JP6376409B2 - 交流励磁同期回転電機 - Google Patents

交流励磁同期回転電機 Download PDF

Info

Publication number
JP6376409B2
JP6376409B2 JP2015150628A JP2015150628A JP6376409B2 JP 6376409 B2 JP6376409 B2 JP 6376409B2 JP 2015150628 A JP2015150628 A JP 2015150628A JP 2015150628 A JP2015150628 A JP 2015150628A JP 6376409 B2 JP6376409 B2 JP 6376409B2
Authority
JP
Japan
Prior art keywords
magnetic
winding
synchronous rotating
degrees
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015150628A
Other languages
English (en)
Other versions
JP2017028972A (ja
Inventor
草瀬 新
草瀬  新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to US15/208,124 priority Critical patent/US10361614B2/en
Publication of JP2017028972A publication Critical patent/JP2017028972A/ja
Application granted granted Critical
Publication of JP6376409B2 publication Critical patent/JP6376409B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、界磁巻線を含まず、少なくとも多相巻線と電機子鉄心を含む交流励磁同期回転電機に関する。
小型高性能、長寿命で高信頼のためには、永久磁石界磁のブラシレス構造をとることが一般的である。広い回転域で使用する用途においては、界磁の強さを可変にすることが求められる。ところが、前述の永久磁石界磁では界磁を可変にすることが困難であるため、損失が生じたり、特性に限界があったりした。そこで、永久磁石界磁でなく、巻線界磁方式をとることが考えられる。巻線は永久磁石に比べてどうしても巻装スペースが大きくなるために、巻線を取り囲む鉄心も含めて、極めて大きな体積を必要とする。そのため、巻線界磁方式では、元々の小型高性能の課題を達成するのが困難になっていた。
従来では、全体の体格を減少させ、磁気飽和もなく、高速回転も可能とすることを目的とするハイブリッド励磁形同期機に関する技術の一例が開示されている(例えば特許文献1を参照)。このハイブリッド励磁形同期機は、固定子の外側にあって、回転子バックヨークの内側に電機子鉄心とギャップを介して対峙し、周方向に鉄心突極と永久磁石とを交互に配置し、しかも軸方向にN極側とS極側とに分けて永久磁石を配置すると共に、N極側とS極側との永久磁石が軸方向に並ばないように互い違いに配置した回転子を有する。
特開2000−041367号公報
しかし、特許文献1の技術では、電機子巻線とは別個に励磁巻線を必要とし、固定子のバックヨーク内に埋め込む。永久磁石と同等の界磁を得るには、上述したように励磁巻線を取り囲む鉄心も含めて、極めて大きな体積を必要とするという問題が残る。また、励磁巻線の巻線作業や組立作業の工程に時間を要するという問題もある。
本発明はこのような点に鑑みてなしたものであり、小型化と可変界磁とを両立すべく、界磁巻線をもたず、可変界磁の実現を図るものである。そのため、ステータ巻線を利用して界磁起磁力を与えることを目的とする。
上記課題を解決するためになされた第1の発明は、交流励磁同期回転電機(10)において、多相巻線(12a)と、前記多相巻線を巻装する電機子鉄心(12b)と、前記多相巻線と前記電機子鉄心とを囲む外側ヨーク鉄心(11a,11c)と、界磁巻線を含まず、前記電機子鉄心に対向して回転自在に配置され、軸方向の一方側は前記外側ヨーク鉄心と接近して磁束(φr)が流れる接近対向部(13a2,13b2)を有するとともに、前記軸方向の他方側は前記外側ヨーク鉄心との間で磁束の流れを阻止する磁気抵抗部(14)をそれぞれ有する複数の磁極(13a,13b)とを有し、前記多相巻線に通電する多相交流によって前記電機子鉄心に生じる起磁力を前記磁極に導くことで、前記磁極を直流界磁として作動させることを特徴とする。この構成によれば、電機子鉄心に生じる起磁力を磁極に導くことで、磁極を直流界磁として作動させる。ブラシレスでかつ界磁が印加できるので、従来技術の問題点の解決、すなわち界磁巻線がなくてもブラシレス可変界磁が可能となる。
第2の発明は、前記磁極間の位置を基準として回転方向(Dr)にプラスを採るときの電機子起磁力の位相角(β)とするとき、前記位相角を電気角で0度以外に選定して出力する制御を行う制御部(20)を有することを特徴とする。この構成によれば、制御部は磁極の位置を基準とする電機子起磁力の位相角を0度以外に選定して出力する制御を行う。ブラシレスでかつ界磁が印加できるので、従来技術の問題点の解決、すなわち界磁巻線がなくてもブラシレス可変界磁が可能となる。
第3の発明は、前記多相巻線(12a)は、全節巻線であることを特徴とする。この構成によれば、全節巻線で巻装するので、誘導起電力を大きくすることができ、機械角で180度離れた部位の電機子鉄心に同じ起磁力を発生させることができる。
第4の発明は、前記外側ヨーク鉄心の一部または全部は、前記多相巻線と前記電機子鉄心とを含むステータ(12)を支えるフレーム(11)を兼ねることを特徴とする。この構成によれば、外側ヨーク鉄心の一部または全部がフレームを兼ねるので、材料や部品数等を削減することができ、削減できた分だけコストを低減できる。
第5の発明は、前記磁極の内側に設けられ、径方向に着磁される第1磁石(15)を有することを特徴とする。この構成によれば、磁極を流れる磁束によるリラクタンストルクに対して、第1磁石によるマグネットトルクが加わるので、全体のトルクが向上する。
第6の発明は、前記接近対向部は、周方向に延びて形成される部位である鍔部位(13a3,13b3)を含むことを特徴とする。この構成によれば、鍔部位もまた外側ヨーク鉄心との間で磁束が流れるので、外側ヨーク鉄心との間で磁束が流れる領域(あるいは面積)が広がる。よって、磁極と外側ヨーク鉄心との間で磁束が流れ易くなり、トルクを高めることができる。
第7の発明は、前記磁気抵抗部は、前記磁極と前記外側ヨーク鉄心との間に設けられる空間(14a,14b)であることを特徴とする。この構成によれば、磁極と外側ヨーク鉄心との間に空間を設けるだけでよいので、簡単な構造で磁束漏れを確実に阻止することができる。
第8の発明は、前記接近対向部は、複数の前記磁極について周方向に連続して円環状(すなわち環状体)に形成されることを特徴とする。この構成によれば、接近対向部は周方向に連続する円環状であるので、外側ヨーク鉄心との間で回転子の位置に関係なく均一に磁束を流すことができ、回転が安定する。
第9の発明は、周方向に隣り合う前記磁極の相互間に設けられ、周方向に着磁される第2磁石(18)を有することを特徴とする。この構成によれば、磁極を流れる磁束によるリラクタンストルクだけでなく、第2磁石によるマグネットトルクが加わるので、全体のトルクが向上する。
第10の発明は、前記磁気抵抗部は、前記磁極と前記外側ヨーク鉄心との間に設けられ、前記磁極と反発する方向に着磁される第3磁石(14c,14d)であることを特徴とする。この構成によれば、第3磁石は磁極と反発する方向に着磁されるので、磁束は第3磁石に向かって流れず、外側ヨーク鉄心に向かって流れ易くなる。したがって、磁束の漏洩を防止することができる。
第11の発明は、前記制御部は、電気角で0度を境として、0度<β<90度の前記位相角で発電機トルクを出力し、−90度<β<0度の前記位相角で電動機トルクを出力するように界磁起磁力を前記磁極に与える制御を行うことを特徴とする。この構成によれば、位相角を0度<β<90度にするか−90度<β<0度にするかで、発電機か電動機かの作動を容易に切り替えることができる。
第12の発明は、前記制御部は、前記位相角を−10度から−70度までの範囲内、または、+10度から+70度までの範囲内で制御することを特徴とする。この構成によれば、これらの範囲内で位相角を制御すると、外側ヨーク鉄心を有しない回転電機よりも大きなトルクが得られる。
なお、「多相巻線」は固定子巻線と同義であり、一本状の巻線でもよく、複数の導体線やコイル等を電気的に接続して一本状にしたものでもよい。多相巻線の相数は、三相以上であれば問わない。「巻装」は巻いて装うことを意味し、巻き回す意味の「巻回」と同義に用いる。「外側ヨーク鉄心」は、バイパスヨークコアとも呼ばれ、電機子鉄心および磁極との間で磁束が流れれば、形態(例えば形状や材料等)を問わない。「磁極」は、N極またはS極の極性を帯びる磁性体が該当する。磁性体は、磁束が流れることを条件として材質(材料を含む)や構成などを問わない。例えば、軟磁性材で構成してもよく、磁石で構成してもよく、軟磁性材と磁石を組み合わせて構成してもよい。「交流励磁同期回転電機」は、回転する部材(例えば軸やシャフト等)を有する機器であれば任意である。例えば、発電機,電動機,電動発電機等が該当する。発電機には電動発電機が発電機として作動する場合を含み、電動機には電動発電機が電動機として作動する場合を含む。
交流励磁同期回転電機の第1構成例を模式的に示す断面図である。 交流励磁同期回転電機の第1構成例を一部破断して示す斜視図である。 図1に示す矢印III方向からみた側面図である。 ロータの第1構成例を模式的に示す斜視図である。 多相巻線の一部であるコイルを模式的に示す平面図である。 多相巻線の一部であるコイルを模式的に示す斜視図である。 制御部と多相巻線の接続例を示す回路図である。 多相巻線に通電する多相交流の制御例を示す波形図である。 位相角を説明する模式図である。 位相角が負値の場合における磁束の流れを模式的に示す断面図である。 位相角が0の場合における磁束の流れを模式的に示す断面図である。 位相角が正値の場合における磁束の流れを模式的に示す断面図である。 トルクと位相角との関係例を示すグラフ図である。 ロータの第2構成例を模式的に示す斜視図である。 交流励磁同期回転電機の第2構成例を模式的に示す断面図である。 ロータの第3構成例を模式的に示す斜視図である。 ロータの第4構成例を模式的に示す側面図である。 交流励磁同期回転電機の第3構成例を模式的に示す断面図である。 磁極の変形例を模式的に示す断面図である。 交流励磁同期回転電機の第4構成例を模式的に示す断面図である。 交流励磁同期回転電機の第5構成例を模式的に示す断面図である。
以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」という場合には電気的に接続することを意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示しているとは限らない。上下左右等の方向を言う場合には、図面の記載を基準とする。英数字の連続符号は記号「〜」を用いて略記する。例えば、「ロータ13A〜13F」は「ロータ13A,13B,13C,13D,13E,13F」を意味する。符号の英文字は大文字と小文字とで別の要素を意味する。例えば、図1に示すロータ13Aと磁極13aは別の要素である。部材間の固定方法は問わない。「外側」は径方向における外径側や外周側を意味し、「内側」は径方向における内径側や内周側を意味する。
〔実施の形態1〕
実施の形態1は図1〜図13を参照しながら説明する。図1,図2に示す交流励磁同期回転電機10Aは、界磁巻線を含まない交流励磁同期回転電機10の一例である。交流励磁同期回転電機10Aは、ステータ12,ロータ13A,第1磁石15,軸受16,回転軸17などをフレーム11内に有する。交流励磁同期回転電機10Aの内外には、交流励磁同期回転電機10A全体の制御を司る制御部20が設けられる。なお図1の上側半分には、磁極13a(すなわち磁極本体13a1や接近対向部13a2など)が断面となるように示す。また図1の下側半分には、磁極13b(すなわち磁極本体13b1や接近対向部13b2など)が断面となるように示す。
フレーム11は、筐体やハウジングなどに相当し、形状や材料等を任意に設定してよい。このフレーム11は、少なくともステータ12を支持して固定するとともに、軸受16を介して回転軸17を回転自在に支持する。本形態におけるフレーム11の一部または全部には、外側ヨーク鉄心11a,11cやバックヨークコア11bなどを含む。
外側ヨーク鉄心11a,11cは、それぞれ多相巻線12aと電機子鉄心12bを囲むように、例えば図3に示すように円板形状(具体的にはドーナツ盤形状)に形成される。バックヨークコア11bは、例えば円筒形状に形成される。外側ヨーク鉄心11c,バックヨークコア11b,磁極13aおよび電機子鉄心12bは、磁気回路MC1を構成する。外側ヨーク鉄心11a,バックヨークコア11b,磁極13bおよび電機子鉄心12bは、磁気回路MC2を構成する。なお、矢印で図示する磁気回路MC1,MC2の向きは一例であり、時期や位置等に応じて逆向きになる場合がある。
電機子や固定子に相当するステータ12は、多相巻線12aや電機子鉄心12bなどを有する。多相巻線12aは、電機子巻線,固定子巻線,ステータコイルなどに相当し、三相以上の巻線である。多相巻線12aは、電機子鉄心12bに巻装される。多相巻線12aの構成例については後述する(図5〜図7を参照)。
回転子に相当するロータ13Aは、界磁巻線を含まないロータ13の一例である。ロータ13Aは、複数の磁極13aや、複数の磁極13b、支持部材13c、複数の第1磁石15a、複数の第1磁石15bなどを有する。複数の磁極13aは、それぞれ所定の極性(本形態ではN極)を有し、第1磁石15aおよび支持部材13cを介して回転軸17に固定される。複数の磁極13bは、それぞれ磁極13aとは異なる極性(本形態ではS極)を有し、第1磁石15bおよび支持部材13cを介して回転軸17に固定される。この構成によって、ロータ13Aと回転軸17は一体的に回転する。
複数の磁極13aと複数の磁極13bは、周方向に交互に配置される(図2,図4を参照)。磁極13a,13bの数は任意に設定してよい。磁極13aの内側に設けられる第1磁石15aは、径方向(例えば図1に示す矢印D1方向)に着磁される。磁極13bの内側に設けられる第1磁石15bは、径方向(例えば図1に示す矢印D2方向)に着磁される。第1磁石15a,15bはいずれも第1磁石15の一例であり、種類を問わず任意の磁石を適用することができる。第1磁石15a,15bに起因する磁束φm(すなわち磁石磁束)は、磁気回路MC1,MC2に作用し、マグネットトルクとして加わる。磁極13a,13bはいずれも磁性材で成形され、支持部材13cは非磁性材で成形される。磁極13a,13bの構成例については後述する(図3,図4を参照)。
電機子鉄心12bと磁極13aの間と、電機子鉄心12bと磁極13bの間は、それぞれギャップG1が設けられる。磁極13aと外側ヨーク鉄心11cの間と、磁極13bと外側ヨーク鉄心11aの間は、それぞれギャップG2が設けられる。ギャップG1,G2の大きさ(あるいは間隔)は、磁気回路MC1,MC2が形成できる範囲において、それぞれ任意に設定してよい。G1=G2でもよく、G1≠G2でもよい。
図4には、ロータ13Aの構成例を示す。磁極13aは、磁極本体13a1に対して、接近対向部13a2,テーパ部13a4などを有する。接近対向部13a2には、周方向に延びて形成される部位である鍔部位13a3を含む(破線で図示)。接近対向部13a2は磁極本体13a1の一方側(図4では下側)に設けられ、テーパ部13a4は磁極本体13a1の他方側(図4では上側)に設けられる。
磁極13bは、磁極本体13b1に対して、接近対向部13b2,テーパ部13b4などを有する。接近対向部13b2には、周方向に延びて形成される部位である鍔部位13b3を含む。接近対向部13b2は磁極本体13b1の一方側(図4では上側)に設けられ、テーパ部13b4は磁極本体13b1の他方側(図4では下側)に設けられる。
磁極13aと磁極13bは、軸方向において互いに反対方向となるように配置される。この配置によって、図1に示す空間14a,14bが生じる。空間14a,14bは、それぞれ磁束の流れを阻止する磁気抵抗部14に相当する。空間14aは、外側ヨーク鉄心11aと磁極13aとの間に形成される。空間14bは、外側ヨーク鉄心11cと磁極13bとの間に形成される。
コイルL1,L2を用いて、多相巻線12aの1相分を構成する例を図5,図6に示す。図5では分かり易くするために、コイルL1を実線で示し、コイルL2を二点鎖線で示すとともに多少ずらして記載する。コイルL1,L2は、いずれも軸方向と周方向とを交互に蛇行させて波状に形成する。コイルL1とコイルL2は、軸方向において互いに反対方向となるように配置される。コイルL1,L2を用いて全節巻線としてもよい。
コイルL1,L2は、いずれもコイルエンド部CEとスロット収容部SLとを含む。コイルエンド部CEは、電機子鉄心12bから突出する部位であり、径方向に曲げられるクランク部CRを有する。スロット収容部SLは、電機子鉄心12b(例えばティース相互間に形成されるスロット)に収容される部位である。
図7には、制御部20と多相巻線12aとの接続例を示す。本形態の多相巻線12aは三相(例えばU相,V相,W相)である。U相コイルL1uはU相のコイルL1に相当し、U相コイルL2uはU相のコイルL2に相当する。V相コイルL1vはV相のコイルL1に相当し、V相コイルL2vはV相のコイルL2に相当する。W相コイルL1wはW相のコイルL1に相当し、W相コイルL2wはW相のコイルL2に相当する。
U相コイルL1uとU相コイルL2uは、一方側端部(図7では右側端部)で直列接続する。同様にして、V相コイルL1vとV相コイルL2v、W相コイルL1wとW相コイルL2wは、いずれも一方側端部で直列接続する。U相コイルL1uの他方側端部(図7では左側端部)は、制御部20に接続する。同様にして、V相コイルL1vおよびW相コイルL1wの他方側端部は、制御部20に接続する。U相コイルL2u、V相コイルL2v、W相コイルL2wの他方側端部(図7では左側端部)は、いずれもグラウンドGNDに接続する。グラウンドGNDは共通電位であり、必ずしも0[V]とは限らない。接地されたグラウンドGNDは0[V]になる。
上述した接続によって、制御部20から見て、U相コイルL1uとU相コイルL2uには互いに逆方向にU相電流Iuが流れる。同様に、V相コイルL1vとV相コイルL2vには互いに逆方向にV相電流Ivが流れ、W相コイルL1wとW相コイルL2wには互いに逆方向にW相電流Iwが流れる。
制御部20からU相コイルL1u,V相コイルL1v,W相コイルL1wに流す電流を太線で表し、U相コイルL2u,V相コイルL2v,W相コイルL2wに流れる電流を細線で表すと図8のようになる。区別し易くするため、U相コイルL1u,L2uに流れるU相電流Iuは実線で示し、V相コイルL1v,L2vに流れるV相電流Ivは一点鎖線で示し、W相コイルL1w,L2wに流れるW相電流Iwは二点鎖線で示す。多相巻線12aに多相交流を通電して電機子鉄心12bに生じる起磁力を磁極13a,13bに導くことで、磁極13a,13bを直流界磁として作動させることができる。
時刻T0から時刻Tsまでの期間を1周期とする。位相角βは、多相交流(この場合は三相交流)に含まれるU相電流Iu,V相電流Iv,W相電流Iwと多相巻線12a(この場合は三相巻線)とが形成する回転起磁力と、ロータ13の磁極13a,13bとの間の電気角である。図9には、多相巻線12aに多相交流を通電して電機子鉄心12bに生じる回転磁界(二極モデル)と、磁極13a,13bとの関係をモデル化して表す。
図9に示す回転磁極RMa,RMbは、多相巻線12aに多相交流を通電することで電機子鉄心12bに生じる回転磁界の磁極である。回転磁極RMa,RMbは、それぞれ図形の矢印で図示するような極性(すなわちN極,S極)に磁化され、例えば回転方向Drに回転する。当該回転磁界の回転起磁力は「電機子起磁力」に相当し、符号「Fr」のベクトルで示す。ロータ13の磁極13aに関して、d軸(極央)とq軸(極間)とをそれぞれベクトル(実線の矢印)で示す。磁極13a,13b間の位置(すなわち図9ではベクトルで示すq軸)を基準として回転方向Drにプラスを採るとき、各々ベクトルで示すq軸と回転起磁力Frとの間の角度が「位相角β」に相当する。なお、図9における回転方向Drは左回転の例を示すが、右回転の場合も同様であるので図示を省略する。右回転の場合は、位相角βも逆方向(すなわち右回転がプラス方向)になる。また、図9では2極モデルの例を示すが、4極以上の場合も同様である。
制御部20が制御する位相角βに応じて磁束φrの流れが変わり、図10〜図12に示す。図10には、位相角βが0度<β<90度の範囲内における磁束φr,φmの流れを示す。磁束φrは、外側ヨーク鉄心11cから磁極13aを経て電機子鉄心12bに流れる(図1の磁気回路MC1を参照)。図示を省略するが、電機子鉄心12bから磁極13bを経て外側ヨーク鉄心11aにも磁束φrが流れる(図1の磁気回路MC2を参照)。第1磁石15a,15bに起因する磁束φmは、磁極13aを経て電機子鉄心12bに流れ、磁束φrに加わる。位相角βが0度<β<90度の範囲内のとき、交流励磁同期回転電機10Aは発電機として作動する。
図11には、位相角βが0度の場合における状態を示す。磁束φrは、ほとんど流れないに等しい。この場合の交流励磁同期回転電機10Aは発電機と電動機のいずれも作動しない。
図12には、位相角βが−90度<β<0度の範囲内における磁束φr,φmの流れを示す。図10とは逆に、磁束φrは電機子鉄心12bから磁極13aを経て外側ヨーク鉄心11cに流れる。図示を省略するが、外側ヨーク鉄心11aから磁極13bを経て電機子鉄心12bにも磁束φrが流れる。第1磁石15a,15bに起因する磁束φmは、磁極13aを経て外側ヨーク鉄心11cに流れ、磁束φrに加わる。位相角βが−90度<β<0度の範囲内のとき、交流励磁同期回転電機10Aは電動機として作動する。
上述した位相角βとトルクFとの関係例を図13に示す。実線で示す特性線F1は、交流励磁同期回転電機10Aの構成で得られる特性線である。一点鎖線で示す特性線F2は、交流励磁同期回転電機10Aから第1磁石15a,15bを除いた構成で得られる特性線である。二点鎖線で示す特性線F3は、磁石がない状態でステータの励磁電流トルクのうちリラクタンストルク(ロータ磁極の正突極性による鉄片引き込みトルク)成分である。なお、正突極とするため、d軸インダクタンスLdはq軸インダクタンスLqよりも大きく設定される(Ld>Lq)。また、図13に示す「degE」は電気角の「度」を意味する。
位相角β1において、特性線F1と特性線F2との間にはトルク差Faがあり、特性線F2と特性線F3との間にはトルク差Fbがある。トルク差Faは、第1磁石15a,15bによるマグネットトルクに起因する。トルク差Fbは、多相巻線12aに流す電流I(例えばU相電流Iu,V相電流Iv,W相電流Iw)によって電機子鉄心12bに生じる励磁電流トルクに起因する。すなわち外側ヨーク鉄心11a,11cを設けたことにより、多相巻線12aのコイルエンド部CEに生じる起磁力を利用するためである。
制御部20は、トルクFが特性線F3よりも大きくなる範囲で位相角βを設定するとよい。特性線F3よりも大きくなる範囲は、例えば−90度<β<0度の範囲内における位相角βについて目的トルクFp以上となる範囲や、0度<β<90度の範囲内における位相角βについて目的トルクFm以下となる範囲が該当する。従来よりも大きくトルクFを確保するには、−70度≦β≦−10度の範囲内や、+10度≦β≦+70度の範囲内で制御するのが望ましい。
上述した実施の形態1によれば、以下に示す各作用効果を得ることができる。
(1)交流励磁同期回転電機10Aは、多相巻線12aと、多相巻線12aを巻装する電機子鉄心12bと、多相巻線12aと電機子鉄心12bとを囲む外側ヨーク鉄心11a,11cと、界磁巻線を含まず、電機子鉄心12bに対向して回転自在に配置され、軸方向の一方側は外側ヨーク鉄心11a,11cと接近して磁束φrが流れる接近対向部13a2,13b2を有するとともに、軸方向の他方側は外側ヨーク鉄心11a,11cとの間で磁束φrの流れを阻止する磁気抵抗部14をそれぞれ有する複数の磁極13a,13bとを有し、多相巻線12aに通電する多相交流によって電機子鉄心12bに生じる起磁力を磁極13a,13bに導くことで、磁極13a,13bを直流界磁として作動させる構成とした(図1〜図13を参照)。この構成によれば、電機子鉄心12bに生じる起磁力を磁極13a,13bに導くことで、磁極13a,13bを直流界磁として作動させる。ブラシレスでかつ界磁が印加できるので、従来技術の問題点を解決できる。すなわち、交流励磁同期回転電機10Aを小型化することができ、界磁巻線がなくてもブラシレス可変界磁が可能となる。
(2)磁極13a,13b間の位置を基準として回転方向Drにプラスを採るときの電機子起磁力の位相角βとするとき、位相角βを電気角で0度以外に選定して出力する制御を行う制御部20とを有する構成とした(図1〜図13を参照)。この構成によれば、電機子起磁力(すなわち回転磁界)の位相角βを0度以外に選定して出力する制御を行う。ブラシレスでかつ界磁が印加できるので、従来技術の問題点を解決できる。すなわち、交流励磁同期回転電機10Aを小型化することができ、界磁巻線がなくてもブラシレス可変界磁が可能となる。
(3)多相巻線12aは、全節巻線で電機子鉄心12bに巻装する構成とした(図1を参照)。この構成によれば、誘導起電力を大きくすることができ、機械角で180度離れた部位の電機子鉄心12bに同じ起磁力を発生させることができる。
(4)外側ヨーク鉄心11a,11cの一部または全部は、多相巻線12aと電機子鉄心12bとを含むステータ12を支えるフレーム11を兼ねる構成とした(図1を参照)。この構成によれば、フレーム11を兼ねるので、材料や部品数等を削減することができ、削減できた分だけコストを低減できる。
(5)磁極13a,13bの内側に設けられ、径方向に着磁される第1磁石15a,15bを有する構成とした(図1,図2,図4を参照)。この構成によれば、第1磁石15a,15bの耐遠心力が向上する。また、磁極13a,13bを流れる磁束φrによるリラクタンストルクに対して、第1磁石15a,15bによるマグネットトルクが加わるので、全体のトルクFが向上する。
(6)接近対向部13a2,13b2は、周方向に延びて形成される部位である鍔部位13a3,13b3を含む構成とした(図4を参照)。この構成によれば、鍔部位13a3,13b3もまた外側ヨーク鉄心11a,11cとの間で磁束φrが流れるので、外側ヨーク鉄心11a,11cとの間で磁束φrが流れる領域(あるいは面積)が広がる。よって、磁極13a,13bと外側ヨーク鉄心11a,11cとの間で磁束φrが流れ易くなり、トルクFを高めることができる。
(7)磁気抵抗部14は、磁極13a,13bと外側ヨーク鉄心11a,11cとの間に設けられる空間14a,14bである構成とした(図1を参照)。この構成によれば、磁極13a,13bと外側ヨーク鉄心11a,11cとの間に空間14a,14bを設けるだけよいので、簡単な構造で磁束φrの漏れを確実に阻止することができる。
(11)制御部20は、電気角で0度を境として、0度<β<90度の位相角βで発電機トルクを出力し、−90度<β<0度の位相角βで電動機トルクを出力するように界磁起磁力を磁極13a,13bに与える制御を行う構成とした(図13を参照)。この構成によれば、位相角βを0度<β<90度の範囲内にするか、−90度<β<0度の範囲内にするかで、電動機か発電機かの作動を容易に切り替えることができる。
(12)制御部20は、位相角βを電気角で−10度から−70度までの範囲内、または、+10度から+70度までの範囲内で制御する構成とした(図13を参照)。この構成によれば、これらの範囲内で位相角βを制御すると、外側ヨーク鉄心11a,11cを有しない交流励磁同期回転電機よりも大きなトルクFが得られる。
〔実施の形態2〕
実施の形態2は図14を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、実施の形態1と相違する点を中心に説明する。
図14に示すロータ13Bは、界磁巻線を含まないロータ13の一例である。ロータ13Bは、ロータ13Aと同様にして、複数の磁極13aや、複数の磁極13b、支持部材13c、複数の第1磁石15a、複数の第1磁石15bなどを有する。ロータ13Bがロータ13Aと相違するのは、鍔部位13a3,13b3を有しない点である。
ロータ13Bを適用しても、図1に示す磁気回路MC1,MC2を構成することができる。すなわち、磁気回路MC1,MC2に沿った磁束φrが流れ、多相巻線12aに流す電流Iによって励磁電流トルクを発生させることができる(図1を参照)。また、第1磁石15a,15bを起因とする磁束φmが磁束φrに加わるので、全体のトルクFにマグネットトルクを加えることができる(図10,図12を参照)。
上述した実施の形態2によれば、(6)を除いて実施の形態1と同様の作用効果を得ることができる。
〔実施の形態3〕
実施の形態3は図15,図16を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1,2で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、実施の形態1,2と相違する点を中心に説明する。
図15に示す交流励磁同期回転電機10Cは、界磁巻線を含まない交流励磁同期回転電機10の一例である。交流励磁同期回転電機10Cは、交流励磁同期回転電機10と同様に、ステータ12,ロータ13C,第1磁石15,軸受16,回転軸17などをフレーム11内に有する。交流励磁同期回転電機10Cは、交流励磁同期回転電機10Aに備えるロータ13Aに代えて、ロータ13Cを適用する点が相違する。
回転子に相当するロータ13Cは、界磁巻線を含まないロータ13の一例である。ロータ13Cは、ロータ13Aと同様に、複数の磁極13aや、複数の磁極13b、支持部材13c、複数の第1磁石15a、複数の第1磁石15bなどを有する。ロータ13Cがロータ13Aと相違するのは、図16に示すように、環状体13a5,13b5を接近対向部13a2,13b2に含む点である。環状体13a5は周方向に隣り合う鍔部位13a3どうしを連続させた部位であり、環状体13b5は周方向に隣り合う鍔部位13b3どうしを連続させた部位である。
ロータ13Cを適用しても、図1に示す磁気回路MC1,MC2を構成することができる。すなわち、磁気回路MC1,MC2に沿った磁束φrが流れ、多相巻線12aに流す電流Iによって励磁電流トルクを発生させることができる(図1を参照)。また、第1磁石15a,15bを起因とする磁束φmが磁束φrに加わるので、全体のトルクFにマグネットトルクを加えることができる(図10,図12を参照)。
上述した実施の形態3によれば、(6)を除いて実施の形態1と同様の作用効果を得ることができ、さらに下記の作用効果を得ることができる。
(8)接近対向部13a2,13b2は、複数の磁極13a,13bについて周方向に連続して円環状に形成される環状体13a5,13b5を含む構成とした(図15,図16を参照)。この構成によれば、環状体13a5,13b5は周方向に連続するので、外側ヨーク鉄心11a,11cとの間でロータ13Cの位置に関係なく均一に磁束φrを流すことができる。したがって、ロータ13Cを安定して回転させることができる。
〔実施の形態4〕
実施の形態4は図17を参照しながら説明する。図17は、図1に示す矢印III方向からみた側面図である。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜3で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、実施の形態1〜3と相違する点を中心に説明する。
図17に示すロータ13Dは、界磁巻線を含まないロータ13の一例である。ロータ13Dは、複数の磁極13aや、複数の磁極13b、支持部材13cなどを有する。ロータ13Dがロータ13Aと相違するのは、複数の第1磁石15aおよび複数の第1磁石15bに代えて、複数の第2磁石18aおよび複数の第2磁石18bを有する点である。それぞれの第2磁石18a,18bは第2磁石18に相当する。第2磁石18a,18bの最外径は、ステータ12への影響を抑えるために、磁極13a,13bの最外径よりも小さくするとよい。
複数の第2磁石18aは、図17に図形の矢印で示す周方向に着磁され、周方向に隣り合う磁極13aと磁極13bとの相互間に設けられる。具体的には周方向に隣り合う磁極本体13a1と磁極本体13b1との相互間に設けられる。
複数の第2磁石18bは、第2磁石18aと逆方向であって図17に図形の矢印で示す周方向に着磁され、周方向に隣り合う磁極13aと磁極13bとの相互間に設けられる。具体的には第2磁石18aが設けられない位置であって、周方向に隣り合う磁極本体13a1と磁極本体13b1との相互間に設けられる。
ロータ13Dを適用しても、図1に示す磁気回路MC1,MC2を構成することができる。すなわち、磁気回路MC1,MC2に沿った磁束φrが流れ、多相巻線12aに流す電流Iによって励磁電流トルクを発生させることができる(図1を参照)。また、第2磁石18a,18bを起因とする磁束φmが磁束φrに加わるので、全体のトルクFにマグネットトルクを加えることができる(図10,図12を参照)。
上述した実施の形態4によれば、(5)を除いて実施の形態1と同様の作用効果を得ることができ、さらに下記の作用効果を得ることができる。
(9)周方向に隣り合う磁極13a,13bの相互間に設けられ、周方向に着磁される第2磁石18a,18bを有する構成とした(図17を参照)。この構成によれば、磁極13a,13bを流れる磁束φrによるリラクタンストルクだけでなく、第2磁石18a,18bを起因とする磁束φmによるマグネットトルクが加わるので、全体のトルクFが向上する。
〔実施の形態5〕
実施の形態5は図18を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜4で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、実施の形態1〜4と相違する点を中心に説明する。
図18に示す交流励磁同期回転電機10Eは、界磁巻線を含まない交流励磁同期回転電機10の一例である。交流励磁同期回転電機10Eは、交流励磁同期回転電機10と同様に、ステータ12,ロータ13E,第1磁石15,軸受16,回転軸17などをフレーム11内に有する。交流励磁同期回転電機10Eは、交流励磁同期回転電機10Aに備えるロータ13Aに代えて、ロータ13Eを適用する点が相違する。
回転子に相当するロータ13Eは、界磁巻線を含まないロータ13の一例である。ロータ13Eは、ロータ13Aと同様に、複数の磁極13aや、複数の磁極13b、支持部材13c、複数の第3磁石14c、複数の第3磁石14d、複数の第1磁石15a、複数の第1磁石15bなどを有する。ロータ13Eがロータ13Aと相違するのは、テーパ部13a4,13b4を無くすとともに、さらに複数の第3磁石14cと複数の第3磁石14dを備える。各々の第3磁石14c,14dは、いずれも磁気抵抗部14に相当する。
第3磁石14cは、磁極13aについて接近対向部13a2とは軸方向に反対側に設けられ、図形の矢印で図示するように磁極13aと反発する方向に着磁される。この着磁によって、磁極13aから外側ヨーク鉄心11aに流れようとする磁束φrを阻止するとともに、第3磁石14cに起因する磁束φm(すなわち磁石磁束)が磁気回路MC1に作用し、マグネットトルクとして加わる。
第3磁石14dは、磁極13bについて接近対向部13b2とは軸方向に反対側に設けられ、図形の矢印で図示するように磁極13bと反発する方向に着磁される。この着磁によって、磁極13bから外側ヨーク鉄心11cに流れようとする磁束φrを阻止するとともに、第3磁石14dに起因する磁束φm(すなわち磁石磁束)が磁気回路MC2に作用し、マグネットトルクとして加わる。
上述した実施の形態5によれば、(7)を除いて実施の形態1と同様の作用効果を得ることができ、さらに下記の作用効果を得ることができる。
(10)磁気抵抗部14は、磁極13a,13bと外側ヨーク鉄心11a,11cとの間に設けられ、磁極13a,13bと反発する方向に着磁される第3磁石14c,14dである構成とした(図18を参照)。この構成によれば、第3磁石14c,14dは磁極13a,13bと反発する方向に着磁されるので、磁束φrは第3磁石14c,14dに向かって流れず、外側ヨーク鉄心11a,11cに向かって流れ易くなる。したがって、磁束φrの漏洩を防止することができる。また、第3磁石14c,14dに起因する磁束φmによってマグネットトルクが加わるので、トルクFをさらに高めることができる。
〔他の実施の形態〕
以上では本発明を実施するための形態について実施の形態1〜5に従って説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
上述した実施の形態1〜4の磁極13a,13bは、図19に二点鎖線で示す角度θ1で平面形状のテーパ部13a4,13b4を有する構成とした。この形態に代えて、角度θ1よりも小さい角度θ2(すなわちθ2<θ1)のテーパ部13a7,13b7を有する構成としてもよく、曲面形状のテーパ部13a6,13b6を有する構成としてもよい。要するに、磁極13a,13bに設けられるテーパ部によって、磁気抵抗部14となる空間14a,14bが形成されればよい。磁極13a,13bの形状が相違するに過ぎないので、実施の形態1〜4と同様の作用効果を得ることができる。
上述した実施の形態1,2,3,5では、磁極13aの内側に第1磁石15aを設け、磁極13bの内側に第1磁石15bを設ける構成とした(図1,図2,図4,図14〜図16,図18を参照)。この形態に代えて、図20に示すように、磁極13a,13bの内側に第1磁石15a,15bを設けず、磁極13a,13bを支持部材13cに固定する構成としてもよい。この構成によれば、マグネットトルクが無くなるので、図13に特性線F2で示すトルクFしか得られないものの、従来技術よりはトルクが向上する。その他については、実施の形態1,2,3,5と同様の作用効果を得ることができる。
上述した実施の形態1,2,3,5の磁極13a,13bは、第1磁石15a,15bおよび支持部材13cを介して回転軸17に固定する構成とした(図1,図15,図18を参照)。この形態に代えて、図21に示すように、支持部材13cを介さずに回転軸19に固定する構成としてもよい。回転軸19は、回転軸17と支持部材13cを共通にした部材に相当する。支持部材13cの形態が相違するに過ぎないので、実施の形態1,2,3,5と同様の作用効果を得ることができる。
上述した実施の形態1〜5では、コイルL1,L2を用いて多相巻線12aを電機子鉄心12bに巻装する構成とした(図5,図6を参照)。この形態に代えて、他の巻装形態で多相巻線12aを電機子鉄心12bに巻装する構成としてもよい。他の巻装形態は、集中巻や分布巻などが該当する。集中巻は、例えば電機子鉄心12bに形成されるティースに対して多相巻線12aを集中的に巻装する。分布巻は、複数のティースに渡って多相巻線12aを巻装する。巻装形態が相違するに過ぎないので、実施の形態1〜5と同様の作用効果を得ることができる。
上述した実施の形態1〜5では、第1磁石15a,15b、第2磁石18a,18b、第3磁石14c,14dをそれぞれ単体で用いる構成とした(図1,図2,図4,図14,図15〜図18を参照)。この形態に代えて、一以上の磁石について複数の分割磁石で構成してもよい。単体の磁石を用いるか、複数の分割磁石を用いるか否かの相違に過ぎないので、実施の形態1〜5と同様の作用効果を得ることができる。
上述した実施の形態4のロータ13Dは、複数の第1磁石15aおよび複数の第1磁石15bに代えて、複数の第2磁石18aおよび複数の第2磁石18bを有する構成とした(図17を参照)。この形態に代えて、実施の形態1,2,3,5と同様に、磁極13a,13bと支持部材13cとの間に第1磁石15a,15bを介在させたうえで、第2磁石18a,18bを設ける構成としてもよい。この構成によれば、第1磁石15a,15bによるマグネットトルクだけでなく、第2磁石18a,18bによるマグネットトルクも加わるので、トルクFをさらに向上させることができる。その他については、実施の形態4と同様の作用効果を得ることができる。
10(10A,10C,10E) 交流励磁同期回転電機(回転電機)
11a,11c 外側ヨーク鉄心(バイパスヨークコア)
12a 多相巻線
12b 電機子鉄心
13a,13b 磁極
13a2,13b2 接近対向部
14 磁気抵抗部
14a,14b 空間(磁気抵抗部)
14c,14d 第3磁石(磁気抵抗部)
15(15a,15b) 第1磁石
18(18a,18b) 第2磁石
20 制御部

Claims (12)

  1. 多相巻線(12a)と、
    前記多相巻線を巻装する電機子鉄心(12b)と、
    前記多相巻線と前記電機子鉄心とを囲む外側ヨーク鉄心(11a,11c)と、
    界磁巻線を含まず、前記電機子鉄心に対向して回転自在に配置され、軸方向の一方側は前記外側ヨーク鉄心と接近して磁束(φr)が流れる接近対向部(13a2,13b2)を有するとともに、前記軸方向の他方側は前記外側ヨーク鉄心との間で磁束の流れを阻止する磁気抵抗部(14)をそれぞれ有する複数の磁極(13a,13b)とを有し、
    前記多相巻線に通電する多相交流によって前記電機子鉄心に生じる起磁力を前記磁極に導くことで、前記磁極を直流界磁として作動させることを特徴とする交流励磁同期回転電機(10)。
  2. 前記磁極間の位置を基準として回転方向(Dr)にプラスを採るときの電機子起磁力の位相角(β)とするとき、前記位相角を電気角で0度以外に選定して出力する制御を行う制御部(20)を有することを特徴とする請求項1に記載の交流励磁同期回転電機。
  3. 前記多相巻線(12a)は、全節巻線であることを特徴とする請求項1または2に記載の交流励磁同期回転電機。
  4. 前記外側ヨーク鉄心の一部または全部は、前記多相巻線と前記電機子鉄心とを含むステータ(12)を支えるフレーム(11)を兼ねることを特徴とする請求項1から3のいずれか一項に記載の交流励磁同期回転電機。
  5. 前記磁極の内側に設けられ、径方向に着磁される第1磁石(15)を有することを特徴とする請求項1から4のいずれか一項に記載の交流励磁同期回転電機。
  6. 前記接近対向部は、周方向に延びて形成される部位である鍔部位(13a3,13b3)を含むことを特徴とする請求項1から5のいずれか一項に記載の交流励磁同期回転電機。
  7. 前記磁気抵抗部は、前記磁極と前記外側ヨーク鉄心との間に設けられる空間(14a,14b)であることを特徴とする請求項1から6のいずれか一項に記載の交流励磁同期回転電機。
  8. 前記接近対向部は、複数の前記磁極について周方向に連続して円環状に形成されることを特徴とする請求項1から7のいずれか一項に記載の交流励磁同期回転電機。
  9. 周方向に隣り合う前記磁極の相互間に設けられ、周方向に着磁される第2磁石(18)を有することを特徴とする請求項1から8のいずれか一項に記載の交流励磁同期回転電機。
  10. 前記磁気抵抗部は、前記磁極と前記外側ヨーク鉄心との間に設けられ、前記磁極と反発する方向に着磁される第3磁石(14c,14d)であることを特徴とする請求項1から9のいずれか一項に記載の交流励磁同期回転電機。
  11. 前記制御部は、電気角で0度を境として、0度<β<90度の前記位相角で発電機トルクを出力し、−90度<β<0度の前記位相角で電動機トルクを出力するように界磁起磁力を前記磁極に与える制御を行うことを特徴とする請求項1から10のいずれか一項に記載の交流励磁同期回転電機。
  12. 前記制御部は、前記位相角を−10度から−70度までの範囲内、または、+10度から+70度までの範囲内で制御することを特徴とする請求項1から11のいずれか一項に記載の交流励磁同期回転電機。
JP2015150628A 2015-07-17 2015-07-30 交流励磁同期回転電機 Active JP6376409B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/208,124 US10361614B2 (en) 2015-07-17 2016-07-12 AC excitation synchronous rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015143313 2015-07-17
JP2015143313 2015-07-17

Publications (2)

Publication Number Publication Date
JP2017028972A JP2017028972A (ja) 2017-02-02
JP6376409B2 true JP6376409B2 (ja) 2018-08-22

Family

ID=57950092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150628A Active JP6376409B2 (ja) 2015-07-17 2015-07-30 交流励磁同期回転電機

Country Status (1)

Country Link
JP (1) JP6376409B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631463B (zh) * 2017-03-16 2024-03-05 上海艾高实业有限公司 一种多边励磁永磁电机
JP7116667B2 (ja) * 2018-11-15 2022-08-10 株式会社豊田中央研究所 回転電機
JPWO2020262204A1 (ja) 2019-06-26 2020-12-30

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516708A (ja) * 1999-12-03 2003-05-13 エコエアー コーポレーション ハイブリッド式ブラシレス電気機械
JP2011067048A (ja) * 2009-09-18 2011-03-31 Sanyo Electric Co Ltd 永久磁石同期モータ
JP6175350B2 (ja) * 2013-10-24 2017-08-02 アスモ株式会社 モータ

Also Published As

Publication number Publication date
JP2017028972A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
EP3331139B1 (en) Rotary electric machine
JP6455725B2 (ja) 回転電機
WO2013047076A1 (ja) 回転電機
US20180198356A1 (en) Line-start synchronous reluctance motor with improved performance
JP5605164B2 (ja) 永久磁石型同期電動機及び永久磁石型同期電動機の運転方法
JP6048191B2 (ja) マルチギャップ型回転電機
US9906107B2 (en) Magnet-free rotating electric machine
JP4016341B2 (ja) 三相シンクロナスリラクタンスモータ
JP6406355B2 (ja) ダブルステータ型回転機
JP6376409B2 (ja) 交流励磁同期回転電機
JP2014176284A (ja) ダブルステータ型スイッチトリラクタンス回転機
JP2018082600A (ja) ダブルロータ型の回転電機
JP7047337B2 (ja) 永久磁石式回転電機
JP6481545B2 (ja) モータ
US10361614B2 (en) AC excitation synchronous rotating electric machine
JP6536421B2 (ja) 回転電機
JP6451990B2 (ja) 回転電機
JP6607029B2 (ja) モータ
JP2017121159A (ja) モータ
JP6432778B2 (ja) 回転電機
JP2014176137A (ja) ダブルステータ型スイッチトリラクタンス回転機
JP2010154648A (ja) モータ
JP6451992B2 (ja) 回転電機
JP5298957B2 (ja) 永久磁石形電動機
JP2017034874A (ja) ロータおよび回転電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180711

R151 Written notification of patent or utility model registration

Ref document number: 6376409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250