JP3199870U - カムシャフト回転センサ - Google Patents

カムシャフト回転センサ Download PDF

Info

Publication number
JP3199870U
JP3199870U JP2015001253U JP2015001253U JP3199870U JP 3199870 U JP3199870 U JP 3199870U JP 2015001253 U JP2015001253 U JP 2015001253U JP 2015001253 U JP2015001253 U JP 2015001253U JP 3199870 U JP3199870 U JP 3199870U
Authority
JP
Japan
Prior art keywords
signal
sensor device
camshaft
pulse
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015001253U
Other languages
English (en)
Inventor
ペーター スラーマ,
ペーター スラーマ,
ディルク ハマーシュミット,
ディルク ハマーシュミット,
トビアス ヴェルト,
トビアス ヴェルト,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Application granted granted Critical
Publication of JP3199870U publication Critical patent/JP3199870U/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/246Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains by varying the duration of individual pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】エンジンのカムシャフトの回転を効率的かつ正確な方法で検出できるセンサ装置を提供する。【解決手段】センサ装置200には、磁石の磁界中に位置付けられることになる磁界検出要素210が設けられる。磁石220はエンジンのカムシャフト100の端面に位置付けられる。磁界検出要素は、0?〜360?の範囲で磁界方位角を検出するように構成される。さらに、センサ装置にはメモリが設けられる。メモリにはパルス端方位角マッピングが保存される。さらに、センサ装置には電子回路が設けられる。この電子回路は、検出された方位角と保存されたパルス端方位角マッピングに応じて、磁界検出要素により検出された時に予め決められた方位角にマッピングされる立ち上がりおよび立ち下がりパルス端を有するパルスパターンを含む信号を発生するように構成される。【選択図】図1

Description

本考案は、エンジンのカムシャフトの回転を検出するセンサ装置と方法に関する。
自動車分野で使用される燃焼機関等のエンジンの分野においては、カムシャフトの回転を検出して、エンジンの燃焼室への燃料の注入を制御するためにこれを使用してもよい。例えば、カムシャフトの現在の回転角度は、空気燃料混合物の注入タイミング、注入持続時間、または燃料注入に使用される弁の開放およびドエル角の設定に使用されてもよい。
カムシャフトの回転を検出するための既知の方法は、強磁性体の歯車をカムシャフトに設置し、ホールセンサを用いて歯車の歯の通過を検出する、というものである。このようなホールセンサの出力は、パルス周期が移転速度に応じて変化するパルスパターンに対応する。歯車に、歯車の他の歯に関して大きさの違う異なる歯を設けることによって、カムシャフトが1回転する間の異なる角度位置を区別することも可能となる。
しかしながら、このような歯車を使用した現在の回転角度の評価には、カムシャフトが実際に回転していることが必要である。さらに、検出されたパルスパターンからの現在の回転角度を正確に推測するために、複雑なアルゴリズムが必要となりうる。また、実現可能な精度は歯車の製造精度に大きく依存しうる。
したがって、エンジンのカムシャフトの回転を効率的かつ正確な方法で検出できる技術が求められている。
ある実施形態によれば、センサ装置には、磁石の磁界中に位置付けられることになる磁界検出要素が設けられる。磁石はエンジンのカムシャフトの端面に位置付けられる。磁界検出要素は、0°〜360°の範囲で磁界方位角を検出するように構成される。さらに、センサ装置にはメモリが設けられる。メモリにはパルス端方位角マッピングが保存される。さらに、センサ装置には電子回路が設けられる。この電子回路は、検出された方位角と保存されたパルス端方位角マッピングに応じて、磁界検出要素により検出された時に予め決められた方位角にマッピングされる立ち上がりおよび立ち下がりパルス端を有するパルスパターンを含む信号を発生するように構成される。
本考案の他の実施形態によれば、その他の機器、システムまたは方法が提供される。このような実施形態は、添付の図面に関連する以下の詳細な説明から明らかとなるであろう。
本考案のある実施形態によるセンサ装置を概略的に示す。 センサ装置の機能を概略的に説明するブロック図を示す。 図3Aにセンサ装置により発生される信号の例示的なパルスパターンを示す。図3Bに図3Aのパルスパターンに対応する輪郭形状を有する歯車を有する歯車型回転センサを概略的に示す。 本考案のある実施形態によるエンジン制御システムを概略的に示す。 本考案のある実施形態による方法を概略的に説明するフローチャートを示す。
以下に、添付の図面を参照しながら各種の実施形態を詳しく説明する。これらの実施形態は例にすぎず、限定的とは解釈しない点に留意するべきである。例えば、実施形態は複数の特徴を有するが、他の実施形態はそれより少ない特徴および/または代替的な特徴を含んでいてもよい。さらに、別々の実施形態の特徴は、特に別段のことわりがないかぎり、相互に組み合わせてもよい。
以下に例示される実施形態は、シャフト、特にエンジンのカムシャフトの回転の検出に関する。例示の実施形態は、対応するセンサ装置、システム、方法をカバーする。
例示の実施形態において、磁界検出要素が利用され、これは磁石の磁界中に位置付けられる。磁石はエンジンのカムシャフトの端面に位置付けられる。磁界検出要素は、0°〜360°の範囲で磁界方位角を検出するように構成される。例えば、磁界検出要素は磁気抵抗効果、例えば巨大磁気抵抗(GMR)効果、異方性磁気抵抗(AMR)効果またはホール効果に基づいていてもよい。磁気検出要素のある実施例は、カムシャフトの端面に平行でカムシャフトの長手方向と回転軸に垂直な平面内で2つの異なる最大検出方向を有する2つのGMR装置に基づくものとすることができる。このような磁界検出要素によって、カムシャフトの回転軸に垂直な方位の磁化性を有する双極子磁石の磁界方位角を正確に検出できる。特に、このような磁界検出要素は、コンパスのような方法で使用されて、カムシャフトと一緒に回転する磁石の磁界の方位を検出してもよい。
さらに、例示の実施形態は、保存されているパルス端方位角マッピングを利用する。いくつかの実施例において、マッピングは、例えばメモリをプログラムすることによって設定可能とすることができる。このマッピングと磁界検出要素により検出された磁界方位角に応じて第一の信号が発生され、これは立ち上がりおよび立ち下がりパルス端を有するパルスパターンを含み、これらが磁界検出要素により検出された時に予め決められた方位角にマッピングされる。第一の信号は、非対称の歯車に基づくセンサアセンブリによって生成されるパルスパターンをエミュレートするために使用されてもよく、これによって既存のエンジンコントローラのインタフェースに適合させることができる。これに加えて、検出された角方位は、0°〜360°の範囲でカムシャフトの現在の回転角度を表す第二の信号を発生するために使用されてもよい。後者の場合、現在の回転角度は、デジタル値、アナログ値、またはパルス幅変調値により表現されてもよい。第一の信号または第二の信号を出力するために、異なる動作モードが設けられてもよい。例えば、センサ装置には、センサ装置が第一の信号を出力する第一の動作モードとセンサ装置が第一の信号ではなく第二の信号を出力する第二の動作モードが設けられてもよい。
第一の動作モードと第二の動作モードとの切替は、エンジンの動作状態に応じて行われてもよい。例えば、第二の動作モードはエンジンの始動時、例えばカムシャフトがまだ実質的に静止している時、すなわち第一の信号がまだ十分に利用可能となっていない時に使用されてもよい。カムシャフトが所定の回数回転した後、またはある回転速度に到達した時に、センサ装置は第一の動作モードに切り替わってもよい。
いくつかの実施例において、磁界検出要素が検出する磁界方位はまた、別の信号を発生するための根拠として使用されてもよい。例えば、検出された方位角に応じて、カムシャフトの角速度を表す別の信号が生成されてもよい。すると、角速度はデジタル値、アナログ値、またはパルス幅変調値により表現されてもよい。
ここで、上記の実施形態を、図面を参照しながらさらに説明する。
図1は、ある実施形態によるセンサ装置200を示す。センサ装置200は、エンジンのカムシャフト100の回転を検出するように構成される。したがって、センサ装置200は以下において、回転センサとも呼ばれる。
図の実施例において、センサ装置200は、以下においてセンサ要素とも呼ばれる磁界検出装置210と、磁石220と、を含む。図のように、磁石220はディスク形の双極子磁石であってもよく、これはカムシャフト100の端面に取り付けられる。磁石220の磁化性(南極「S」から北極「N」へ)は、カムシャフト100の長手方向回転軸110に垂直な向きである。したがって、カムシャフトが回転すると、磁石220の磁界の方位はカムシャフト100の長手方向回転軸110の周囲で時計の針のように変化する。前述のように、センサ要素210は例えば2つのGMR装置に基づいていてもよく、その各々のカムシャフト100の長手方向回転軸110に垂直な平面内での最大検出方向が異なり、それによって0°〜360度の範囲で絶対磁界方位角を検出することが可能となる。さらに、センサ装置200は電子出力回路230を含み、これはセンサ要素210によって検出された磁界方位角から様々な種類の出力信号を発生するように構成される。センサ要素210と出力回路230は、同じ半導体チップ上に、または同じチップパッケージ内に配置されてもよい。出力回路230の機能は図2のブロック図によりさらに示されている。
図2に示されるように、出力回路230はパルスパターン発生器250とメモリ260を含む。パルスパターン発生器250は、あるパルスパターンを含む信号PPを発生するように構成される。これは、図2において信号SENSEとして表される検出磁界方位角とメモリ内に保存されたパルス端(PE)角度マッピングに応じて実行される。メモリ260は、例えば適当な種類の半導体メモリ、例えばリードオンリメモリ(ROM)、プログラマブルROM(PROM)、イレーサブルPROM(EPROM)、またはフラッシュメモリであってもよい。PROM、EPROMまたはフラッシュメモリを用いたメモリの実施を利用して、メモリ260内に保存されたPE角度マッピングの設定や、再設定さえも行うことができる。
図の実施形態において、メモリ内に保存されたPE角度マッピングは、そのパルスパターンの各パルスについて、パルスの立ち上がり端に関連付けられる方位角とパルスの立ち下がり端に関連付けられる方位角を決定する。したがって、パルスパターン発生器250は、現在の検出方位をマッピング内の方位角と比較し、検出方位角が立ち上がり端に対応する方位角を通過した場合は信号PPの値がハイの値に切り替えられ、検出された方位角が立ち下がり端に対応する方位角を通過した場合は信号PPの値がローの値に切り替えられるように動作してもよい。このようにして、様々な種類のパルスパターンが発生されてもよく、これにはカムシャフト100が1回転する間に各パルスがそのパルスデューティ比に関して他のパルスと異なるような高い非対称性のパルスパターンが含まれる。
さらに示されているように、出力回路230はまた、絶対角度信号発生器270も含んでいてよく、これは0°〜360°の範囲内でカムシャフト100の絶対方位角を表す信号AASを発生するように構成される。信号AASは例えば、カムシャフト100の絶対方位角をアナログ値で表してもよい。さらに、信号AASはカムシャフト100の絶対方位角をデジタル値またはパルス幅変調値として符号化してもよい。絶対角度信号発生器270は、センサ要素によって検出された磁界方位角から、例えばカムシャフト100上の磁石220の取付方位を考慮したオフセットを付加することによってカムシャフトの絶対方位角を導き出してもよい。絶対角度信号発生器270はまた、信号SESNSEのアナログ表現から信号AASのデジタルまたはパルス幅変調表現への信号変換を実行してもよい。
いくつかの実施例において、絶対角度信号発生器270はまた、センサ要素210によって検出される方位角から別の信号を発生するように構成されてもよい。例えば、絶対角度信号発生器270は、カムシャフト100の角速度を表す信号を、例えばカムシャフト100の絶対方位角の導関数を計算することによって発生してもよい。
さらに示されているように、出力回路230はモード選択器280を含んでいてもよい。モード選択器280は、出力回路230の異なる動作モード間の選択を行うために使用されてもよい。特に、モード選択器280は、出力回路230がその出力信号OUTとして信号PPを出力する第一の動作モードと、出力回路がその出力信号OUTとして信号AASを出力する第二の動作モードの間の選択を行うために使用されてもよい。モード選択器280は、例えば出力回路230の入力信号STATUSにより示されるようなエンジンの動作状態に応じて動作してもよい。たとえば、エンジンの始動段階では、モード選択器280は第二の動作モードを選択してもよく、これによって、カムシャフトが実質的に静止している時、すなわち信号PPがまだ現在の回転角度の評価に十分なパルス数を持っていないかもしれない時であっても、カムシャフト100の現在の回転角度に関する有益な情報を提供する。カムシャフト100が特定の数だけ回転した後、例えば完全に1回転した後、またはカムシャフト100の角速度が閾値を超えた場合、モード選択器280は第一の動作モードを選択してもよく、このモードでは従来の歯車型回転センサにより一般的に提供される出力信号をエミュレートする出力信号OUTが発生されてもよい。
信号PPの中に含まれるパルスパターンの例が図3Aに示されている。このパルスパターンは、図3Bに概略的に示されている歯車型回転センサ20の出力信号をエミュレートするものと仮定される。図の例では、パルスパターンは3つのパルス11、12、13からなり、各々のパルスデューティ比が異なる。各パルス11、12、13は、歯車型回転センサ20の歯車の歯21、22、23に対応する。特に、パルス11は歯車の歯21に対応し、パルス12は歯車の歯22に対応し、パルス13は歯車の歯23に対応する。
回転センサ20の中で、歯21、22、23は各々、2つの端縁21A、21B、22A、22B、23A、23Bを有し、これらは実質的に半径方向に延び、歯21、22、23の角度位置と範囲を決定する。歯車の回転中に回転角αが増大するにつれて、歯21、22、23は連続的にセンサ25を通過する。例えば、センサ25はホールセンサとすることができ、歯車の少なくとも歯21、22、23は強磁性材料で形成されてもよい。センサ25に隣接して配置されるバイアス磁石は、歯21、22、23を、それらがセンサ25を通過する際に磁化してもよく、その結果、センサ25の出力信号はパルス状に変化する。このような出力信号のパルスパターンは、図3Aに示されるように信号PPによってエミュレートされる。図の例では、図3Aのパルスパターンは、歯21の端縁21Aがセンサ25を通過する時にパルス11の立ち上がりパルス端11Aを有し、歯21の端縁21Bがセンサ25を通過する時に立ち下がりパルス端11Bを有する。同様に、図3Aに示されるパルスパターンは、歯22の端縁22Aがセンサ25を通過する時にパルス12の立ち上がりパルス端12Aを有し、歯22の端縁22Bがセンサ25を通過する時に立ち下がり端12Bを有する。同様に、図3Aのパルスパターンは、歯23の端縁23Aがセンサ25を通過する時にパルス13の立ち上がりパルス端13Aを有し、歯23の端縁23Bがセンサ25を通過する時に立ち下がりパルス端13Bを有する。
図の実施例の出力回路230は、メモリ260の中に保存されたPE角度マッピングを適当に構成することによってこのエミュレーションを実行する。例えば、歯21の端縁21Aが0°の角度位置に位置付けられていると仮定すると、PE角度マッピングは立ち上がりパルス端を0°の方位角に割り当ててもよい。同様に、歯21の端縁21Bが90°の角度位置に位置付けられている場合、PE角度マッピングは立ち下がりパルス端を90°の方位角に割り当ててもよい。残りの歯22、23に関して、歯22、23の角度位置と範囲に応じて、これに対応する割り当てが行われてもよい。立ち上がりおよび立ち下がりパルス端の割り当てにおいては、磁界方位角とカムシャフト100の回転角度の間のオフセットも考慮されてもよい。
当然ことながら、図3Aのパルスパターンはカムシャフト100の各回転について繰り返される。さらに、パルスパターン内のパルス幅と休止はカムシャフト100の回転速度に応じて変化するであろう。
前述のように、回転センサ200はカムシャフト100の現在の回転角度に関する情報をエンジンコントローラに提供するために利用されてもよい。それに対応する、回転センサ200とエンジンコントローラ400を有するシステムが図4に示されている。
図のように、エンジンコントローラ400は角度位置判定モジュール410を含む。さらに、エンジンコントローラ400は角速度判定モジュール420を含んでいてもよい。角度位置判定モジュール410と角速度判定モジュール420は、回転センサ200の出力信号を受信する。前述のように、この出力信号は、第一の動作モードによれば従来の歯車型回転センサの出力信号をエミュレートするパルスパターンを含むように発生されてもよく、または第二の動作モードによれば現在の回転角度を絶対値、例えばアナログ値、デジタル値、またはパルス幅変調値として表現するように発生されてもよい。角度位置判定モジュール410は、回転センサ200から受信した出力信号からカムシャフト100の現在の角度位置を判定する。第一の動作モードの場合、これには、パルスを計数し、より広いパルスとより狭いパルスを区別し、また現在の角速度を考慮することが関わっていてもよい。第二の動作モードでは、カムシャフト100の現在の角度位置は、回転センサ100の出力信号から事実上直接、おそらくは平滑化、補間、および/または外挿法をさらに適用して導き出されてもよい。同様に、角速度判定モジュール420は、受信した回転センサ200の出力信号からカムシャフト100の現在の角速度を判定してもよい。第一の動作モードの場合、これにも再び、パルスの計数が関わっていてもよい。第二の動作モードでは、カムシャフト100の現在の角速度が回転センサ200の出力信号によって示される回転角度の導関数として、おそらくは平滑化、補間、および/または外挿法をさらに適用して計算されてもよい。
エンジンコントローラ400は、注入制御モジュール430をさらに含む。注入制御モジュール430は、角度位置判定モジュール410によって判定される現在の角度位置と、一般的には角速度判定モジュール420により測定される現在の角速度を受け取る。この入力情報に応じて、注入制御モジュール430は、エンジンの1つまたは複数の燃焼室への燃料の注入に関するエンジンの動作を制御する。例えば、注入制御モジュール430は、燃料または空気燃料混合物の注入タイミング、注入持続時間、または注入に使用される弁の開放および/またはドエル角を制御してもよい。
さらに示されているように、エンジンコントローラ400にはまた、回転センサ管理モジュール450が設けられてもよい。回転センサ管理モジュールは例えば、回転センサ200の第一の動作モードと第二の動作モードとの切替を、例えば図2に示される入力信号STATUSを供給することによって制御する役割を果たす。さらに、回転センサ管理モジュール450は、回転センサ200の調整を実行する役割を果たしてもよい。例えば、回転センサ管理モジュール450は、第二の動作モードにおいて提供される回転センサ200の出力信号を使って、第二の動作モードの出力信号のパルスパターンから現在の角度位置の評価結果を調整してもよい。この目的のために、回転センサ管理モジュール450は、回転センサ200を第一の動作モードと第二の動作モードの間で切り替え、角度位置評価モジュール410による評価結果を比較し、第二の動作モードの出力信号を使用する際にそれらの結果からの偏差を最小限にすることを目的として、第一の動作モードに関する角度位置評価モジュール410の構成を適応させてもよい。
さらに示されているように、エンジンにはまた、1つまたは複数の追加のカムシャフト120、130が設けられていてもよい。このような実施例では、別のカムシャフト120、130に関連付けられる別の回転センサ310、320は回転センサ200と同様の構造と機能を有することができる。しかしながら、図4に示されるように、このような別の回転センサはまた、歯車型センサとすることもできる。後者の場合、第二の動作モードでの回転センサ200の出力信号もまた、角度位置判定モジュール410による追加のカムシャフト120、130の現在の角度位置の評価の調整に利用されてよい。
図5は、上記の概念を、例えば図1と2に示されるセンサ装置または図4に示されるシステムを用いて実施するために使用可能なフローチャートを示す。
ステップ510で、磁石の磁界方位角が検出される。磁石はエンジンのカムシャフトの端面に配置される。方位角の検出は磁界検出要素、例えば図1と2のセンサ要素210等によって実行される。磁界検出要素は、例えば1つまたは複数の磁気抵抗装置、例えばGMR装置、AMR装置、ホール効果装置、またはこれに類するものに基づいていてもよい。方位角は0°〜360°の範囲内で検出される。これには、磁界検出要素が方位角の絶対値を表す1つまたは複数の信号を発生することが関わっていてもよい。
ステップ520で、動作モードが選択されてもよい。これは例えば、センサ装置のモード選択機能、例えば図2のモード選択器280によって実行されてもよい。特に、電子回路の動作モードは、センサ装置の対応する出力信号を供給するように選択されてもよい。これは、エンジンの動作状態に応じて実行されてもよい。例えば、第一の動作モードはエンジンの通常動作中に選択されてもよく、第二の動作モードはカムシャフトが実質的に静止しているエンジンの起動時に選択されてもよい。図のように、第一の動作モードを選択すると、この方法はステップ530へと進んでもよく、第二の動作モードを選択すると、この方法はステップ540へと進んでもよい。
ステップ530で、信号が生成され、これは磁界検出要素によって検出された時に予め決められた方位角にマッピングされる立ち上がりおよび立ち下がりパルス端を有するパルスパターンを含む。これは、ステップ510で検出された方位角と保存されているバルス端方位角マッピングに応じて実行される。ステップ530で信号を発生するために、センサ装置には対応する電子回路、例えば図2の出力回路230が設けられてもよく、これはパルスパターン発生器250を含む。マッピングは例えば、センサ装置のメモリの中、例えば図2のメモリ260の中に保存されてもよい。いくつかの実施例において、マッピングは例えばメモリをプログラムすることによって設定可能か、再設定可能でさえあってもよい。
ステップ540で、別の信号が発生され、これは0°〜360°の範囲内でカムシャフトの現在の回転角度を表す。これは、ステップ510で検出された方位角に応じて実行される。例えば、これには磁界方位角をカムシャフトの方位角に、オフセット補正を実行することによって変換することが関わっていてもよい。さらに、これは例えばアナログ表現からデジタル表現またはパルス幅変調表現へ、またはその逆への信号変換が関わっていてもよい。ステップ540で別の信号を発生するために、センサ装置には対応する電子回路、例えばパルス絶対角度信号発生器270を含む図2の出力回路230が設けられてもよい。
ステップ530の信号またはステップ540の別の信号は、エンジンの制御を実行するための根拠として利用されてもよい。このような制御の一例は、例えば図4のエンジンコントローラ400の注入制御モジュール430によって実施されるような注入制御機能である。ステップ520での動作モードの選択は、ステップ530の信号に基づくエンジンのこのような制御の実行とステップ540の別の信号に基づくエンジンのこのような制御の実行との間の選択を行うために使用されてもよい。例えば、エンジン始動時に、エンジンの制御はステップ540の別の信号に基づいて実行されてもよく、カムシャフトが何回か回転した後、またはカムシャフトの回転速度が閾値を超えた場合、エンジンの制御はステップ530の信号に基づいて実行されてもよい。
ステップ530の信号とステップ540の別の信号はどちらも、カムシャフトの現在の回転角度の評価のために使用されてもよい。ステップ540の別の信号の場合、この評価は事実上直接的に高い固有の精度で実行できるが、ステップ530の信号のパルスパターンから現在の回転角度を評価するには、より固有の精度の低い、より複雑な評価を行う必要があるかもしれない。したがって、いくつかの実施形において、カムシャフトの現在の回転角度はステップ530の信号のパルスパターンから、例えば図4のエンジンコントローラ400の絶対角度判定モジュール410によって評価され、この評価結果は、ステップ550により示されているように、ステップ540の別の信号に基づいて調整されてもよい。このような調整は例えば、図4のエンジンコントローラ400の中の回転センサ管理モジュール450に関して説明したように、コントローラの調整機能によって実行されてもよい。
いくつかの実施例において、ステップ550の調整にはまた、ステップ540の別の信号に基づく1つまたは複数の別の回転センサの調整が関わっていてもよい。例えば、追加の回転センサ310、320等の従来の歯車型センサは、ステップ540の別の信号を使って調整できる。
留意すべき点として、図5の方法のステップは図の順番で実行しなくてもよい。例えば、ステップ530の信号とステップ540の別の信号は平行して発生することもでき、ステップ520の選択はこれらの信号のどちらがその後の評価のために出力されるかにのみ影響を与えることができる。
当然のことながら、上記の概念と実施形態には様々な改良を加えることができる。例えば、各種の歯車の輪郭形状に対応する各種のパルスパターンをエミュレートできる。このようなエミュレーションはまた、歯の角度位置と範囲をエミュレートするためだけでなく、歯の輪郭形状の特徴、例えば歯の半径方向の寸法または歯の端縁の傾斜等もエミュレートするように拡張してもよい。さらに、回転センサは他の種類の検出装置または他の種類の磁石、例えばより複雑な多極磁石を使用することもできる。さらに、この概念はまた、他の種類のシャフトにも、対応する方法で応用してもよい。例えば、いくつかの実施形態において、上記の実施形態のカムシャフト100はエンジンのクランクシャフトに置き換えることもできる。
また、本考案は以下に記載する態様を含む。
(態様20)
エンジンのカムシャフトの端面に配置された磁石の磁界の中に位置付けられる磁界検出要素が、0°〜360°の範囲で前記磁界の方位角を検出するステップと、
前記検出方位角と保存されたパルス端方位角マッピングに応じて、前記磁界検出要素によって検出された時に予め決められた方位角にマッピングされる立ち上がりおよび立ち下がりパルス端を有するパルスパターンを含む信号を発生するステップと、
を含む方法。
(態様21)
前記検出方位角に応じて、0°〜360°の範囲で前記カムシャフトの現在の回転角度を表す別の信号を発生するステップを含む、態様20に記載の方法。
(態様22)
前記エンジンの動作状態に応じて、前記信号に基づく前記エンジンの制御の実行と前記別の信号に基づく前記エンジンの制御の実行との間で選択するステップを含む、態様21に記載の方法。
(態様23)
前記エンジンの始動時に、前記別の信号に基づく前記エンジンの制御を実行するステップを含む、態様22に記載の方法。
(態様24)
前記カムシャフトが所定の回数回転した後に、前記信号に基づく前記エンジンの制御を実行するステップを含む、態様23に記載の方法。
(態様25)
前記信号の前記パルスパターンから前記カムシャフトの前記回転角度を評価するステップと、
前記カムシャフトの前記回転角度の前記評価を前記別の信号を使って調整するステップと、
を含む、態様21に記載の方法。
20 歯車型回転センサ
21、22、23 歯車の歯
25 センサ
100 カムシャフト
200 センサ装置
210 磁界検出要素
220 磁石
230 出力回路
250 パルスパターン発生器
260 メモリ
270 絶対角度信号発生器
280 モード選択器
400 エンジンコントローラ
410 角度位置判定モジュール
420 角速度判定モジュール
430 注入制御モジュール
450 回転センサ管理モジュール

Claims (19)

  1. エンジンのカムシャフトの端面に位置付けられる磁石の磁界中に位置付けられることになる磁界検出要素であって、0°〜360°の範囲で前記磁界の方位角を検出するように構成された磁界検出要素と、
    パルス端方位角マッピングを保存するメモリと、
    前記検出方位角と前記保存されたパルス端方位角マッピングに応じて、前記磁界検出要素により検出された時に予め決められた方位角にマッピングされる立ち上がりおよび立ち下がりパルス端を有するパルスパターンを含む信号を発生するように構成される電子回路と、
    を含むセンサ装置。
  2. 前記電子回路がさらに、前記検出方位角に応じて、0°〜360°の範囲で前記カムシャフトの現在の回転角度を表す別の信号を発生するように構成される、請求項1に記載のセンサ装置。
  3. 前記現在の回転角度が、デジタル値、アナログ値、パルス幅変調値からなる群から選択された値により表される、請求項2に記載のセンサ装置。
  4. 前記電子回路には、前記電子回路が前記信号を出力するように構成される第一の動作モードと、前記電子回路が前記信号の代わりに前記別の信号を出力するように構成される第二の動作モードが設けられる、請求項2に記載のセンサ装置。
  5. 前記電子回路が、前記エンジンの動作状態に応じて前記第一の動作モードと前記第二の動作モードとを切り替えるように構成される、請求項4に記載のセンサ装置。
  6. 前記電子回路が、前記エンジンの始動時に前記第二の動作モードを使用するように構成される、請求項5に記載のセンサ装置。
  7. 前記電子回路が、前記カムシャフトが所定の回数回転した後に前記第一の動作モードに切り替えるように構成される、請求項6に記載のセンサ装置。
  8. 前記電子回路がさらに、前記検出方位角に応じて、前記カムシャフトの角速度を表す別の信号を発生するように構成される、請求項1に記載のセンサ装置。
  9. 前記角速度が、デジタル値、アナログ値、パルス幅変調値からなる群から選択される値により表される、請求項8に記載のセンサ装置。
  10. 前記予め決められたマッピングが設定可能である、請求項1に記載のセンサ装置。
  11. 前記シャフトの前記端面に位置付けられることになる前記磁石を含む、請求項1に記載のセンサ装置。
  12. コントローラと、
    エンジンのカムシャフトに関連付けられた少なくとも1つの請求項1に記載のセンサ装置と、
    を含むシステムにおいて、
    前記少なくとも1つのセンサ装置が、第一の信号と第二の信号を出力するように構成され、
    前記第一の信号が、前記検出方位角と保存されたパルス端方位角マッピングに応じて発生され、前記磁界検出要素により検出された時に予め決められた方位角にマッピングされる立ち上がりおよび立ち下がりパルス端を有するパルスパターンを含み、
    前記第二の信号が0°〜360°の範囲で前記シャフトの前記現在の回転角度を表し、
    前記コントローラが、前記第一の信号と前記第二の信号を受信して、前記第一の信号と前記第二の信号に応じて前記エンジンを制御するように構成されるシステム。
  13. 前記少なくとも1つのセンサ装置に、前記電子回路が前記第一の信号を出力するように構成される第一の動作モードと、前記少なくとも1つのセンサ装置が前記第一の信号の代わりに前記第二の信号を出力するように構成される第二の動作モードが設けられる、請求項12に記載のシステム。
  14. 前記コントローラが、前記エンジンの動作状態に応じて前記少なくとも1つのセンサ装置の前記第一の動作モードと前記第二の動作モードとの間の切替を制御するように構成される、請求項13に記載のシステム。
  15. 前記コントローラが、前記エンジンの始動時には前記少なくとも1つのセンサ装置を前記第二の動作モードに切り替え、前記カムシャフトが所定の回数回転した後に前記少なくとも1つのセンサ装置を前記第一の動作モードに切り替えるように構成される、請求項14に記載のシステム。
  16. 前記少なくとも1つのセンサ装置がさらに、前記カムシャフトの角速度を表す別の信号を発生するように構成される、請求項12に記載のシステム。
  17. 前記コントローラが、前記第一の信号の前記パルスパターンから前記カムシャフトの前記回転角度を評価するように構成される、請求項12に記載のシステム。
  18. 前記コントローラが、前記第二の信号を使って前記カムシャフトの前記回転角度の前記評価を調整するように構成される、請求項17に記載のシステム。
  19. 前記エンジンの別のカムシャフトに関連付けられた少なくとも1つの別のセンサ装置を含み、
    前記少なくとも1つの別のセンサ装置が、第三の信号を出力するように構成され、
    前記別の信号が、前記別のカムシャフトの予め決められた回転角度にマッピングされた前記パルスの立ち上がりおよび立ち下がり端を有する別のパルスパターンを含み、
    前記コントローラが、前記第三の信号の前記パルスパターンから前記別のカムシャフトの前記回転角度を評価し、前記別のカムシャフトの前記回転角度の前記評価を前記第二の信号を使って調整するように構成される、請求項12に記載のシステム。
JP2015001253U 2014-03-21 2015-03-18 カムシャフト回転センサ Active JP3199870U (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/221,570 US9488498B2 (en) 2014-03-21 2014-03-21 Cam shaft rotation sensor
US14/221,570 2014-03-21

Publications (1)

Publication Number Publication Date
JP3199870U true JP3199870U (ja) 2015-09-17

Family

ID=54053813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001253U Active JP3199870U (ja) 2014-03-21 2015-03-18 カムシャフト回転センサ

Country Status (4)

Country Link
US (1) US9488498B2 (ja)
JP (1) JP3199870U (ja)
CN (1) CN204831170U (ja)
DE (1) DE102015104195A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125768B2 (en) 2014-06-17 2021-09-21 Infineon Technologies Ag Angle based speed sensor device
US20170097247A1 (en) * 2015-10-02 2017-04-06 Schaeffler Technologies AG & Co. KG Sensor assembly with an encoder disc
DE102016110614A1 (de) * 2016-06-09 2017-12-14 Thyssenkrupp Ag Welle, insbesondere Nockenwelle, mit einer Vorrichtung zur Ermittlung einer Drehzahl und eines Drehwinkels der Welle
CN109283355B (zh) * 2017-07-20 2022-07-01 英飞凌科技股份有限公司 基于角度的速度传感器设备
CN110185545B (zh) * 2018-02-23 2022-01-21 大陆汽车电子(连云港)有限公司 凸轮轴传感器最小电平宽度设置方法及发动机电控系统
FR3085422B1 (fr) * 2018-08-29 2020-11-27 Continental Automotive France Cible d'arbre a cames reversible
CN109238211A (zh) * 2018-10-29 2019-01-18 中船动力研究院有限公司 一种旋转件绝对值角度采集装置
FR3090859B1 (fr) 2018-12-19 2021-09-10 Continental Automotive France Synchronisation d’un moteur à combustion interne
DE102020201441A1 (de) * 2020-02-06 2021-08-12 Infineon Technologies Ag Aktualisieren eines Standardschaltpegels

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69219077T2 (de) * 1991-11-12 1997-11-13 Chrysler Corp Sensor für Zündanlage
US5740895A (en) 1996-05-22 1998-04-21 Warn Industries Integrated wheel end system
DE19722016A1 (de) 1997-05-27 1998-12-03 Bosch Gmbh Robert Anordnung zur berührungslosen Drehwinkelerfassung
DE19900641A1 (de) 1999-01-11 2000-01-27 Siemens Ag Vorrichtung und Verfahren zur Drehwinkelerkennung der Nockenwelle einer mehrzylindrigen Brennkraftmaschine
DE10034927A1 (de) 2000-07-18 2002-02-07 Infineon Technologies Ag Verbrennungsmotor mit Magnet-Sensoranordnung zur Messung des aktuellen Drehwinkels
US7066016B2 (en) * 2004-04-06 2006-06-27 International Engine Intellectual Property Company, Llc Camshaft position sensor testing system
CN101035967B (zh) * 2004-10-06 2010-06-09 谢夫勒两合公司 用于调整活塞式内燃机凸轮轴相对于曲轴的转角位置的方法
EP1802851B1 (de) * 2004-10-20 2008-02-27 Schaeffler KG Verfahren zum einstellen der drehwinkellage der nockenwelle einer hubkolben- verbrennungsmaschine relativ zur kurbelwelle
DE502005005146D1 (de) * 2004-11-16 2008-10-02 Schaeffler Kg Verfahren zum einstellen der drehwinkellage der nockenwelle einer hubkolben-verbrennungsmaschine relativ zur kurbelwelle
JP2006226816A (ja) 2005-02-17 2006-08-31 Denso Corp 回転角度検出装置
US7116100B1 (en) 2005-03-21 2006-10-03 Hr Textron, Inc. Position sensing for moveable mechanical systems and associated methods and apparatus
DE102005027654A1 (de) 2005-06-15 2006-12-21 Robert Bosch Gmbh Sensor zur Positionserkennung beim Start einer Verbrennungskraftmaschine
CN101263281B (zh) * 2005-08-09 2010-09-08 谢夫勒两合公司 活塞式内燃机以及用于确定安置在曲轴和凸轮轴之间的传递元件的磨损的方法
JP2008026081A (ja) 2006-07-19 2008-02-07 Toyota Motor Corp 回転角検出装置
DE102007013755B4 (de) 2007-03-22 2020-10-29 Te Connectivity Germany Gmbh Indikatorelement für einen magnetischen Drehwinkelgeber
US7814874B2 (en) * 2007-03-23 2010-10-19 Gm Global Technology Operations, Inc. Controlling two cam phasers with one cam position sensor
US8355239B2 (en) * 2008-01-29 2013-01-15 Infineon Technologies Ag Predictive phase locked loop system
EP2161547A1 (en) 2008-09-05 2010-03-10 Magneti Marelli Powertrain S.p.A. Control unit and method for determining the angular position of a drive shaft of an internal combustion engine
US8960139B2 (en) * 2009-09-25 2015-02-24 GM Global Technology Operations LLC Engine assembly having camshaft with non-magnetic journal
JP5126290B2 (ja) 2010-06-07 2013-01-23 株式会社安川電機 エンコーダ、サーボモータ、サーボユニット及びエンコーダの製造方法
US9182456B2 (en) 2012-03-06 2015-11-10 Allegro Microsystems, Llc Magnetic field sensor for sensing rotation of an object
JP2013257231A (ja) 2012-06-13 2013-12-26 Jtekt Corp 回転角センサ
US20140288883A1 (en) * 2013-03-25 2014-09-25 Infineon Technologies Ag Method for determining an angle of a magnetic pole of a rotating object

Also Published As

Publication number Publication date
US9488498B2 (en) 2016-11-08
CN204831170U (zh) 2015-12-02
US20150268065A1 (en) 2015-09-24
DE102015104195A1 (de) 2015-09-24

Similar Documents

Publication Publication Date Title
JP3199870U (ja) カムシャフト回転センサ
JP6382157B2 (ja) 回転センサ
US10102992B2 (en) Switching apparatus, switching system and switching method
EP3483566B1 (en) Magnetic field sensor using a calculated threshold and corresponding method
US9500465B2 (en) Method and device for determining a recognition threshold
US9182456B2 (en) Magnetic field sensor for sensing rotation of an object
US8656762B2 (en) Method for detecting a rotation angle
US11733260B2 (en) Angle based speed sensor device
JP6479068B2 (ja) 出力を提供するための可変の切換閾値の使用
JP6356340B2 (ja) 回転エレメントの少なくとも1つの回転特性を決定するためのセンサ
WO2004013641A1 (en) Phase stability of non-sinusoidal signals utilizing two differential halls
KR20160082888A (ko) 모터 회전방향 검출장치
CN105934878B (zh) 用于校准机动车的电机的方法和用于机动车的电机
JP4591034B2 (ja) 回転角検出装置
CN109283355B (zh) 基于角度的速度传感器设备
JP6365334B2 (ja) モータ制御装置
KR101822722B1 (ko) 차량의 캠 위치 검출 장치 및 방법
JP2004157116A (ja) 回転する対象の角度位置を検知する装置および方法
CN113439197A (zh) 具有增加的分辨率的磁速度传感器
CN110678637B (zh) 用于报告信号传感轮的方位变化的设备和方法
JP2014531033A (ja) センサエレメントの測定値を修正する方法
KR20170077676A (ko) 차량의 회전체 검출 장치 및 방법
Heda et al. Arduino based logic for ECM remote testing by generating engine and vehicle speed signals
JP2023156059A (ja) 電動オイルポンプ
JP4514776B2 (ja) 内燃機関のクランク角度検出装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 3199870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250