車に対して装着する際の精密度に大きく依存し得る。なおさらに、歯車−時により、磁気エンコーダ歯車とも呼ばれる−はかなり大きな空間が必要となり得、比較的高価になり得る。
したがって、シャフトの回転を効率的かつ正確な方法で検知することを可能にする技法が必要である。
一実施形態によれば、センサデバイスが提供される。センサデバイスは、磁石の磁界内に配置される磁界感応要素を含んでもよい。磁石はシャフトの端面上に配置されてもよい。磁界感応要素は、0°〜360°の範囲内の磁界の配向角度を検知するように構成されてもよい。シャフトは、車両の伝動装置のシャフト、またはブラシレスDCモータのシャフト、または車両の車輪軸のシャフトのうちの1つであってもよい。
さらなる実施形態によれば、システムが提供される。システムは、車両の伝動装置のシャフトと、シャフトの端面上に配置される磁石と、を含んでもよい。システムは、磁石の磁界内に配置される磁界感応要素をさらに含んでもよい。磁界感応要素は、0°〜360°の範囲内の磁界の配向角度を検知するように構成されてもよい。
さらなる実施形態によれば、ブラシレス直流(DC)モータのシャフトと、シャフトの端面上に配置される磁石と、を含んでもよいシステムが提供される。システムは、磁石の磁界内に配置される磁界感応要素をさらに含んでもよい。磁界感応要素は、0°〜360°の範囲内の磁界の配向角度を検知するように構成されてもよい。
さらなる実施形態では、車両の車輪軸のシャフトを含んでもよいシステムが提供される。システムは、シャフトの端面上に配置される磁石と、磁石の磁界内に配置される磁界感応要素と、を含んでもよい。磁界感応要素は、0°〜360°の範囲内の磁界の配向角度を検知するように構成されてもよい。
本開示のさらなる実施形態によれば、他のデバイス、システム、または方法が提供されてもよい。このような実施形態は、添付の図面と関連して以下の詳細な説明から明らかになるであろう。
本開示の一実施形態に係るセンサデバイスの概略図である。 センサデバイスの機能性を概略的に示すためのブロック図を示す。 一実施形態に係るセンサデバイスによって生成される信号内のパルスパターンの例を示す図である。 センサと組み合わせた強磁性歯車の概略図であって、強磁性歯車は、図3Aのパルスパターンに実質的に対応するプロファイルを有する、図である。 センサデバイス、および車両の伝動装置のシャフトを含む一実施形態に係るシステムの概略図である。 センサデバイス、および車両の車輪軸のシャフトが設けられる一実施形態に係るシステムの概略図である。 センサデバイス、およびブラシレスDCモータのシャフトが設けられる一実施形態に係るシステムの概略図である。
以下において、添付の図面を参照して種々の実施形態が詳細に説明される。これらの実施形態は単に例としての役割を果たすのみであって、限定として解釈されることを意図してない。例えば、複数の特徴を有する実施形態に対して、他の実施形態は、より少ない特徴および/または代替的な特徴を含んでもよい。さらに、異なる実施形態からの特徴は、特に断りのない限り、互いに組み合わせられてもよい。
以下に例示されるとおりの実施形態は、シャフト、特に、車両の伝動装置のシャフト、ブラシレスDCモータのシャフト、および車両の車輪軸のシャフトの回転を検知する技法に関する。例示されている実施形態は、対応するセンサデバイス、システム、および方法を包括する。
例示されている実施形態では、磁石の磁界内に配置される磁界感応要素が利用される。磁石はシャフトの端面上に配置される。磁界感応要素は、0°〜360°の範囲内の磁界の配向角度を検知するように構成される。この角度から、磁界の配向角度一義的に測定することが可能になり得る。
磁界感応要素は、いかなる限定をするものでもないが、巨大磁気抵抗(GMR)効果、異方性磁気抵抗(AMR)効果、トンネル磁気抵抗(TMR)効果、またはホール効果等の、磁気抵抗効果に基づいてもよい。磁界感応要素の実施形態の例は、シャフトの端面と平行であり、かつシャフトの長手方向および回転軸と垂直である平面内に2つの異なる最大感度方向を有する2つのGMRデバイスに基づくことができよう。このような磁界感応要素は、シャフトの回転軸と垂直に配向した磁性を有する磁石の磁界の配向角度の正確な検出を可能にし得る。特に、このような磁界感応要素は、シャフトと一緒に回転する磁石の磁界の配向を検知するためにコンパスのような様式で用いられてもよい。
さらに、例示されている実施形態は、パルスエッジの、配向角度への記憶された対応付けを利用してもよい。いくつかの実施形態では、対応付けは、例えば、メモリをプログラムすることによって、構成可能であることができる。この対応付け、および磁界感応要素によって検知されたとおりの磁界の配向角度に応じて、立ち上がりパルスエッジおよび立ち下がりパルスエッジを有するパルスのパターンを含む第1の信号が生成される。第1の信号内において、立ち上がりエッジおよび/または立ち下がりエッジは、磁界感応要素によって検知されるとおりの既定の配向角度に対応付けられてもよい。第1の信号は、先に説明したように、非対称な歯車に基づくセンサアセンブリによって生成されるとおりのパルスパターンをエミュレートするために用いられてもよい。これによって、このような非対称な歯車に依存する既存のセンサデバイスとの互換性を達成する、第1のもののこのような形態。
加えて、検知された角度配向は、0°〜360°の範囲内のシャフトの回転角度を表現する第2の信号を生成するために用いられてもよい。後者の場合には、回転角度は、デジタル値、アナログ値、またはパルス幅変調信号によって表現されてもよい。パルス幅変調信号は、換言すれば、パルス幅変調値に対応してもよい。第1の信号または第2の信号のどちらかを出力するために、異なる動作モードが提供されてもよい。例えば、センサデバイスは、センサデバイスが第1の信号を出力する第1の動作モード、およびセンサデバイスが第1の信号の代わりに第2の信号を出力する第2の動作モードを提供されてもよい。同様に、センサは、さらに別の動作モードでは、第1の信号および第2の信号の両方を出力してもよい。
いくつかの実施形態では、磁界感応要素によって検知されたとおりの磁界の配向はまた、追加信号を生成するための基盤として用いられてもよい。例えば、検知された配向角度に応じて、シャフトの角速度を表現する追加信号が生成されてもよい。角速度は、いかなる限定をするものでもないが、デジタル値、アナログ値、またはパルス幅変調信号によって表現されてもよい。追加信号はシャフトの1旋回当たり既定の周期数を有してもよい。換言すれば、信号の基本構成ブロック−パルスまたは半波もしくは全波等−の繰り返しが、決まった既定の数に達してもよい。非限定例として、1旋回当たり10の数のデューティサイクルがあってもよい。既定の周期数は、歯車に基づいて動作する従来のセンサデバイス出力をエミュレートすることを可能にし得る。既定の周期数は、エミュレートされる歯車の歯の数に対応してもよい。
これより、図面を参照して上述の実施形態をさらに説明する。
図1は、一実施形態に係るセンサデバイス200を概略的に示す。センサデバイス200は、シャフト100の回転、すなわち、配向および/または角速度を検知するように構成される。したがって、以下におけるセンサデバイス200は回転センサとも呼ばれることになる。
シャフトは、車両の伝動装置のシャフト、またはブラシレスDCモータのシャフト、または車両の車輪軸のシャフトのうちの1つであってもよい。
例示されている実施形態では、センサデバイス200は、以下においてセンサ要素とも呼ばれる、磁界感応要素210と、磁石220とを含む。さらに、例示されている実施形態では、出力回路230が設けられる。図示されているように、磁石220は、シャフト100の端面上に装着される円盤状の双極子磁石であってもよい。(S極「S」からN極「N」への)磁石220の磁性は、シャフト100の長手方向回転軸110に対して垂直に配向している。磁性は、内部に作用する磁界に対応してもよい。磁石220のN極とS極との境界は磁性と垂直に配向していてもよい。したがって、矢印によって指示されるようにシャフトが回転すると、磁石220の磁界の配向は、(図1において軸の遠位端から磁石の方を見て)シャフト100の長手方向回転軸110の周りに反時計回りに変化する。
上述のように、センサ要素210は、例えば、シャフト100の長手方向回転軸110と垂直である平面内で異なる最大感度方向を各々有する2つのGMRデバイスに基づいてもよく、それにより、0°〜360°の範囲内の磁界の配向の絶対角度を検知することを可能にする。
磁石220の幾何学的形状および磁界配位は特に限定されない。上述のように、図1のシナリオでは、磁気双極子を形成する円盤状要素が示されている。円盤の一方の半分はN磁極Nを形成し、円盤の他方の半分はS磁極Sを形成する。磁軸、すなわち、N極NとS極Sとの幾何学的連結線、はシャフトの軸と垂直に配向している。複数のN極および対応するS極を含む磁気多極子要素が用いられることも可能である。これは、磁界の配向角度の検知における感度および精度を高め得る。このようなシナリオでは、回転センサは通例、磁石220によって生成される磁界の空間的形状に関する情報を用いて事前に構成される。一実施形態では、シャフト100の軸に対して半径方向に広がる扁平要素を用いることが望ましい場合がある。これは、あまり多くの空間が利用可能でない状況においてさえも配向の検知を可能にし得る。しかし、要素であって、その半径方向寸法に比して相当な厚さを有する要素を用いることも可能である。図1のシナリオに示されるように、磁石の半径方向寸法はほぼシャフト100の半径方向寸法の程度であってもよい。しかし、一般に、磁石220の半径方向寸法はシャフト100の半径方向寸法よりも相当に大きいかまたは小さいことも可能である。例えば、一シナリオでは、磁石ピルが磁石220として用いられてもよい。磁石ピルは、実質的に細長い要素であって、その対向端部上に磁極が位置する要素であってもよい。細長いとは、実質的に1次元に延びた要素に言及してもよい。例えば、磁石ピルは直径方向に磁性を帯びていてもよい。
図1から分かるように、センサ要素210は、(図1における破線によって指示されるように)シャフト100の軸方向延長線に配置されれ、磁石220に対して間隙によってオフセットされている。具体的には、図1に示されているように、シャフト100は回転する一方で、センサ要素210は静止していてもよい。
さらに、センサデバイス200は、センサ要素210によって検知されたとおりの磁界の配向角度からさまざまな種類の出力信号を生成するように構成される電子出力回路230を含んでもよい。センサ要素210および出力回路230は、同じ半導体チップ上、または同じチップパッケージ内に配置されてもよい。図2のブロック図によって出力回路230の機能性がさらに示されている。
図2に示されているように、出力回路230は、パルスパターン生成器250およびメモリ260を含んでもよい。パルスパターン生成器250は、パルスのパターンを含む信号PPを生成するように構成される。これは、図2において信号SENSEによって表現される、磁界の検知された配向角度、およびメモリ260内に記憶されているとおりのパルスエッジ(PE)角度対応付けに応じて遂行される。メモリ260は、例えば、リードオンリーメモリ(ROM)、プログラマブルROM(PROM)、消去可能PROM(EPROM)、またはフラッシュメモリ等の、好適な種類の半導体メモリによって実装されてもよい。PROM、EPROM、またはフラッシュメモリを用いるメモリ260の一実施形態は、メモリ260内に記憶されたPE角度対応付けの構成またはさらには再構成を可能にするために用いられてもよい。
例示されている実施形態では、メモリ260内に記憶されたPE角度対応付けは、パルスパターンのパルスごとに、パルスの立ち上がりエッジに関連付けられる配向角度およびパルスの立ち下がりエッジに関連付けられる配向角度を定義する。したがって、パルスパターン生成器250は、検知された配向を対応付け内の配向角度と比較し、検知された配向角度が、立ち上がりエッジに対応する配向角度を通過した場合には、信号PPの値を高い値に切り換えるか、または、検知された配向角度が、立ち下がりエッジに対応する配向角度を通過した場合には、信号PPの値を低い値に切り換えることによって、動作してもよい。このように、シャフト100が完全に回転する間に、各パルスはそのデューティサイクルに関して他のパルスと異なる、非対称性の高いパルスパターンを含むさまざまな種類のパルスパターンが生成されてもよい。
さらに図示されているように、出力回路230はまた、0°〜360°の範囲内のシャフト100の絶対配向角度を表現する信号AASを生成するように構成される絶対角度信号生成器270を含んでもよい。信号AASは、例えば、シャフト100の絶対配向角度をアナログ値として表現してもよい。さらに、信号AASはシャフト100の絶対配向角度をデジタル値またはパルス幅変調信号として符号化してもよい。絶対角度信号生成器270は、センサ要素によって検知されたとおりの磁界の配向角度から、例えば、シャフト100上の磁石220の装着配向を考慮に入れたオフセット、および/またはあらゆるさらなる基準オフセットを加えることによって、シャフト100の絶対配向角度を導出してもよい。絶対角度信号生成器270はまた、非限定例として、例えば、信号SENSEのアナログ表現から信号AASのデジタルまたはパルス幅変調表現への、信号変換を実行してもよい。代替的に,または追加的に、パルスパターン生成器250が信号変換を実行してもよい。
いくつかの実施形態では、絶対角度信号生成器270はまた、センサ要素210によって検知された配向角度から1つ以上の追加信号を生成するように構成されてもよい。例えば、絶対角度信号生成器270は、例えば、シャフト100の絶対配向角度の時間微分を計算することによって、シャフト100の角速度を表現する信号を生成してもよい。任意選択的に、回転の方向が符号化されてもよい。歯車と相互作用する従来のセンサ要素を用いて得られる出力信号をエミュレートするために、例えば、絶対角度信号生成器270は、信号が、シャフトの1旋回当たり既定の数の周期、非限定例として12または20周期、を有するような、シャフト100の角速度を表現する信号を出力することが可能である。このような信号は、対応する数の歯を有する歯車と相互作用する従来の絶対角度信号生成器を用いて得られる信号をエミュレートするために適し得る。
さらに図示されているように、図2の出力回路230はモード選択器280を含んでもよい。モード選択器280は、出力回路230の異なる動作モードを選択するために用いられてもよい。具体的には、モード選択器280は、出力回路230が信号PPをその出力信号OUTとして出力する、第1の動作モードを選択するためにさらに用いられてもよい。モード選択器280は、出力回路が信号AASをその出力信号OUTとして出力してもよい、第2の動作モードを選択するために用いられてもよい。任意選択的に、モード選択器280は、出力回路230が、回転スピードを指示する追加信号を出力する、第3の動作モードを選択するために用いられてもよい。
特定の動作モードを選択するためにモード選択器280によって用いられる種々の決定基準が考えられる。例えば、シャフトの回転の始動段階では、モード選択器280は第2の動作モードを選択してもよく、それにより、シャフトが実質的に静止している時、すなわち、信号PPは回転角度の関係のために十分な数のパルスをまだ有していない可能性がある時でさえも、シャフト100の回転角度に関する有用な情報を提供する。シャフト100の決まった数の回転後、例えば、1回の完全な回転後、またはシャフト100の角速度が閾値を超えた時に、モード選択器280は、従来の歯車ベースの回転センサによって通例提供されるとおりの出力信号をエミュレートするために出力信号OUTが生成されてもよい、第1の動作モードを選択してもよい。
出力回路230が複数の信号を出力することもまた可能である。例えば、信号AASが出力されてもよく、追加信号が同一の動作モード内で出力されてもよい。このときには、配向および回転スピードの両方を導出することが可能になり得る。
図3Aに、信号PP内に含まれるとおりのパルスパターンの例が示されている。このパルスパターンは、図3Bに概略的に示されているとおりの歯車20の磁界内に配置された回転センサ25の出力信号をエミュレートすると仮定されている。図示されている例では、パルスパターンは、異なるデューティサイクルを各々有する3つのパルス11、12、13からなる。各パルス11、12、13は、回転センサ25とともに用いられる歯車20の特定の歯21、22、23に対応する。与えられた例では、パルス11は歯車20の歯21に対応し、パルス12は歯車20の歯22に対応し、パルス13は歯車20の歯23に対応する。
図3Bに示される歯車20上において、歯21、22、23は各々、軸に対して実質的に半径方向に延びる2つのエッジ21A、21B、22A、22B、および23A、23Bを有する。エッジ21A、21B、22A、22B、および23A、23Bの各対はそれぞれの歯21、22、23の角度位置および周辺延在部を規定する。歯車20の回転中に回転角度αが増大すると、歯21、22、23はその後、センサ25を通過する。例えば、センサ25は、ホールセンサ、GMRセンサ、TMRセンサ、またはAMRセンサであることができ、歯車20の少なくとも歯21、22、23は強磁性材料で形成されてもよい。このようなシステム設定の典型的な出力信号のパルスパターンは、図3Aに示されるように、信号PPによってエミュレートされる。図示されている例では、図3Aのパルスパターンは、歯21のエッジ21Aがセンサ25を通過するであろう時間にパルス11の立ち上がりパルスエッジ11Aを有し、歯21のエッジ21Bがセンサ25を通過するであろう時間に立ち下がりパルスエッジ11Bを有する。同様に、図3Aのパルスパターンは、歯22のエッジ22Aがセンサ25を通過するであろう時間にパルス12の立ち上がりパルスエッジ12Aを有し、歯22のエッジ22Bがセンサ25を通過するであろう時間に立ち下がりパルスエッジ12Bを有する。同様に、図3Aのパルスパターンは、歯23のエッジ23Aがセンサ25を通過するであろう時間にパルス13の立ち上がりパルスエッジ13Aを有し、パルス23のエッジ23Bがセンサ25を通過するであろう時間に立ち下がりパルスエッジ13Bを有する。
例示されている実施形態の出力回路230は、メモリ260内に記憶されたPE角度対応付けを適切に構成することによってエミュレーションを達成してもよい。例えば、歯21のエッジ21Aは0°の角度位置に位置すると仮定すると、PE角度対応付けは立ち上がりパルスエッジ11Aを0°の配向角度に指定してもよい。同様に、歯21のエッジ21Bは90°の角度位置に位置する場合には、PE角度対応付けは立ち下がりパルスエッジ11Bを90°の配向角度に指定してもよい。他の歯22、23のために、歯22、23の角度位置および周辺延在部に応じて、対応する指定が行われてもよい。立ち上がりパルスエッジおよび立ち下がりパルスエッジのこのような指定においては、同様に、磁界の配向角度とシャフト100の回転角度との間のオフセットが考慮されてもよい。オフセットは配向角度および回転角度の差に関連してもよい。オフセットは、PE角度対応付けの校正のために用いられる既定の基準角度だけ考慮されてもよい。
図3Aのパルスパターンはシャフト100の旋回のたびに繰り返されるであろうということを理解されたい。さらに、パルスパターン内のパルス幅および休止期間はシャフト100の回転スピードに応じて変化するであろう。例えば、1旋回当たりのパルスの、休止期間に対する比は一定のままであってもよい。
図4に、ギアボックスの形の伝動装置400が示されている。入力シャフト401が車両のエンジン(図4には示さず)によって駆動される。伝動装置出力輪420が示されている。伝動装置400の3本のシャフト100−1、100−2、100−3が存在する。3本のシャフト100−1、100−2、100−3は各々その端面上に磁石220を備えている。ハウジング410がシャフト100−1、100−2、100−3を回転自在に収容する。シャフトの少なくとも部分はハウジング内で回転する。換言すれば、ハウジング410はシャフト100−1、100−2、100−3と一緒に回転せず、それはむしろシャフト100−1、100−2、100−3の先端部分を包囲する。それぞれの軸受が設けられてもよい。それぞれの3つの磁石220に関連付けられる磁気センサ要素210がハウジング410に取り付けられる。図4はシャフト100−1、100−2、100−3の各々の端面上の磁石220を示しているが、磁石は、制限なく、シャフトのうちのいくつかのみの上に設けられてもよい。具体的には、センサ要素210は、それぞれのシャフト100−1、100−2、100−3の軸方向延長線(図4において破線によって示されている)に、磁石220に対して間隙によってオフセットされて配置される。センサ要素210は、それぞれのシャフト100−1、100−2、100−3の軸方向延長線に対して変位させることが可能である。上述したとおりの技法によって、シャフト100−1、100−2、100−3の配向および/または回転スピードを判定することが可能である。
図5では、車輪軸のシャフト100を含むシステム500が示される。シャフト100の端面に磁石220が設けられる。シャフト100の端面は車輪軸の車輪軸受502と反対側にある。シャフト100は端面と車輪軸受502との間の車軸支持体501に回転自在に接続される。図5にさらに示されているのは、シャフト100の軸方向延長線に配置され、磁石220に対して間隙によってオフセットされたセンサ要素210である。センサ要素210はシャフト100と一緒に回転しない。上述したとおりの技法によって、シャフト100の配向および/または回転スピードを判定することが可能である。
図6を参照すると、ブラシレスDCモータユニットまたはアセンブリ600が示されている。アセンブリのモータ601がシャフト100に取り付けられてもよい。シャフトの端面に、磁石220が配置される。シャフト100の軸方向延長線に、間隙によってオフセットされて、センサ要素210が配置される。上述したとおりの技法によって、シャフト100の配向および/または回転スピードを判定することが可能である。
ブラシレスDCモータアセンブリ600のコントローラ(図6には示さず)が、モータ601を回転させ続けるために、電気巻線の位相を連続的に切り換えてもよい。切り換えはシャフト100の配向に応じて行われてもよい。センサ要素210を用いて0°〜360°の範囲の磁界の配向角度を判定することによって、シャフト100の配向角度を判定することが可能になる。これはブラシレスDCモータ601の正確な制御を可能にする。
上述のことから分かるように、本技法は、シャフト100、100−1、100−2、100−3の配向を検知する際の複雑さ、必要な空間、およびコストを低減し得る。伝動装置400のシャフト100−1〜100−3の1つ以上の端面上に磁石220が配置される図4のシナリオでは、必要とされる空間は従来の伝動装置におけるよりも大幅に少なくなり得る。具体的には、歯車を用いる場合には、後者を装着するためにシャフト100−1〜100−3上の追加の空間を占有することが必要になり得る。通例、(図3Bに示されるとおりの)歯車はおよそ7cmの最小直径に制限される。多くの場合、従来の磁界センサをこのような歯車に近接して用いるときには、磁界センサを歯車により近づけるために、大きなセンサ塔が必要とされる。余分のコストが発生し、システムの複雑さが通例増大する。さらに、伝動装置400の小型化の要求が常にある。上述したとおりのシステムを用いると、複雑さと必要な空間がどちらも低減され得る。
さらに、図5のシナリオでは、磁石220が車輪軸のシャフト100の端面に取り付けられることにより、従来の解決策と比べると、空間およびコストの大幅な低減が達成される。具体的には、従来のシステムでは、多くの場合、車輪軸受502の近くに歯車が配置される。通例、これは、構築空間の増大など、システム全体の寸法に影響を与える。その結果、複雑さおよびコストはさらに増大する。従来のシステム内のそれぞれのセンサはさらに、ブレーキディスク、ブレーキキャリパ、およびブレーキシューを含むブレーキシステムの近くに位置する。これは多くの場合、高温環境を生じさせる。配向の検知の精度が低下する恐れがあり、電子部品の損耗の増大が生じる恐れがある。
上述のコンセプトおよび実施形態は種々の変更を受け入れる余地があることを理解されたい。例えば、さまざまな種類の歯車プロファイルに対応する種々のパルスパターンをエミュレートすることができるであろう。このようなエミュレーションはまた、歯の角度位置および延在部をエミュレートするために拡張されてもよいだけでなく、歯の半径方向寸法または歯のエッジの勾配等の、歯のプロファイルのさらなる特性をエミュレートすることもできるであろう。さらに、回転センサは、他の種類の検知デバイス、またはより複雑な多極子磁石等の、他の形式の磁石を用いることができるであろう。
11、12、13 パルス
11A、12A、13A 立ち上がりパルスエッジ
11B、12B、13B 立ち下がりパルスエッジ
20 歯車
21、22、23 歯
21A、21B、22A、22B、23A、23B エッジ
25 センサ
100、100−1、100−2、100−3 シャフト
110 シャフトの長手方向回転軸
200 センサデバイス
210 磁界感応要素
220 磁石
230 出力回路
250 パルスパターン生成器
260 メモリ
270 絶対角度信号生成器
280 モード選択器
400 伝動装置
401 入力シャフト
410 ハウジング
420 伝動装置出力輪
500 システム
501 車軸支持体
502 車輪軸受
600 ブラシレスDCモータアセンブリ
601 モータ

Claims (14)

  1. センサデバイスであって、
    シャフト(100)の端面上に配置される磁石(220)の磁界内に配置される磁界感応要素(210)と
    前記シャフト(100)に対して非対称に配置された複数の歯(21、22、23)をエミュレートしたものである、前記シャフト(100)の相異なる配向角度に対応付けたパルスエッジ(11A、11B、12A、12B、13A、13B)を記憶する、歯エミュレータ用の角度マッピングメモリ(260)と、
    前記磁界感応要素(210)の出力信号(SENSE)と前記角度マッピングメモリ(260)に記憶されたパルスエッジ(11A、11B、12A、12B、13A、13B)とを比較して、パルスエッジ(11A、11B、12A、12B、13A、13B)が付いたパルスパターンの信号(11、12、13)を生成するパルスパターン生成器(250)と、
    前記磁界感応要素(210)の出力信号(SENSE)を受け、当該出力信号(SENSE)から、絶対角度信号(AAS)により、0°〜360°の範囲内の前記磁界の配向角度を一義的に測定する絶対角度信号生成器(270)と
    モード選択信号(STATUS)に応じて、前記パルスパターン生成器(250)のパルスパターン信号(11、12、13)と前記絶対角度信号生成器(270)の絶対角度信号(AAS)のいずれかまたは両方を選択して出力するモード選択器(280)とを備え、
    前記シャフトは、車両の車輪軸のシャフトである、
    センサデバイス。
  2. 前記磁界感応要素の出力信号(SENSE)から前記シャフト(100)の角速度を表現する追加信号を生成する追加信号生成器(270)を有する、請求項1に記載のセンサデバイス。
  3. 前記追加信号が前記シャフトの1旋回当たり既定の数の周期を有する、請求項に記載のセンサデバイス。
  4. 車両の伝動装置のシャフト(100)と、
    前記シャフト(100)の端面上に配置される磁石(220)と、
    前記磁石の220)の磁界内に配置される磁界感応要素(210)
    を含む変速のためのシステムであって、更に
    前記シャフト(100)に対して非対称に配置された複数の歯(21、22、23)をエミュレートしたものである、前記シャフト(100)の相異なる配向角度に対応付けたパルスエッジ(11A、11B、12A、12B、13A、13B)を記憶する、歯エミュレータ用の角度マッピングメモリ(260)と、
    前記磁界感応要素(210)の出力信号(SENSE)と前記角度マッピングメモリ(260)に記憶されたパルスエッジ(11A、11B、12A、12B、13A、13B)とを比較して、パルスエッジ(11A、11B、12A、12B、13A、13B)が付いたパルスパターンの信号(11、12、13)を生成するパルスパターン生成器(250)と、
    前記磁界感応要素(210)の出力信号(SENSE)を受け、当該出力信号(SENSE)から、絶対角度信号(AAS)により、0°〜360°の範囲内の前記磁界の配向角度を一義的に測定する絶対角度信号生成器(270)と
    モード選択信号(STATUS)に応じて、前記パルスパターン生成器(250)のパルスパターン信号(11、12、13)と前記絶対角度信号生成器(270)の絶対角度信号(AAS)のいずれかまたは両方を選択して出力するモード選択器(280)とを備える、システム。
  5. 前記磁石が、
    直径方向に磁性を帯びた磁石ピル、
    前記シャフトの軸に対して半径方向に広がる扁平要素、および
    磁気双極子を形成する円盤状要素であって、前記円盤の一方の半分はN磁極を形成し、前記円盤の他方の半分はS磁極を形成する、円盤状要素、
    を含む群から選択される、請求項に記載のシステム。
  6. 前記磁界感応要素が前記シャフトの軸方向延長線に配置され、前記磁石に対して間隙によってオフセットされ、
    前記磁石が前記シャフトの軸上に配置される、
    請求項に記載のシステム。
  7. 前記磁界感応要素の出力信号(SENSE)から前記シャフト(100)の角速度を表現する追加信号を生成する追加信号生成器(270)を有する、請求項4に記載のシステム。
  8. 前記追加信号が前記シャフトの1旋回当たり既定の数の周期を有する、請求項に記載のシステム。
  9. ハウジングであって、前記シャフトの少なくとも部分は前記ハウジング内で回転し、前記磁界感応要素は前記ハウジングに取り付けられる、ハウジングをさらに含む、請求項に記載のシステム。
  10. 車両の車輪軸のシャフト(100)と、
    前記シャフト(100)の端面上に配置される磁石(220)と、
    前記磁石の220)の磁界内に配置される磁界感応要素(210)
    を含むシステムであって、更に
    前記シャフト(100)に対して非対称に配置された複数の歯(21、22、23)をエミュレートしたものである、前記シャフト(100)の相異なる配向角度に対応付けたパルスエッジ(11A、11B、12A、12B、13A、13B)を記憶する、歯エミュレータ用の角度マッピングメモリ(260)と、
    前記磁界感応要素(210)の出力信号(SENSE)と前記角度マッピングメモリ(260)に記憶されたパルスエッジ(11A、11B、12A、12B、13A、13B)とを比較して、パルスエッジ(11A、11B、12A、12B、13A、13B)が付いたパルスパターンの信号(11、12、13)を生成するパルスパターン生成器(250)と、
    前記磁界感応要素(210)の出力信号(SENSE)を受け、当該出力信号(SENSE)から、絶対角度信号(AAS)により、0°〜360°の範囲内の前記磁界の配向角度を一義的に測定する絶対角度信号生成器(270)と
    モード選択信号(STATUS)に応じて、前記パルスパターン生成器(250)のパルスパターン信号(11、12、13)と前記絶対角度信号生成器(270)の絶対角度信号(AAS)のいずれかまたは両方を選択して出力するモード選択器(280)とを備える、システム。
  11. 前記磁石が、
    直径方向に磁性を帯びた磁石ピル、
    前記シャフトの軸に対して半径方向に広がる扁平要素、および
    磁気双極子を形成する円盤状要素であって、前記円盤の一方の半分はN磁極を形成し、前記円盤の他方の半分はS磁極を形成する、円盤状要素、
    を含む群から選択される、請求項10に記載のシステム。
  12. 前記磁界感応要素が前記シャフトの軸方向延長線に配置され、前記磁石に対して間隙によってオフセットされ、
    前記磁石が前記シャフトの軸上に配置される、
    請求項10に記載のシステム。
  13. 前記磁界感応要素の出力信号(SENSE)から前記シャフト(100)の角速度を表現する追加信号を生成する追加信号生成器(270)を有する、請求項12に記載のシステム。
  14. 前記シャフトの前記端面が前記車輪軸の車輪軸受と反対側にあり、
    前記シャフトが前記端面と前記車輪軸受との間の車軸支持体に回転自在に接続される、請求項10に記載のシステム。
JP2015118517A 2014-06-17 2015-06-11 回転センサ Active JP6382157B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/306,442 US10222234B2 (en) 2014-06-17 2014-06-17 Rotation sensor
US14/306,442 2014-06-17

Publications (3)

Publication Number Publication Date
JP2016004039A JP2016004039A (ja) 2016-01-12
JP2016004039A5 JP2016004039A5 (ja) 2017-09-07
JP6382157B2 true JP6382157B2 (ja) 2018-08-29

Family

ID=54705315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118517A Active JP6382157B2 (ja) 2014-06-17 2015-06-11 回転センサ

Country Status (5)

Country Link
US (3) US10222234B2 (ja)
JP (1) JP6382157B2 (ja)
CN (1) CN105181992B (ja)
DE (1) DE102015109652A1 (ja)
FR (1) FR3022348B1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464174A (zh) * 2014-04-04 2017-02-22 罗伯特·博世有限公司 方法、驱动系统和车辆
US11125768B2 (en) * 2014-06-17 2021-09-21 Infineon Technologies Ag Angle based speed sensor device
JP6455111B2 (ja) * 2014-12-05 2019-01-23 株式会社ジェイテクト 回転角検出装置
CN205066678U (zh) * 2015-10-26 2016-03-02 深圳市道通智能航空技术有限公司 角位移检测装置、电机转角控制系统、云台和飞行器
DE102016111097A1 (de) * 2016-06-17 2017-12-21 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Sensoranordnung zur Winkelerfassung und Schaltgetriebe
CN108338694A (zh) * 2017-01-25 2018-07-31 漳州灿坤实业有限公司 食材量测装置与煎烤机
JP6555289B2 (ja) 2017-03-13 2019-08-07 株式会社デンソー 回転センサ
DE102017002862A1 (de) * 2017-03-24 2018-09-27 Blickfeld GmbH Winkelmagnetfeldsensor für Scanner
DE102017207239A1 (de) * 2017-04-28 2018-10-31 Volkswagen Aktiengesellschaft Sensoranordnung zur Erfassung der Drehzahl einer Getriebeeingangswelle
CN109283355B (zh) * 2017-07-20 2022-07-01 英飞凌科技股份有限公司 基于角度的速度传感器设备
CN109073424B (zh) * 2017-12-12 2020-10-23 深圳市大疆创新科技有限公司 旋转参数检测方法、编码器、激光雷达和无人机
KR102573052B1 (ko) * 2018-05-31 2023-08-31 에이치엘만도 주식회사 모터 센서 마그넷 조립 구조
JP2020528995A (ja) * 2018-06-27 2020-10-01 エイリアンロボット インコーポレイテッドAlienrobot Inc. 磁気センサを用いた一体型アクチュエータ
US11162815B2 (en) * 2018-09-14 2021-11-02 Allegro Microsystems, Llc Angular magnetic field sensor and rotating target with stray field immunity
DE102018217934A1 (de) * 2018-10-19 2020-04-23 Dr. Johannes Heidenhain Gesellschaft Mit Beschränkter Haftung Positionsmesseinrichtung und Verfahren zum Betreiben einer Positionsmesseinrichtung
EP4184122A1 (en) * 2018-11-13 2023-05-24 Ratier-Figeac SAS Magnetic angular position sensor
TWI745685B (zh) * 2019-05-02 2021-11-11 三陽工業股份有限公司 具有輪速感測結構之機車
DE102019115397A1 (de) * 2019-06-06 2020-12-10 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Raddrehzahlsensor für ein Nutzfahrzeug
CN110319889B (zh) * 2019-08-09 2020-07-14 浙江禾川科技股份有限公司 一种伺服电机编码器
DE102019124371B9 (de) * 2019-09-11 2021-04-29 Infineon Technologies Ag Vorrichtung und verfahren zum ermitteln eines drehwinkels
DE102020135115A1 (de) * 2020-12-30 2022-06-30 Webasto SE Elektromotor mit Positionserfassung
KR102285726B1 (ko) * 2021-02-01 2021-08-03 정혁 스크린 낚시용 낚시줄 제어 장치
SE2251166A1 (en) * 2022-10-07 2023-11-16 Scania Cv Ab Vehicle Assembly, Transmission Unit, and Vehicle

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178109A (en) 1981-04-27 1982-11-02 Nec Home Electronics Ltd Rotating angle detector
DE4104694A1 (de) * 1991-02-15 1992-08-20 Hofmann Maschinenbau Gmbh Verfahren und vorrichtung zur bestimmung der drehwinkellage eines rotors beim messen von unwuchten
EP0545106B1 (en) 1991-11-12 1997-04-16 Chrysler Corporation Direct ignition system sensor
JP3013732B2 (ja) 1995-02-13 2000-02-28 トヨタ自動車株式会社 車体速度検出装置
US5740895A (en) 1996-05-22 1998-04-21 Warn Industries Integrated wheel end system
DE19722016A1 (de) 1997-05-27 1998-12-03 Bosch Gmbh Robert Anordnung zur berührungslosen Drehwinkelerfassung
DE19900641A1 (de) 1999-01-11 2000-01-27 Siemens Ag Vorrichtung und Verfahren zur Drehwinkelerkennung der Nockenwelle einer mehrzylindrigen Brennkraftmaschine
DE19933845A1 (de) * 1999-07-20 2001-01-25 Bosch Gmbh Robert Einrichtung zur Erkennung des Rückdrehens eines rotierenden Teils einer Brennkraftmaschine
DE10034927A1 (de) 2000-07-18 2002-02-07 Infineon Technologies Ag Verbrennungsmotor mit Magnet-Sensoranordnung zur Messung des aktuellen Drehwinkels
JP2002372405A (ja) 2001-06-14 2002-12-26 Yazaki Corp 回転角センサ及び液位検出装置
DE60237974D1 (de) 2001-07-27 2010-11-25 Delphi Tech Inc Tachometervorrichtung und verfahren zur motorgeschwindigkeitsmessung
FR2830486B1 (fr) * 2001-10-05 2004-04-23 Gkn Glaenzer Spicer Essieu moteur-directeur pour vehicules motorises
FR2845212B1 (fr) 2002-09-27 2005-03-18 Roulements Soc Nouvelle Dispositif de pilotage d'un moteur a commutation electronique au moyen d'un signal de position
US7066016B2 (en) 2004-04-06 2006-06-27 International Engine Intellectual Property Company, Llc Camshaft position sensor testing system
WO2006039884A1 (de) 2004-10-06 2006-04-20 Schaeffler Kg Verfahren zum einstellen der drehwinkellage der nockenwelle einer hubkolben-verbrennungsmaschine relativ zur kurbelwelle
EP1802851B1 (de) 2004-10-20 2008-02-27 Schaeffler KG Verfahren zum einstellen der drehwinkellage der nockenwelle einer hubkolben- verbrennungsmaschine relativ zur kurbelwelle
KR101227324B1 (ko) 2004-11-16 2013-01-28 섀플러 홀딩 게엠베하 운트 코. 카게 크랭크 샤프트에 대한 왕복 피스톤 내연기관의 캠 샤프트의회전각 위치를 조정하기 위한 방법
JP2006153802A (ja) 2004-12-01 2006-06-15 Hitachi Ltd 非接触式角度検出器
JP2006226816A (ja) 2005-02-17 2006-08-31 Denso Corp 回転角度検出装置
US7116100B1 (en) 2005-03-21 2006-10-03 Hr Textron, Inc. Position sensing for moveable mechanical systems and associated methods and apparatus
DE102005027654A1 (de) 2005-06-15 2006-12-21 Robert Bosch Gmbh Sensor zur Positionserkennung beim Start einer Verbrennungskraftmaschine
JP2009504997A (ja) 2005-08-09 2009-02-05 シエツフレル コマンディートゲゼルシャフト ピストン内燃機関並びにクランクシャフトとカムシャフトとの間に配置された伝動エレメントの摩耗値を検出するための方法
US7751967B2 (en) * 2006-04-12 2010-07-06 Infineon Technologies Ag Control systems and methods associated therewith
JP2008026081A (ja) 2006-07-19 2008-02-07 Toyota Motor Corp 回転角検出装置
DE102006061572A1 (de) 2006-12-27 2008-07-03 Robert Bosch Gmbh Verfahren zur Kodierung eines Ausgangssignals eines Gebers
DE102007013755B4 (de) 2007-03-22 2020-10-29 Te Connectivity Germany Gmbh Indikatorelement für einen magnetischen Drehwinkelgeber
US7814874B2 (en) 2007-03-23 2010-10-19 Gm Global Technology Operations, Inc. Controlling two cam phasers with one cam position sensor
DE102009006581B4 (de) 2008-01-29 2017-06-01 Infineon Technologies Ag Prädiktions-Phasenregelschleifensystem
TWI365032B (en) * 2008-06-11 2012-05-21 System General Corp Method of fastening detector and fastening bracket used therewith
EP2161547A1 (en) 2008-09-05 2010-03-10 Magneti Marelli Powertrain S.p.A. Control unit and method for determining the angular position of a drive shaft of an internal combustion engine
JP5221494B2 (ja) * 2008-12-24 2013-06-26 Ntn株式会社 回転検出装置および回転検出装置付き軸受
US8230739B2 (en) * 2009-05-07 2012-07-31 Ford Global Technologies, Llc Rotational speed sensor assembly
JP5671255B2 (ja) 2009-06-30 2015-02-18 Ntn株式会社 自動車駆動用モータの回転角度検出装置および回転角度検出装置付き軸受
US8960139B2 (en) 2009-09-25 2015-02-24 GM Global Technology Operations LLC Engine assembly having camshaft with non-magnetic journal
JP5126290B2 (ja) 2010-06-07 2013-01-23 株式会社安川電機 エンコーダ、サーボモータ、サーボユニット及びエンコーダの製造方法
JP2012002716A (ja) 2010-06-18 2012-01-05 Tokai Rika Co Ltd 回転検出装置
US9182456B2 (en) * 2012-03-06 2015-11-10 Allegro Microsystems, Llc Magnetic field sensor for sensing rotation of an object
US9176219B2 (en) 2012-03-07 2015-11-03 The Boeing Company Frequency field scanning
JP2013257231A (ja) * 2012-06-13 2013-12-26 Jtekt Corp 回転角センサ
US20140288883A1 (en) 2013-03-25 2014-09-25 Infineon Technologies Ag Method for determining an angle of a magnetic pole of a rotating object

Also Published As

Publication number Publication date
US10222234B2 (en) 2019-03-05
FR3022348B1 (fr) 2019-08-30
US20150362335A1 (en) 2015-12-17
DE102015109652A1 (de) 2015-12-17
CN105181992A (zh) 2015-12-23
JP2016004039A (ja) 2016-01-12
US11359936B2 (en) 2022-06-14
US20190178682A1 (en) 2019-06-13
US20200340830A1 (en) 2020-10-29
CN105181992B (zh) 2018-12-18
US10718633B2 (en) 2020-07-21
FR3022348A1 (fr) 2015-12-18

Similar Documents

Publication Publication Date Title
JP6382157B2 (ja) 回転センサ
JP5523571B2 (ja) 角度センサからの複数の信号を評価する方法
US11733260B2 (en) Angle based speed sensor device
JP5480967B2 (ja) 多周期的絶対位置検出器
JP6552637B2 (ja) 回転角度を測定する装置および回転角度を測定する方法
KR102477526B1 (ko) 지터 극을 갖는 자석 링
CN102498367B (zh) 换向式电驱动装置和用于控制换向式电动机的方法
JP7153012B2 (ja) 回転部材の少なくとも1つの回転パラメータを決定するための決定システム
JP3199870U (ja) カムシャフト回転センサ
EP2715921A1 (en) Motor assembly comprising a brushless dc motor with control electronics
JP2019020418A (ja) 組み立て品
JP2007271458A (ja) 回転角検出装置
CN109283355B (zh) 基于角度的速度传感器设备
JP6209486B2 (ja) 角度検出装置および角度検出装置を利用したサーボ装置
JP2014070977A (ja) エンコーダおよびエンコーダの異常検出方法
JP5394289B2 (ja) 磁気検出装置及び磁気エンコーダ
JP6828148B2 (ja) 絶対的な位置を特定する方法、電動モータ、および摩擦クラッチ用の操作装置
JP7242352B2 (ja) 回転部材の少なくとも1つの回転パラメータを決定するためのシステム
JP2020153980A (ja) 回転部材の少なくとも1つの回転パラメータを決定するシステム
TWI527358B (zh) 具有即時量測功能的永磁調速機
Hou et al. Application of magnetic sensors in automation control
Delbaere et al. Magnetic Resolver: A Design-To-Cost Alternative to Conventional Variable Reluctance Resolvers for the Electric Drives Control
JP2010210288A (ja) エンコーダ
KR20110022201A (ko) 차량의 조향각센서

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180801

R150 Certificate of patent or registration of utility model

Ref document number: 6382157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250