JP6380319B2 - 電動圧縮機 - Google Patents

電動圧縮機 Download PDF

Info

Publication number
JP6380319B2
JP6380319B2 JP2015190688A JP2015190688A JP6380319B2 JP 6380319 B2 JP6380319 B2 JP 6380319B2 JP 2015190688 A JP2015190688 A JP 2015190688A JP 2015190688 A JP2015190688 A JP 2015190688A JP 6380319 B2 JP6380319 B2 JP 6380319B2
Authority
JP
Japan
Prior art keywords
electric motor
rotor
pressure
refrigerant
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015190688A
Other languages
English (en)
Other versions
JP2017070027A (ja
JP2017070027A5 (ja
Inventor
輝明 大山
輝明 大山
酒井 剛志
剛志 酒井
神谷 勇治
勇治 神谷
智行 鷲見
智行 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015190688A priority Critical patent/JP6380319B2/ja
Priority to PCT/JP2016/075985 priority patent/WO2017056863A1/ja
Priority to DE112016004429.1T priority patent/DE112016004429B4/de
Priority to CN201680056373.8A priority patent/CN108138780B/zh
Priority to US15/762,771 priority patent/US10634390B2/en
Publication of JP2017070027A publication Critical patent/JP2017070027A/ja
Publication of JP2017070027A5 publication Critical patent/JP2017070027A5/ja
Application granted granted Critical
Publication of JP6380319B2 publication Critical patent/JP6380319B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/02Details
    • H02P3/025Details holding the rotor in a fixed position after deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/72Safety, emergency conditions or requirements preventing reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、ガスインジェクションサイクルに用いられる電動圧縮機に関する。
特許文献1に記載の車両用空調装置では、エンジンの駆動力を利用して圧縮機を駆動させることにより冷媒を圧縮している。これに対し、近年、電気自動車やハイブリッド等の電動車両の普及により、車両に搭載される車両用空調装置では、電動モータで駆動する電動圧縮機が採用されている。例えばハイブリッド車両の場合、電動圧縮機が採用されることで、エンジンが停止している状況でも空調装置を作動させることができる。
特開2010−117072号公報
ところで、電気自動車やハイブリッド車両等の電動車両に搭載される車両用空調装置において、電動モータにより駆動する電動圧縮機を用いると、下記の問題が発生するおそれがある。
まず、ガスインジェクションサイクルを構成する電動圧縮機は、圧縮部、圧縮部を駆動する電動モータ、吸入ポート、吐出ポート、及び中間圧ポートを有している。この電動圧縮機では、吸入ポートから吸入した低圧の吸入冷媒を圧縮部で圧縮して高圧の冷媒として吐出ポートから吐出するとともに、中間圧ポートからサイクル内の中間圧冷媒を流入させて圧縮過程途中の冷媒に合流される。この中間圧冷媒の流れる冷媒回路が、ガスインジェクションサイクルの冷媒回路である。ガスインジェクションサイクルは、二段圧縮サイクルとも称される。ガスインジェクションサイクルは、ヒートポンプサイクルの極低温下での暖房時における暖房能力の向上のために用いられる。したがって、このガスインジェクションサイクルでの運転モードは、極低温下での暖房運転時に実行される。以下、ガスインジェクションサイクルでの運転モードを2段圧縮モードと称する。
電動圧縮機は、車両に搭載された電源から給電されるため、車両電源から主機等の他の車両搭載機器へ供給する電力の確保を目的として、一時停止を要求される場合がある。しかしながら、2段圧縮モードでの暖房運転中に、電動圧縮機を一時停止させると、中間圧冷媒と吸入冷媒との圧力差により、中間圧ポートから吸入ポートに冷媒が逆流し、電動モータのロータが逆回転し続けてしまう。ロータが逆回転すると、電動圧縮機の停止要求が解除された後に電動モータを再起動させる際に、ロータの回転位置を推定することが難しくなり、結果的に電動モータの再起動時に脱調が生じるおそれがある。
なお、ロータの逆回転を抑制する方法として、モータ駆動回路の上アーム及び下アームの一方のアームのスイッチング素子をオンさせ、他方のアームのスイッチング素子をオフさせることにより、電動モータを短絡制動させることが考えられる。電動モータを短絡制動させることにより、ロータが逆回転している時間を短縮することができる。
しかしながら、短絡制動は、モータ駆動回路及びステータコイルの閉回路に電流が流れている状況、すなわちロータが回転している状況でしか発生しない。そのため、短絡制動によりロータの逆回転が一旦停止した場合でも、中間圧冷媒の圧力が、吸入冷媒の圧力に対してある程度大きいと、それらの圧力差により中間圧冷媒が吸入ポートに逆流し、ロータが逆回転してしまう。結局、中間圧冷媒の圧力と吸入冷媒の圧力との差が十分小さくなるまでロータの逆回転及び停止が繰り返される可能性がある。この場合、結果的にロータが逆回転してしまうため、電動モータの再起動時にロータの回転位置を特定することが難しくなり、電動モータの脱調を回避することができない。
本発明は、こうした実情に鑑みてなされたものであり、その目的は、再起動時における電動モータの脱調を抑制することのできる電動圧縮機を提供することにある。
上記課題を解決する電動圧縮機は、吸入される低圧冷媒を圧縮して高圧冷媒を吐出する圧縮部(111)と、ロータ(112r)の回転に基づき圧縮部を駆動させる電動モータ(112)と、電動モータを駆動させるモータ駆動回路(114)と、圧縮部に中間圧冷媒を導入する中間圧ポート(11d)と、ロータの回転制御を行う制御部(115)と、を備える。制御部は、中間圧冷媒が圧縮部に導入される2段圧縮モードの実行時に電動モータを停止させる場合、電動モータを短絡制動させてロータの回転を停止させた後、ロータの回転位置を所定の回転位置で固定させるべく電動モータを直流励磁するとともに、電動モータを直流励磁している際、中間圧冷媒の圧力がロータを逆回転させない程度の圧力まで低下したと判断した場合、電動モータの直流励磁を解除する
また、上記課題を解決する電動圧縮機は、吸入される低圧冷媒を圧縮して高圧冷媒を吐出する圧縮部(111)と、ロータ(112r)の回転に基づき圧縮部を駆動させる電動モータ(112)と、電動モータを駆動させるモータ駆動回路(114)と、圧縮部に中間圧冷媒を導入する中間圧ポート(11d)と、ロータの回転制御を行う制御部(115)と、を備える。制御部は、中間圧冷媒が圧縮部に導入される2段圧縮モードの実行時に電動モータを停止させる場合、電動モータを短絡制動させてロータの回転を停止させた後、ロータの回転位置を所定の回転位置で固定させるべく電動モータを直流励磁するとともに、電動モータを直流励磁している際、モータ駆動回路の温度が直流励磁時の温度閾値以上になった場合には、電動モータの直流励磁を解除する。
さらに、上記課題を解決する電動圧縮機は、吸入される低圧冷媒を圧縮して高圧冷媒を吐出する圧縮部(111)と、ロータ(112r)の回転に基づき圧縮部を駆動させる電動モータ(112)と、電動モータを駆動させるモータ駆動回路(114)と、圧縮部に中間圧冷媒を導入する中間圧ポート(11d)と、ロータの回転制御を行う制御部(115)と、を備える。制御部は、中間圧冷媒が圧縮部に導入される2段圧縮モードの実行時に電動モータを停止させる場合、電動モータを短絡制動させてロータの回転を停止させた後、ロータの回転位置を所定の回転位置で固定させるべく電動モータを直流励磁するとともに、電動モータを短絡制動させている際、モータ駆動回路の温度が短絡制動時の温度閾値以上になった場合には、電動モータの短絡制動を解除する。
これらの構成によれば、2段圧縮モードの実行時に電動モータを停止させる際、短絡制動によりロータの回転が停止した後、直流励磁によりロータの回転位置が所定の回転位置で固定される。これにより、中間圧冷媒の圧力が吸入冷媒の圧力に対してある程度大きい場合でも、ロータの逆回転を抑制することができる。よって、再起動時における電動モータの脱調を抑制することができる。
なお、上記手段、及び特許請求の範囲に記載の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
本発明によれば、再起動時における電動モータの脱調を抑制することができる。
実施形態の車両用空調装置の全体構成と共に、冷房運転モード時の冷媒の流れを示すブロック図である。 実施形態の車両用空調装置の全体構成と共に、第1暖房運転モード時の冷媒の流れを示すブロック図である。 実施形態の車両用空調装置の全体構成と共に、第2暖房運転モード時の冷媒の流れを示すブロック図である。 実施形態の電動圧縮機の断面構造を示す断面図である。 実施形態の車両用空調装置の電気的な構成を示すブロック図である。 実施形態の電動圧縮機の電気的な構成を示すブロック図である。 実施形態のモータ制御部により実行される電動モータの駆動制御の処理手順を示すフローチャートである。 実施形態のモータ制御部により実行される第1起動制御の処理手順を示すフローチャートである。 実施形態のモータ制御部により実行される第2起動制御の処理手順を示すフローチャートである。 他の実施形態のモータ制御部により実行される第1起動制御の処理手順を示すフローチャートである。 他の実施形態のモータ制御部により実行される第2起動制御の処理手順を示すフローチャートである。
以下、電動圧縮機の一実施形態について説明する。はじめに、本実施形態の電動圧縮機を用いた車両用空調装置の概要について説明する。
図1〜図3に示される本実施形態の車両用空調装置1は、内燃機関(エンジン)及び走行用電動モータから車両走行用の駆動力を得るハイブリッド車両に適用されている。車両用空調装置1は、ヒートポンプサイクル10と室内空調ユニット30とを備えている。
ヒートポンプサイクル10は、車両用空調装置1において、空調対象である室内送風空気を冷却あるいは加熱する。室内送風空気は、車室内に送風される空気である。ヒートポンプサイクル10では、図1〜図3に示される冷媒回路のいずれかに選択可能である。図1に示される冷媒回路は、室内送風空気を冷却して車室内を冷房する冷房運転モードで用いられる冷媒回路である。図2及び図3に示される冷媒回路は、室内送風空気を加熱して車室内を暖房する第1暖房運転モード及び第2暖房運転モードでそれぞれ用いられる冷媒回路である。第1暖房運転モードは、外気温が極低温時、例えば0[℃]以下の時に実行される。第2暖房運転モードは、通常の暖房運転モードである。
ヒートポンプサイクル10は、冷媒として通常のフロン系冷媒を採用しており、高圧冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。本実施形態のヒートポンプサイクル10は、電動圧縮機11と、室内凝縮器12と、第1減圧器13と、気液分離器14と、中間圧冷媒流路15と、中間圧開閉弁16と、第2減圧器17と、室外熱交換器18と、第3減圧器20と、三方弁21と、室内蒸発器22と、アキュームレータ23と、第2迂回流路24とを備えている。
電動圧縮機11は、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出する。電動圧縮機11は、圧縮室11aと、吸入ポート11bと、吐出ポート11cと、中間圧ポート11dとを有している。圧縮室11aは、吸入ポート11bから吸入した低圧冷媒を圧縮して高圧冷媒として吐出ポート11cから吐出する。中間圧ポート11dは、中間圧冷媒を圧縮室11aに導くとともに、圧縮過程途中の冷媒に合流させる。中間圧冷媒とは、圧縮室11aに吸入される低圧冷媒の圧力から、圧縮室11aから吐出される高圧冷媒の圧力までの範囲の圧力を有する冷媒を意味する。
より詳しくは、図4に示されるように、電動圧縮機11は、圧縮部111と、電動モータ112と、ハウジング113とを有している。圧縮部111は、電動圧縮機11の圧縮室11a内の冷媒を圧縮する。圧縮部111は、スクロール式圧縮機構からなる。なお、圧縮部111は、ベーン型圧縮機構等の他の圧縮機構からなるものであってもよい。電動モータ112は、圧縮部111を回転駆動させる。電動モータ112は、三相交流モータからなる。圧縮部111及び電動モータ112は、ハウジング113の内部に収容されている。
ハウジング113には、吸入ポート11bと、吐出ポート11cと、中間圧ポート11dが設けられている。ハウジング113内を流れる冷媒は、吸入ポート11bから吐出ポート11cに向かって流れる。中間圧ポート11dは、圧縮室11aの圧縮過程途中の箇所と連通している。
このように、本実施形態の電動圧縮機11は、吸入ポート11bから吸入した低圧冷媒を圧縮部111で圧縮して高圧冷媒を生成し、この高圧冷媒を吐出ポート11cから吐出する。また、電動圧縮機11は、中間圧ポート11dから中間圧冷媒を流入させて圧縮過程途中の冷媒に合流させる。以下では、吸入ポート11bから吸入される低圧冷媒を、吸入冷媒とも称する。また、吐出ポート11cから吐出される高圧冷媒を、吐出冷媒とも称する。さらに、中間圧ポート11dから吸入される冷媒を、中間圧冷媒とも称する。
図1〜図3に示されるように、室内凝縮器12は、その冷媒入口側が電動圧縮機11の吐出ポート11cに接続されている。室内凝縮器12は、室内空調ユニット30のケーシング31内に配置されている。室内凝縮器12は、電動圧縮機11から吐出された高圧冷媒を室内送風空気と熱交換させることにより高圧冷媒を放熱させるとともに、室内蒸発器22を通過した室内送風空気を加熱する熱交換器として機能する。
第1減圧器13は、その冷媒入口側が室内凝縮器12の冷媒出口側に接続されている。第1減圧器13は、第1暖房運転モード時に室内凝縮器12から流出する冷媒を中間圧冷媒となるまで減圧させる。また、第1減圧器13は、第2暖房運転モード時に室内凝縮器12から流出する冷媒を低圧冷媒となるまで減圧させる。第1減圧器13は、電気式膨張弁である。すなわち、第1減圧器13は、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。
気液分離器14は、その冷媒入口側が第1減圧器13の冷媒出口側に接続されている。気液分離器14は、第1減圧器13を通過した冷媒の気相及び液相を分離する。本実施形態の気液分離器14は、遠心力の作用によって冷媒を気相及び液相に分離する遠心分離式のものである。気液分離器14の気相冷媒出口側には、中間圧冷媒流路15が接続されている。気液分離器14の液相冷媒出口側には、第2減圧器17の冷媒入口側が接続されている。
中間圧冷媒流路15は、気液分離器14で分離された気相冷媒を電動圧縮機11の中間圧ポート11dに導くための冷媒流路である。中間圧冷媒流路15は、冷媒配管151と、マフラ152とを有している。マフラ152は、中間圧冷媒流路15内の冷媒の脈動を低減するために、冷媒配管151よりも容量の大きい流路形成部材により構成されている。
中間圧開閉弁16は、中間圧冷媒流路15の途中に設けられている。中間圧開閉弁16は、中間圧冷媒流路15を開閉する開閉弁である。本実施形態の中間圧開閉弁16は、制御信号に基づいて開閉動作が制御される電磁弁である。中間圧開閉弁16は、第1暖房運転モード時に開弁状態になることにより、中間圧冷媒を電動圧縮機11の中間圧ポート11dに導入する2段圧縮モードの冷媒回路を形成する。また、中間圧開閉弁16は、第1暖房運転モード時に閉弁状態になることにより、中間圧冷媒流路15への中間圧冷媒の流入を禁止する。
第2減圧器17は、固定絞り171と、第1迂回流路172と、開閉弁173とを有している。固定絞り弁171は冷媒を減圧させる。固定絞り弁171としては、絞り開度が固定されたノズルやオリフィス等を採用することができる。第1迂回流路172は、気液分離器14から流出した冷媒を固定絞り171を迂回させて室外熱交換器18側に導く冷媒流路である。開閉弁173は、第1迂回流路172を開閉する電磁弁である。第2減圧器17では、開閉弁173の開閉により、固定絞り171の減圧作用を発揮させる絞り状態と、固定絞り171の減圧作用を発揮させない全開状態とに変更することが可能となっている。第2減圧器17は、第1暖房運転モード時に絞り状態になることにより、気液分離器14にて分離された中間圧の液相冷媒を低圧冷媒になるまで減圧させる。また、第2減圧器17は、冷房運転モード時や第2暖房運転モード時に全開状態になることにより、冷媒に対して減圧作用を発揮しない状態になる。
室外熱交換器18は、その冷媒入口側が第2減圧器17の冷媒出口側に接続されている。室外熱交換器18は、車両ボンネット内、すなわち車室外に配置されている。室外熱交換器18は、その内部を流通する冷媒と、送風ファン19により送風される車室外空気とを熱交換させるものである。室外熱交換器18は、第1暖房運転モード時及び第2暖房運転モード時に冷媒を蒸発させて吸熱作用を発揮する蒸発器として機能する。室外熱交換器18は、冷房運転モード時に高圧冷媒を放熱させる放熱器として機能する。
第3減圧器20は、その冷媒入口側が室外熱交換器18の冷媒出口側に接続されている。第3減圧器20は、冷房運転モード時に、室外熱交換器18から流出して室内蒸発器22に流入する冷媒を減圧させる。第3減圧器20は、第1減圧器13と同様に電気式膨張弁からなる。
三方弁21は、その冷媒入口側が第3減圧器20の冷媒出口側に接続されている。三方弁21は、その2つの冷媒出口のそれぞれが室内蒸発器22の冷媒入口側及びアキュームレータ23の冷媒入口側に接続されている。三方弁21は、第3減圧器20から流出した冷媒を室内蒸発器22に導く冷媒流路と、第3減圧器20から流出した冷媒を室内蒸発器22を迂回させてアキュームレータ23に導く第2迂回流路24とを切り替える。
室内蒸発器22は、室内空調ユニット30のケーシング31内の室内凝縮器12よりも空気流れ上流側に配置されている。室内蒸発器22は、冷房運転モード時に内部を流通する冷媒を室内送風空気と熱交換させることにより、冷媒を吸熱させて蒸発させるとともに、その吸熱作用により室内送風空気を冷却する熱交換器である。
アキュームレータ23は、その冷媒入口側が室内蒸発器22の冷媒出口側及び第2迂回流路24に接続されている。アキュームレータ23は、その内部に流入した気液を分離して、サイクル内の余剰の冷媒を蓄える気液分離器である。アキュームレータ23の気相冷媒出口には、電動圧縮機11の吸入ポート11bが接続されている。
次に、室内空調ユニット30について説明する。室内空調ユニット30は、温度調整された室内送風空気を車室内に送風する。室内空調ユニット30は、車室内最前部に設けられるインストルメントパネルの内側に配置されている。室内空調ユニット30は、ケーシング31と、送風機32と、室内凝縮器12と、室内蒸発器22とを備えている。
ケーシング31の内部には、室内送風空気の空気通路が形成されている。ケーシング31内の室内送風空気の空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、ケーシング31内に導入する空気として内気と外気とを切り替える。内気は車室内の空気である。外気は車室外の空気である。
内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入された空気を車室内に向けて送風する送風機32が配置されている。送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。
送風機32の空気流れ下流側には、室内蒸発器22及び室内凝縮器12が、この順で室内送風空気の空気流れ方向に配置されている。ケーシング31内には、バイパス通路34が形成されている。バイパス通路34は、室内蒸発器22を通過した室内送風空気を、室内凝縮器12を迂回させて流す通路である。
室内蒸発器22の空気流れ下流側であって、且つ室内凝縮器12の空気流れ上流側には、空気通路切替ドア35が配置されている。空気通路切替ドア35は、室内蒸発器22を通過した室内送風空気が流れる空気通路として、室内凝縮器12を通過する空気通路と、バイパス通路34とを切り替える。
次に、図5を参照して、車両用空調装置1の電気的な構成について説明する。
図5に示されるように、車両用空調装置1は、空調制御用のセンサ群41を備えている。センサ群41としては、内気センサ41a、外気センサ41b、日射センサ41c、蒸発器温度センサ41d、吸入圧センサ41e、吐出圧センサ41f、及び中間圧センサ41g等がある。内気センサ41aは、車室内温度Tinを検出する。外気センサ41bは、外気温Toutを検出する。日射センサ41cは、車室内の日射量Srを検出する。蒸発器温度センサ41dは、室内蒸発器22の温度Teを検出する。吸入圧センサ41eは、電動圧縮機11の吸入冷媒の圧力Pinを検出する。吐出圧センサ41fは、電動圧縮機11の吐出冷媒の圧力Poutを検出する。中間圧センサ41gは、電動圧縮機11の中間圧冷媒の圧力Pmidを検出する。各センサ41a〜41gは、検出した物理量に応じた検出信号を出力する。
車両用空調装置1は、操作スイッチ42を備えている。操作スイッチ42は、例えばインストルメントパネル付近に配置された操作パネルに配置されている。操作スイッチ42としては、車両用空調装置1の作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、冷房運転モードと暖房運転モードとを選択するための選択スイッチ等がある。操作スイッチ42は、操作に応じた操作信号を出力する。
センサ群41の検出信号、及び操作スイッチ42の操作信号は、空調ECU(Electronic Control Unit)40に取り込まれている。空調ECU40は、CPU、ROM、及びRAM等を有する周知のマイクロコンピュータとその周辺回路により構成された電子制御装置である。空調ECU40は、センサ群41の検出信号及び操作スイッチ42の操作信号に基づいて、電動圧縮機11、第1減圧器13、中間圧開閉弁16、開閉弁173、送風ファン19、第3減圧器20、三方弁21、送風機32、及び空気通路切替ドア35等の各種機器の駆動を制御する。
空調ECU40は、上位ECU50と互いに通信可能に電気的に接続されている。上位ECU50は、車両の走行系を制御する電子制御装置である。より具体的には、上位ECU50は、図示しないアクセルペダルの踏み込み量等に基づいて、モータやエンジン等の主機を制御するとともに、車両に搭載されたバッテリから主機への電力供給を制御する。
上位ECU50は、車両加速時に電力確保が必要な場合、空調ECU40へ電動圧縮機11の停止信号を出力する。空調ECU40は、上位ECU50から送信される停止信号を受信すると、電動圧縮機11に停止信号を送信する。これにより、電動圧縮機11が停止する。また、空調ECU40は、操作スイッチ42の操作信号等に基づいて電動圧縮機11を起動させる場合には、起動信号を電動圧縮機11に送信する。これにより、電動圧縮機11が起動する。
次に、空調ECU40により実行される各種機器の制御について詳しく説明する。
空調ECU40は、冷房運転モード、第1暖房運転モード、及び第2暖房運転モードのいずれかの運転モードに応じて各種機器を制御する通常運転制御を行う。また、空調ECU40は、上位ECU50から電動圧縮機11の停止信号を受信した場合、通常運転制御よりも優先して電動圧縮機11に停止信号を送信することにより、電動圧縮機11を一時的に停止させる。
通常運転制御では、空調ECU40は、ヒートポンプサイクル10を各運転モードの冷媒回路に切り替えて、各運転モードで所望の空調状態が得られるように、各種機器の作動を制御する。
(A)冷房運転モード
冷房運転モードは、例えば操作パネルの作動スイッチがオンされた状態で、選択スイッチによって冷房運転モードが選択されると開始される。
図1に示されるように、冷房運転モードでは、空調ECU40は、第1減圧器13を全開状態にし、第3減圧器20を絞り状態にする。すなわち、第1減圧器13では減圧作用を発揮させず、第3減圧器20では減圧作用を発揮させる。また、開閉弁173を開弁状態にすることにより、第2減圧器17を全開状態にする。すなわち、第2減圧器17では減圧作用を発揮させない。さらに中間圧開閉弁16を閉弁状態とし、三方弁21の第2迂回流路24側を閉弁状態にする。
また、空調ECU40は、センサ群41の検出信号及び操作パネルの操作信号に基づいて、車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。空調ECU40は、算出した目標吹出温度TAO及びセンサ群41の検出信号に基づいて、電動圧縮機11、送風機32、空気通路切替ドア35等の各種機器の作動状態を決定し、決定した作動状態となるような制御信号を各機器に出力する。これにより、空調ECU40は、例えば電動圧縮機11と送風機32とをそれぞれ所望の回転速度で作動させるとともに、内外気切替装置33のドア位置と、空気通路切替ドア35の位置とを所望の位置にする。空気通路切替ドア35の具体的な位置は、室内凝縮器12の空気通路を閉塞する位置、換言すれば室内蒸発器22通過後の送風空気の全てがバイパス通路34を通過する位置である。
これにより、ヒートポンプサイクル10は、図1に太線及び矢印で示されるように冷媒の流れる冷房運転モードの冷媒回路に切り替えられる。すなわち、電動圧縮機11の吐出ポート11cから吐出された冷媒が、室内凝縮器12、第1減圧器13、気液分離器14、第2減圧器17、室外熱交換器18、第3減圧器20、室内蒸発器22、アキュームレータ23の順に流れて、電動圧縮機11の吸入ポート11bに流入する。
この冷媒運転モードでは、電動圧縮機11の吐出ポート11cから吐出された高圧冷媒が、室外熱交換器18にて外気と熱交換して放熱する。室外熱交換器18から流出した冷媒は、第3減圧器20にて低圧冷媒となるまで減圧膨張され、室内蒸発器22にて、送風機32から送風された室内送風空気から吸熱して蒸発する。これにより、室内送風空気が冷却される。このとき、空気通路切替ドア35により室内凝縮器12の空気通路を閉塞しているため、室内凝縮器12に流入した高圧冷媒は、実質的に室内送風空気へ放熱せず、室内凝縮器12から流出する。そのため、室内蒸発器22にて冷却された室内送風空気が、車室内へ吹き出される。
(B)暖房運転モード
暖房運転モードは、例えば操作パネルの作動スイッチがオンされた状態で、選択スイッチにより暖房運転モードが選択されると開始される。このとき、外気温が極低温の場合に第1暖房運転モードが実行され、外気温が極低温以外の場合に第2暖房運転モードが実行される。例えば、空調ECU40は、外気センサ41bの検出温度が基準温度、例えば0[℃]以下の場合に第1暖房運転モードを実行し、外気センサ41bの検出温度が基準温度を超える場合に第2暖房運転モードを実行する。
(B1)第1暖房運転モード
図2に示されるように、第1暖房運転モードでは、空調ECU40は、第1減圧器13を絞り状態にし、第3減圧器20を全開状態にする。また、開閉弁173を閉弁状態にすることにより、第2減圧器17を絞り状態にする。さらに、中間圧開閉弁16を開弁状態にし、三方弁21の第2迂回流路24側を開弁状態にする。
また、空調ECU40は、冷房運転モードと同様に、目標吹出温度TAO等に基づいて、各種機器の作動状態を決定し、決定した作動状態になるような制御信号を各機器に出力する。これにより、例えば空気通路切替ドア35は、バイパス通路34を閉塞する位置、換言すれば室内蒸発器22通過後の送風空気の全てが室内凝縮器12を通過する位置となる。
これにより、ヒートポンプサイクル10は、図2に太線及び矢印で示されるように冷媒の流れる第1暖房運転モードの冷媒回路に切り替えられる。この第1暖房運転モードの冷媒回路がガスインジェクションサイクルとなっている。すなわち、電動圧縮機11の吐出ポート11cから吐出された高圧冷媒が、室内凝縮器12で凝縮され、凝縮された高圧冷媒が第1減圧器13により中間圧冷媒になるまで減圧される。第1減圧器13から流出した中間圧冷媒は、気液分離器14にて気相冷媒と液相冷媒に分離される。気液分離器14にて分離された中間圧の液相冷媒は、第2減圧器17により低圧冷媒になるまで減圧された後、室外熱交換器18にて蒸発され、アキュームレータ23を介して電動圧縮機11の吸入ポート11bに吸入される。一方、気液分離器14にて分離された中間圧の気相冷媒は、中間圧冷媒流路15を介して、電動圧縮機11の中間圧ポート11dに導かれ、圧縮過程途中の冷媒に合流する。
このように、第1暖房運転モードでは、第2減圧器17にて減圧された低圧冷媒を電動圧縮機11へ吸入させると共に、第1減圧器13にて減圧された中間圧冷媒を電動圧縮機11の圧縮過程途中の冷媒に合流させるガスインジェクションサイクルを構成している。したがって、本実施形態では、この第1暖房運転モードが、中間圧冷媒を電動圧縮機11の圧縮部111に導入させる2段圧縮モードに相当している。
この第1暖房運転モードでは、室内蒸発器22に冷媒が流れないため、室内送風空気が室内蒸発器22で冷却されない。室内蒸発器22を通過した室内送風空気は、室内凝縮器12で高圧冷媒との熱交換により加熱されて、車室内に吹き出される。
(B2)第2暖房運転モード
図3に示されるように、第2暖房運転モードでは、空調ECU40は、第1減圧器13を絞り状態にし、第3減圧器20を全開状態にする。また、開閉弁173を開状態にすることにより第2減圧器17を全開状態にする。さらに、中間圧開閉弁16を閉弁状態にし、三方弁21の第2迂回流路24側を開弁状態にする。
また、空調ECU40は、第1暖房運転モードと同様に、目標吹出温度TAO等に基づいて、各種機器の作動状態を決定し、決定した作動状態になるような制御信号を各機器に出力する。
これにより、ヒートポンプサイクル10は、図3に太線及び矢印で示されるように冷媒の流れる第2暖房運転モードの冷媒回路に切り替えられる。すなわち、電動圧縮機11の吐出ポート11cから吐出された高圧冷媒が、室内凝縮器12で凝縮され、凝縮された高圧冷媒が第1減圧器13により低圧冷媒になるまで減圧される。第1減圧器13から流出した低圧冷媒は、気液分離器14に流入する。このとき、中間圧開閉弁16が閉弁状態であるため、気液分離器14に流入した低圧冷媒は、中間圧冷媒流路15に流入せず、室外熱交換器18に流入する。室外熱交換器18に流入した冷媒は、外気との熱交換器により蒸発され、アキュームレータ23を介して電動圧縮機11の吸入ポート11bに吸入される。
第2暖房運転モードにおいても、室内蒸発器22に冷媒が流れないため、室内送風空気は室内蒸発器22で冷却されない。室内蒸発器22を通過した室内送風空気は、室内凝縮器12で高圧冷媒との熱交換により加熱されて、車室内に吹き出される。
このように、本実施形態では、冷房運転モード及び第2暖房運転モードが、中間圧冷媒を電動圧縮機11の圧縮部111に導入しない1段圧縮モードに相当する。
次に、図6を参照して、電動圧縮機11の電気的な構成について詳しく説明する。
図6に示されるように、電動圧縮機11は、インバータ回路114と、モータ制御部115とを備えている。本実施形態では、インバータ回路114がモータ駆動回路に相当する。
インバータ回路114は、上アームのスイッチング素子116a〜116cと、下アームのスイッチング素子117a〜117cと、電流平滑化用のコンデンサ118とを有している。上アームのスイッチング素子116a〜116c及び下アームのスイッチング素子117a〜117cには、ダイオード119が接続されている。ダイオード119は、電動モータ112に発生する逆起電力を、車両に搭載された直流電源のバッテリ120に環流する。
上アームのスイッチング素子116a〜116c及び下アームのスイッチング素子117a〜117cのベース側は、モータ制御部115に接続されている。上アームのスイッチング素子116a〜116cのコレクタ側は、バッテリ120の高電位側端子に接続されている。上アームのスイッチング素子116a〜116cのエミッタ側は、電動モータ112のU相コイル112u、V相コイル112v、及びW相コイル112wにそれぞれ接続されている。下アームのスイッチング素子117a〜117cのエミッタ側は、バッテリ120の低電位側端子に接続されている。下アームのスイッチング素子117a〜117cのコレクタ側は、各相コイル112u〜112wにそれぞれ接続されている。
インバータ回路114では、モータ制御部115から送信されるPWM駆動信号に基づいてスイッチング素子116a〜116c,117a〜117cがオン/オフされることにより、バッテリ120の直流電力から三相交流電力が生成される。インバータ回路114により生成された三相交流電力が電動モータ112の各相コイル112u〜112wに供給されることにより、各相コイル112u〜112wにより回転磁界が形成される。この回転磁界が、永久磁石等を有するロータに作用することにより、ロータ112rが回転する。ロータ112rの回転に基づいて圧縮部111が回転することにより、電動圧縮機11による冷媒の圧縮が行われる。
電動圧縮機11には、電圧センサ121と、電流センサ122u〜122wと、温度センサ123とが設けられている。電圧センサ121は、バッテリ120の電圧値VBを検出する。電流センサ122u〜122wは、インバータ回路114から電動モータ112に供給される各相電流値Iu〜Iwを検出する。温度センサ123は、インバータ回路114の温度Tivを検出する。各センサ121,122u〜122w,123の出力信号は、モータ制御部115に取り込まれている。
空調ECU40は、センサ群41の検出信号及び操作スイッチ42の操作信号に基づいて電動圧縮機11の目標回転速度、換言すればロータ112rの目標回転速度を設定し、設定された目標回転速度をモータ制御部115に送信する。
モータ制御部115は、CPU、ROM、及びRAM等を有する周知のマイクロコンピュータとその周辺回路により構成された電子制御装置である。モータ制御部115は、電圧センサ121により検出されるバッテリ120の電圧値VBと、電流センサ122u〜122wにより検出される各相電流値Iu〜Iwとに基づいてロータ112rの回転速度を推定する。モータ制御部115は、推定された回転速度を目標回転速度に追従させるフィードバック制御を実行することによりPWM駆動信号を生成する。モータ制御部115は、このPWM駆動信号をインバータ回路114のスイッチング素子116a〜116c,117a〜117cに出力することにより、電動モータ112をPWM制御する。これにより、ロータ112rの回転速度が目標回転速度に追従するように制御される。すなわち、モータ制御部115は、ロータ112rの回転位置を検出する回転センサを用いることなく、ロータ112rの回転制御を行う、いわゆるセンサレス制御を実行する。
次に、図7を参照して、モータ制御部115により実行される電動モータ112の駆動制御について詳しく説明する。モータ制御部115は、図7に示される処理を所定の周期で繰り返し実行する。
図7に示されるように、モータ制御部115は、まず、ステップS1の処理として、空調ECU40から送信される起動信号を受信したか否かを判断する。モータ制御部115は、ステップS1の処理で肯定判断した場合には、ステップS2の処理として、ロータ112rの初期位置を推定する。例えば、モータ制御部115は、電動モータ112の各相コイル112u〜112wに高周波電圧が印加されるようにインバータ回路114を駆動させる。モータ制御部115は、各相コイル112u〜112wに高周波電圧が印加された際に電流センサ122u〜122wにより検出される各相電流値Iu〜Iwに基づいてロータ112rの初期の回転位置を推定する。
モータ制御部115は、ステップS2の処理に続くステップS3の処理として、電動モータ112を起動させる。具体的には、モータ制御部115は、ステップS2の処理で得られたロータ112rの初期の回転位置を基準として、ロータ112rを回転させることのできる回転磁界が各相コイル112u〜112wにより形成されるように、インバータ回路114を駆動させる。これにより、ロータ112rが回転し、電動モータ112が起動する。
モータ制御部115は、ステップS3の処理に続くステップS4の処理として、ロータ112rの回転速度が規定回転速度に達したか否かを判断する。具体的には、モータ制御部115は、バッテリ120の電圧値VB及び各相電流値Iu〜Iwに基づいてロータ112rの回転速度を推定するとともに、このロータ112rの推定回転速度が規定回転速度に達したか否かを判断する。規定回転速度は、センサレス制御を安定して実行することのできる回転速度までロータ112rの回転速度が上昇したか否かを判断することができるように予め実験等を通じて設定されている。
モータ制御部115は、ステップS4の処理で肯定判断した場合には、ステップS5の処理として、電動モータ112の通常制御を実行する。本実施形態の通常制御は、電動モータ112のセンサレス制御に相当する。
モータ制御部115は、電動モータ112の通常制御の実行中、ステップS6の処理として、空調ECU40から送信される停止信号を受信したか否かを判断する。モータ制御部115は、ステップS6の処理で肯定判断した場合には、ステップS7の処理として、ヒートポンプサイクル10が2段圧縮モードで駆動しているか否かを判断する。具体的には、モータ制御部115は、ヒートポンプサイクル10が2段圧縮モードで駆動しているか否かの情報を空調ECU40から取得し、取得した情報に基づいてステップS7の処理を実行する。
モータ制御部115は、ヒートポンプサイクル10が2段圧縮モードで駆動していない場合には、すなわちヒートポンプサイクル10が1段圧縮モードで駆動している場合には、ステップS7の処理で否定判断する。この場合、モータ制御部115は、ステップS8の処理として、電動モータ112を通常停止させる。すなわち、モータ制御部115は、電動モータ112への電力供給を停止することにより、電動モータ112を停止させる。
モータ制御部115は、ステップS7の処理で肯定判断した場合には、ステップS9の処理として、第1起動制御を実行する。第1起動制御の処理手順は、図8に示される通りである。
図8に示されるように、モータ制御部115は、第1起動制御において、まず、ステップS90の処理として、電動モータ112を短絡制動させる。具体的には、モータ制御部115は、インバータ回路114の上アームのスイッチング素子116a〜116cの全てをオンさせ、下アームのスイッチング素子117a〜117cの全てをオフさせる。あるいは、モータ制御部115は、インバータ回路114の上アームのスイッチング素子116a〜116cの全てをオフさせ、下アームのスイッチング素子117a〜117cの全てをオンさせる。これにより、各相コイル112u〜112wには、ロータ112rの回転中とは逆の電流が流れるため、ロータ112rに制動力が加わり、ロータ112rを停止させることができる。
モータ制御部115は、ステップS90の処理に続くステップS91の処理として、温度センサ123によりインバータ回路114の温度Tivを取得する。また、モータ制御部115は、ステップS91の処理に続くステップS92の処理として、インバータ回路114の温度Tivが温度閾値Tth1未満であるか否かを判断する。温度閾値Tth1は、電動モータ112を短絡制動させている際にインバータ回路114に発生する熱によりインバータ回路114が損傷する可能性があるか否かを判定することができるように予め実験等により設定されている。本実施形態では、この温度閾値Tth1が、短絡制動時の温度閾値に相当する。
モータ制御部115は、ステップS92の処理で肯定判断した場合には、ステップS93の処理として、ロータ112rが停止したか否かを判断する。具体的には、モータ制御部115は、バッテリ120の電圧値VB及び各相電流値Iu〜Iwから推定されるロータ112rの回転速度に基づいて、ロータ112rが停止したか否かを判断する。モータ制御部115は、ステップS92の処理で肯定判断し、且つステップS93の処理で否定判断した場合には、ステップS91の処理に戻る。
モータ制御部115は、ステップS93の処理で肯定判断した場合、ステップS94の処理として、電動モータ112を直流励磁する。具体的には、モータ制御部115は、直流励磁により一方向の磁界が形成されるようにインバータ回路114を駆動させ、ロータ112rを特定の相に固定する。これにより、ロータの回転位置を、直流励磁により形成される一方向の磁界に対応した所定の回転位置に固定することができる。
モータ制御部115は、ステップS94の処理に続くステップS95の処理として、温度センサ123によりインバータ回路114の温度Tivを取得する。また、モータ制御部115は、ステップS95に続くステップS96の処理として、インバータ回路114の温度Tivが温度閾値Tth2未満であるか否かを判断する。温度閾値Tth2は、電動モータ112を直流励磁している際にインバータ回路114に発生する熱によりインバータ回路114が損傷する可能性があるか否かを判定することができるように予め実験等により設定されている。本実施形態では、この温度閾値Tth2が、直流励磁時の温度閾値に相当する。
モータ制御部115は、ステップS96の処理で肯定判断した場合には、すなわち熱による損傷がインバータ回路114に生じないと判断することができる場合には、ステップS97及びS98の処理として、電動圧縮機11の吸入冷媒の圧力Pin及び中間圧冷媒の圧力Pmidの情報を空調ECU40から取得する。
モータ制御部115は、ステップS98に続くステップS99の処理として、吸入冷媒の圧力Pinと中間圧冷媒の圧力Pmidとの差(Pmid−Pin)を演算し、この差圧(Pmid−Pin)が所定の圧力閾値Pth以下になったか否かを判断する。圧力閾値Pthは、中間圧冷媒の圧力Pmidがロータ112rを逆回転させない程度の圧力まで低下したか否かを判定することができるように予め実験等により設定されている。
モータ制御部115は、ステップS99の処理で否定判断した場合には、ステップS100の処理として、空調ECU40から送信される起動信号を受信したか否かを判断する。モータ制御部115は、ステップS100の処理で否定判断した場合には、ステップS95の処理に戻る。すなわち、モータ制御部115は、ロータ112rが逆回転する可能性のある状況で起動信号を受信できていない場合には、ステップS95の処理に戻る。
モータ制御部115は、ステップS100の処理で肯定判断した場合には、すなわちロータ112rが逆回転する可能性のある状況で起動信号を受信した場合には、図7に示されるステップS3の処理に戻り、電動モータ112を起動させる。この場合、モータ制御部115は、直流励磁により固定されるロータ112rの所定の回転位置を基準として、各相コイル112u〜112wにより回転磁界を形成することにより、電動モータ112を起動させる。
モータ制御部115は、図8に示されるステップS99の処理で肯定判断した場合、すなわちロータ112rが逆回転する可能性がない場合には、ステップS101の処理として、電動モータ112の直流励磁を停止し、一連の処理を終了する。
モータ制御部115は、ステップS92の処理、又はステップS96の処理で否定判断した場合には、すなわち熱による損傷がインバータ回路114に生じる可能性がある場合には、ステップS102の処理として、第2起動制御を実行する。第2起動制御の処理手順は、図9に示される通りである。
図9に示されるように、モータ制御部115は、第2起動制御において、まず、ステップS1020の処理として、電動モータ112の短絡制動又は直流励磁を解除する。例えば、モータ制御部115は、図8に示されるステップS92の処理で否定判断することにより第2起動制御を実行した場合には、電動モータ112の短絡制動を行っている。この場合、モータ制御部115は、ステップS1020の処理として、電動モータ112の短絡制動を解除する。一方、モータ制御部115は、図8に示されるステップS96の処理で否定判断することにより第2起動制御を実行した場合には、電動モータ112の直流励磁を行っている。この場合、モータ制御部115は、ステップS1020の処理として、電動モータ112の直流励磁を解除する。
モータ制御部115は、ステップS1020の処理に続くステップS1021及びS1022の処理として、電動圧縮機11の吸入冷媒の圧力Pin及び中間圧冷媒の圧力Pmidの情報を空調ECU40から取得する。
モータ制御部115は、ステップS1022に続くステップS1023の処理として、吸入冷媒の圧力Pinと中間圧冷媒の圧力Pmidとの差(Pmid−Pin)を演算し、この差圧(Pmid−Pin)が圧力閾値Pth以下になったか否かを判断する。
モータ制御部115は、ステップS1023の処理で否定判断した場合には、ステップS1024の処理として、空調ECU40から送信される起動信号を受信したか否かを判断する。モータ制御部115は、ステップS1024の処理で否定判断した場合には、ステップS1021の処理に戻る。すなわち、モータ制御部115は、ロータ112rが逆回転する可能性のある状況で起動信号を受信できていない場合には、ステップS1021の処理に戻る。
モータ制御部115は、ステップS1023の処理で肯定判断した場合、すなわちロータ112rが逆回転する可能性がない場合には、一連の処理を終了する。
モータ制御部115は、ステップS1024の処理で肯定判断した場合、すなわちロータ112rが逆回転する可能性のある状況で起動信号を受信した場合には、ステップS1025の処理として、ステップS90の処理と同様に、電動モータ112を短絡制動させ、電動モータ112を停止させる。モータ制御部115は、ステップS1025に続くステップS1026の処理として、ステップS93の処理と同様に、ロータ112rが停止したか否かを判断する。モータ制御部115は、ステップS1026の処理で肯定判断した場合、すなわちロータ112rが停止した場合には、ステップS1027の処理として、ステップS94の処理と同様に、電動モータ112を直流励磁する。そして、モータ制御部115は、図7に示されるステップS3の処理に戻り、電動モータ112を起動させる。この場合、モータ制御部115は、直流励磁により固定されるロータ112rの所定の回転位置を基準として、各相コイル112u〜112wにより回転磁界を形成することにより、電動モータ112を起動させる。
以上説明した本実施形態の電動圧縮機11によれば、以下の(1)〜(7)に示される作用及び効果を得ることができる。
(1)モータ制御部115は、2段圧縮モードの実行時に電動モータ112を停止させる場合、電動モータ112を短絡制動させてロータ112rの回転を停止させた後、電動モータ112を直流励磁することによりロータ112rの回転位置を所定の回転位置に固定する。これにより、中間圧冷媒の圧力Pmidが吸入冷媒の圧力Pinに対してある程度大きい場合でも、ロータ112rの逆回転を抑制することができる。よって、再起動時における電動モータ112の脱調を抑制することができる。
(2)モータ制御部115は、電動モータ112を直流励磁した後に再起動させる場合には、直流励磁により固定されるロータ112rの所定の回転位置を基準に電動モータ112を起動させる。これにより、脱調を抑制しつつ、電動モータ112を容易に再起動させることができる。
(3)モータ制御部115は、電動モータ112を直流励磁している際、中間圧冷媒の圧力Pmidがロータ112rを逆回転させない程度まで低下したと判断した場合、電動モータ112の直流励磁を解除する。これにより、ロータ112rが逆回転しないにも関わらず電動モータ112を直流励磁し続ける状況を回避することができるため、無駄な電力消費を回避することができる。
(4)モータ制御部115は、電動モータ112を短絡制動させている際、インバータ回路114の温度Tivの温度が温度閾値Tth1以上になった場合には、電動モータ112の短絡制動を解除する。これにより、電動モータ112の短絡制動によりインバータ回路114の温度が上昇したような場合には、電動モータ112の短絡制動が解除されるため、インバータ回路114の発熱による損傷を抑制することができる。
(5)モータ制御部115は、電動モータ112を直流励磁している際、インバータ回路114の温度Tivが温度閾値Tth2以上になった場合には、電動モータ112の直流励磁を解除する。これにより、電動モータ112の直流励磁によりインバータ回路114の温度が上昇したような場合には、電動モータ112の直流励磁が解除されるため、インバータ回路114の発熱による損傷を抑制することができる。
(6)モータ制御部115は、電動モータ112の短絡制動又は直流励磁を解除した後、差圧(Pmid−Pin)が圧力閾値Pth以下になる前に電動モータ112を起動させる場合には、電動モータ112を短絡制動させた後、電動モータ112を直流励磁する。その後、モータ制御部115は、直流励磁により固定されるロータ112rの所定の回転位置を基準に電動モータ112を再起動させる。これにより、中間圧冷媒の圧力Pmidがロータ112rを逆回転させない程度の圧力まで低下する前に電動モータ112を再起動させる場合でも、脱調を抑制しつつ電動モータ112を起動させることができる。
(7)モータ制御部115は、吸入冷媒の圧力Pinと中間圧冷媒の圧力Pmidとの差(Pmid−Pin)が圧力閾値Pth以下になることに基づいて、中間圧冷媒の圧力Pmidの圧力がロータ112rを逆回転させない程度の圧力まで低下したと判定する。これにより、中間圧冷媒の圧力Pmidの圧力がロータ112rを逆回転させない程度の圧力まで低下したか否かを容易に判定することができる。
なお、上記実施形態は、以下の形態にて実施することもできる。
・モータ制御部115は、直流励磁を実行した時点から所定時間が経過することに基づいて、中間圧冷媒の圧力Pmidの圧力がロータ112rを逆回転させない程度の圧力まで低下したと判定してもよい。この場合、例えば図10に示されるように、モータ制御部115は、図8に示されるステップS99の処理に代わるステップS103の処理として、直流励磁を実行した時点から所定時間が経過したか否かを判断する処理を実行する。同様に、図11に示されるように、モータ制御部115は、図9に示されるステップS1023の処理に代えて、直流励磁を実行した時点から所定時間が経過したか否かを判断する処理を実行する。このような構成でも、中間圧冷媒の圧力Pmidの圧力がロータ112rを逆回転させない程度の圧力まで低下したか否かを容易に判定することが可能である。
・モータ制御部115は、電動モータ112が停止する直前の各相電流値Iu〜Iwやロータ112rの回転速度等の情報に基づいて、ロータ112rに対して逆回転させる方向に作用する力を推定し、この推定される逆回転力に基づいて、図10のステップS103や図11のステップS1028で用いられる所定時間を設定してもよい。すなわち、モータ制御部115は、推定される逆回転力に基づいて直流励磁の実行時間を設定してもよい。同様に、モータ制御部115は、推定される逆回転力に基づいて、短絡制動の実行時間を設定してもよい。
・モータ制御部115は、上記の推定される逆回転力に基づいて、直流励磁時の電動モータ112の励磁電流の大きさを設定してもよい。また、モータ制御部115は、直流励磁時の電動モータ112の励磁電流の大きさを、時間の経過に伴い減少させてもよい。
・モータ制御部115は、図7のステップS7の処理において、例えば電動モータ112が停止する直前の各相電流値Iu〜Iwやロータ112rの回転速度等の情報に基づいて、ヒートポンプサイクル10が2段圧縮モードで駆動しているか否かを判定してもよい。
・モータ制御部115が提供する手段及び/又は機能は、実体的な記憶装置に記憶されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組み合わせにより提供することができる。例えばモータ制御部115がハードウェアである電子回路により提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路により提供することができる。
・本発明は上記の具体例に限定されるものではない。すなわち、上記の具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素及びその配置や条件等は、例示したものに限定されるわけではなく適宜変更することができる。また、前述した実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
11:電動圧縮機
11d:中間圧ポート
111:圧縮部
112:電動モータ
112r:ロータ
114:モータ駆動回路
115:モータ制御部

Claims (8)

  1. 低圧の吸入冷媒を圧縮して高圧の冷媒を吐出する圧縮部(111)と、
    ロータ(112r)の回転に基づき前記圧縮部を駆動させる電動モータ(112)と、
    前記電動モータを駆動させるモータ駆動回路(114)と、
    中間圧冷媒を前記圧縮部に導入する中間圧ポート(11d)と、
    前記ロータの回転制御を行う制御部(115)と、を備え、
    前記制御部は、
    前記中間圧冷媒が前記圧縮部に導入される2段圧縮モードの実行時に前記電動モータを停止させる場合、前記電動モータを短絡制動させて前記ロータの回転を停止させた後、前記ロータの回転位置を所定の回転位置で固定させるべく前記電動モータを直流励磁するとともに、
    前記電動モータを直流励磁している際、前記中間圧冷媒の圧力が前記ロータを逆回転させない程度の圧力まで低下したと判断した場合、前記電動モータの直流励磁を解除する
    電動圧縮機。
  2. 低圧の吸入冷媒を圧縮して高圧の冷媒を吐出する圧縮部(111)と、
    ロータ(112r)の回転に基づき前記圧縮部を駆動させる電動モータ(112)と、
    前記電動モータを駆動させるモータ駆動回路(114)と、
    中間圧冷媒を前記圧縮部に導入する中間圧ポート(11d)と、
    前記ロータの回転制御を行う制御部(115)と、を備え、
    前記制御部は、
    前記中間圧冷媒が前記圧縮部に導入される2段圧縮モードの実行時に前記電動モータを停止させる場合、前記電動モータを短絡制動させて前記ロータの回転を停止させた後、前記ロータの回転位置を所定の回転位置で固定させるべく前記電動モータを直流励磁するとともに、
    前記電動モータを直流励磁している際、前記モータ駆動回路の温度が直流励磁時の温度閾値以上になった場合には、前記電動モータの直流励磁を解除する
    動圧縮機。
  3. 前記制御部は、
    前記電動モータの直流励磁を解除した後、前記中間圧冷媒の圧力が前記ロータを逆回転させない程度の圧力まで低下する前に前記電動モータを起動させる場合には、前記電動モータを短絡制動させた後に前記電動モータを直流励磁するとともに、その後に前記ロータの前記所定の回転位置を基準として前記電動モータを再起動させる
    請求項に記載の電動圧縮機。
  4. 低圧の吸入冷媒を圧縮して高圧の冷媒を吐出する圧縮部(111)と、
    ロータ(112r)の回転に基づき前記圧縮部を駆動させる電動モータ(112)と、
    前記電動モータを駆動させるモータ駆動回路(114)と、
    中間圧冷媒を前記圧縮部に導入する中間圧ポート(11d)と、
    前記ロータの回転制御を行う制御部(115)と、を備え、
    前記制御部は、
    前記中間圧冷媒が前記圧縮部に導入される2段圧縮モードの実行時に前記電動モータを停止させる場合、前記電動モータを短絡制動させて前記ロータの回転を停止させた後、前記ロータの回転位置を所定の回転位置で固定させるべく前記電動モータを直流励磁するとともに、
    前記電動モータを短絡制動させている際、モータ駆動回路の温度が短絡制動時の温度閾値以上になった場合には、前記電動モータの短絡制動を解除する
    動圧縮機。
  5. 前記制御部は、
    前記電動モータの短絡制動を解除した後、前記中間圧冷媒の圧力が前記ロータを逆回転させない程度の圧力まで低下する前に前記電動モータを起動させる場合には、前記電動モータを短絡制動させた後に前記電動モータを直流励磁するとともに、その後に前記ロータの前記所定の回転位置を基準として前記電動モータを再起動させる
    請求項に記載の電動圧縮機。
  6. 前記制御部は、
    前記電動モータを直流励磁した後に前記電動モータを再起動させる場合には、前記ロータの前記所定の回転位置を基準として前記電動モータを起動させる
    請求項1〜5のいずれか一項に記載の電動圧縮機。
  7. 前記制御部は、
    前記中間圧冷媒の圧力と吸入冷媒の圧力との差が所定の圧力閾値以下になることに基づいて、前記中間圧冷媒の圧力が前記ロータを逆回転させない程度の圧力まで低下したと判定する
    請求項1,3,5のいずれか一項に記載の電動圧縮機。
  8. 前記制御部は、
    前記直流励磁を実行した時点から所定時間が経過することに基づいて、前記中間圧冷媒の圧力が前記ロータを逆回転させない程度の圧力まで低下したと判定する
    請求項1,3,5のいずれか一項に記載の電動圧縮機。
JP2015190688A 2015-09-29 2015-09-29 電動圧縮機 Active JP6380319B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015190688A JP6380319B2 (ja) 2015-09-29 2015-09-29 電動圧縮機
PCT/JP2016/075985 WO2017056863A1 (ja) 2015-09-29 2016-09-05 電動圧縮機
DE112016004429.1T DE112016004429B4 (de) 2015-09-29 2016-09-05 Elektrischer Kompressor
CN201680056373.8A CN108138780B (zh) 2015-09-29 2016-09-05 电动压缩机
US15/762,771 US10634390B2 (en) 2015-09-29 2016-09-05 Electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190688A JP6380319B2 (ja) 2015-09-29 2015-09-29 電動圧縮機

Publications (3)

Publication Number Publication Date
JP2017070027A JP2017070027A (ja) 2017-04-06
JP2017070027A5 JP2017070027A5 (ja) 2017-10-05
JP6380319B2 true JP6380319B2 (ja) 2018-08-29

Family

ID=58423393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190688A Active JP6380319B2 (ja) 2015-09-29 2015-09-29 電動圧縮機

Country Status (5)

Country Link
US (1) US10634390B2 (ja)
JP (1) JP6380319B2 (ja)
CN (1) CN108138780B (ja)
DE (1) DE112016004429B4 (ja)
WO (1) WO2017056863A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263736B2 (ja) 2018-10-30 2023-04-25 株式会社デンソー 熱交換器
CN111277174A (zh) 2018-12-04 2020-06-12 丹佛斯(天津)有限公司 一种控制压缩机制动的方法、变频器及变频压缩机
CN112361684B (zh) * 2020-11-30 2021-09-07 珠海格力电器股份有限公司 一种两级变频压缩制冷系统控制方法、装置及空调机组
JP2022126289A (ja) * 2021-02-18 2022-08-30 愛三工業株式会社 モータ制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225539B1 (ja) * 1970-08-26 1977-07-08
JPS5225539A (en) * 1975-08-20 1977-02-25 Sharp Corp Equivalent reactor
JP3480752B2 (ja) * 1994-12-08 2003-12-22 東芝デジタルメディアエンジニアリング株式会社 冷凍サイクル装置
JPH09121590A (ja) * 1995-09-14 1997-05-06 Copeland Corp 逆転制動機構を備えた回転式圧縮機
JPH10259788A (ja) * 1997-03-18 1998-09-29 Nippon Soken Inc 冷凍サイクル用圧縮機
JP3817420B2 (ja) * 2000-10-31 2006-09-06 株式会社日立産機システム 回転速度可変形オイルフリースクリュー圧縮機およびその運転制御方法
JP4200850B2 (ja) * 2003-07-17 2008-12-24 株式会社デンソー 電動圧縮機
JP4719432B2 (ja) * 2004-07-12 2011-07-06 日立アプライアンス株式会社 空気調和機及びそれに用いられるロータリ式2段圧縮機
CN100461615C (zh) * 2005-06-27 2009-02-11 株式会社电装 电机控制设备
US20090092501A1 (en) * 2007-10-08 2009-04-09 Emerson Climate Technologies, Inc. Compressor protection system and method
JP2010117072A (ja) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd 冷凍装置
JP5371903B2 (ja) * 2010-07-28 2013-12-18 株式会社日立ハイテクノロジーズ 磁気ディスクの検査方法及びその装置
JP5881282B2 (ja) * 2010-09-30 2016-03-09 三菱重工業株式会社 ターボ冷凍装置、その制御装置及びその制御方法
JP5821756B2 (ja) * 2011-04-21 2015-11-24 株式会社デンソー 冷凍サイクル装置
JP5500240B2 (ja) * 2012-05-23 2014-05-21 ダイキン工業株式会社 冷凍装置
JP5516712B2 (ja) * 2012-05-28 2014-06-11 ダイキン工業株式会社 冷凍装置
JP6035942B2 (ja) * 2012-07-25 2016-11-30 ダイキン工業株式会社 モータ駆動制御装置
JP5768863B2 (ja) 2013-11-18 2015-08-26 株式会社豊田自動織機 電動圧縮機
JP2015190688A (ja) 2014-03-28 2015-11-02 パナソニックIpマネジメント株式会社 換気装置
US9577556B2 (en) 2014-07-30 2017-02-21 Regal Beloit America, Inc. System and method for starting a motor

Also Published As

Publication number Publication date
DE112016004429B4 (de) 2023-03-30
CN108138780A (zh) 2018-06-08
US20190078812A1 (en) 2019-03-14
DE112016004429T5 (de) 2018-06-21
CN108138780B (zh) 2019-09-17
JP2017070027A (ja) 2017-04-06
WO2017056863A1 (ja) 2017-04-06
US10634390B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6369624B2 (ja) 車両用空調装置
JP6065637B2 (ja) 冷却システム
JP6380319B2 (ja) 電動圧縮機
JP2007139269A (ja) 超臨界冷凍サイクル
JP6620390B2 (ja) 電動車両
JP6447734B2 (ja) 電動圧縮機の制御装置および冷凍サイクル装置
JP2009235982A (ja) 車両用空調装置
JPH1134640A (ja) 車両用空調装置
EP3534090A1 (en) Heat pump cycle apparatus
JP2018202896A (ja) 車両用空調装置
JP2010106807A (ja) 電動圧縮機およびヒートポンプシステム並びにヒートポンプシステムの制御方法
JP2009166629A (ja) 車両用空調装置
US9926931B2 (en) Motor-driven compressor
JP6583246B2 (ja) 電子制御装置
JP6733625B2 (ja) 冷凍サイクル装置
JP5195378B2 (ja) 車両用空調制御装置
JP5364733B2 (ja) 車両用空調装置
JP2000280733A (ja) 自動車用空気調和装置
JP2020142658A (ja) 車両用空調装置
JP2010043754A (ja) 蒸気圧縮式冷凍サイクル
WO2024070703A1 (ja) ヒートポンプサイクル装置
JP7024313B2 (ja) 車両用空調装置
JP2023164190A (ja) 冷凍サイクル装置
JP2004068668A (ja) ハイブリッド車両用コンプレッサ制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6380319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250