JP6369624B2 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP6369624B2
JP6369624B2 JP2017502005A JP2017502005A JP6369624B2 JP 6369624 B2 JP6369624 B2 JP 6369624B2 JP 2017502005 A JP2017502005 A JP 2017502005A JP 2017502005 A JP2017502005 A JP 2017502005A JP 6369624 B2 JP6369624 B2 JP 6369624B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
power supply
control unit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017502005A
Other languages
English (en)
Other versions
JPWO2016136382A1 (ja
Inventor
輝明 大山
輝明 大山
酒井 剛志
剛志 酒井
神谷 勇治
勇治 神谷
智行 鷲見
智行 鷲見
慎二 中本
慎二 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JPWO2016136382A1 publication Critical patent/JPWO2016136382A1/ja
Application granted granted Critical
Publication of JP6369624B2 publication Critical patent/JP6369624B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00892Devices specially adapted for avoiding uncomfortable feeling, e.g. sudden temperature changes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3223Cooling devices using compression characterised by the arrangement or type of the compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • B60L1/06Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line using only one supply
    • B60L1/08Methods and devices for control or regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3275Cooling devices output of a control signal related to a compressing unit to control the volume of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3292Compressor drive is electric only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

関連出願への相互参照
本出願は、2015年2月24日に出願された日本特許出願番号2015−034296号に基づくもので、ここにその記載内容が参照により組み入れられる。
本開示は、ガスインジェクションサイクルを備える車両用空調装置に関するものである。
特許文献1に、ガスインジェクションサイクルを備える車載用の冷凍装置が開示されている。この冷凍装置は、エンジンの駆動力を利用して冷媒を圧縮する圧縮機を用いている。
これに対し、近年、電気自動車やハイブリッド車両等の電動車両の普及により、車両に搭載される車両用空調装置では、電動モータで駆動する電動圧縮機が採用されている。例えば、ハイブリッド車両の場合、電動圧縮機が採用されることで、エンジンが停止していても空調装置を作動させることができる。
特開2010−117072号公報
ところで、電気自動車やハイブリッド車両等の電動車両に搭載され、ガスインジェクションサイクルを備える車両用空調装置において、電動モータによって駆動する電動圧縮機を用いると、下記の問題が発生する。
まず、ガスインジェクションサイクルを構成する電動圧縮機は、圧縮機構、圧縮機構を駆動する電動モータ、吸入ポート、吐出ポートおよび中間圧ポートを有する。この電動圧縮機は、吸入ポートから吸入した低圧冷媒を圧縮機構で圧縮して高圧冷媒として、吐出ポートから高圧冷媒を吐出する。この電動圧縮機は、中間圧ポートからサイクル内の中間圧冷媒を流入させて圧縮過程途中の冷媒に合流させる。
そして、サイクル内の中間圧冷媒を電動圧縮機の中間圧ポートから流入させて圧縮過程途中の冷媒に合流させるように冷媒が流れる冷媒回路が、ガスインジェクションサイクル(すなわち、二段圧縮サイクル)の冷媒回路である。ガスインジェクションサイクルは、ヒートポンプサイクルの極低温下での暖房時における暖房能力向上の手法として用いられるものである。したがって、このガスインジェクションサイクルでの運転モード(以下、二段圧縮モードと呼ぶ。)は、極低温下での暖房運転時に実行される。
次に、電動圧縮機を用いた場合に発生する問題について説明する。
電動圧縮機は、車両に搭載された車両電源から給電される。このため、車両電源から主機等の他の車両搭載機器へ供給する電力の確保を目的として、電動圧縮機の一時停止を要求される場合がある。
しかし、二段圧縮モードでの暖房運転中に、電動圧縮機を一時停止させると、中間圧冷媒と吸入冷媒の圧力差によって冷媒が逆流する。冷媒が逆流すると、電動圧縮機が長時間逆回転し続けてしまう。逆回転中は電動圧縮機の再起動ができないため、逆回転が終了するまで、電動圧縮機の再起動を待たなければならない。また、逆回転中に電動圧縮機の再起動を試みると、電動圧縮機は再起動に失敗し、自己保護のために一定時間が経過するまで次回の起動を試みないよう待機時間が生じる。
このため、電動圧縮機の停止要求が解除された場合であっても、電動圧縮機の逆回転が終了するまで、または、上記した待機時間が経過するまで、電動圧縮機を再起動させることができない。この結果、圧縮機が停止した状態のまま、室内送風機によって車室内へ室内送風空気が吹き出されるので、吹き出される室内送風空気の温度が著しく低下し、乗員の快適性を損なうという問題が生じてしまう。
なお、このような問題は、上記した特許文献1に記載されていない。
ちなみに、特許文献1のように、エンジンの駆動力を利用する圧縮機は、圧縮機が逆回転中であっても、クラッチをつなげば、再起動できるが、電動圧縮機は、逆回転中に再起動ができない。この理由は次の通りである。
電動圧縮機の電動モータを起動させる場合、ロータの電気角の位置を確認してから、電動モータを起動しなければならない。このため、ロータの電気角の位置検出が必要となるが、電動モータは、圧縮機の内部に設けられており、圧縮機の内部は冷媒が流れるため、ロータの電気角の位置検出のためのセンサを設置できない。そこで、通常では、ロータ停止時に電動モータに印加した電圧と電動モータに流れた電流とロータの電気角の位置との関係に基づいて、ロータの電気角の位置を推定している。このロータの電気角の位置検出は、ロータが停止していなければできないため、圧縮機が逆回転していると、ロータの電気角の位置を確認できず、圧縮機を起動できない。
本開示は、2段圧縮モード時に圧縮機を作動停止させた後、圧縮機を再起動させる場合に、早期に圧縮機を再起動させることができる車両用空調装置を提供することを目的とする。
本開示の1つの観点によれば、
車室内に向かって室内送風空気を送風する車両用空調装置は、
冷媒を圧縮する圧縮機構、圧縮機構を駆動する電動モータ、吸入ポート、吐出ポートおよび中間圧ポートを有し、吸入ポートから吸入した低圧冷媒を圧縮機構で圧縮して高圧冷媒として、吐出ポートから高圧冷媒を吐出するとともに、中間圧ポートからサイクル内の中間圧冷媒を流入させて圧縮過程途中の冷媒に合流させる圧縮機と、
車室内に向かって送風される室内送風空気との熱交換により、吐出ポートから吐出された冷媒を放熱する放熱器と、
放熱器から流出した冷媒を中間圧冷媒となるまで減圧させる第1減圧器と、
第1減圧器から流出した中間圧冷媒の気液を分離する気液分離器と、
気液分離器で分離された液相冷媒を低圧冷媒となるまで減圧させる第2減圧器と、
車室外空気との熱交換により、第2減圧器から流出した冷媒を蒸発させて吸入ポート側へ流出させる室外熱交換器と、
気液分離器で分離された気相冷媒を中間圧ポートへ導く中間圧冷媒流路と、
中間圧冷媒を中間圧ポートに導入する2段圧縮モードの冷媒回路と、少なくとも中間圧冷媒の中間圧冷媒流路への流入を禁止するとともに、中間圧冷媒流路に残存する冷媒を中間圧冷媒流路から流出させる1段圧縮モードの冷媒回路とを切り替える切替装置と、
圧縮機および切替装置の作動を制御する制御装置とを備え、
制御装置は、2段圧縮モード時に圧縮機の作動停止要求がある場合に、切替装置を作動させて2段圧縮モードの冷媒回路から1段圧縮モードの冷媒回路へ切り替えて、圧縮機の作動停止後の逆回転を抑制できるように予め定められた所定時間、1段圧縮モードで圧縮機を作動させた後、圧縮機の作動を停止させるとともに、作動停止要求が解除された場合に、圧縮機を再起動させる。
これによれば、圧縮機の停止前に1段圧縮モードで圧縮機を作動させることにより、中間圧ポートに連なる中間圧冷媒流路に残る冷媒を流出させて、圧縮機の中間圧ポート側の冷媒の圧力を下げることができる。この結果、圧縮機停止時における中間圧ポート側の冷媒と吸入ポート側の冷媒との圧力差を低減でき、圧縮機停止後の逆回転を抑制できる。
したがって、本観点によれば、本観点と異なり、2段圧縮モード時に圧縮機の作動停止が要求された場合に、1段圧縮モードに切り替えずに、圧縮機の作動を停止させる場合と比較して、圧縮機の停止から再起動までにかかる時間を短縮できる。この結果、車室内に吹き出される室内送風空気の温度低下量を小さく抑えることができる。
本開示の別の観点によれば、
圧縮機は、車両の主機用電源から給電され、
切替装置は、車両の補機用電源から給電されるとともに、補機用電源からの給電が停止されると、2段圧縮モードの冷媒回路から1段圧縮モードの冷媒回路へ切り替えるように構成されており、
制御装置は、2段圧縮モード時に、ユーザ操作によって主機用電源および補機用電源が給電状態から給電停止状態に切り替えられる場合、補機用電源から切替装置への給電を停止させた後、1段圧縮モードで圧縮機を予め定められた所定時間作動させ、主機用電源から圧縮機への給電を停止させる。
これによれば、2段圧縮モード時にユーザ操作によって主機用電源および補機用電源が給電状態から給電停止状態に切り替えられる場合においても、1段圧縮モードで圧縮機を予め定められた所定時間作動させた後、圧縮機の作動を停止させることができる。この場合においても、圧縮機の停止前に1段圧縮モードで圧縮機を作動させるので、圧縮機停止後の逆回転を抑制でき、圧縮機の逆回転による異音の発生を抑制できる。
第1実施形態における車両用空調装置の全体構成を示す図であって、冷房運転モード時の冷媒流れを示す図である。 第1実施形態における車両用空調装置の全体構成を示す図であって、第1暖房運転モード(すなわち、2段圧縮モード)時の冷媒流れを示す図である。 第1実施形態における車両用空調装置の全体構成を示す図であって、第2暖房運転モード時の冷媒流れを示す図である。 第1実施形態における圧縮機の構成を示す断面図である。 第1実施形態における電子制御装置のブロック図である。 第1実施形態における空調ECUが実行する制御のフローチャートである。 第1実施形態における空調ECUが実行する一時停止制御のフローチャートである。 第1実施形態における一段圧縮モードの冷媒回路を示す図である。 比較例1における圧縮機の逆回転発生時間を示す図である。 第1実施形態における圧縮機の逆回転発生時間を示す図である。 第2実施形態における空調ECUが実行する一時停止制御のフローチャートである。 第3実施形態における電源システムの構成を示すブロック図である。 第3実施形態における各機器の作動時刻を示すタイミングチャートである。 第3実施形態における圧縮機の制御部が実行する圧縮機の保護制御のフローチャートである。
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
図1〜3に示す本実施形態の車両用空調装置1は、内燃機関(すなわち、エンジン)および走行用電動モータから車両走行用の駆動力を得るハイブリッド車両に適用されている。車両用空調装置1は、空調対象空間である車室内に向かって室内送風空気を送風する。車両用空調装置1は、ヒートポンプサイクル10と室内空調ユニット30とを備えている。
ヒートポンプサイクル10は、車両用空調装置1において、車室内へ送風される室内送風空気を冷却あるいは加熱する機能を果たすものである。このため、ヒートポンプサイクル10は、図1に示すように、室内送風空気を冷却して車室内を冷房する冷房運転モードの冷媒回路と、図2、3に示すように、室内送風空気を加熱して車室内を暖房する第1、第2暖房運転モードの冷媒回路とを切替可能に構成されている。第1暖房運転モードは、外気温が極低温時、例えば、0℃以下の時に実行される暖房運転モードであり、第2暖房モードは、通常の暖房運転モードである。
また、ヒートポンプサイクル10は、冷媒として通常のフロン系冷媒を採用しており、高圧冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。
本実施形態のヒートポンプサイクル10は、圧縮機11と、室内凝縮器12と、第1減圧器13と、気液分離器14と、中間圧冷媒流路15と、中間圧開閉弁16と、第2減圧器17と、室外熱交換器18と、第3減圧器20と、三方弁21と、室内蒸発器22と、アキュムレータ23と、第2迂回流路24とを備えている。
圧縮機11は、車両のボンネット内に配置され、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出する電動圧縮機である。
圧縮機11は、圧縮室11aと、圧縮室11aへ低圧冷媒を吸入させる吸入ポート11bと、圧縮室11aから高圧冷媒を吐出する吐出ポート11cと、ヒートポンプサイクル10の中間圧冷媒を圧縮室11aへ導くと共に、圧縮過程途中の冷媒に合流させる中間圧ポート11dとを有する。なお、高圧冷媒とは、低圧冷媒よりも高い圧力を有する冷媒を意味する。中間圧冷媒とは、圧縮室11aに吸入される低圧冷媒の圧力と圧縮室11aから吐出される高圧冷媒の圧力との間の圧力を有する冷媒を意味する。
より詳細には、図4に示すように、圧縮機11は、圧縮室11a内の冷媒を圧縮する圧縮機構111と、圧縮機構111を回転駆動する電動モータ112と、電動モータ112の駆動制御回路であるインバータ113とを有している。圧縮機構111と電動モータ112は、ハウジング114の内部に収容されている。インバータ113は、ハウジング114の外部にハウジング114に隣接して設置されている。
圧縮機構111としては、スクロール型圧縮機構が採用される。なお、圧縮機構111としては、回転型の圧縮機構であれば、スクロール型圧縮機構に限らず、ベーン型圧縮機構等の他の圧縮機構を採用することができる。電動モータ112は、インバータ113から出力される交流電圧によって、その作動(すなわち、回転数)が制御される交流モータである。インバータ113は、走行用電動モータ等の主機に給電する高電圧電源と接続され、後述する空調ECU40より出力された目標回転数を示した制御信号に基づき、交流電圧を出力する。
ハウジング114には、吸入ポート11bと、吐出ポート11cと、中間圧ポート11dが設けられており、吸入ポート11bから吐出ポート11cに向かって、ハウジング114の内部を気相冷媒が流れる。中間圧ポート11dは、圧縮室11aの圧縮過程途中の箇所と連通している。
このように、本実施形態の圧縮機11は、吸入ポート11bから吸入した低圧冷媒を圧縮機構111で圧縮して高圧冷媒として、吐出ポート11cから高圧冷媒を吐出するように構成されている。圧縮機11は、中間圧ポート11dからサイクル内の中間圧冷媒を流入させて圧縮過程途中の冷媒に合流させるように構成されている。
室内凝縮器12は、その冷媒入口側が圧縮機11の吐出ポート11c側に接続されており、後述する室内空調ユニット30のケーシング31内に配置されている。室内凝縮器12は、圧縮機11から吐出された高圧の吐出冷媒(すなわち、高圧冷媒)と室内送風空気とを熱交換させて、吐出冷媒を放熱させるとともに、後述する室内蒸発器22を通過した室内送風空気を加熱する放熱器である。
第1減圧器13は、その冷媒入口側が室内凝縮器12の冷媒出口側に接続されている。第1減圧器13は、第1暖房運転モード時に、室内凝縮器12から流出した冷媒を中間圧冷媒となるまで減圧させるとともに、第2暖房モード時に、室内凝縮器12から流出した冷媒を低圧冷媒となるまで減圧させるものである。第1減圧器13は、電気式膨張弁であり、すなわち、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。第1減圧器13は、減圧作用を発揮する絞り状態と減圧作用を発揮しない全開状態とに設定可能に構成されている。
気液分離器14は、その冷媒入口側が第1減圧器13の冷媒出口側に接続されている。気液分離器14は、第1減圧器13を通過した冷媒の気液を分離するものである。本実施形態の気液分離器14は、遠心力の作用によって冷媒の気液を分離する遠心分離方式のものである。気液分離器14の気相冷媒出口側に、中間圧冷媒流路15が接続されており、気液分離器14の液相冷媒出口側に、第2減圧器17の冷媒入口側が接続されている。
中間圧冷媒流路15は、気液分離器14で分離された気相冷媒を、圧縮機11の中間圧ポート11dへ導くための冷媒流路である。中間圧冷媒流路15は、冷媒配管151とマフラ152とによって構成されている。マフラ152は、中間圧冷媒流路15内の冷媒の脈動を低減するための流路形成部材であり、冷媒配管151よりも容量が大きいものである。
中間圧開閉弁16は、中間圧冷媒流路15に設けられており、中間圧冷媒流路15を開閉する開閉弁である。本実施形態の中間圧開閉弁16は、後述する空調ECU40から出力される制御信号によって、その開閉作動が制御される電磁弁である。後述の通り、中間圧開閉弁16は、第1暖房運転モード時に、開弁状態とされる。これにより、中間圧冷媒を前記中間圧ポートに導入する2段圧縮モードの冷媒回路が形成される。また、中間圧開閉弁16は、第1暖房運転モード時に圧縮機11の作動停止要求がある場合に、閉弁状態とされる。これにより、中間圧冷媒の中間圧冷媒流路15への流入を禁止するとともに、中間圧冷媒流路15に残存する冷媒を中間圧冷媒流路15から流出させる1段圧縮モードの冷媒回路が形成される。したがって、この中間圧開閉弁16が、2段圧縮モードの冷媒回路と1段圧縮モードの冷媒回路とを切り替える切替装置を構成している。
第2減圧器17は、第1暖房運転モード時に、気液分離器14にて分離された中間圧の液相冷媒を低圧冷媒になるまで減圧させるとともに、冷房運転モード時や第2暖房モード時では冷媒に対して減圧作用を発揮しないものである。このため、第2減圧器17は、減圧作用を発揮する絞り状態と減圧作用を発揮しない全開状態とに設定可能に構成されている。
本実施形態の第2減圧器17は、固定絞り171と、第1迂回流路172と、開閉弁173とによって構成されている。固定絞り171は、冷媒を減圧させるものであり、固定絞り17としては、絞り開度が固定されたノズル、オリフィス等を採用することができる。第1迂回流路172は、気液分離器14から流出した冷媒を、固定絞り171を迂回させて、室外熱交換器18側に導く冷媒流路である。開閉弁173は、第1迂回流路172を開閉する電磁弁であり、空調ECU40から出力される制御信号によって、その開閉作動が制御される。本実施形態の第2減圧器17では、開閉弁173の開閉により、減圧作用を発揮する絞り状態と、減圧作用を発揮しない全開状態とに変更することが可能となっている。
室外熱交換器18は、その冷媒入口側が第2減圧器17の冷媒出口側に接続されている。室外熱交換器18は、車両ボンネット内、すなわち、車室外に配置され、その内部を流通する冷媒と送風ファン19によって送風された車室外空気(すなわち、外気)とを熱交換させるものである。この室外熱交換器18は、第1、第2暖房運転モード時に低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房運転モード時に高圧冷媒を放熱させる放熱器として機能する。
第3減圧器20は、その冷媒入口側が室外熱交換器18の冷媒出口側に接続されている。第3減圧器20は、冷房運転モード時に、室外熱交換器18から流出し、室内蒸発器22へ流入する冷媒を減圧させるものである。第3減圧器20は、第1減圧器13と同様の構成の電気式膨張弁である。
三方弁21は、その冷媒入口側が第3減圧器20の冷媒出口側に接続されており、2つの冷媒出口のそれぞれが室内蒸発器22の冷媒入口側およびアキュムレータ23の冷媒入口側に接続されている。三方弁21は、第3減圧器20から流出した冷媒を室内蒸発器22に導く冷媒流路と、第3減圧器20から流出した冷媒を室内蒸発器22を迂回させてアキュムレータ23に導く第2迂回流路24とを切り替える冷媒流路切替装置である。三方弁21は、空調ECU40から出力される制御信号によって、その作動が制御される電気式三方弁である。
室内蒸発器22は、室内空調ユニット30のケーシング31内の室内凝縮器12よりも空気流れ上流側に配置されている。室内蒸発器22は、冷房運転モード時に、内部を流通する冷媒と室内送風空気との熱交換により、冷媒を吸熱させて蒸発させるとともに、その吸熱作用により室内送風空気を冷却する熱交換器である。
アキュムレータ23は、その冷媒入口側が室内蒸発器22の冷媒出口側および第2迂回流路24に接続されている。アキュムレータ23は、その内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。アキュムレータ23の気相冷媒出口には、圧縮機11の吸入ポート11b側が接続されている。
次に、室内空調ユニット30について説明する。室内空調ユニット30は、温度調整された室内送風空気を車室内に送風するもので、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されて、その外殻を形成するケーシング31内に送風機32、前述の室内凝縮器12、室内蒸発器22等を収容することによって構成されている。
ケーシング31は、内部に室内送風空気の空気通路を形成している。ケーシング31内の室内送風空気の空気流れ最上流側には、車室内空気(すなわち、内気)と外気とを切替導入する内外気切替装置33が配置されている。
内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入された空気を車室内へ向けて送風する送風機32が配置されている。この送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。
送風機32の空気流れ下流側には、室内蒸発器22および室内凝縮器12が、室内送風空気の流れに対して、この順に配置されている。また、ケーシング31内には、室内蒸発器22を通過した室内送風空気を、室内凝縮器12を迂回させて流すバイパス通路34が形成されている。
さらに、室内蒸発器22の空気流れ下流側であって、かつ、室内凝縮器12の空気流れ上流側には、空気通路切替ドア35が配置されている。空気通路切替ドア35は、室内蒸発器22通過後の室内送風空気が流れる空気通路として、室内凝縮器12を通過する空気通路と、バイパス通路34とを切り替えるものである。
図示しないが、ケーシング31の空気流れ最下流部には、車室内に設けられた吹出口に連なる開口部が設けられている。室内蒸発器22もしくは室内凝縮器12で温度調節された室内送風空気は、開口部を介して、吹出口から車室内へ吹き出される。
また、車両用空調装置1は、図5に示す空調ECU40を備えている。空調ECU40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成された電子制御装置である。
空調ECU40の出力側には、圧縮機11のインバータ113、第1減圧器13、中間圧開閉弁16、開閉弁173、送風ファン19、第3減圧器20、三方弁21、送風機32、空気通路切替ドア35等の各種機器が接続されている。
一方、空調ECU40の入力側には、各種空調制御用のセンサ群41が接続されている。センサ群41としては、車室内温度を検出する内気センサ、外気温を検出する外気センサ、車室内の日射量を検出する日射センサ、室内蒸発器22の温度を検出する蒸発器温度センサ、圧縮機11から吐出された高圧冷媒圧力を検出する吐出圧センサ等が挙げられる。
さらに、空調ECU40の入力側には、計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種空調操作スイッチ42からの操作信号が入力される。各種空調操作スイッチ42としては、車両用空調装置1の作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、冷房運転モードと暖房運転モードの選択スイッチ等が挙げられる。
空調ECU40は、ROM等に記憶された空調制御プログラムに基づいて、入力されたセンサ群41のセンサ信号および各種空調操作スイッチ42の操作信号を用いて、各種演算、処理を行い、出力側に接続された各種機器の作動を制御する。例えば、空調ECU40は、圧縮機11の目標回転数を示す制御信号をインバータ113へ出力する。インバータ113は、その制御信号に応じた周波数の交流電圧を出力する。このようにして、圧縮機11の回転数が制御される。
また、空調ECU40は、上位ECU50と電気的に接続されており、空調ECU40および上位ECU50は互いに電気的に通信可能に構成されている。このため、上位ECU50は、空調ECU40を介して、空調ECU40の出力側に接続された各種機器の作動を制御することもできる。上位ECU50は、走行系を制御する電子制御装置である。より具体的には、上位ECU50は、図示しないアクセルペダルの踏み込み量等に基づいて、モータ、エンジン等の主機を制御する。上位ECU50は、車両に搭載された電源から主機への電力供給を制御する。
上位ECU50は、車両加速時の電力確保が必要な場合、空調ECU40へ圧縮機11の停止要求信号を出力することにより、圧縮機11の作動を停止させることができる。この場合、上位ECU50が圧縮機11の停止要求信号を出力しないことにより、圧縮機11の作動を再開させることができる。また、車両加速時の電力確保が必要な場合とは、本実施形態では、エンジンと走行用電動モータのうち走行用電動モータのみの駆動力による車両走行中に、車両加速のためにエンジンを起動させる場合である。
次に、空調ECU40が実施する各種機器の制御処理について説明する。
空調ECU40は、冷房運転モード、第1暖房運転モードまたは第2暖房運転モードの運転モードに応じて各種機器を制御する通常運転制御を行う。空調ECU40は、上位ECU50からの圧縮機11の停止要求がある場合、通常運転制御よりも優先して、圧縮機の一時停止制御を行う。本実施形態では、空調ECU40およびインバータ113が本開示の制御装置に相当する。
具体的には、空調ECU40は、図6、7に示す制御処理を行う。なお、図6、7に示す制御処理は、イグニッションスイッチがオンの状態のとき、すなわち、車両が走行可能な走行状態のときであって、操作パネルの作動スイッチがオンとされているときに実施される。また、各図中に示したステップは、各種処理を実行する構成部に対応するものである。
図6に示すように、空調ECU40は、ステップS11で、上位ECU50からの圧縮機11の停止要求信号があるか否かを判定する。このとき、上位ECU50から圧縮機11の停止要求信号の入力が無い場合、空調ECU40は、NO判定して、ステップS12に進み、通常運転制御の実施を決定する。一方、上位ECU50からの圧縮機11の停止要求信号の入力がある場合、空調ECU40は、YES判定して、ステップS13に進み、一時運転制御の実施を決定する。そして、この決定に基づいて、空調ECU40は、通常運転制御もしくは一時運転制御を実施する。
続いて、通常運転制御について説明する。通常運転制御では、空調ECU40は、ヒートポンプサイクル10を各運転モードの冷媒回路に切り替えて、各運転モードで所望の空調状態が得られるように、各種機器の作動を制御する。
(A)冷房運転モード
冷房運転モードは、例えば、操作パネルの作動スイッチがオンされた状態で、選択スイッチによって冷房運転モードが選択されると開始される。
冷房運転モードでは、空調ECU40は、第1減圧器13を全開状態(すなわち、減圧作用を発揮しない状態)とする。空調ECU40は、第3減圧器20を絞り状態(すなわち、減圧作用を発揮する状態)とする。また、空調ECU40は、開閉弁173を開弁状態として第2減圧器17を全開状態(すなわち、減圧作用を発揮しない状態)とする。さらに、空調ECU40は、中間圧開閉弁16を閉弁状態とし、三方弁21の第2迂回流路24側を閉弁状態とする。
また、空調ECU40は、センサ群41の検出信号および操作パネルの操作信号に基づいて、車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。そして、空調ECU40は、算出した目標吹出温度TAOおよびセンサ群の検出信号に基づいて、圧縮機11、送風機32、空気通路切替ドア35等の各種機器の作動状態を決定し、決定した作動状態となるように、制御信号を出力する。これにより、例えば、圧縮機11と送風機32のそれぞれは、所望の回転数で作動する。内外気切替装置33のドア位置と空気通路切替ドア35の位置のそれぞれは、所望の位置となる。空気通路切替ドア35の具体的な位置は、室内凝縮器12の空気通路を閉塞し、室内蒸発器22通過後の送風空気の全流量がバイパス通路34を通過する位置である。
これにより、ヒートポンプサイクル10は、図1の太線および矢印で示すように冷媒が流れる冷房運転モードの冷媒回路に切り替えられる。すなわち、圧縮機11の吐出ポート11cから吐出された冷媒が、室内凝縮器12、全開状態の第1減圧器13、気液分離器14、全開状態の第2減圧器17、室外熱交換器18、絞り状態の第3減圧器20、室内蒸発器22、アキュムレータ23の順に流れて、圧縮機11の吸入ポート11bに流入する冷媒回路が形成される。
この冷房運転モードでは、圧縮機11の吐出ポート11cから吐出された高圧冷媒が、室外熱交換器18にて外気と熱交換して放熱する。室外熱交換器18から流出した冷媒は、第3減圧器20にて低圧冷媒となるまで減圧膨脹され、室内蒸発器22にて送風機32から送風された室内送風空気から吸熱して蒸発する。これにより、室内送風空気が冷却される。このとき、空気通路切替ドア35により室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12に流入した高圧冷媒は、実質的に室内送風空気へ放熱せず、室内凝縮器12から流出する。このため、室内蒸発器22にて冷却された室内送風空気が、車室内へ吹き出される。
(B)暖房運転モード
暖房運転モードは、例えば、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって暖房運転モードが選択されると開始される。このとき、外気温が極低温の場合に、第1暖房運転モードが実行され、外気温が極低温以外の場合に、第2暖房運転モードが実行される。例えば、空調ECU40は、外気センサの検出温度が基準温度、例えば、0℃以下の場合に、第1暖房運転モードを実行し、外気センサの検出温度が基準温度を超える場合に、第2暖房運転モードを実行する。
(B1)第1暖房運転モード
第1暖房運転モードでは、空調ECU40は、第1減圧器13を絞り状態、第3減圧器20を全開状態とする。また、空調ECU40は、開閉弁173を閉弁状態として第2減圧器17を絞り状態とする。さらに、空調ECU40は、中間圧開閉弁16を開弁状態とし、三方弁21の第2迂回流路24側を開弁状態とする。
また、空調ECU40は、冷房運転モードと同様に、目標吹出温度TAO等に基づいて、各種機器の作動状態を決定し、決定した作動状態となるように、制御信号を出力する。これにより、例えば、空気通路切替ドア35の位置は、バイパス通路34を閉塞し、室内蒸発器22通過後の送風空気の全流量が室内凝縮器12を通過する位置となる。
これにより、ヒートポンプサイクル10は、図2の太線および矢印で示すように冷媒が流れる第1暖房運転モードの冷媒回路(すなわち、ガスインジェクションサイクル)に切り替えられる。すなわち、圧縮機11の吐出ポート11cから吐出された高圧冷媒が、室内凝縮器12で凝縮され、凝縮された高圧冷媒が第1減圧器13により中間圧冷媒にまるまで減圧される。第1減圧器13から流出した中間圧冷媒は、気液分離器14にて気相冷媒と液相冷媒に分離される。気液分離器14にて分離された中間圧の液相冷媒は、第2減圧器17により低圧冷媒になるまで減圧された後、室外熱交換器18にて蒸発され、アキュムレータ23を介して、圧縮機11の吸入ポート11bに吸入される。一方、気液分離器14にて分離された中間圧の気相冷媒は、中間圧冷媒流路15を介して、圧縮機11の中間圧ポート11dに導かれ、圧縮過程途中の冷媒に合流する。
このように、第1暖房モードのとき、固定絞り17にて減圧された低圧冷媒を圧縮機11へ吸入させると共に、第1減圧器13にて減圧された中間圧冷媒を圧縮機11の圧縮過程途中の冷媒と合流させるガスインジェクションサイクル(すなわち、二段圧縮サイクル)が形成される。したがって、本実施形態では、この第1暖房モードが二段圧縮モードである。
この第1暖房運転モードでは、室内蒸発器22には冷媒が流れないので、室内送風空気は室内蒸発器22で冷却されない。室内蒸発器22を通過した室内送風空気は、室内凝縮器12で高圧冷媒との熱交換により加熱されて、車室内に吹き出される。
(B2)第2暖房運転モード
第2暖房運転モードでは、空調ECU40は、第1減圧器13を絞り状態、第3減圧器20を全開状態とする。また、空調ECU40は、開閉弁173を開弁状態として第2減圧器17を全開状態とする。さらに、空調ECU40は、中間圧開閉弁16を閉弁状態とし、三方弁21の第2迂回流路24側を開弁状態とする。
また、空調ECU40は、第1暖房運転モードと同様に、目標吹出温度TAO等に基づいて、各種機器の作動状態を決定し、決定した作動状態となるように、制御信号を出力する。
これにより、ヒートポンプサイクル10は、図3の太線および矢印で示すように冷媒が流れる第2暖房運転モードの冷媒回路に切り替えられる。すなわち、圧縮機11の吐出ポート11cから吐出された高圧冷媒が、室内凝縮器12で凝縮され、凝縮された高圧冷媒が第1減圧器13により低圧冷媒にまるまで減圧される。第1減圧器13から流出した低圧冷媒は、気液分離器14に流入する。このとき、中間圧開閉弁16が閉弁状態なので、気液分離器14に流入した低圧冷媒は、中間圧冷媒流路15に流入せず、室外熱交換器18に流入する。室外熱交換器18に流入した冷媒は、外気との熱交換により蒸発され、アキュムレータ23を介して、圧縮機11の吸入ポート11bに吸入される。
第2暖房運転モードにおいても、室内蒸発器22には冷媒が流れないので、室内送風空気は室内蒸発器22で冷却されない。室内蒸発器22を通過した室内送風空気は、室内凝縮器12で高圧冷媒との熱交換により加熱されて、車室内に吹き出される。
続いて、図6のステップS13の圧縮機11の一時停止制御について説明する。圧縮機11の一時停止制御は、通常運転制御での圧縮機11の運転中に、圧縮機11を一時停止させた後、圧縮機11を再起動させる制御である。
図7に示すように、空調ECU40は、ステップS21で、現在の運転モードが二段圧縮モードであるか否かを判定する。二段圧縮モードとは、上述の第1暖房運転モードである。したがって、現在の運転モードが第1暖房運転モード以外であれば、空調ECU40は、NO判定して、ステップS24に進み、圧縮機11の作動を停止させる。一方、現在の運転モードが第1暖房運転モードであれば、空調ECU40は、YES判定して、ステップS22に進む。
ステップS22では、空調ECU40は、二段圧縮モードの冷媒回路から一段圧縮モードの冷媒回路へ切り替える。具体的には、空調ECU40は、中間圧開閉弁16を開弁状態から閉弁状態へ切り替える。圧縮機11、第1減圧器13、第3減圧器20、開閉弁173、三方弁21、送風機32、空気通路切替ドア35等の各種機器の作動状態については、第1暖房運転モード時の作動状態が維持される。第1暖房運転モード時の作動状態が維持されるのは、後述の通り、一段圧縮モードでの運転開始から圧縮機11の再起動までの時間が短時間だからである。
これにより、ヒートポンプサイクル10は、図8の太線および矢印で示すように冷媒が流れる一段圧縮モードの冷媒回路に切り替えられる。この冷媒回路は、図2に示す第1暖房運転モードの冷媒回路に対して、中間圧冷媒流路15への中間圧冷媒の流入が禁止されるとともに、中間圧冷媒流路15に残存する冷媒が中間圧冷媒流路15から流出する点が異なるものである。その他の冷媒の流れについては、第1暖房運転モードの冷媒回路と同じである。
続いて、ステップS23では、空調ECU40は、一段圧縮モードの冷媒回路での圧縮機の運転時間が予め設定した所定時間が経過したか否かを判定する。すなわち、空調ECU40は、二段圧縮モードの冷媒回路から一段圧縮モードの冷媒回路へ切り替えた時点から予め設定した所定時間が経過したか否かを判定する。この所定時間は、圧縮機11の中間圧ポート11d側の冷媒と吸入ポート11b側の冷媒との圧力差が所定値以下となる時間に設定される。この所定値は、圧縮機11の作動停止後の逆回転を抑制できる値であり、実験等によって求められる。この所定値は、例えば、200ミリ秒〜1秒に設定される。
このとき、所定時間経過していれば、空調ECU40は、YES判定して、ステップS24に進み、圧縮機11の作動を停止させる。一方、所定時間経過していなければ、空調ECU40は、NO判定して、再びステップS23を行い、YES判定するまでステップS23を繰り返し行う。これにより、一段圧縮モードの冷媒回路での圧縮機11の運転が、予め設定された所定時間継続される。
続いて、ステップS25では、空調ECU40は、上位ECU50からの圧縮機11の停止要求信号があるか否かを判定する。圧縮機11の停止要求信号の入力が無い場合、空調ECU40は、NO判定して、ステップS26に進み、圧縮機11を再起動させる。一方、圧縮機11の停止要求信号の入力がある場合、空調ECU40は、YES判定して、ステップS25を行い、YES判定するまでステップS25を繰り返し行う。
これにより、上位ECU50からの圧縮機11の停止要求信号の入力がなくなると、すなわち、圧縮機11の停止要求が解除されると、圧縮機11の運転が再開される。
このようにして、圧縮機11の一時停止制御が行われる。その後、空調ECU40は、上述の通常運転制御を行う。このとき、熱負荷条件が変わっていなければ、第1暖房運転モードでの運転が再開される。
以上の説明の通り、本実施形態では、ステップS11、S13、S21、S22、S23、S24の如く、空調ECU40は、第1暖房運転モード時に上位ECU50からの圧縮機11の作動停止要求がある場合に、次のことを行う。すなわち、空調ECU40は、中間圧開閉弁16を閉弁状態として、第1暖房運転モードの冷媒回路から図8に示す一段圧縮モードの冷媒回路に切り替える。空調ECU40は、その状態で圧縮機11を予め定められた所定時間作動させた後、圧縮機11の作動を停止させる。そして、ステップS25、S26の如く、空調ECU40は、上位ECU50からの圧縮機11の作動停止要求が解除された場合に、圧縮機11を再起動させる制御を行う。
これによれば、第1暖房運転モード時に圧縮機11の停止要求がある場合、圧縮機11の停止前に1段圧縮モードで圧縮機11が作動する。これにより、中間圧冷媒流路15に残存する冷媒の一部が流出する。圧縮機11の中間圧ポート11d側の冷媒の圧力が下がる。この結果、圧縮機11の停止時における圧縮機11内部の中間圧ポート11d側の冷媒と吸入ポート11b側の冷媒との圧力差が低減される。圧縮機11の停止後(すなわち、電動モータ112への給電停止後)の逆回転が抑制される。したがって、本実施形態によれば、従来のヒートポンプサイクル10に対して、ハードウェア構成を大幅に変更することなく、圧縮機11の停止後の逆回転を抑制できる。
ここで、本実施形態と比較例1とを比較する。比較例1は、本実施形態と異なり、第1暖房運転モード時に圧縮機11の停止要求がある場合に、1段圧縮モードに切り替えずに、圧縮機11の作動を停止させる場合である。比較例1では、圧縮機の逆回転が発生し、それが長時間続いてしまう。逆回転中は圧縮機11の再起動ができないため、逆回転が終了するまで、圧縮機11の再起動を待たなければならない。このため、圧縮機11の停止要求が解除された場合であっても、圧縮機11の逆回転が終了するまで、圧縮機11の再起動ができない。この結果、車室内に吹き出される室内送風空気の温度が著しく低下し、乗員の快適性を損なうという問題が生じてしまう。
これに対して、本実施形態によれば、圧縮機11の作動停止後の逆回転を抑制できるので、圧縮機11の逆回転の継続時間を短縮もしくは0にすることができる。すなわち、本実施形態によれば、1段圧縮モードに切り替えずに、圧縮機11の作動を停止させる場合と比較して、圧縮機11の停止から再起動が可能となるまでにかかる時間を短縮できる。このため、本実施形態によれば、圧縮機11の停止要求が解除された場合に、素早く圧縮機11を再起動させることができ、車室内に吹き出される室内送風空気の温度低下量を小さく抑えることができる。
参考として、図9、10に、比較例1と本実施形態のそれぞれにおける圧縮機11の逆回転発生時間を示す。比較例1では、第1暖房運転モードから1段圧縮モードに切り替えずに、圧縮機11の作動を停止させた。なお、図9、10は、モータ電圧の波形を示している。図9、10において、縦軸はモータ電圧(すなわち、UVW相電圧)であり、横軸は時間である。図9、10において、電動モータ112への給電停止後に生じるモータ電圧波形が逆回転を示している。給電停止後に生じるモータ電圧波形の振幅の大きさが回転数の大きさに対応している。
図9に示す比較例1では、逆回転の発生から停止までの時間が5秒であったのに対して、図10に示す本実施形態では、比較例1と同じ圧力条件において、逆回転の発生から停止までの時間が数百ミリ秒であった。これらの結果より、本実施形態によれば、比較例1と比較して、圧縮機11の停止後から圧縮機11の再起動が可能となるまでの時間を短縮できることがわかる。
ちなみに、車両加速のための電力確保に必要な圧縮機11の停止時間は0.5秒である。また、車室内に吹き出される室内送風空気の温度低下をユーザが感じない程度に抑制するためには、圧縮機11の停止後から1秒程度以内で再起動させることが望ましい。本実施形態によれば、圧縮機11の停止後から再起動が可能となるまでの時間を1秒程度に近づけることが可能であることから、車室内に吹き出される室内送風空気の温度低下をユーザが感じない程度に抑制できる。
また、比較例1では、圧縮機11の停止後に逆回転が発生することや、逆回転時に再起動を試み電動モータ112へ通電することによって、スクロール歯が衝突し、異音が生じる。さらに、比較例1では、電動モータ112へ通電する際、意図しない大電流が流れることで、インバータ113を構成するパワー素子にダメージを与える恐れがある。
これに対して、本実施形態によれば、圧縮機11の停止後に逆回転が発生することを抑制でき、逆回転時に再起動を試みることが無くなるため、異音の発生を防止できる。これに加えて、本実施形態によれば、逆回転時に電動モータ112へ通電することによってパワー素子にダメージが与えられることを避けることができる。
また、本実施形態では、図8に示す一段圧縮モードの冷媒回路に切り替えた状態で、圧縮機11を予め定められた所定時間作動させる。この所定時間は、圧縮機11の中間圧ポート11d側の冷媒と吸入ポート11b側の冷媒との圧力差が所定値以下となる時間に設定されている。この時間は、例えば、200ミリ秒〜1秒である。
このように、本実施形態では、一段圧縮モードでの圧縮機11の作動時間が短時間でよいことから、上位ECU50から圧縮機11の停止要求がある場合に、早期に圧縮機11を停止でき、車両加速のための電力確保が早期に可能となる。
なお、中間圧冷媒流路15を構成する冷媒配管151およびマフラ152の容量は、中間圧冷媒の脈動を十分低減できる容量であって、圧縮機11の逆回転を十分抑制できるまで、中間圧冷媒を抜き切れる容量に制限されることが好ましい。これにより、上記の所定時間を短くすることができる。
(第2実施形態)
本実施形態は、第1実施形態に対して、図6のステップS13の圧縮機11の一時停止制御を変更したものである。具体的には、本実施形態では、図11に示すように、図7に示すフローチャートにおいて、ステップS22−2を追加している。なお、図11では、図7中のステップS22をステップS22−1としている。
本実施形態では、空調ECU40は、ステップS22−1で、第1暖房運転モードの冷媒回路から1段圧縮モードの冷媒回路へ切り替える。その後、空調ECU40は、ステップS22―2で、1段圧縮モードの冷媒回路へ切り替える直前の圧縮機11の回転数と比較して、圧縮機11の回転数を増大させる。
このように、空調ECU40は、1段圧縮モードで圧縮機11を作動させる際に、2段圧縮モードの冷媒回路から1段圧縮モードの冷媒回路へ切り替える直前の圧縮機11の作動状態と比較して、圧縮機11の回転数を増大させる。これによれば、本実施形態と異なり、圧縮機11の回転数を増大させない場合と比較して、中間圧冷媒流路15からの冷媒の単位時間当たりの流出量が増大するので、1段圧縮モードでの圧縮機11の作動時間(すなわち、所定時間)を短縮できる。
ちなみに、本実施形態は、例えば、ユーザがアクセルを踏み込むことで、車両加速のための電力確保が必要となった場合において、圧縮機11を停止させる前に、瞬間的に回転数を増大させて、1段圧縮モードで圧縮機11を作動させるものである。
(第3実施形態)
本実施形態では、イグニッションスイッチがオンからオフに切り替えられる場合の圧縮機11の停止制御について説明する。
まず、本実施形態における車両に搭載される電源システムの構成について説明する。図12に示すように、車両には、高電圧電源61と低電圧電源62とが搭載されている。高電圧電源61は、200〜300Vの高電圧の電力を走行用モータ等の車両に搭載される主機に供給するための主機用電源である。低電圧電源62は、12Vの低電圧の電力を車両に搭載される補機に供給するための補機用電源である。
圧縮機11は、高電圧電源61に接続されており、高電圧電源61から給電される。具体的には、圧縮機11のインバータ113および制御部115が高電圧電源61から給電される。圧縮機11は、上位ECU50によって、高電圧電源61から圧縮機11への給電経路途中に設けられた高電圧電源用スイッチ63のオンとオフが切り替えられることにより、高電圧電源61からの給電状態と給電停止状態の切り替えが制御される。
圧縮機11の制御部115は、圧縮機11に設けられた電子制御装置であり、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御部115は、空調ECU40からの制御信号に基づいて、インバータ113に対して制御信号を出力することで、インバータ113を制御する。
空調ECU40および中間圧開閉弁16は、低電圧電源62に接続されており、低電圧電源62から給電される。低電圧電源62から空調ECU40および中間圧開閉弁16への給電経路途中に低電圧電源用スイッチ64が設けられている。空調ECU40および中間圧開閉弁16は、上位ECU50によって、低電圧電源用スイッチ64のオンとオフが切り替えられることにより、低電圧電源62からの給電状態と給電停止状態の切り替えが制御される。
また、中間圧開閉弁16は、空調ECU40と接続されており、空調ECU40によって、低電圧電源62からの給電状態と給電停止状態とが制御されることで、開弁状態と閉弁状態とが切り替えられる。本実施形態では、中間圧開閉弁16として、低電圧電源62から中間圧開閉弁16への給電停止時に、閉弁状態となるように構成されたノーマリーオフ型のものが採用されている。
上位ECU50の入力側に、イグニッションスイッチ(以下、IGスイッチという)51が接続されており、上位ECU50は、IGスイッチ51の操作信号が入力されるようになっている。IGスイッチ51は、車両のメインスイッチである。IGスイッチ51は、車両を走行させるときに、ユーザの操作によりオンに切り換えられ、車両停止時に各電源61、62から各機器への電力供給を停止するときに、ユーザの操作によりオフに切り替えられる走行スイッチである。
また、上位ECU50の出力側に、高電圧電源用スイッチ63と低電圧電源用スイッチ64とが接続されている。上位ECU50は、IGスイッチ51の操作信号に応じて、高電圧電源用スイッチ63と低電圧電源用スイッチ64のオン、オフを制御する。なお、上位ECU50は、低電圧電源62に接続されており、低電圧電源62から常に給電される。
次に、車両用空調装置1が第1暖房運転モードで運転している際に、IGスイッチ51がオンからオフに切り替えられた場合の圧縮機11の停止制御について、図13を用いて説明する。なお、本実施形態では、空調ECU40、上位ECU50および圧縮機11の制御部115が、本開示の制御装置に相当する。また、空調ECU40、上位ECU50、圧縮機11の制御部115が、それぞれ、本開示の第1制御部、第2制御部、第3制御部に相当する。
第1暖房運転モード時において、図13の時刻t1に、IGスイッチ51がユーザ操作によってオフに切り替えられる。このとき、上位ECU50は、高電圧電源用スイッチ63よりも先に低電圧電源用スイッチ64をオンからオフに切り替える。
これにより、低電圧電源62から空調ECU40および中間圧開閉弁16への給電が停止される。このため、中間圧開閉弁16は、開弁状態から閉弁状態に切り替わる。この結果、第1実施形態と同様に、図2に示す二段圧縮モードの冷媒回路から図8に示す一段圧縮モードの冷媒回路へ切り替えられる。このとき、高電圧電源用スイッチ63がオンなので、高電圧電源61から圧縮機11への給電が維持され、圧縮機11の作動が継続される。
なお、上位ECU50は、空調ECU40との間の通信により、車両用空調装置1の運転モードの情報を取得するようになっている。そこで、IGスイッチ51がオンからオフに切り替えられると、上位ECU50は、運転モードが第1暖房運転モードか否かを判定する。そして、上位ECU50が第1暖房運転モードであると判定した場合、上述の通り、上位ECU50は、高電圧電源用スイッチ63よりも先に低電圧電源用スイッチ64をオンからオフに切り替える。一方、上位ECU50が第1暖房運転モードではないと判定した場合、上位ECU50は、高電圧電源用スイッチ63と低電圧電源用スイッチ64とを同時にオフとする。ただし、これに限られず、IGスイッチ51がオンからオフに切り替えられたとき、上位ECU50が、運転モードや圧縮機11の作動停止にかかわらず、高電圧電源用スイッチ63よりも先に低電圧電源用スイッチ64をオンからオフに切り替えるようになっていてもよい。
また、圧縮機11の制御部115は、空調ECU40との間の通信異常が発生したときに、作動中の圧縮機11を停止させる保護機能を有している。なお、この保護機能は、制御部115が給電されているときに、常に、実施される。
すなわち、図14に示すように、制御部115は、ステップS31で、通信異常が発生したか否かを判定する。このとき、制御部115は、空調ECU40からの制御信号の入力が停止している場合に、通信異常と判定し、ステップS32に進む。一方、空調ECU40からの制御信号の入力が停止していない場合、制御部115は、ステップS31を再び、実行し、YES判定するまで、ステップS31を繰り返す。
そして、ステップS32で、制御部115は、インバータ113への制御信号の出力を停止して、圧縮機11の作動を停止させる。このとき、本実施形態では、IGスイッチ51がオフに切り替えられたときから圧縮機11の停止までの経過時間が、予め設定される所定時間となるように、各ステップS31、32の実行タイミングを設定している。この所定時間は、後述する圧縮機11の逆回転を抑制できる時間である。すなわち、この所定時間は、圧縮機11の中間圧ポート11d側の冷媒と吸入ポート11b側の冷媒との圧力差が所定値以下となる時間であって、IGスイッチ51のオンからオフへの切り替え後に圧縮機11の作動が継続してもユーザに違和感を与えない時間である。例えば、この所定時間は、200msec〜1secである。
このため、IGスイッチ51がオフになった後、制御部115が通信異常を検出することで、図13の時刻t2に、圧縮機11の作動が停止する。すなわち、IGスイッチ51がオフになってから、制御部115が通信異常を検出するまで、一段圧縮モードでの圧縮機11の作動が継続される。
圧縮機11の停止後である図13の時刻t3に、上位ECU50が、高電圧電源用スイッチ63をオンからオフに切り替える。これにより、高電圧電源61から圧縮機11への給電が停止される。
ここで、本実施形態と比較例2とを比較する。比較例2は、本実施形態と異なり、第1暖房運転モード時にIGスイッチ51がオフに切り替えられたときに、直ちに、高電圧電源用スイッチ63と低電圧電源用スイッチ64を同時にオフとして、空調ECU40および圧縮機11への給電を停止して、圧縮機11を停止する場合である。比較例2では、圧縮機11の停止後に逆回転が発生することによって、スクロール歯が衝突し、異音が生じる。IGスイッチ51のオフ時では、各機器の作動が停止して静かであるため、ユーザに異音が伝わりやすく、この異音の発生が問題視される。
これに対して、本実施形態では、第1暖房運転モード時にIGスイッチ51がオフに切り替えられると、上位ECU50は、高電圧電源61から圧縮機11への給電を維持しつつ、低電圧電源62から空調ECU40および中間圧開閉弁16への給電を停止させる。このとき、中間圧開閉弁16として、給電停止時に閉弁状態となるものが用いられているので、中間圧開閉弁16は開弁状態から閉弁状態に切り替えられる。また、低電圧電源62の給電停止によって空調ECU40が停止しても、高電圧電源61からの給電によって圧縮機11の作動が継続される。そして、本実施形態では、圧縮機11の制御部115が、空調ECU40との間の通信異常を検出したときに、圧縮機11の作動を停止させるようになっている。このように、所定条件を満たす場合に、圧縮機11の作動が停止される。その後、上位ECU50は、高電圧電源61から圧縮機11への給電を停止させる。
このため、本実施形態では、第1暖房運転モード時にIGスイッチ51がオフに切り替えられた場合、一段圧縮モードの冷媒回路に切り替えられ、一段圧縮モードで圧縮機11の作動が予め設定された所定時間継続された後、圧縮機11の作動が停止する。このように、本実施形態によれば、圧縮機11の停止前に1段圧縮モードで圧縮機11を作動させるので、第1実施形態での説明の通り、圧縮機11の停止後の逆回転を抑制でき、異音の発生を抑制できる。
なお、本実施形態では、圧縮機11の制御部115が、空調ECU40との間の通信異常を検出した場合に、圧縮機11の作動を停止させるようにしたが、次のように変更してもよい。
例えば、圧縮機11の制御部115は、低電圧電源用スイッチ64を介して、低電圧電源62と接続され、低電圧電源62と低電圧電源62に接続される各機器との間の電圧を監視(すなわち、測定)する。そして、圧縮機11の制御部115が、監視電圧(すなわち、測定電圧)が0Vになったことを検出した場合に、圧縮機11の作動を停止させるようにしてもよい。このように、圧縮機11の制御部115が所定条件を満たすと判定した場合に、圧縮機11の作動を停止させるようにしてもよい。このとき、低電圧電源用スイッチ64をオフに切り替えたときから圧縮機11の停止までの経過時間が、予め設定される所定時間となるように、監視する電圧が0Vであるか否かの判定と、圧縮機11の作動の停止指示の実行タイミングを設定する。
また、例えば、上位ECU50が、IGスイッチ51がオンからオフに切り替えられたときに、低電圧電源62からの給電を停止させる。上位ECU50は、その給電停止から予め所定時間経過した後に、高電圧電源61から圧縮機11への給電を停止させる。これにより、圧縮機11の制御部115が停止制御をしなくても、圧縮機11の作動が停止されるようにしてもよい。すなわち、高電圧電源61から圧縮機11への給電が維持される限り、圧縮機11の作動が継続されるようにしてもよい。
(他の実施形態)
本開示は上記した実施形態に限定されるものではなく、下記のように、請求の範囲に記載した範囲内において適宜変更が可能である。また、本開示は、上記各実施形態に対する以下のような変形例および均等範囲の変形例も許容される。
(1)第1実施形態では、一段圧縮モードの冷媒回路は、図8に示すように、第1暖房運転モードの冷媒回路に対して、中間圧冷媒の中間圧冷媒流路15の流入を禁止するように変更した点を除き、同じ順序で冷媒が流れる冷媒回路であったが、これに限定されない。一段圧縮モードの冷媒回路として他の冷媒回路を採用しても良い。一段圧縮モードの冷媒回路は、圧縮機11から吐出された冷媒を循環させる冷媒回路である。一段圧縮モードの冷媒回路は、少なくとも中間圧冷媒の中間圧冷媒流路15の流入を禁止するとともに、中間圧冷媒流路15に残存する冷媒を中間圧冷媒流路15から流出させることができる冷媒回路であればよい。したがって、一段圧縮モードの冷媒回路として、例えば、第2暖房運転モードの冷媒回路等を採用しても良い。この場合、第1減圧器13、中間圧開閉弁16、第2減圧器17の開閉弁173が、2段圧縮モードの冷媒回路と1段圧縮モードの冷媒回路とを切り替える切替装置を構成する。第1減圧器13、中間圧開閉弁16、第2減圧器17の開閉弁173は、第1暖房運転モードの冷媒回路から第2暖房運転モードの冷媒回路へ切り替えるためのサイクル構成部品である。
(2)第1実施形態では、第1暖房運転モード時に圧縮機11の一時停止が必要な場合、空調ECU40が図6中のステップS13の圧縮機11の一時停止制御を行ったが、上位ECU50がこの圧縮機11の一時停止制御を行ってもよい。
具体的には、上位ECU50が、空調ECU40を介さずに、インバータ113と中間圧開閉弁16を直接制御できるようにする。インバータ113および中間圧開閉弁16に対する制御を、空調ECU40と上位ECU50が同時に行う場合、上位ECU50の制御が優先される。そして、空調ECU40が第1暖房運転モードで車両用空調装置1を運転させている状態で、車両加速時の電力確保のために、圧縮機11の停止が必要になった場合、上位ECU50が中間圧開閉弁16を開弁状態から閉弁状態へ切り替える。そして、この状態での圧縮機11の作動が所定時間継続した後に、上位ECU50がインバータ113に対して停止信号を出力して圧縮機11を停止させる。その後、圧縮機11の停止が不要になった場合、上位ECU50がインバータ113に対して停止信号の出力を止めることで、圧縮機11が再起動する。圧縮機11の再起動後は、空調ECU40が通常運転制御を行う。このようにして、圧縮機11の一時停止制御を行うこともできる。なお、この場合、空調ECU40、上位ECU50およびインバータ113が本開示の制御装置に相当する。
(3)上述の各実施形態では、車両加速時の電力確保が必要な場合に、圧縮機11の一時停止制御が実施されることを説明したが、車両加速時の電力確保が必要な場合に限られない。高電圧電源61から車両搭載機器への給電の際の電力確保が必要な場合に、圧縮機11の一時停止制御が実施されるようにしてもよい。
(4)上記した各実施形態では、中間圧開閉弁16によって、中間圧冷媒流路15への中間圧冷媒の流入と流入禁止とを切り替えていたが、これに限定されない。中間圧開閉弁16の機能とヒートポンプサイクル10を構成する他の機器の機能とを統合した統合弁によって、中間圧冷媒流路15への中間圧冷媒の流入と流入禁止とを切り替えてもよい。この場合、統合弁が、2段圧縮モードの冷媒回路と1段圧縮モードの冷媒回路とを切り替える切替装置を構成する。この統合弁としては、例えば、中間圧開閉弁16の機能と、気液分離器14の機能と、固定絞り171と、第1迂回流路172の開閉弁173の機能とを統合した統合弁が挙げられる。
(5)上記した各実施形態では、車両用空調装置1が、暖房運転モードを実行する際に、第1暖房運転モードと第2暖房運転モードとを切り替えて実行するものであったが、第1暖房運転モードのみを実行するものであってもよい。また、車両用空調装置1が、暖房運転モードと冷房運転モードのうち暖房運転モードのみを実行するものであってもよい。
(6)上記した各実施形態では、本開示の車両用空調装置を、ハイブリッド車両に適用したが、電動圧縮機を搭載する車両であれば、電気自動車、燃料電池車等の他の車両に適用してもよい。
(7)上記した各実施形態では、第2減圧器17を、固定絞り171と、第1迂回流路172と、開閉弁173とによって構成したが、第1減圧器13と同様に、電気式の可変絞り機構で構成してもよい。
(8)上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。例えば、第3実施形態に第2実施形態を組み合わせてもよい。すなわち、第3実施形態においても、前記1段圧縮モードで前記圧縮機を作動させる際に、前記2段圧縮モードの冷媒回路から前記1段圧縮モードの冷媒回路へ切り替える直前の前記圧縮機の作動状態と比較して、前記圧縮機の回転数を増大させてもよい。これは、例えば、第1暖房運転モード時にIGスイッチ51がオンからオフに切り替えられた場合に、上位ECU50がインバータ113に対して制御信号を出力することで実現可能である。
また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。

Claims (7)

  1. 車室内に向かって室内送風空気を送風する車両用空調装置であって、
    冷媒を圧縮する圧縮機構(111)、前記圧縮機構を駆動する電動モータ(112)、吸入ポート(11b)、吐出ポート(11c)および中間圧ポート(11d)を有し、前記吸入ポートから吸入した低圧冷媒を前記圧縮機構で圧縮して高圧冷媒として、前記吐出ポートから前記高圧冷媒を吐出するとともに、前記中間圧ポートからサイクル(10)内の中間圧冷媒を流入させて圧縮過程途中の冷媒に合流させる圧縮機(11)と、
    車室内に向かって送風される室内送風空気との熱交換により、前記吐出ポートから吐出された冷媒を放熱する放熱器(12)と、
    前記放熱器から流出した冷媒を前記中間圧冷媒となるまで減圧させる第1減圧器(13)と、
    前記第1減圧器から流出した前記中間圧冷媒の気液を分離する気液分離器(14)と、
    前記気液分離器で分離された液相冷媒を前記低圧冷媒となるまで減圧させる第2減圧器(17)と、
    車室外空気との熱交換により、前記第2減圧器から流出した冷媒を蒸発させて前記吸入ポート側へ流出させる室外熱交換器(18)と、
    前記気液分離器で分離された気相冷媒を前記中間圧ポートへ導く中間圧冷媒流路(15)と、
    前記中間圧冷媒を前記中間圧ポートに導入する2段圧縮モードの冷媒回路と、少なくとも前記中間圧冷媒の前記中間圧冷媒流路への流入を禁止するとともに、前記中間圧冷媒流路に残存する冷媒を前記中間圧冷媒流路から流出させる1段圧縮モードの冷媒回路とを切り替える切替装置(16)と、
    前記圧縮機および前記切替装置の作動を制御する制御装置(40、50、113)とを備え、
    前記制御装置は、前記2段圧縮モード時に前記圧縮機の作動停止要求がある場合に、前記切替装置を作動させて前記2段圧縮モードの冷媒回路から前記1段圧縮モードの冷媒回路へ切り替えて、前記圧縮機の作動停止後の逆回転を抑制できるように予め定められた所定時間、前記1段圧縮モードで前記圧縮機を作動させた後、前記圧縮機の作動を停止させるとともに、前記作動停止要求が解除された場合に、前記圧縮機を再起動させる車両用空調装置。
  2. 前記圧縮機は、車両の主機用電源(61)から給電され、
    前記切替装置は、車両の補機用電源(62)から給電されるとともに、前記補機用電源からの給電が停止されると、前記2段圧縮モードの冷媒回路から前記1段圧縮モードの冷媒回路へ切り替えるように構成されており、
    前記制御装置は、前記2段圧縮モード時に、ユーザ操作によって前記主機用電源および前記補機用電源が給電状態から給電停止状態に切り替えられる場合、前記補機用電源から前記切替装置への給電を停止させた後、前記1段圧縮モードで前記圧縮機を予め定められた所定時間作動させ、前記主機用電源から前記圧縮機への給電を停止させる請求項1に記載の車両用空調装置。
  3. 前記制御装置は、前記圧縮機および前記切替装置を制御する第1制御部(40)と、車両の主機を制御する第2制御部(50)と、前記圧縮機に設けられ、前記圧縮機を制御する第3制御部(115)とを有し、
    前記第1制御部は、前記補機用電源から給電され、
    前記第3制御部は、前記主機用電源から給電され、
    前記第2制御部は、前記補機用電源から前記第1制御部および前記切替装置への給電と給電停止の切り替えを制御するとともに、前記主機用電源から前記第3制御部および前記圧縮機への給電と給電停止の切り替えを制御し、
    前記第2制御部は、前記補機用電源から前記第1制御部および前記切替装置への給電を停止させた後、前記主機用電源から前記第3制御部および前記圧縮機への給電を停止させ、
    前記第3制御部は、前記第2制御部が前記主機用電源から前記第3制御部および前記圧縮機への給電を停止させる前であって、所定条件を満たすと判定した場合に、前記圧縮機を停止させる請求項2に記載の車両用空調装置。
  4. 前記制御装置は、前記圧縮機および前記切替装置を制御する第1制御部(40)と、車両の主機を制御する第2制御部(50)とを有し、
    前記第1制御部は、前記補機用電源から給電され、
    前記第2制御部は、前記補機用電源から前記第1制御部および前記切替装置への給電と給電停止の切り替えを制御するとともに、前記主機用電源から前記圧縮機への給電と給電停止の切り替えを制御し、
    前記第2制御部は、前記補機用電源から前記第1制御部および前記切替装置への給電を停止させてから前記所定時間の経過後に、前記主機用電源から前記圧縮機への給電を停止させることによって、前記圧縮機の作動を停止させる請求項2に記載の車両用空調装置。
  5. 前記所定時間は、前記圧縮機の前記中間圧ポート側の冷媒と前記吸入ポート側の冷媒との圧力差が所定値以下となる時間に設定されている請求項1ないし4のいずれか1つに記載の車両用空調装置。
  6. 前記所定時間は、200ミリ秒〜1秒に設定されている請求項1ないし4のいずれか1つに記載の車両用空調装置。
  7. 前記制御装置は、前記1段圧縮モードで前記圧縮機を作動させる際に、前記2段圧縮モードの冷媒回路から前記1段圧縮モードの冷媒回路へ切り替える直前の前記圧縮機の作動状態と比較して、前記圧縮機の回転数を増大させる請求項1ないし6のいずれか1つに記載の車両用空調装置。
JP2017502005A 2015-02-24 2016-01-29 車両用空調装置 Active JP6369624B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015034296 2015-02-24
JP2015034296 2015-02-24
PCT/JP2016/052650 WO2016136382A1 (ja) 2015-02-24 2016-01-29 車両用空調装置

Publications (2)

Publication Number Publication Date
JPWO2016136382A1 JPWO2016136382A1 (ja) 2017-09-28
JP6369624B2 true JP6369624B2 (ja) 2018-08-08

Family

ID=56788217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017502005A Active JP6369624B2 (ja) 2015-02-24 2016-01-29 車両用空調装置

Country Status (5)

Country Link
US (1) US10220677B2 (ja)
JP (1) JP6369624B2 (ja)
CN (1) CN107249912B (ja)
DE (1) DE112016000882T5 (ja)
WO (1) WO2016136382A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10293660B2 (en) * 2015-02-04 2019-05-21 Denso Corporation Integrated valve and heat pump cycle
EP3453991A4 (en) * 2016-05-10 2019-05-22 BYD Company Limited AIR CONDITIONING SYSTEM WITH HEAT PUMP AND ELECTRIC VEHICLE
CN107356005B (zh) * 2016-05-10 2019-12-20 比亚迪股份有限公司 热泵空调系统及电动汽车
CN107356003B (zh) 2016-05-10 2021-04-20 比亚迪股份有限公司 热泵空调系统及电动汽车
WO2018047264A1 (ja) * 2016-09-08 2018-03-15 三菱電機株式会社 冷凍サイクル装置
KR101846908B1 (ko) * 2016-10-31 2018-04-10 현대자동차 주식회사 차량용 히트 펌프 시스템
US10674638B2 (en) * 2017-01-26 2020-06-02 Dell Products L.P. Fail-on cooling system
JP6890072B2 (ja) 2017-09-07 2021-06-18 三菱重工サーマルシステムズ株式会社 電動圧縮機の制御装置、電動圧縮機、移動体用の空気調和装置及び電動圧縮機の制御方法
CN108583204B (zh) * 2018-04-12 2019-05-24 西安交通大学 一种co2空调热泵系统
CN110608540B (zh) * 2018-06-14 2020-08-11 三花控股集团有限公司 一种热泵系统
WO2019238129A1 (zh) 2018-06-14 2019-12-19 杭州三花研究院有限公司 一种热泵系统
KR20210070789A (ko) * 2019-12-05 2021-06-15 현대자동차주식회사 차량용 기후제어시스템 및 그 제어방법
CN115200268A (zh) * 2022-06-10 2022-10-18 智己汽车科技有限公司 一种换热循环系统、空调及车辆

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344297A (en) * 1980-03-20 1982-08-17 Daikin Kogyo Co., Ltd. Refrigeration system
JPS6078255A (ja) 1983-10-03 1985-05-02 株式会社日立製作所 空気調和機
JP3257361B2 (ja) 1995-08-01 2002-02-18 株式会社デンソー 車両用空調装置
US5704219A (en) 1995-08-01 1998-01-06 Nippondenso Co., Ltd. Air conditioning apparatus
JPH10132401A (ja) * 1996-11-01 1998-05-22 Matsushita Electric Ind Co Ltd 多段冷媒圧縮機の制御装置
JPH10259788A (ja) 1997-03-18 1998-09-29 Nippon Soken Inc 冷凍サイクル用圧縮機
JPH1130445A (ja) * 1997-07-10 1999-02-02 Denso Corp 冷凍サイクル装置
JPH11294879A (ja) * 1998-02-16 1999-10-29 Daikin Ind Ltd 冷凍装置
JP3600163B2 (ja) * 2001-02-13 2004-12-08 三洋電機株式会社 車載空気調和機
JP2010117072A (ja) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd 冷凍装置
JP5780166B2 (ja) 2011-02-11 2015-09-16 株式会社デンソー ヒートポンプサイクル
JP6275372B2 (ja) * 2011-09-05 2018-02-07 株式会社デンソー 冷凍サイクル装置
JP5768784B2 (ja) 2011-10-05 2015-08-26 株式会社デンソー 統合弁
JP5772764B2 (ja) 2011-10-05 2015-09-02 株式会社デンソー 統合弁およびヒートポンプサイクル
JP6047388B2 (ja) * 2012-11-30 2016-12-21 サンデンホールディングス株式会社 車両用空気調和装置

Also Published As

Publication number Publication date
CN107249912A (zh) 2017-10-13
JPWO2016136382A1 (ja) 2017-09-28
US10220677B2 (en) 2019-03-05
WO2016136382A1 (ja) 2016-09-01
US20180022184A1 (en) 2018-01-25
DE112016000882T5 (de) 2017-11-02
CN107249912B (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
JP6369624B2 (ja) 車両用空調装置
JP6304407B2 (ja) 統合弁およびヒートポンプサイクル
JP6447734B2 (ja) 電動圧縮機の制御装置および冷凍サイクル装置
US9494360B2 (en) Air conditioner for vehicle
EP2636549B1 (en) Air conditioner for vehicle
JP5043521B2 (ja) 電動圧縮機の制御装置
WO2018012232A1 (ja) 車両用空調装置
JP2013060066A (ja) 自動車用温調システム
JP2013060065A (ja) 自動車用温調システム
WO2018221137A1 (ja) 車両用空調装置
WO2017056863A1 (ja) 電動圧縮機
JP2006313050A (ja) 超臨界冷凍サイクルおよび車両用空調装置
JP3992046B2 (ja) 冷凍装置
JP6822193B2 (ja) 圧力低下抑制装置
JP2000280733A (ja) 自動車用空気調和装置
JP2006205959A (ja) 車両用空調制御装置
JP2016008792A (ja) ヒートポンプサイクル装置
JPH11101514A (ja) 冷凍サイクル
US10913331B2 (en) Motor-driven vehicle
JP2010043754A (ja) 蒸気圧縮式冷凍サイクル
JP2018063070A (ja) エジェクタ式冷凍サイクル
JP2000257963A (ja) 冷凍サイクル装置
JP2015038355A (ja) インバータ一体型電動圧縮機およびこれを備えた車両用空調装置
JP2010143533A (ja) 車両用空調装置
JP2010095158A (ja) 車両用空調装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R151 Written notification of patent or utility model registration

Ref document number: 6369624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250