JP4514776B2 - 内燃機関のクランク角度検出装置 - Google Patents

内燃機関のクランク角度検出装置 Download PDF

Info

Publication number
JP4514776B2
JP4514776B2 JP2007204311A JP2007204311A JP4514776B2 JP 4514776 B2 JP4514776 B2 JP 4514776B2 JP 2007204311 A JP2007204311 A JP 2007204311A JP 2007204311 A JP2007204311 A JP 2007204311A JP 4514776 B2 JP4514776 B2 JP 4514776B2
Authority
JP
Japan
Prior art keywords
level
rotation
signal
edge
predetermined position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007204311A
Other languages
English (en)
Other versions
JP2009041375A (ja
Inventor
保義 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007204311A priority Critical patent/JP4514776B2/ja
Priority to DE102007059500A priority patent/DE102007059500A1/de
Publication of JP2009041375A publication Critical patent/JP2009041375A/ja
Application granted granted Critical
Publication of JP4514776B2 publication Critical patent/JP4514776B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/06Reverse rotation of engine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/85Determining the direction of movement of an encoder, e.g. of an incremental encoder

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

この発明は、内燃機関のクランク軸の角度及び回転方向を検出するクランク角度検出装置に関するものである。
従来の内燃機関のクランク角度検出装置は、特許文献1に示されるように、クランク軸に取り付けられた被検出部である歯状磁性体の歯をセンサにより検出し、コントロールユニットに信号を伝送するクランク角度検出装置において、信号の少なくとも1部は、クランク軸の回転方向についての情報を含んでおり、クランク軸の回転方向に依存して、信号の相異なるパルス長により、回転方向情報を符号化すると共に、当該信号に含まれている回転方向情報をコントロールユニットにて評価するものである。更に、クランクシャフト最高回転時に歯状磁性体の歯が通過した際に信号発生手段にて形成されるものを角度マーク信号としたときに、すべてのパルス幅は、角度マーク信号のパルス幅よりも短くするものや、回転方向情報を含む信号を、あらかじめ定めたクランク軸の最大回転数以下の場合だけ伝送するものも開示されている。
しかし、特許文献1に開示されているクランク角度検出装置では、クランク軸の回転速度を高回転まで対応させるには、パルス幅を短くする必要があるが、パルス幅が短くなるとノイズとの区別が困難となる。また短いパルス幅を検出するためには入力回路の応答性を上げる必要があり、ノイズ防止のローパスフィルタを掛けることが困難となる。一方、回転方向情報をある回転速度以下に制限する場合は、センサ内でパルス周波数又はクランク軸回転速度を検出する必要があり、センサの構造が複雑になる恐れがある。また、歯間の角度、欠け歯の有無、欠け歯数等によりセンサの特性を変更しなければならなくなるという諸問題点がある。
また、従来の歯状磁性体の移動方向を検出する磁気検出装置は、特許文献2に示されるように、歯状磁性体の移動方向に並べて配置されたMR素子等の磁気抵抗効果素子体の抵抗変化を出力する第1及び第2抵抗変化出力回路を備え、第1及び第2抵抗変化出力回路の出力の相互の位相による信号出力と前記抵抗変化出力回路の出力によりパルスを発生するものであり、被検出対象の移動方向に応じて、パルスのハイレベルとローレベルの少なくともいずれかを異にするものである。
例えば、図28は、特許文献2に記載された磁気検出装置の回路図、図29は図28の回路図の各部c〜jの波形c〜jを示す波形図であり、その(a)は歯状磁性体が正転した時、その(b)は逆転した時のものである。
正転時(a)はMR素子101の方がMR素子104より歯状磁性体4が早く近づくため、MR素子101側ブリッジ回路102の信号cによる第1比較回路103の出力eの方が、MR素子104側ブリッジ回路105の信号dによる第2比較回路106の出力fより、位相(発生時期)が早くなる。そのため、立ち上がりエッジトリガタイプのDフリップフロップ108の出力gは常にハイレベルとなり、トランジスタ109はオン状態となる。出力トランジスタ107がオフの時は正転時、逆転時にかかわらず、出力hレベルは電源端子VCCの電圧で決定されるハイレベルとなるが、オン状態では出力トランジスタ107とトランジスタ109から供給される電流と抵抗110の積で決定されるローレベル1となる。
これに対し、逆転時(b)はMR素子104の方がMR素子101より歯状磁性体4が
早く近づくため、MR素子104側ブリッジ回路105の信号dによる第2比較回路106の出力fの方が、MR素子101側ブリッジ回路102の信号cによる第1比較回路103の出力eより、位相(発生時期)が早くなる。このため、Dフリップフロップ109の出力gは常にローレベルとなり、トランジスタ109はオフ状態となる。よって、出力hレベルは、出力トランジスタ107がオン状態の時は出力トランジスタ107が供給する電流と抵抗110の積で決定されるローレベル2となる。
以上より、出力hレベルは3レベルをとり、この大小関係はハイレベル>ローレベル1>ローレベル2であり、正転時はハイレベルとローレベル1、逆転時はハイレベルとローレベル2の信号パルスとなるので、ローレベル1,2の値により、回転方向検知が可能となる。なお、図28で113は抵抗、111は第3比較回路、112は第4比較回路である。
特開2005−256842号公報 特許第3588044号公報
しかし、前記特許文献2に開示されている磁気検出装置では、歯状磁性体の検出を示す信号(立ち上がり及び立ち下がりエッジ)と回転方向を示す情報(正転及び逆転)の組み合わせについては特に述べられていないため、それぞれ2通りの情報であるから計4通りの情報が必要となる。一方、出力hのレベルが3レベルの場合、出力hの情報量としては3通りしか無く情報量不足の為、歯状磁性体の検出信号もしくは回転方向を間違える懸念がある。例えば図30は、歯状磁性体4が正転から逆転に反転する際の波形図で、(i)
は、eがハイレベル,fがローレベルの状態、(ii)は、e,f共にローレベルの状態、図31は、逆転から正転に反転する際の波形図で、e,f共にハイレベルの状態で反転したものである。
図30(i)内の出力hにおいて、正転から逆転に変化した直後のエッジ(h1)は、
すでに逆転しているにも関わらず、その前の正転中のエッジ(h2)、図30(ii)内の出力hにおける正転中のエッジ(h3)と区別することができず、回転方向を正転と誤検知してしまう。
同様に、図31内の出力hにおける、逆転から正転に変化した直後のエッジ(h4)も、すでに正転しているにも関わらず、その前の逆転中のエッジ(h5)と区別することができず、回転方向を逆転と誤検知してしまう。
また、前記誤検知を防止する為に、出力hレベルを4レベルとした場合には、情報量は4通りとなるため、誤検知は防止することができるが、出力hを判別するコントロールユニット14も4レベルに対応させる必要があるため、3レベルの時に比べ更に比較回路の追加が必要になる。また最高レベルと最低レベルの電位差を広げるとコントロールユニット14の構成を大幅に変更する必要があるため、従来の電位差と同一とすれば、レベルを増やすことによりレベル間の差が少なくなり、より高精度な回路が必要になるなど、コントロールユニット14の構成が複雑になり、また使用する部品も高価となりコストアップを招くという問題点があった。
この発明は、前述のような問題点を解消するためになされたもので、出力レベルが3レベルの信号で、クランク軸の角度及び回転方向を正確に検出できる内燃機関のクランク角度検出装置を得ることを目的とする。
この発明に係わる内燃機関のクランク角度検出装置は、内燃機関のクランク軸に同期して回転する被検出部と、前記被検出部を検出すると共に前記クランク軸の回転方向を検出し、前記クランク軸の回転方向に基づき前記被検出部における所定位置に対応する部分を判定し、判定した前記所定位置と回転方向の情報を含む3レベルの信号である回転情報信号をコントロールユニットに出力する検出手段とを備えると共に、前記回転情報信号のレベルが変化する際のエッジにおいて、レベルの変化方向および変化後のレベルの組合せで区別されるエッジの種類のうちの特定の種類のエッジに前記所定位置及び回転方向情報が対応しており、前記コントロールユニットには、前記回転情報信号について少なくともレベルの変化の状態を含むレベル変化情報を出力するレベル変化検出手段、及び、前記レベル変化情報に基づき前記所定位置及び回転方向情報が対応した前記特定の種類のエッジを検出することにより、前記クランク軸の角度および回転方向を検出するクランク角度算出手段を備えたものである。
この発明の内燃機関のクランク角度検出装置によれば、内燃機関のクランク軸に同期して回転する被検出部を検出すると共にクランク軸の回転方向を検出し、クランク軸の回転方向に基づき被検出部における所定位置に対応する部分を判定し、判定した所定位置と回転方向の情報を含む3レベルの信号である回転情報信号をコントロールユニットに出力し、回転情報信号のレベルが変化する際のエッジにおいて、レベルの変化方向および変化後のレベルの組合せで区別されるエッジの種類のうちの特定の種類のエッジに被検出部における所定位置及び回転方向情報を対応させることができ、更に回転情報信号についてレベルの変化の状態を検出することで所定位置及び回転方向情報が対応した前記特定の種類のエッジに対応する部分を検出することで、クランク軸の角度及び回転方向を正確に検出することができる。
実施の形態1.
図1は基礎部分である磁気検出センサを示すシステム構成図である。図2は基礎部分である第1信号発生手段11及び第2信号発生手段12の回路図である。図3はこの発明の実施の形態1における4気筒内燃機関のシステム構成図である。図4は実施の形態1の内燃機関のクランク角度検出装置の概念構成図である。なお、明細書を通じて、各図中、同一符号は同一又は相当部分を示す。
図1〜図4を用いて、実施の形態1による内燃機関のクランク角度検出装置の構成について説明する。図1において、2は第1信号発生手段11及び第2信号発生手段12を備えた磁気検出センサで、クランク軸に固定された歯状磁性体4に備えられた複数の歯(凸部又は検出点)の所定位置及び回転方向を検出するものである。第1信号発生手段11及び第2信号発生手段12は、それぞれ磁気抵抗効果素子(MR素子という)を内在している。第1信号発生手段11及び第2信号発生手段12は、歯状磁性体4に対向させ、その回転方向に並べて配置されており、特許文献2と同様の構成で、MR素子を備え、図2に示すように、MR素子101と抵抗で構成されたブリッジ回路102と比較回路103を備えている。18はバイアス磁界を発生させる磁石18である。
なお、第1信号発生手段11と第2信号発生手段12のMR素子、ブリッジ回路及び比較回路を区別するため、第1信号発生手段12におけるMR素子は101、ブリッジ回路は102、比較回路は103とし、第2信号発生手段12におけるMR素子は104、ブリッジ回路は105、比較回路は106とする。なお、バイアス磁界は歯状磁性体4を永久磁石化して発生させてもよい。
各信号発生手段11,12には、歯状磁性体4の回転により、歯状磁性体4の各歯における凹部と凸部とが交互に接近するため、各信号発生手段11,12のMR素子101,104に印加される磁界が変化する。ブリッジ回路102,105は、望ましくは定電圧、定電流の電源(制御電源電圧)Vccに接続されており、磁界変化によるMR素子101,104の抵抗変化を電圧に変換すると共に、基準電圧115を生成し、比較回路10
3,106において、それらの電圧(114,115)を比較することで歯状磁性体4の各歯における凸部でローレベルとなる矩形波が得られる。このようにして得られた矩形波が、第1及び第2信号発生手段11,12における第1及び第2信号となる。
図3において、1は内燃機関、2はクランク軸3に固定して取り付けられ、クランク軸3に同期して回転する歯状磁性体(被検出部)4の歯(凸部)を検出することにより回転情報信号を出力するセンサ(検出手段)である。歯状磁性体4は、クランク軸3に固定されているため、歯状磁性体4の角度及び回転方向を検出することで、クランク軸3の角度及び回転方向を得ることができる。歯状磁性体4には、クランク軸の角度をCAと表記するものとすると、20°CA毎に計17個の10°CA幅の歯が形成されている。この実施の形態1では、各気筒を符号#で表記するものとすれば、#1及び#4における圧縮上死点後75゜CAから105゜CAの部分を欠け歯としている。
5は、カム軸6に取り付けられた磁性体7の歯を検出することにより気筒識別信号を出力するセンサである。カム軸6は、タイミングベルトなどの機械的伝達手段を介してクランク軸3と連結されており、クランク軸3が2回転する間に1回転する。磁性体7は、センサ5が♯1の圧縮上死点から#4の圧縮上死点までハイレベルとなる気筒識別信号を発生するよう突起を備えている。これにより、歯状磁性体4の欠け歯後105゜CAに対応する気筒識別信号のレベルがハイレベルかローレベルかによって各気筒の行程およびクランク角の位置を特定することができる。例えば、欠け歯後の105゜CAの気筒識別信号がハイレベルの場合には、#1の105゜CAと特定することができる。
8は、センサ2とコントロールユニット9を接続する信号線であり、センサ2が出力した回転情報信号をコントロールユニット9に伝送するものである。コントロールユニット9は、CPU、メモリ等を含み、センサ2の他に、センサ5などが接続されている。
図4は、実施の形態1の内燃機関のクランク角度検出装置の概念構成図で、センサ(検出手段)2およびコントロールユニット9を示す。11,12は第1信号発生手段及び第2信号発生手段で、歯状磁性体4に対向させ、その回転方向に並べて配置されている。各信号発生手段は、用いる磁気センサとしては、磁気抵抗効果素子であってもよいが、ホール素子でもよい。各信号発生手段は、歯状磁性体4の各歯(凸部)が通過した時に、ロー
レベルとなる矩形波を発生する。このようにして得られた矩形波を、それぞれ第1信号(A)及び第2信号(B)として回転情報信号出力手段13に入力する。
回転情報信号出力手段13は、第1信号(A)及び第2信号(B)に基づき、歯状磁性体4の回転方向及び歯状磁性体4の各歯における所定位置を判定し、所定位置(磁性体位置)及び回転方向が含まれた回転情報信号(C)を生成する。回転情報信号(C)は、3レベルの信号で、レベルが変化する際のエッジ及びそのエッジにおける変化後レベルに、所定位置及び回転方向が対応している。例えば、所定位置は高レベルから中レベル又は低レベルへ変化する際の立ち下がりエッジと対応し、回転方向は、所定位置が対応している立ち下がりエッジにおける変化後レベルが低レベル時は正転、中レベル時は逆転に対応しており、信号線8を経てコントロールユニット9に備えられたレベル変化検出手段14に出力される。但し、詳細は後述するが、回転方向が反転した後の初回エッジのうち、所定位置及び回転方向に対応するエッジの一部は、前述のエッジとは異なる場合がある。
レベル変化検出手段14では、回転情報信号(C)を2つの比較回路に入力することで、
回転情報信号(C)のレベル変化を検出して、2つの信号から成る第1レベル変化情報(D)及び第2レベル変化情報(E)をクランク角度算出手段15に出力する。クランク角度算出手段15では、これらのレベル変化情報(D)および(E)に基づき、所定位置及
び回転方向が対応したエッジを検出することにより、クランク軸3の角度を算出する。
次に動作について説明する。図5は図4の回転情報信号出力手段13及びレベル変化検出手段14の回路図、図6は、図5の回路図の各部(A)〜(E),(K)〜(M)の波
形(A)〜(E),(K)〜(M)を示す波形図であり、その(a)は歯状磁性体4が正
転した時、その(b)は逆転した時のものである。
まず、第1信号(A)と第2信号(B)について、位相及び歯状磁性体4の回転方向との関係を説明する。図6において正転時(a)は、歯状磁性体4の歯は◆側から近づくため、第1信号(A)の方が第2信号(B)より位相(発生時期)が早く、◆部に対応した位置で各信号はローレベルとなり立ち下がりエッジが発生する。また、歯状磁性体4の歯は◇側から離れていくため、◇部に対応した位置で各信号はハイレベルとなり立ち上がりエッジが発生する。
一方、逆転時(b)は、歯状磁性体4の歯は◇側から近づくため、第2信号(B)の方が第1信号(A)より位相(発生時期)が早く、◇部に対応した位置で各信号はローレベルとなり立ち下がりエッジが発生する。また、歯状磁性体2の歯は◆側から離れていくため、◆部に対応した位置で各信号はハイレベルとなり立ち上がりエッジが発生する。これらより、第1信号(A)の立ち上がり及び立ち下がりエッジでの第2信号(B)のレベルにより、歯状磁性体4の回転方向を判定することが可能であり、第1信号(A)の各エッジでの第2信号(B)レベルと歯状磁性体4の回転方向の関係を図7に示す。
回転情報信号出力手段13では、まず、図7の関係から歯状磁性体4の回転方向を判定するとともに、得られた回転方向から第1信号(A)に対し歯状磁性体4の各歯における所定位置を判定する。図6において、正転時は第1信号(A)の立ち下がりエッジ、逆転時は第1信号(A)の立ち上がりエッジを検出することで、歯状磁性体4の◆部を所定位置として判定する。
次に、歯状磁性体4の所定位置と回転方向から、回転情報信号(C)を生成するために、歯状磁性体4の◆部判定時に、回転方向に関わらず立ち上がりエッジとなる所定位置信号(M)、正転時はローレベル、逆転時はハイレベルとなる回転方向信号(L)を生成しておく。これらの信号は、図7の関係を基に周知の論理回路を組み合わせたものに、第1信号(A)及び第2信号(B)を入力することで生成できる。例えば、エッジ検出を行うためのNOT回路及び立ち上がりエッジトリガタイプのDフリップフロップ回路、回転方向を決定するためのAND回路,OR回路,NOT回路、所定位置を決定するためのXOR回路から構成された図5の回路131に示すものがよい。
図5において、51,53はNOT回路、52,54は立ち上がりエッジトリガタイプのDフリップフロップ、55,56はAND回路、57はOR回路である。いずれも周知の論理回路であり、NOT回路は入力を反転するもの、AND回路はすべての入力がハイレベルの時のみハイレベルを出力するもの、OR回路は、入力のいずれかがハイレベルの時にハイレベルを出力するものである。また、立ち上がりエッジトリガタイプのDフリップフロップはCL端子に立ち上がりエッジが入力された時のD端子レベルをQ端子に出力し、CL入力が立ち上がりエッジ以外のときはD端子レベルに関係なく、Q端子の出力は前の状態を保つものである。
第1信号(A)の立ち上がりエッジを検出するために、第1信号(A)をDフリップフロップ52のCL端子に入力し、NOT回路51に入力後の第2信号(B)をD端子に入力する。これにより、正転時は図6より第1信号(A)が立ち上がりエッジの時、第2信号(B)はローレベルのため、NOT回路によりD端子はハイレベルとなり、Q端子の出
力もハイレベルとなる。また、逆転時では第1信号(A)が立ち上がりエッジの時、第2信号(B)はハイレベルのため、NOT回路によりD端子はローレベルとなり、Q端子の出力もローレベルとなる。
同様に、第1信号(A)の立ち下がりエッジを検出するために、NOT回路53入力後の第1信号(A)をDフリップフロップ54のCL端子に入力し、第2信号(B)をD端子に入力する。これにより、第1信号(A)の立ち下がりエッジ時にCL端子は立ち上がりエッジとなり、その時の第2信号(B)はハイレベルのため、D端子はハイレベルとなり、Q端子の出力もハイレベルとなる。また、逆転時では、第1信号(A)が立ち下がりエッジの時、第2信号(B)はローレベルのため、D端子はローレベルとなり、Q端子の出力もローレベルとなる。いずれのDフリップフロップ出力も、それぞれのエッジ入力後は、正転時はハイレベル、逆転時はローレベルとなる。
次に、Dフリップフロップ52,54の出力のうち第1信号(A)のエッジ入力に対応している信号を選択するために、Dフリップフロップ52のQ端子と第1信号(A)をAND回路55に、Dフリップフロップ54のQ端子とNOT回路53入力後の第1信号(A)をAND回路56に入力し、更にAND回路55及び56の出力を、OR回路57に入力する。これにより、第1信号(A)の立ち上がりエッジ後はハイレベルのため、AND回路55の出力はDフリップフロップ52のQ端子と等しくなり、一方、NOT回路53入力後の第1信号(A)はローレベルとなるため、AND回路56の出力は、ローレベルとなる。よって、OR回路57の出力はAND回路55と等しく、Dフリップフロップ52のQ端子と等しくなる。
また、第1信号(A)の立ち下がりエッジ後はローレベルのため、AND回路55の出力はローレベルとなり、一方、NOT回路53入力後の第1信号(A)はハイレベルとなるため、AND回路56の出力は、Dフリップフロップ54のQ端子と等しくなる。よって、OR回路57の出力はAND回路56と等しく、Dフリップフロップ54のQ端子と等しくなる。以上より、第1信号(A)の各エッジに対応した信号を正しく選択することができ、回路131は、歯状磁性体4の回転方向信号(K)として、正転時はハイレベル、逆転時はローレベルを出力する。そして、NOT回路58で回転方向信号(K)を反転させることにより、正転時はローレベル、逆転時はハイレベルとなる回転方向信号(L)を生成する。
歯状磁性体4の所定位置を判定するXOR回路59では、回転方向信号(K)のレベルにより第1信号(A)を変換することで歯状磁性体4の各歯における所定位置信号(M)を生成する。XOR回路59は、周知の論理回路で2入力が異なる場合に、ハイレベルを出力するものである。第1信号(A)及び回転方向信号(K)をXOR回路59に入力しており、正転時は、回転方向信号(K)はハイレベルのため、XOR回路の出力は第1信号(A)が反転したものとなる。
一方、逆転時は、回転方向信号(K)はローレベルのため、XOR回路の出力は第1信号(A)と等しくなる。以上より、歯状磁性体4の各歯における所定位置(各歯の特定の一方の角部)を◆部とすると、XOR回路59の出力(M)は回転方向に関わらず、所定位置◆では立ち上がりエッジとなる。
回転情報信号出力手段13の回路132では、XOR回路59の出力(所定位置信号)(M)に基づき回転情報信号(C)のエッジを生成すると共に、回転方向信号(L)によりエッジ後の回転情報信号(C)のレベルを決定する。21はトランジスタ、22,24は抵抗、23は出力トランジスタであり、回転方向信号(L)をトランジスタ21に入力し、所定位置信号(M)を出力トランジスタ23に入力する。これにより、所定位置信号
(M)は回転方向に関わらず、図6における所定位置◆では立ち上がりエッジとなるため、出力トランジスタ23はオフからオンに変化する。一方、トランジスタ21については、正転時の回転方向信号(L)はローレベルのためオフとなり、逆転時は逆にオンとなる。
よって、回転情報信号(C)は、出力トランジスタ23がオフの時は、トランジスタ21の状態は影響しないため、回転方向に関わらず、コントロールユニット9に備えられたレベル変化検出手段14内の電源Vccの電圧で決定される高レベルとなる。
また、出力トランジスタ23がオンの時はトランジスタ21から供給される電流が影響し、トランジスタ21がオンの時は、トランジスタ21及び出力トランジスタ23から供給される電流の和と抵抗24の積で決定される中レベルとなり、トランジスタ21がオフの時は、出力トランジスタ23が供給する電流と抵抗24の積で決定される低レベルとなる。
各レベルの電圧としては、例えば、Vcc=5V、抵抗31を4kΩとした場合、トランジスタ21及び出力トランジスタ23のエミッタ−コレクタ間の内部抵抗を0と考えると、抵抗22を0.8kΩ、抵抗24を1kΩとすれば、高レベルは5V、中レベルは3V、低レベルは1V(つまり、基板電位又は接地電位近傍の電圧)となる。
以上より、図6に示すとおり、所定位置である◆部では、回転方向に関わらず出力トランジスタ23はオフからオンに変化するため、回転情報信号(C)は立ち下がりエッジとなり、更に、立ち下がりエッジ後において、歯状磁性体4が正転時はトランジスタ21がオフのため低レベルとなり、逆転時はトランジスタ21がオンのため中レベルとなる。
図5のレベル変化検出手段14は、回転情報信号(C)のレベル変化を検出するために特許文献2同様、2つの比較回路で構成されており、31,33,34,36,37は抵抗、32は第3比較回路、35は第4比較回路である。信号線8を経て伝送された回転情報信号(C)は、第3比較回路32、第4比較回路35の反転入力端子に入力される。また、第1判定レベルとして、電源Vccの電圧を抵抗33,34で分圧したものを第3比較回路32の非反転入力端子に、第2判定レベルとして、電源Vccの電圧を抵抗36,37で分圧したものを第4比較回路35の非反転入力端子に入力している。
第1判定レベルは、回転情報信号(C)の高レベルと中レベル間の変化を検出するため、4Vとし、第2判定レベルは、回転情報信号(C)の中レベルと低レベル間の変化を検出するため、2Vとしており、例えば抵抗33を1kΩ、抵抗34を4kΩ、抵抗36を3kΩ、抵抗37を2kΩとすればよい。
よって、第3比較回路32は、回転情報信号(C)の高レベルと中レベルの変化に対応した第1レベル変化情報(D)を出力し、第4比較回路35は、回転情報信号(C)の中レベルと低レベルの変化に対応した第2レベル変化情報(E)を出力する。図6において、正転時の所定位置である◆部で、回転情報信号(C)は高レベルから低レベルへの立ち下がりエッジとなるので、第1レベル変化情報(D),第2レベル変化情報(E)ともに立ち上がりエッジとなり、逆転時の所定位置である◆部では、回転情報信号(C)は高レベルから中レベルへの立ち下がりエッジとなるので、第1レベル変化情報(D)のみが立ち上がりエッジとなり、第2レベル変化情報(E)はローレベルとなる。
図8は、歯状磁性体4が正転から逆転に、図9は、逆転から正転に反転する際の(A)〜(E)の波形を、反転時における回転情報信号(C)のレベルの状態別に示したもので、回転情報信号(C)が、図8(i)高レベル、(ii)低レベル、図9(i)中レベル、(
ii)高レベル、で反転した時のものである。また、(A)上部の◆は、反転前後の歯状磁性体4の歯の所定位置を示すものである。
図8(i)において、回転情報信号(C)は、正転最後の◆部で低レベルへの立ち下が
りエッジ、逆転直後の◆部で中レベルへの立ち下がりエッジとなり、図9(ii)において、回転情報信号(C)は、逆転最後の◆部で中レベルへの立ち下がりエッジ、正転直後の◆部で低レベルへの立ち下がりエッジとなるため、回転方向が変化していない通常時と同様の波形であり、第1レベル変化情報(D)、第2レベル変化情報(E)も、図6に示した挙動となる。
一方、図8(ii)では、回転情報信号(C)は、正転最後の◆部で低レベルへの立ち下がりエッジとなるが、低レベルの状態で逆転直後の◆部となるので、この場合のみ、逆転直後の◆部で低レベルから中レベルへの立ち上がりエッジとなる。そのため、逆転直後の◆部では、第1レベル変化情報(D)はハイレベルの状態で、第2レベル変化情報(E)のみ立ち下がりエッジとなる。
また、図9(i)では、回転情報信号(C)は、逆転最後の◆部で中レベルへの立ち下
がりエッジとなるが、中レベルの状態で正転直後の◆部となるので、正転直後の◆部で中レベルから低レベルへの立ち下がりエッジとなる。そのため、正転直後の◆部では、第1レベル変化情報(D)はハイレベルの状態で、第2レベル変化情報(E)のみ立ち上がりエッジとなる。これらの波形は、回転方向が変化しない状態での波形と異なるが、反転直後のみ出力される波形であり判別することが可能である。図10に、第1レベル変化情報(D)、第2レベル変化情報(E)及び歯状磁性体4の回転方向の関係を示す。いずれの場合も所定位置と対応している。
クランク角度算出手段15では、第1レベル変化情報(D)および第2レベル変化情報(E)の立ち上がりおよび立ち下がりエッジに同期してクランク軸3の角度を算出する処理が行われる。第1レベル変化情報(D)エッジ同期処理の動作については図11、第2レベル変化情報(E)エッジ同期処理の動作については図12、また、図11,図12内のクランク角度演算処理の動作については図13のフローチャートを参照して説明する。なお、以下において符号Sは各処理ステップを意味する。
第1レベル変化情報(D)エッジ同期処理については図11において、まずステップS101で、第1レベル変化情報(D)が立ち上がりエッジかを判定する。立ち上がりエッジの場合、ステップS102でDレベルフラグf_dlblにハイレベルを表す1をセットする。図10から所定位置が対応したエッジとなるので回転方向を判定すべく、ステップS103で、第2レベル変化情報(E)の立ち上がりエッジを検出するため、Eレベルフラグf_elblが1かを判定する。
ここで、図14に示すように、回転情報信号(C)のエッジには入出力回路やノイズ防止用のローパスフィルタの影響等により傾きがあるため、例えば立ち下がりエッジの場合、第1判定レベル(4V)を下回ってから、第2判定レベル(2V)を下回るまで幾らかの遅れが存在する。そのため、第1レベル変化情報(D)の立ち上がりエッジ直後に第2レベル変化情報(E)のレベルを判定すると前述の遅れにより誤判定する恐れがある。一般的には遅れは数10μ秒程度であるため、実施の形態1ではステップS104で50μ秒の判定待ち時間を設けている。その間にEレベルフラグf_elblが1となった場合、第2レベル変化情報(E)の立ち上がりエッジが入力されたおり、第2レベル変化情報(E)エッジ同期処理側で処理が完了しているため、本処理は終了する。一方、ステップS104における50μ秒の判定待ち時間経過後もEレベルフラグf_elblが0の場合、第2レベル変化情報(E)はローレベル状態と判断し、ステップS105で正転フラグf_rotを0にクリアし、
所定位置であるため、ステップS106でクランク角度演算処理を実行して、本処理を終了する。
ステップS101で、第1レベル変化情報(D)が立ち下がりエッジの場合、所定位置と対応したエッジではないので、ステップS107でローレベルを表すためf_dlblを0にクリアして、本処理を終了する。
第2レベル変化情報(E)エッジ同期処理については図12において、まず、ステップS201で、第2レベル変化情報(E)が立ち下がりエッジかを判定する。立ち下がりエッジの場合、ステップS202でローレベルを表すためEレベルフラグf_elblを0にクリアし、図10から所定位置が対応したエッジの可能性があるので、ステップS203で、第1レベル変化情報(D)のハイレベルを検出するため、Dレベルフラグf_dlblが1かを判定する。ここでも、図11内のステップS104同様、第1レベル変化情報(D)の遅れに対しステップS204で50μ秒の判定待ち時間を設けている。50μ秒経過後もf_dlblが1の場合は、第1レベル変化情報(D)はハイレベルと判定し、ステップS205で正転フラグf_rotを0に
クリアする。この場合、所定位置を表すエッジであるため、ステップS209でクランク角度演算処理を実行して、本処理を終了する。一方、ステップS204での50μ秒経過前に、ステップS203でDレベルフラグf_dlblが0と判定された場合、所定位置に対応したエッジでは無いため、処理を終了する。
ステップS201で、第2レベル変化情報(E)が立ち上がりエッジの場合、ステップS206でEレベルフラグf_elblにハイレベルを表す1をセットし、図10から所定位置が対応したエッジの可能性があるため、ステップS207で、第1レベル変化情報(D)の立ち上がりエッジまたはハイレベルを検出するため、Dレベルフラグf_dlblが1かを判定する。この場合は、第1レベル変化情報(D)が立ち上がりエッジの場合でも、図14に示すとおり、判定待ち時間は不要となる。Dレベルフラグf_dlblが1であれば、ステップS208で正転フラグf_rotに1をセットする。この場合、所定位置を表すエッジであるため、ステップS209でクランク角度演算処理を実行して、本処理を終了する。一方、ステップS207でDレ
ベルフラグf_dlblが0と判定された場合、所定位置に対応したエッジでは無いため、処理を終了する。
クランク角度演算処理については図13において、まず、ステップS301で、前回正転フラグf_rot_oと今回の正転フラグf_rotを比較する。異なる場合、反転直後となるため、クランク角p_crkは変化しないため、ステップS315で、クランク角周期t_crkをクリアし、ステップS316で、前回正転フラグf_rot_oをf_rotで更新して処理を終了する。
ステップS301で、f_rot_oとf_rotが等しい場合、回転方向は変化していないため、ステップS302で、正転フラグf_rotから回転方向を判定する。f_rotが1で正転の場合には、ステップS303で欠け歯検出を行う。欠け歯検出は今回と前回のクランク角周期の比が一定値以上となった場合に欠け歯と判定するもので、公知のものである。実施の形態1では、欠け歯時の所定位置間隔は40゜CAで通常の所定位置間隔20゜CAの2倍あるため、例えばクランク角周期の比が1.5以上となった場合に欠け歯と判定すればよい。また、実施の形態1では、逆転中はクランク角周期をクリアしているため、逆転中の周期を使うことがなく正確に欠け歯検出を行うことが可能となる。
ステップS303で欠け歯が検出された場合、欠け歯は75゜CA〜105゜CA間に設けており、今回エッジは105゜CAとなるので、ステップS304でクランク角p_crkを10
5゜CAに初期化する。一方、欠け歯の検出が無かった場合、クランク角p_crkで欠け歯
位置を示しているか判定するため、ステップS305でクランク角p_crkが65゜CAかを判
定する。クランク角p_crkが65゜CAの場合、欠け歯の検出は出来なかったがクランク
角p_crkでは欠け歯となっているので、ステップS304でクランク角p_crkを105゜CAに初期化する。一方、クランク角p_crkが65゜CAでなかった場合、通常の所定位置間隔
は20゜CAのため、ステップS306でクランク角p_crkに20゜CA加算する。クランク
角p_crkは180゜CA毎カウンタとしているため、ステップS307でp_crkが165゜CAを越えたか判定する。越えた場合は、ステップS308でクランク角p_crkに5゜CAをセッ
トする。ステップS303以降は、いずれの場合でも正転のため、ステップS309で、欠け歯検出に使用する前回の所定位置入力時からの時間であるクランク角周期t_crkをセットし、
ステップS316で、前回正転フラグf_rot_oをf_rotで更新して処理を終了する。
一方、ステップS302でf_rotが0で逆転の場合には、ステップS310でクランク角p_crkが105゜CAかを判定する。クランク角p_crkが105゜CAの場合、今回、逆転で欠け
歯を越えたこととなるため、ステップS311でクランク角p_crkに65゜CAをセットする
。それ以外の場合は、ステップS312でクランク角p_crkから20゜CA減算する。正転時
同様、ステップS313でp_crkが5゜CA未満となったか判定する。5゜CA未満となった
場合は、ステップS314でクランク角p_crkに165゜CAをセットする。ステップS310以
降は、いずれの場合でも逆転のため、ステップS315で、クランク角周期t_crkをクリアし
、ステップS316で、前回正転フラグf_rot_oをf_rotで更新して処理を終了する。
実施の形態1では、クランク角p_crkを180゜CA周期としたが、それ以外の周期と
しても良い。例えば、各気筒の行程も把握できるように720゜CA周期とする場合は、気筒識別信号を利用してクランク角p_crkを初期化すればよい。また、実施の形態1の欠
け歯検出には2区間のクランク角周期を使用したが、それ以上の周期を使用しても良い。この場合、必要な数のクランク角周期が揃うまで正転が続く必要がある。
以上のように、この実施の形態1では、内燃機関のクランク角度検出装置が、内燃機関のクランク軸に同期して回転する被検出部(歯状磁性体4)、前記被検出部を検出すると共に前記クランク軸の回転方向を検出し、前記クランク軸の回転方向に基づき前記被検出部における所定位置に対応する部分を判定し、判定した前記所定位置と回転方向の情報を含む3レベルの信号である回転情報信号(C)を出力する検出手段(検出手段2)、前記回転情報信号のレベルが変化する際のエッジの一部(立下りエッジ)に前記所定位置及び回転方向情報が対応しており、前記回転情報信号について少なくともレベルの変化の状態を含むレベル変化情報(D,E)を出力するレベル変化検出手段14、及び、前記レベル変化情報に基づき前記所定位置及び回転方向情報が対応したエッジを検出することにより、前記クランク軸の角度および回転方向を検出するクランク角度算出手段15を備えたものであり、これにより、クランク軸の角度及び回転方向を正確に検出できる。
実施の形態2.
実施の形態1では、回転情報信号(C)において、所定位置を立ち下がりエッジに対応させたが、中レベルから他のレベルへ変化する際のエッジに対応させてもよい。構成は、実施の形態1の図4で示したものと同様で、回転情報信号出力手段13の内部構成およびクランク角度算出手段15の一部のみ異なるため、詳細は後述する。この時の波形を図15に示す。図15は、図4の概念構成図と図16の各部(A)〜(E),(N),(P)の波形(A)〜(E),(N),(P)を示す波形図であり、その(a)は歯状磁性体4が正転した時、その(b)は逆転した時のものである。
第1信号(A)及び第2信号(B)については、実施の形態1と同様の動作であり、また、回転情報信号出力手段13における歯状磁性体4の回転方向の判定(回転方向信号Kの導出)も、実施の形態1と同様に行われる。
歯状磁性体4の各歯における所定位置は、歯状磁性体4の◆部判定時に、正転時のみ立
ち下がりエッジが生成され逆転中は常にハイレベルとなる正転時所定位置信号と、逆転時のみ立ち下がりエッジが生成され正転中は常にハイレベルとなる逆転時所定位置信号を生成しておくことで判定が出来る。これらの信号は、実施の形態1同様、周知の論理回路を組み合わせたものに第1信号(A)と、実施の形態1と同様の方法で生成された回転方向信号(K)を入力することで生成でき、一方の入力にNOT回路を備えるOR回路から構成された、例えば図16に示す回路133がよい。
図17は、実施の形態2の回転情報信号出力手段13の一部(後半)の回路134を示し、この回路134に前述の正転時所定位置信号(N)及び逆転時所定位置信号(P)を入力し、回転情報信号(C)を生成する。レベル変化検出手段14は、実施の形態1と同様であり図5に示すとおりである。
図17において、41,42は出力トランジスタ、43,44は抵抗であり、前述の正転時所定位置信号(N)を、出力トランジスタ41に入力し、逆転時所定位置信号(P)を出力トランジスタ42に入力する。正転時は、出力トランジスタ42は常にオンとなるため、回転情報信号(C)は、出力トランジスタ41の動作によりレベルが変化する。出力トランジスタ41がオンの時は、出力トランジスタ41及び出力トランジスタ42から供給される電流の和と抵抗44の積で決定される中レベルとなり、出力トランジスタ41がオフの時は、出力トランジスタ42が供給する電流と抵抗44の積で決定される低レベルとなる。
一方、逆転時は、出力トランジスタ41は常にオンとなるため、回転情報信号(C)は、出力トランジスタ42の動作によりレベルが変化する。出力トランジスタ42がオンの時は、出力トランジスタ41及び出力トランジスタ42から供給される電流の和と抵抗44の積で決定される中レベルとなり、出力トランジスタ42がオフの時は、出力トランジスタ41の状態は影響しないため、コントロールユニット9に備えられたレベル変化検出手段14内の電源Vccの電圧で決定される高レベルとなる。
各レベルの電圧としては、実施の形態1同様、例えば、Vcc=5V、抵抗31を4kΩとした場合、出力トランジスタ41及び出力トランジスタ42のエミッタ−コレクタ間の内部抵抗を0と考えると、抵抗43を0.8kΩ、抵抗44を1kΩとすれば、高レベルは5V、中レベルは3V、低レベルは1Vとなる。
以上より図15に示す通り、回転情報信号(C)は、所定位置である◆部で、正転時は中レベルから低レベルへの立ち下がりエッジとなり、逆転時は中レベルから高レベルへの立ち上がりエッジとなる。
レベル変化検出手段14は、実施の形態1と同様であり、2つの比較回路から構成されており、第1判定レベルは、回転情報信号(C)の高レベルと中レベル間の変化を検出するため4V、第2判定レベルは、回転情報信号(C)の中レベルと低レベル間の変化を検出するため2Vとしている。
図15において、正転時の所定位置である◆部で、回転情報信号(C)は中レベルから低レベルへの立ち下がりエッジとなるので、第1レベル変化情報(D)はハイレベルの状態で、第2レベル変化情報(E)のみ立ち上がりエッジとなり、逆転時の所定位置である◆部では、回転情報信号(C)は中レベルから高レベルへの立ち上がりエッジとなるので、第1レベル変化情報(D)のみ立ち下がりエッジとなり、第2レベル変化情報(E)はローレベルの状態となる。
図18は、歯状磁性体4が正転から逆転に、図19は、逆転から正転に反転する際の(
A)〜(E)の波形を、反転時における回転情報信号(C)のレベルの状態別に示したもので、回転情報信号(C)が、図18(i)中レベル、(ii)低レベル、図19(i)高レベル、(ii)中レベル、で反転した時のものである。また、(A)上部の◆は、反転前後の歯状磁性体4の歯の所定位置を示すものである。
図18(i)において、回転情報信号(C)は、正転最後の◆部で中レベルから低レベ
ルへの立ち下がりエッジ、逆転直後の◆部で中レベルから高レベルへの立ち上がりエッジとなり、図19(ii)において、回転情報信号(C)は、逆転最後の◆部で中レベルから高レベルへの立ち上がりエッジ、正転直後の◆部で中レベルから低レベルへの立ち下がりエッジとなるため、回転方向が変化していない通常時と同様の波形であり、第1レベル変化情報(D)、第2レベル変化情報(E)も、図15に示した挙動となる。
一方、図18(ii)では、回転情報信号(C)は、正転最後の◆部で中レベルから低レベルへの立ち下がりエッジとなるが、低レベルの状態で逆転直後の◆部となるので、この場合のみ、逆転直後の◆部で低レベルから高レベルへの立ち上がりエッジとなる。そのため、逆転直後の◆部では、第1レベル変化情報(D)、第2レベル変化情報(E)ともに立ち下がりエッジとなる。
また、図19(i)では、回転情報信号(C)は、逆転最後の◆部で中レベルから高レ
ベルへの立ち上がりエッジとなるが、高レベルの状態で正転直後の◆部となるので、正転直後の◆部で高レベルから低レベルへの立ち下がりエッジとなる。そのため、正転直後の◆部では、第1レベル変化情報(D)、第2レベル変化情報(E)ともに立ち上がりエッジとなる。これらの波形は、回転方向が変化しない状態での波形と異なるが、いずれの場合も、正転時は第2レベル変化情報(E)の立ち上がりエッジ、逆転時は第1レベル変化情報(D)の立ち下がりエッジを検出すればよく、回転方向が変化していない通常時と同様の判定が可能である。図20に、第1レベル変化情報(D)、第2レベル変化情報(E)及び歯状磁性体4の回転方向の関係を示す。いずれの場合も所定位置と対応している。
クランク角度算出手段15では、実施の形態1と同様、第1レベル変化情報(D)および第2レベル変化情報(E)の立ち上がりおよび立ち下がりエッジに同期してクランク角2の角度を算出する処理が行われる。第1レベル変化情報(D)エッジ同期処理の動作については図21、第2レベル変化情報(E)エッジ同期処理の動作については図22に示す。図21,図22内のクランク角度演算処理の動作については、図13に示す実施の形態1と同様のものであるので説明は省略する。なお、以下において符号Sは各処理ステップを意味する。
第1レベル変化情報(D)エッジ同期処理については、図21において、まずステップS401で、第1レベル変化情報(D)が立ち下がりエッジかを判定する。実施の形態2では、第2レベル変化情報(E)の状態に関わらず、第1レベル変化情報(D)が立ち下がりエッジの時は、所定位置に対応しており回転方向は逆転となる。よって、立ち下がりエッジの場合、ステップS402で正転フラグf_rotを0にクリアし、ステップS403でクランク角
度演算処理を実行して、本処理を終了する。第1レベル変化情報(D)が立ち上がりエッジの場合は、特に処理を行わず終了する。
第2レベル変化情報(E)エッジ同期処理については、図22において、まずステップS501で、第2レベル変化情報(E)が立ち上がりエッジかを判定する。実施の形態2では、第1レベル変化情報(D)の状態に関わらず、第2レベル変化情報(E)が立ち上がりエッジの時は、所定位置に対応しており回転方向は正転となる。よって、立ち上がりエッジの場合、ステップS502で正転フラグf_rotに1をセットし、ステップS503でクランク角
度演算処理を実行して、本処理を終了する。第2レベル変化情報(E)が立ち下がりエッ
ジの場合は、特に処理を行わず終了する。
実施の形態1及び2では、歯状磁性体の各歯を被検出部としているが、例えばスリットを設けたプレートを用いてもよく、各スリットを被検出部として、光の透過具合で検出をすればよい。また、クランク軸に直接磁気を記録したものを被検出部としてもよく、例えばクランク軸の円周上にN極,S極を交互に記録しておき、その一方を被検出部の検出点として磁気センサで検出すればよい。この場合、歯状磁性体等は不要となる。
以上のように、この実施の形態2では、内燃機関のクランク角度検出装置が、内燃機関のクランク軸に同期して回転する被検出部(歯状磁性体4)、前記被検出部を検出すると共に前記クランク軸の回転方向を検出し、前記クランク軸の回転方向に基づき前記被検出部における所定位置に対応する部分を判定し、判定した前記所定位置と回転方向の情報を含む3レベルの信号である回転情報信号(C)を出力する検出手段(検出手段2)、前記回転情報信号のレベルが変化する際のエッジの一部(中レベルから低レベル又は高レベルに変化するエッジ)に前記所定位置及び回転方向情報が対応しており、前記回転情報信号について少なくともレベルの変化の状態を含むレベル変化情報(D,E)を出力するレベル変化検出手段14、及び、前記レベル変化情報に基づき前記所定位置及び回転方向情報が対応したエッジを検出することにより、前記クランク軸の角度および回転方向を検出するクランク角度算出手段15を備えたものであり、これにより、クランク軸の角度及び回転方向を正確に検出できる。
実施の形態3.
実施の形態1及び2では、2つの信号発生手段から得られた信号に基づき、歯状磁性体4の回転方向及び歯状磁性体4の各歯における所定位置を判定したが、回転方向の判別が可能な1つの信号発生手段から得られた信号でもよく、例えば、図23に示すような20°CA毎に計17個の三角歯形状の歯状磁性体を備えた被検出部及び被検出部との距離を検出する公知のセンサを用いても良い。実施の形態2と同様、#1及び#4における圧縮上死点後75゜CAから105゜CAの部分には頂点を設けず、欠け歯としている。
図25は、検出手段2を示す概念構成図である。71は信号発生手段で、歯状磁性体4に対向させて配置されている。信号発生手段は、検出部と被検出部との距離に応じて図24に示すような出力特性で、歯状磁性体4の各歯の通過に応じて三角歯を発生する。このようにして得られた波形を、信号(A0)として回転情報信号出力手段13に入力する。
回転情報信号出力手段13は、信号(A0)に基づき第1信号(A)相当波形及び歯状磁性体4の回転方向信号を生成する部分のみ実施の形態2と異なり、それ以降は、実施の形態2と同様の方法で所定位置及び回転方向情報が含まれた回転情報信号(C)を生成する。回転情報信号(C)以降も実施の形態2と同様とすればよい。
実施の形態2と異なる部分である、第1信号(A)相当の波形及び歯状磁性体4の回転方向信号の生成について説明する。図26は、図25の概念構成図の(A0)部の波形(A0)、及び回転情報信号出力手段13内で生成される信号(A1)〜(A3)の波形、回転方向信号の波形を示す波形図であり、その(a)は歯状磁性体4が正転した時、その(b)は逆転した時のものである。
正転時(a)は、歯状磁性体4の歯との距離は徐々に遠くなり、◆部で近づくため、信号(A0)は、◆部で最大値となり、それ以降徐々に出力が低くなる。その結果、信号(A0)の値が判定レベル以上のときにローレベルとなる信号(A1)を生成すると、◆部で立ち下がりエッジが発生する波形が得られる。また、信号(A0)を微分した信号(A2)を生成すると、◆部以外では出力が低下しているので負の値となり、◆部で正のイン
パルス状波形が得られる。
一方、逆転時(b)は、歯状磁性体4の歯との距離は徐々に近くなり、◆部で遠ざかるため、信号(A0)は、◆部で最小値となり、それ以降徐々に出力が高くなる。その結果、信号(A0)の値が判定レベル以上のときにローレベルとなる信号(A1)は、◆部で立ち上がりエッジが発生する。また、信号(A0)を微分した信号(A2)は、◆部以外では出力が上昇しているので正の値となり、◆部で負側にインパルス状となる。
よって、信号(A1)から、実施の形態2の第1信号(A)相当の波形を得ることができる。正転時はローレベル、逆転時はハイレベルとなる回転方向信号は、信号(A2)に基づき負の値の時にローレベル、正の値の時にハイレベルとすればよいが、◆部のみインパルス状の波形が発生するため、例えばローパスフィルタを通してインパルス状の波形を除去した信号(A3)を用いて回転方向信号を生成すると良い。
また、信号(A1)のエッジ検出直前の信号(A2)レベルを使用して回転方向信号を生成しても良い。この場合、信号(A1)のエッジ検出時に直前の信号(A2)レベルが必要となる為、バッファ回路に通して信号(A2)を遅延させた信号を生成しておけばよい。更に、信号(A2)のインパルス状の波形から、回転方向信号を生成しても良い。この場合、正のインパルス状波形検出時は正転、負のインパルス状波形検出時は逆転とすればよい。また、インパルス状波形検出時は◆部となるため、この時を所定位置としてもよい。
これらの信号は、周知の電気回路の組み合わせたものに信号(A0)を入力することで生成でき、例えば図27に示すように、第1信号(A)相当の波形となる信号(A1)を生成するための比較回路81、回転方向信号を生成するための微分回路82,ローパスフィルタ83から構成してもよい。また、信号(A1)のエッジ検出時の信号(A2)レベルを検出する場合には、ローパスフィルタの代わりにバッファ回路や信号(A1)エッジ検出用Dフリップフロップ回路等の論理回路で構成しても良い。
さらに、補足するに、この発明では、被検出部の検出点(歯状磁性体の凸部など)は、等間隔に複数備えられると共に、一部等間隔とは異なる間隔の欠落部を形成しており、欠落部を検出してクランク軸の角度を初期化する欠落部検出手段を備え、欠落部検出手段は、クランク軸の回転方向が正転時の情報のみを使用して欠落部を検出するので、特に回転方向が変わる反転時に欠け歯の誤検出を防止することができる。
また、回転情報信号において、クランク軸の回転方向変化後の初回エッジのうち、所定位置および回転方向情報に対応するエッジの一部は、クランク軸の回転方向が変化していないときの所定位置および回転方向情報に対応するエッジとは異なるので、歯状磁性体の回転方向が変化する際の特別な処理を追加する必要が無く、構成を簡素化できる。
また、レベル変化検出手段は、2つのレベル変化情報を出力すると共に、一方のレベル変化情報は、正転時の所定位置のみに対応し、他方のレベル変化情報は、逆転時の所定位置のみに対応しているので、コントロールユニットでのクランク軸の角度及び回転方向を算出する際の処理を簡素化できる。
また、回転情報信号において、所定位置は、レベルが変化する際の立ち下がりエッジまたは立ち上がりエッジのどちらか一方と対応しており、回転方向情報は、所定位置が対応しているエッジにおける変化後レベルに対応しているので、コントロールユニットでの歯状磁性体の所定位置及び回転方向の検出を容易にすることができる。
また、回転情報信号において、所定位置は、中レベルから他のレベルへ変化する際のエッジに対応しており、回転方向情報は、所定位置が対応しているエッジにおける変化後レベルに対応しているので、コントロールユニットでの歯状磁性体の所定位置及び回転方向の検出を容易にすることができる。
基礎部分である磁気検出センサを示すシステム構成図である。 基礎部分である信号発生手段の回路図である。 この発明の実施の形態1における内燃機関のシステム構成図である。 実施の形態1の内燃機関のクランク角度検出装置の概念構成図である。 図4の回転情報信号出力手段及びレベル変化検出手段の回路図である。 図5の回路図の各部(A)〜(E),(K)〜(M)の波形(A)〜(E),(K)〜(M)を示す波形図である。 実施の形態1のおける第1信号(A)の各エッジでの第2信号(B)レベルと歯状磁性体の回転方向の関係を示す図である。 実施の形態1における歯状磁性体が正転から逆転へ反転した時の波形図である。 実施の形態1における歯状磁性体が逆転から正転へ反転した時の波形図である。
実施の形態1における第1レベル変化情報(D)、第2レベル変化情報(E)及び歯状磁性体の回転方向の関係を示す図である。 実施の形態1における第1レベル変化情報(D)エッジ同期処理を示すフローチャートである。 実施の形態1における第2レベル変化情報(E)エッジ同期処理を示すフローチャートである。 実施の形態1におけるクランク角度演算処理を示すフローチャートである。 実施の形態1における回転情報信号(C)のエッジ部分を拡大した波形と対応する波形(D)〜(E)を示す図である。 実施の形態2における図4の概念構成図と図16の各部(A)〜(E),(N),(P)の波形(A)〜(E),(N),(P)を示す波形図である。 実施の形態2における回転情報信号出力手段の一部(前半)の回路図である。 実施の形態2における回転情報信号出力手段の一部(後半)の回路図である。 実施の形態2における歯状磁性体が正転から逆転へ反転した時の波形図である。 実施の形態2における歯状磁性体が逆転から正転へ反転した時の波形図である。
実施の形態2における第1レベル変化情報(D)、第2レベル変化情報(E)及び歯状磁性体の回転方向の関係を示す図である。 実施の形態2における第1レベル変化情報(D)エッジ同期処理を示すフローチャートである。 実施の形態2における第2レベル変化情報(E)エッジ同期処理を示すフローチャートである。 実施の形態3における歯状磁性体及びセンサの構成を示す図である。 実施の形態3における信号発生手段の出力特性図である。 実施の形態3における検出手段を示す概念構成図である。 図25の概念構成図の(A0)部の波形(A0)、回転情報信号出力手段内で生成される信号(A1)〜(A3)の波形、回転方向信号の波形を示す波形図である。 実施の形態3における回転情報信号出力手段の一部(前半)の回路図である。
従来の磁気検出装置の回路図である。 図28の回路図の各部c〜jの波形c〜jを示す波形図である。 図28において、歯状磁性体が正転から逆転に反転する際の波形図である。 図28において、逆転から正転に反転する際の波形図である。
符号の説明
1 内燃機関 2 センサ
3 クランク軸 4 歯状磁性体
5 センサ 6 カム軸
7 磁性体 8 信号線
9 コントロールユニット
11 第1信号発生手段 12 第2信号発生手段
13 回転情報信号出力手段 14 レベル変化検出手段
15 クランク角度算出手段 18 磁石
21 トランジスタ 22,24 抵抗
23 出力トランジスタ
31,33,34,36,37 抵抗 32 第3比較回路
35 第4比較回路
41,42 出力トランジスタ 43,44 抵抗
51,53,58 NOT回路 52,54 Dフリップフロップ
55,56 AND回路 57 OR回路
59 XOR回路 61,62 OR回路、
71 信号発生手段 81 比較回路
82 微分回路 83 ローパスフィルタ、
101,104 MR素子 102,105 ブリッジ回路
103 第1比較回路 106 第2比較回路
107 出力トランジスタ 108 Dフリップフロップ
109 トランジスタ 110 抵抗
111 第3比較回路 112 第4比較回路
113 抵抗

Claims (11)

  1. 内燃機関のクランク軸に同期して回転する被検出部と、
    前記被検出部を検出すると共に前記クランク軸の回転方向を検出し、前記クランク軸の回転方向に基づき前記被検出部における所定位置に対応する部分を判定し、判定した前記所定位置と回転方向の情報を含む3レベルの信号である回転情報信号をコントロールユニットに出力する検出手段とを備えると共に、
    前記回転情報信号のレベルが変化する際のエッジにおいて、レベルの変化方向および変化後のレベルの組合せで区別されるエッジの種類のうちの特定の種類のエッジに前記所定位置及び回転方向情報が対応しており、前記コントロールユニットには、前記回転情報信号について少なくともレベルの変化の状態を含むレベル変化情報を出力するレベル変化検出手段、及び、
    前記レベル変化情報に基づき前記所定位置及び回転方向情報が対応した前記特定の種類のエッジを検出することにより、前記クランク軸の角度および回転方向を検出するクランク角度算出手段
    を備えたことを特徴とする内燃機関のクランク角度検出装置。
  2. 前記レベル変化検出手段は、前記回転情報信号のレベルが変化する際の前記特定の種類のエッジに前記所定位置及び回転方向情報が対応しており、前記回転情報信号についてレベルの変化及び変化後レベルの状態を含むレベル変化情報を出力するようにしたことを特徴とする請求項1記載の内燃機関のクランク角度検出装置。
  3. 前記レベル変化検出手段は、前記回転情報信号を第1判定レベルとこれと異なる第2判定レベルとで比較して、前記回転情報信号についてレベルの変化及び変化後レベルの状態を含む第1レベル変化情報と第2レベル変化情報を出力するようにしたことを特徴とする請求項2記載の内燃機関のクランク角度検出装置。
  4. 前記回転情報信号の3レベルは、電圧によって表され、低レベル信号は0V近傍、高レベル信号は+側の電圧、中レベル信号は高レベル信号と低レベル信号の電位差の1/2程度の電圧であることを特徴とする請求項1記載の内燃機関のクランク角度検出装置。
  5. 前記被検出部の検出点は、等間隔に複数備えられると共に、前記等間隔とは一部異なる間隔の欠落部を形成しており、更に、前記欠落部を検出してクランク軸の角度を初期化する欠落部検出手段を備え、前記欠落部検出手段は、クランク軸の回転方向が正転時の情報のみを使用して欠落部を検出するようにしたことを特徴とする請求項1〜請求項4のいずれか1項に記載の内燃機関のクランク角度検出装置。
  6. 前記回転情報信号において、前記クランク軸の回転方向変化後の初回エッジのうち、前記所定位置および回転方向情報に対応するエッジの種類は、前記クランク軸の回転方向が変化していないときの前記所定位置および回転方向情報に対応する前記特定の種類のエッジとは異なることを特徴とする請求項1〜請求項5のいずれか1項に記載の内燃機関のクランク角度検出装
    置。
  7. 前記レベル変化検出手段は、2つのレベル変化情報を出力するとともに、一方のレベル変化情報は、正転時の所定位置のみに対応し、他方のレベル変化情報は、逆転時の所定位置のみに対応していることを特徴とする請求項1〜6のいずれか1項に記載の内燃機関のクランク角度検出装置。
  8. 前記回転情報信号において、前記所定位置に対応する部分は、レベルが変化する際の立ち下がりエッジまたは立ち上がりエッジのどちらか一方と対応しており、前記回転方向情報は、所定位置が対応している前記エッジにおける変化後レベルに対応していることを特徴とする請求項1〜請求項6のいずれか1項に記載の内燃機関のクランク角度検出装置。
  9. 前記回転情報信号において、前記所定位置に対応する部分は、高レベルから中レベルまたは低レベルへ変化する際の立ち下がりエッジと対応し、前記回転方向情報は、前記所定位置が対応している前記エッジにおける変化後レベルが低レベル時は正転、中レベル時は逆転に対応していると共に、前記クランク軸の正転から逆転への変化後の初回エッジのうち、低レベルから中レベルへ変化する際の立ち上がりエッジは、前記所定位置および逆転に対応しており、前記クランク軸の逆転から正転への変化後の初回エッジのうち、中レベルから低レベルへ変化する際の立ち下がりエッジは、前記所定位置および正転に対応していることを特徴とする請求項8記載の内燃機関のクランク角度検出装置。
  10. 前記回転情報信号において、前記所定位置に対応する部分は、中レベルから他のレベルへ変化する際のエッジに対応しており、前記回転方向情報は、前記所定位置が対応している前記エッジにおける変化後レベルに対応していることを特徴とする請求項1〜請求項7のいずれか1項に記載の内燃機関のクランク角度検出装置。
  11. 前記回転情報信号において、前記所定位置に対応する部分は、中レベルから高レベルまたは低レベルへ変化する際のエッジと対応し、前記回転方向情報は、前記所定位置が対応している前記エッジにおける変化後レベルが低レベル時は正転、高レベル時は逆転に対応していると共に、前記クランク軸の正転から逆転への変化後の初回エッジのうち、低レベルから高レベルへ変化する際の立ち上がりエッジは、前記所定位置および逆転に対応しており、前記クランク軸の逆転から正転への変化後の初回エッジのうち、高レベルから低レベルへ変化する際の立ち下がりエッジは、前記所定位置および正転に対応していることを特徴とする請求項10記載の内燃機関のクランク角度検出装置。
JP2007204311A 2007-08-06 2007-08-06 内燃機関のクランク角度検出装置 Expired - Fee Related JP4514776B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007204311A JP4514776B2 (ja) 2007-08-06 2007-08-06 内燃機関のクランク角度検出装置
DE102007059500A DE102007059500A1 (de) 2007-08-06 2007-12-11 Kurbelwinkel-Erfassungseinrichtung für einen Verbrennungsmotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204311A JP4514776B2 (ja) 2007-08-06 2007-08-06 内燃機関のクランク角度検出装置

Publications (2)

Publication Number Publication Date
JP2009041375A JP2009041375A (ja) 2009-02-26
JP4514776B2 true JP4514776B2 (ja) 2010-07-28

Family

ID=40279589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204311A Expired - Fee Related JP4514776B2 (ja) 2007-08-06 2007-08-06 内燃機関のクランク角度検出装置

Country Status (2)

Country Link
JP (1) JP4514776B2 (ja)
DE (1) DE102007059500A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588044B2 (ja) * 2000-09-14 2004-11-10 三菱電機株式会社 磁気検出装置
JP2006029261A (ja) * 2004-07-20 2006-02-02 Toyota Motor Corp 内燃機関の逆回転検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011807A1 (de) 2004-03-11 2005-09-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Winkelposition einer Kurbelwelle eines Verbrennungsmotors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588044B2 (ja) * 2000-09-14 2004-11-10 三菱電機株式会社 磁気検出装置
JP2006029261A (ja) * 2004-07-20 2006-02-02 Toyota Motor Corp 内燃機関の逆回転検出装置

Also Published As

Publication number Publication date
DE102007059500A1 (de) 2009-02-19
JP2009041375A (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4859903B2 (ja) 移動方向検出装置
US5869962A (en) Magnetic detection apparatus for detecting movement of an object having a nonuniform system of teeth
KR101378731B1 (ko) 인코더신호처리방법
KR100817668B1 (ko) 자기 검출 장치
JP5116751B2 (ja) 磁気検出装置
JP2007212292A (ja) 磁気検出装置
CN109416263B (zh) 旋转检测装置
JP4382838B2 (ja) 磁気検出装置
JP6337842B2 (ja) 回転検出装置
JP4514776B2 (ja) 内燃機関のクランク角度検出装置
CN106133481A (zh) 旋转检测装置
US8130115B2 (en) Signal processing circuit for rotation detecting device
JP3846371B2 (ja) 回転検出装置
KR20070054075A (ko) 자기 검출 장치
CN110678637B (zh) 用于报告信号传感轮的方位变化的设备和方法
JP4489105B2 (ja) 磁気検出装置
JP2810695B2 (ja) インクリメンタル方式の磁気エンコーダの零点検出方式
EP1342993A2 (en) Position transducer
KR100902147B1 (ko) 인크리멘탈 엔코더의 에러 검출회로
JPH1183890A (ja) 回転方向検出装置
JP2006217155A (ja) コンパレータ、信号処理装置および方法
KR900003440Y1 (ko) 회전신호 발생장치
JP5967043B2 (ja) 回転角センサ、および、それを含む回転角検出システム
JP3644066B2 (ja) モータ装置
JP4243696B2 (ja) エンコーダ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R151 Written notification of patent or utility model registration

Ref document number: 4514776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees