JP6372709B2 - Epitaxial wafer manufacturing method - Google Patents

Epitaxial wafer manufacturing method Download PDF

Info

Publication number
JP6372709B2
JP6372709B2 JP2016084435A JP2016084435A JP6372709B2 JP 6372709 B2 JP6372709 B2 JP 6372709B2 JP 2016084435 A JP2016084435 A JP 2016084435A JP 2016084435 A JP2016084435 A JP 2016084435A JP 6372709 B2 JP6372709 B2 JP 6372709B2
Authority
JP
Japan
Prior art keywords
epitaxial
growth
epitaxial wafer
epitaxial layer
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016084435A
Other languages
Japanese (ja)
Other versions
JP2017195273A (en
Inventor
翔平 吉岡
翔平 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2016084435A priority Critical patent/JP6372709B2/en
Priority to KR1020187029969A priority patent/KR102521336B1/en
Priority to PCT/JP2017/006250 priority patent/WO2017183277A1/en
Priority to CN201780023720.1A priority patent/CN109075039B/en
Publication of JP2017195273A publication Critical patent/JP2017195273A/en
Application granted granted Critical
Publication of JP6372709B2 publication Critical patent/JP6372709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、エピタキシャルウェーハの製造方法に関する。   The present invention relates to an epitaxial wafer manufacturing method.

例えば、モバイル端末等に使用する半導体素子の基板にエピタキシャルウェーハが使用されている。このような半導体素子では、省電力化の要請からオン抵抗を下げることが求められている。オン抵抗を下げる具体的な方法として、半導体素子基板を薄膜化する方法と半導体素子基板の抵抗率を低下させる方法があるが、半導体素子のデバイスの特性上、半導体素子基板を薄膜化することには限界がある。そのため、高濃度にドーパントをドープした低抵抗率のシリコン単結晶基板にエピタキシャル層を成長させ、半導体素子基板としての低抵抗率のエピタキシャルウェーハが作製される。このようなエピタキシャルウェーハとして、特許文献1〜3には低抵抗率の半導体基板にエピタキシャル層を成長させたエピタキシャルウェーハが開示されている。   For example, an epitaxial wafer is used as a substrate of a semiconductor element used for a mobile terminal or the like. In such a semiconductor element, it is required to lower the on-resistance due to a demand for power saving. As a specific method for reducing the on-resistance, there are a method for reducing the thickness of the semiconductor element substrate and a method for decreasing the resistivity of the semiconductor element substrate. There are limits. Therefore, an epitaxial layer is grown on a low resistivity silicon single crystal substrate doped with a dopant at a high concentration, and a low resistivity epitaxial wafer as a semiconductor element substrate is produced. As such an epitaxial wafer, Patent Documents 1 to 3 disclose an epitaxial wafer in which an epitaxial layer is grown on a low resistivity semiconductor substrate.

このようなエピタキシャルウェーハの元になるシリコン単結晶基板は、高濃度のドーパントをドープして引き上げたインゴットを元に作製される。しかし、このドーパントにSb(アンチモン)、As(ヒ素)などのn型ドーパントを用いると、引き上げの際にドープしたドーパントが蒸発してしまう。そのため、エピタキシャル層を成長させるシリコン単結晶基板がn型ならば、揮発性が比較的低いリン(赤燐)をドーパントとしてドープしたシリコン単結晶基板が用いられる。そして、用意したシリコン単結晶基板の主表面上にエピタキシャル層を気相成長することにより、低抵抗率のエピタキシャルウェーハが製造される。   A silicon single crystal substrate that is the basis of such an epitaxial wafer is manufactured based on an ingot that is pulled up by doping with a high concentration of dopant. However, when an n-type dopant such as Sb (antimony) or As (arsenic) is used as this dopant, the doped dopant evaporates during the pulling. Therefore, if the silicon single crystal substrate on which the epitaxial layer is grown is n-type, a silicon single crystal substrate doped with phosphorus (red phosphorus) having relatively low volatility as a dopant is used. Then, an epitaxial layer having a low resistivity is manufactured by vapor-phase growth of an epitaxial layer on the main surface of the prepared silicon single crystal substrate.

しかし、高濃度にリンがドープされた低抵抗率のシリコン単結晶基板にエピタキシャル層を成長すると、気相成長後のエピタキシャルウェーハの主表面に多くのスタッキングフォルト(積層欠陥)が発生する。この積層欠陥が発生したエピタキシャルウェーハを用いて半導体素子を作製すると、半導体素子(デバイス)の特性(主に耐圧特性)が低下する。そのため、積層欠陥の発生数をデバイスの特性に影響のない水準にまで低減する必要がある。   However, when an epitaxial layer is grown on a low resistivity silicon single crystal substrate doped with phosphorus at a high concentration, many stacking faults (stacking faults) occur on the main surface of the epitaxial wafer after vapor phase growth. When a semiconductor element is manufactured using the epitaxial wafer in which the stacking fault has occurred, characteristics (mainly withstand voltage characteristics) of the semiconductor element (device) are deteriorated. Therefore, it is necessary to reduce the number of stacking faults to a level that does not affect the device characteristics.

エピタキシャルウェーハの主表面で観察される積層欠陥は、低抵抗率のシリコン単結晶基板に発生した結晶欠陥等を起点としてエピタキシャルウェーハの主表面に伝搬することで観察される。この積層欠陥は、シリコン単結晶基板の抵抗率が低下するに従って増加する傾向があることから、積層欠陥の形成にはドーパントであるリンが関与していると考えられている。   The stacking faults observed on the main surface of the epitaxial wafer are observed by propagating to the main surface of the epitaxial wafer starting from a crystal defect or the like generated on the low resistivity silicon single crystal substrate. Since this stacking fault tends to increase as the resistivity of the silicon single crystal substrate decreases, it is considered that phosphorus as a dopant is involved in forming the stacking fault.

そこで、低抵抗率のシリコン単結晶基板にエピタキシャル層を成長する前に、そのシリコン単結晶基板の主表面を塩化水素ガスで気相エッチングして基板表面の清浄化し、積層欠陥の発生を抑制する対策が採られている。   Therefore, before the epitaxial layer is grown on the low resistivity silicon single crystal substrate, the main surface of the silicon single crystal substrate is vapor-phase etched with hydrogen chloride gas to clean the substrate surface and suppress the generation of stacking faults. Measures are taken.

特開2012−156303号公報JP 2012-156303 A 特開2014−82242号公報JP 2014-82242 A 特開2005−79134号公報JP 2005-79134 A

しかし、このような気相エッチングを施した低抵抗率のシリコン単結晶基板にエピタキシャル層を成長しても半導体素子の特性に悪影響を及ぼす濃度の積層欠陥がエピタキシャルウェーハに発生する場合がある。   However, even when an epitaxial layer is grown on a low resistivity silicon single crystal substrate subjected to such vapor phase etching, a stacking fault having a concentration that adversely affects the characteristics of the semiconductor element may occur in the epitaxial wafer.

本発明の課題は、積層欠陥を抑制可能なエピタキシャルウェーハの製造方法を提供することにある。   The subject of this invention is providing the manufacturing method of the epitaxial wafer which can suppress a stacking fault.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明のエピタキシャルウェーハの製造方法は、
リンがドープされた低抵抗率のシリコン単結晶基板を準備する工程と、
シリコン単結晶基板に1040℃以上かつ1130℃以下の温度でエピタキシャル層を2μm/min以下の成長速度で成長する工程と、
を備えることを特徴とする。
The method for producing an epitaxial wafer of the present invention includes:
Preparing a low resistivity silicon single crystal substrate doped with phosphorus;
A step of growing an epitaxial layer on a silicon single crystal substrate at a temperature of 1040 ° C. or more and 1130 ° C. or less at a growth rate of 2 μm / min or less;
It is characterized by providing.

本発明のエピタキシャルウェーハの製造方法は、上記の成長する工程により低抵抗率のシリコン単結晶基板にエピタキシャル層を成長するため、エピタキシャル成長中に発生する積層欠陥を抑制することが可能となる。なお、成長する工程において、温度を1040℃未満の低温側にすると、エピタキシャルウェーハ上に高さ数十nm、幅数μmの凸欠陥が爆発的な数、形成される。その一方で、成長する工程における温度を1130℃を超える高温側にすると、エピタキシャルウェーハ上に発生する積層欠陥が増加するとともに、サブミクロンの微小なピットが発生する。これらの欠陥は、リン(赤燐)をドープした低抵抗率のシリコン単結晶基板にエピタキシャル層を成長した場合に特異的に生じるものであり、積層欠陥と同様にリンが関与して形成する結晶欠陥に起因するものと考えられる。このような欠陥についても半導体素子のデバイス特性に悪影響を及ぼすため、1040℃以上かつ1130℃以下との温度範囲でシリコン単結晶基板にエピタキシャル層を成長する。   The epitaxial wafer manufacturing method of the present invention grows an epitaxial layer on a silicon single crystal substrate having a low resistivity by the above-described growth process, so that stacking faults occurring during the epitaxial growth can be suppressed. In the growth step, if the temperature is set to a low temperature lower than 1040 ° C., an explosive number of convex defects having a height of several tens of nm and a width of several μm are formed on the epitaxial wafer. On the other hand, when the temperature in the growth process is set to a high temperature side exceeding 1130 ° C., stacking faults generated on the epitaxial wafer increase and submicron minute pits are generated. These defects are specifically generated when an epitaxial layer is grown on a low resistivity silicon single crystal substrate doped with phosphorus (red phosphorus), and are formed by the involvement of phosphorus in the same way as stacking faults. It is thought to be caused by defects. Since such a defect also adversely affects the device characteristics of the semiconductor element, an epitaxial layer is grown on the silicon single crystal substrate in a temperature range of 1040 ° C. or higher and 1130 ° C. or lower.

本明細書において、「低抵抗率のシリコン単結晶基板」とは、例えば、リン(赤燐)が5×1019atоms/cm以上ドープされたシリコン単結晶基板でもよいし、リン(赤燐)が8×1019atоms/cm以上ドープされたシリコン単結晶基板でもよい。リン(赤燐)が8×1019atоms/cm以上ドープされたシリコン単結晶基板を用いる場合は、効果的にエピタキシャルウェーハの積層欠陥を低減することができる。 In this specification, the “low resistivity silicon single crystal substrate” may be, for example, a silicon single crystal substrate doped with phosphorus (red phosphorus) at 5 × 10 19 atoms / cm 3 or more, or phosphorus (red phosphorus). ) May be a silicon single crystal substrate doped with 8 × 10 19 atoms / cm 3 or more. When a silicon single crystal substrate doped with 8 × 10 19 atoms / cm 3 or more of phosphorus (red phosphorus) is used, stacking faults of the epitaxial wafer can be effectively reduced.

本発明の実施態様では、成長する工程は、第1工程であり、第1工程後に、前記成長速度を超える成長速度で前記エピタキシャル層にエピタキシャル層を成長する第2工程を備える。   In an embodiment of the present invention, the growing step is a first step, and includes a second step of growing an epitaxial layer on the epitaxial layer at a growth rate exceeding the growth rate after the first step.

これによれば、第2工程によってエピタキシャル層を成長させる速度を高めることができ、エピタキシャルウェーハの生産性をあまり落とさずに積層欠陥が抑制されたエピタキシャルウェーハを製造できる。   According to this, the speed at which the epitaxial layer is grown by the second step can be increased, and an epitaxial wafer in which stacking faults are suppressed can be manufactured without significantly reducing the productivity of the epitaxial wafer.

本発明の実施態様では、準備する工程と成長する工程の間に、シリコン単結晶基板の主表面を塩化水素ガスにより気相エッチングする工程を備える。   In an embodiment of the present invention, a step of performing vapor phase etching of the main surface of the silicon single crystal substrate with hydrogen chloride gas is provided between the step of preparing and the step of growing.

これによれば、シリコン単結晶基板の主表面を清浄化でき、積層欠陥の発生をより抑制することができる。   According to this, the main surface of the silicon single crystal substrate can be cleaned, and the occurrence of stacking faults can be further suppressed.

本発明の実施態様では、気相エッチングする工程は、エッチング量が、0.025μm以上、かつ、1.000μm以下である。   In the embodiment of the present invention, in the step of performing vapor phase etching, the etching amount is 0.025 μm or more and 1.000 μm or less.

積層欠陥核は、シリコン単結晶基板の表面から、その基板の深さ方向に0.025μm以上の領域に局在するため、エッチング量を0.025μm以上とすると、積層欠陥核を効果的に除去できる。また、エッチング量を1.000μm以下とすることで、生産性を高めることができる。   The stacking fault nuclei are localized from the surface of the silicon single crystal substrate to a region of 0.025 μm or more in the depth direction of the substrate. Therefore, when the etching amount is 0.025 μm or more, the stacking fault nuclei are effectively removed. it can. Moreover, productivity can be improved by making etching amount into 1.000 micrometers or less.

本発明の一例のエピタキシャルウェーハの製造方法における各工程(その1)を説明する図。The figure explaining each process (the 1) in the manufacturing method of the epitaxial wafer of an example of this invention. 成長速度5.0μm/minにしてエピタキシャル層を成長させたエピタキシャルウェーハに発生した積層欠陥の数(個/ウェーハ)とエピタキシャル成長時の温度(℃)との関係を示すグラフ。6 is a graph showing the relationship between the number of stacking faults (pieces / wafer) generated on an epitaxial wafer grown with an epitaxial layer at a growth rate of 5.0 μm / min and the temperature (° C.) during epitaxial growth. 成長速度4.0μm/minにしてエピタキシャル層を成長させたエピタキシャルウェーハに発生した積層欠陥の数(個/ウェーハ)とエピタキシャル成長時の温度(℃)との関係を示すグラフ。The graph which shows the relationship between the number of stacking faults (piece / wafer) which generate | occur | produced in the epitaxial wafer which made the epitaxial layer grown by the growth rate of 4.0 micrometers / min, and the temperature (degreeC) at the time of epitaxial growth. 成長速度2.0μm/minにしてエピタキシャル層を成長させたエピタキシャルウェーハに発生した積層欠陥の数(個/ウェーハ)とエピタキシャル成長時の温度(℃)との関係を示すグラフ。6 is a graph showing the relationship between the number of stacking faults (pieces / wafer) generated on an epitaxial wafer grown with an epitaxial layer at a growth rate of 2.0 μm / min and the temperature (° C.) during epitaxial growth. 成長速度1.0μm/minにしてエピタキシャル層を成長させたエピタキシャルウェーハに発生した積層欠陥の数(個/ウェーハ)とエピタキシャル成長時の温度(℃)との関係を示すグラフ。6 is a graph showing the relationship between the number of stacking faults (pieces / wafer) generated on an epitaxial wafer grown with an epitaxial layer at a growth rate of 1.0 μm / min and the temperature during epitaxial growth (° C.). 図2A〜図2Dにおいて、エピタキシャル成長時の温度を最も低温側にして作製されたエピタキシャルウェーハに発生する凸欠陥の一例を示す図。2A to 2D are diagrams showing examples of convex defects generated in an epitaxial wafer manufactured with the temperature during epitaxial growth set to the lowest temperature side. FIG. 図2A〜図2Dにおいて、エピタキシャル成長時の温度を最も高温側にして作製されたエピタキシャルウェーハに発生する微小なピットの一例を示す図。2A to 2D are diagrams showing examples of minute pits generated on an epitaxial wafer manufactured with the temperature during epitaxial growth set to the highest temperature side. FIG. 本発明の一例のエピタキシャルウェーハの製造方法における各工程(その2)を説明する図。The figure explaining each process (the 2) in the manufacturing method of the epitaxial wafer of an example of this invention. 実施例1、2及び比較例で作製したエピタキシャルウェーハに発生した積層欠陥の数(個/ウェーハ)を示すグラフ。The graph which shows the number (piece / wafer) of the stacking fault which generate | occur | produced in the epitaxial wafer produced in Example 1, 2 and the comparative example.

以下、赤燐をドープしたシリコン単結晶基板にシリコンエピタキシャル層を成長するシリコンエピタキシャルウェーハの製造方法を説明する。以下においては、エピタキシャルウェーハを製造する周知の気相成長装置(以下、「気相成長装置」とする)を用いてエピタキシャルウェーハを製造する方法を説明する。   A method for manufacturing a silicon epitaxial wafer in which a silicon epitaxial layer is grown on a silicon single crystal substrate doped with red phosphorus will be described below. In the following, a method of manufacturing an epitaxial wafer using a known vapor phase growth apparatus for manufacturing an epitaxial wafer (hereinafter referred to as “vapor phase growth apparatus”) will be described.

気相成長装置は、試料となるシリコン単結晶基板を反応させる反応炉を備える。反応炉内にシリコン単結晶基板を収容した状態で、例えば、図1に示す各工程S1〜S4が行われ、反応炉内のシリコン単結晶基板にエピタキシャル層を成長してシリコンエピタキシャルウェーハが製造される。   The vapor phase growth apparatus includes a reaction furnace for reacting a silicon single crystal substrate as a sample. For example, the steps S1 to S4 shown in FIG. 1 are performed in a state where the silicon single crystal substrate is housed in the reaction furnace, and an epitaxial layer is grown on the silicon single crystal substrate in the reaction furnace to produce a silicon epitaxial wafer. The

気相成長装置を用いてシリコンエピタキシャルウェーハを製造するためには、先ずは、エピタキシャル層を成長させる成長用基板となるシリコン単結晶基板を作製する。例えば、石英るつぼに多結晶シリコンと抵抗率を調整するための赤燐を入れて溶融させた溶融液の液面に種結晶シリコン棒を漬けて引き上げ、シリコン単結晶インゴットを作製する。次に作製したシリコン単結晶インゴットを所定の厚さに切り出し、切り出したウェーハに粗研磨、エッチング、研磨等を施したシリコン単結晶基板を作製する。このシリコン単結晶基板は、シリコン単結晶インゴットの作製時にドーパントとして赤燐が5×1019atоms/cm以上添加される(例えば、赤燐が1×1020atоms/cm添加される)。以下、赤燐がドーパントとして5×1019atоms/cm以上添加されたシリコン単結晶基板を基板Wとする。 In order to manufacture a silicon epitaxial wafer using a vapor phase growth apparatus, first, a silicon single crystal substrate which is a growth substrate on which an epitaxial layer is grown is manufactured. For example, a silicon single crystal ingot is produced by immersing and pulling up a seed crystal silicon rod on the surface of a melt obtained by adding polycrystalline silicon and red phosphorus for adjusting resistivity in a quartz crucible and melting it. Next, the produced silicon single crystal ingot is cut out to a predetermined thickness, and a silicon single crystal substrate obtained by subjecting the cut wafer to rough polishing, etching, polishing and the like is produced. In this silicon single crystal substrate, 5 × 10 19 atoms / cm 3 or more of red phosphorus is added as a dopant when a silicon single crystal ingot is manufactured (for example, 1 × 10 20 atoms / cm 3 of red phosphorus is added). Hereinafter, a silicon single crystal substrate to which red phosphorus is added as a dopant at 5 × 10 19 atoms / cm 3 or more is referred to as a substrate W.

作製された基板Wは、気相成長装置の反応炉に搬送され、図1の一連の工程が行われる。反応炉に搬送された基板Wは、雰囲気ガスに水素を用いた反応炉内に投入される。反応炉に投入された基板Wは、気相成長装置により、例えば、1100℃以上の温度で数十秒間、加熱されるベーク工程(S1)が施され、基板Wの表面の自然酸化膜が除去される。   The produced substrate W is transferred to a reaction furnace of a vapor phase growth apparatus, and a series of steps shown in FIG. 1 is performed. The substrate W transferred to the reaction furnace is put into a reaction furnace using hydrogen as an atmospheric gas. The substrate W put into the reaction furnace is subjected to a baking process (S1) heated for several tens of seconds, for example, at a temperature of 1100 ° C. or higher by a vapor phase growth apparatus, and the natural oxide film on the surface of the substrate W is removed. Is done.

次いで、基板Wに気相エッチングを施すエッチング工程を行う(S2)。エッチング工程では、反応炉内の基板Wの主表面上に塩化水素ガス(HClガス)を供給し、基板Wの主表面を気相エッチングする。具体的には、エッチング量が、0.025μm以上、かつ、1.000μm以下になるように塩化水素ガスの供給時間及び供給量が設定される。積層欠陥核は、基板Wの主表面から基板Wの深さ方向(厚さ方向)に0.025μm以上の領域に局在するため、エッチング量が0.025μm以上であることにより積層欠陥を効果的に抑制できる。一方、エッチング量が1.000μmを超えると、エピタキシャルウェーハを製造する生産性が低下するため、エッチング量は、0.025μm以上、かつ、1.000μm以下の範囲に設定される。なお、エッチング速度は、例えば、0.04μm/min以上、かつ、0.37μm/min以下となるように設定される。   Next, an etching process for performing vapor phase etching on the substrate W is performed (S2). In the etching step, hydrogen chloride gas (HCl gas) is supplied onto the main surface of the substrate W in the reaction furnace, and the main surface of the substrate W is vapor-phase etched. Specifically, the supply time and supply amount of the hydrogen chloride gas are set so that the etching amount is 0.025 μm or more and 1.000 μm or less. Since the stacking fault nucleus is localized in the region of 0.025 μm or more from the main surface of the substrate W in the depth direction (thickness direction) of the substrate W, the stacking defect is effective when the etching amount is 0.025 μm or more. Can be suppressed. On the other hand, if the etching amount exceeds 1.000 μm, the productivity for manufacturing the epitaxial wafer is lowered, and therefore the etching amount is set in the range of 0.025 μm or more and 1.000 μm or less. Note that the etching rate is set to be 0.04 μm / min or more and 0.37 μm / min or less, for example.

S2のエッチング工程が終了すると、反応炉内の塩化水素ガスを反応炉の外に排出するパージ工程(S3)を行う。   When the etching process of S2 is completed, a purge process (S3) is performed for discharging the hydrogen chloride gas in the reaction furnace to the outside of the reaction furnace.

S3のパージ工程が終了すると、基板Wにエピタキシャル層を成長する成長工程(S4)を行う。成長工程では、反応炉内の基板Wの主表面に原料ガスとなる、例えば、トリクロロシラン(TCS)と、そのトリクロロシランを希釈するキャリアガスとなる水素ガスを供給し、基板Wの主表面上にエピタキシャル層を気相成長する。具体的には、反応炉内(基板W)の温度を、例えば、1040℃以上〜1130℃以下の所定の温度に維持し(例えば、1100℃に維持し)、エピタキシャル層を2μm/min以下の成長速度で成長する。このようにして所定の膜厚のエピタキシャル層を基板Wに成長し、シリコンエピタキシャルウェーハが製造される。   When the purge process of S3 is completed, a growth process (S4) for growing an epitaxial layer on the substrate W is performed. In the growth process, a raw material gas such as trichlorosilane (TCS) and a hydrogen gas serving as a carrier gas for diluting the trichlorosilane are supplied to the main surface of the substrate W in the reaction furnace. The epitaxial layer is vapor-phase grown. Specifically, the temperature in the reaction furnace (substrate W) is maintained at a predetermined temperature of 1040 ° C. to 1130 ° C. (for example, maintained at 1100 ° C.), and the epitaxial layer is 2 μm / min or less. Grows at a growth rate. In this manner, an epitaxial layer having a predetermined thickness is grown on the substrate W to manufacture a silicon epitaxial wafer.

以上、基板Wにエピタキシャル層を成長してエピタキシャルウェーハが製造される一連の流れを説明した。このようなエピタキシャルウェーハのもとになる基板Wは、シリコン単結晶インゴットの作製時にドーパントの赤燐が5×1019atоms/cm以上(例えば、1×1020atоms/cm)添加されるため、基板Wの主表面に多数の積層欠陥核が存在する。よって、基板Wにエピタキシャル層を成長すると、基板Wの主表面の積層欠陥核がエピタキシャルウェーハに積層欠陥を引き起こす。それ故、積層欠陥核が存在する基板Wの主表面を図1に示すS2のエッチング工程で除去して積層欠陥核を取り除いている。 In the foregoing, a series of processes for producing an epitaxial wafer by growing an epitaxial layer on the substrate W has been described. The substrate W that is the basis of such an epitaxial wafer is doped with 5 × 10 19 atoms / cm 3 or more (for example, 1 × 10 20 atoms / cm 3 ) of red phosphorus as a dopant when a silicon single crystal ingot is manufactured. Therefore, a large number of stacking fault nuclei exist on the main surface of the substrate W. Therefore, when an epitaxial layer is grown on the substrate W, stacking fault nuclei on the main surface of the substrate W cause stacking faults in the epitaxial wafer. Therefore, the main surface of the substrate W on which the stacking fault nuclei exist is removed by the etching process of S2 shown in FIG. 1 to remove the stacking fault nuclei.

基板Wの主表面をエッチングすることで、基板Wの主表面における積層欠陥核が大幅に取り除かれるものの、エッチング工程後に依然として一部の積層欠陥核が、例えば、微小なピット状に基板Wに残存する。そのため、エッチング後の基板Wにエピタキシャル層を成長しても、例えば、基板Wの主表面等の積層欠陥核がエピタキシャルウェーハに積層欠陥を引き起す場合がある。   Although the stacking fault nuclei on the main surface of the substrate W are largely removed by etching the main surface of the substrate W, some stacking fault nuclei still remain in the substrate W, for example, in the form of minute pits after the etching process. To do. Therefore, even when an epitaxial layer is grown on the substrate W after etching, for example, a stacking fault nucleus such as the main surface of the substrate W may cause a stacking fault in the epitaxial wafer.

そこで、本発明者は、基板Wにエピタキシャル層を成長させる成長速度と温度の成長条件と、その成長条件で成長したエピタキシャルウェーハに形成される積層欠陥の数(個/ウェーハ)の関係について精査した。その精査した結果が、図2A〜図2Dに示される。図2A〜図2Dにおいては、エピタキシャル成長時の成長速度が図毎に異なり、エピタキシャル成長時の温度を1000℃から1160℃の範囲で選択した温度にして作製したエピタキシャルウェーハの積層欠陥の数(個/ウェーハ)が示される。各図で作製されたエピタキシャルウェーハは、直径200mm、厚さ735μm、赤燐の濃度が1×1020atоms/cmの基板Wに層厚3μmのエピタキシャル層を成長したものである。また、各図における横軸は、エピタキシャル成長時における反応炉内の温度(℃)を示す。一方、縦軸は、作製したエピタキシャルウェーハの主表面に発生する積層欠陥の数をパーティクルカウンター(KLA−Tencor社製のSurfscan SP1)により計測した数(個/ウェーハ)を示す。図2Aは、成長速度を5.0μm/minに固定し、1120℃から1160℃の範囲で選択した4つの各温度でエピタキシャル成長させたエピタキシャルウェーハの積層欠陥の数を示す。図2Bは、成長速度を4.0μm/minに固定し、1100℃から1160℃の範囲で選択した5つの各温度でエピタキシャル成長させたエピタキシャルウェーハの積層欠陥の数を示す。図2Cは、成長速度を2.0μm/minに固定し、1025℃から1160℃の範囲で選択した8つの各温度でエピタキシャル成長させたエピタキシャルウェーハの積層欠陥の数を示す。図2Dは、成長速度を1.0μm/minに固定し、1025℃から1160℃の範囲で選択した8つの各温度でエピタキシャル成長させたエピタキシャルウェーハの積層欠陥の数を示す。 Therefore, the present inventor has scrutinized the relationship between the growth rate and temperature growth conditions for growing the epitaxial layer on the substrate W, and the number of stacking faults (pieces / wafer) formed on the epitaxial wafer grown under the growth conditions. . The scrutinized result is shown in FIGS. 2A to 2D. 2A to 2D, the growth rate during epitaxial growth varies from figure to figure, and the number of stacking faults of epitaxial wafers produced at a temperature selected during the epitaxial growth within a range of 1000 ° C. to 1160 ° C. (pieces / wafer). ) Is displayed. The epitaxial wafer produced in each figure is obtained by growing an epitaxial layer having a layer thickness of 3 μm on a substrate W having a diameter of 200 mm, a thickness of 735 μm, and a red phosphorus concentration of 1 × 10 20 atoms / cm 3 . Moreover, the horizontal axis in each figure shows the temperature (° C.) in the reactor during epitaxial growth. On the other hand, the vertical axis represents the number (pieces / wafer) obtained by measuring the number of stacking faults generated on the main surface of the manufactured epitaxial wafer using a particle counter (Surfscan SP1 manufactured by KLA-Tencor). FIG. 2A shows the number of stacking faults of an epitaxial wafer epitaxially grown at each of four temperatures selected from a range of 1120 ° C. to 1160 ° C. with the growth rate fixed at 5.0 μm / min. FIG. 2B shows the number of stacking faults of an epitaxial wafer epitaxially grown at each of five temperatures selected at a temperature ranging from 1100 ° C. to 1160 ° C. with the growth rate fixed at 4.0 μm / min. FIG. 2C shows the number of stacking faults of an epitaxial wafer epitaxially grown at each of eight temperatures selected at a temperature ranging from 1025 ° C. to 1160 ° C. with the growth rate fixed at 2.0 μm / min. FIG. 2D shows the number of stacking faults of an epitaxial wafer epitaxially grown at each of eight temperatures selected at a temperature ranging from 1025 ° C. to 1160 ° C. with the growth rate fixed at 1.0 μm / min.

図2A〜図2Dにおいてプロットされた点には、各図において積層欠陥の数が極小となる極小点を有する。この極小点における積層欠陥の数は、成長速度が1.0μm/minの場合に最も少ない(図2Dの温度1100℃付近の点参照)。また、成長速度が1.0μm/minの場合には、積層欠陥の数が最少となる温度(図2Dの温度1100℃付近)から温度が外れて作製されたエピタキシャルウェーハに形成される積層欠陥の数は、温度が1040℃〜1130℃の広範囲に渡って、ほとんど横ばいとなる。更に、図2Cに示すように成長速度が2.0μm/minの場合でも同様に、作製されたエピタキシャルウェーハに形成される積層欠陥の数は、温度が1040℃〜1130℃の範囲に渡り、ほとんど横ばいになっている。それに対して、図2A及び図2Bに示すように4.0μm/min以上の成長速度で作製されたエピタキシャルウェーハにおいては、積層欠陥の数が広範囲で横ばいにならず、エピタキシャル成長時の温度に応じて大きく変化する。そのため、成長速度を低速にして1100℃付近の温度でエピタキシャル成長をすることで、積層欠陥を抑制することが可能である。   The points plotted in FIGS. 2A to 2D have a minimum point where the number of stacking faults is minimum in each figure. The number of stacking faults at this minimum point is the smallest when the growth rate is 1.0 μm / min (see the point near the temperature of 1100 ° C. in FIG. 2D). Further, when the growth rate is 1.0 μm / min, the number of stacking faults formed on the epitaxial wafer manufactured at a temperature deviating from the temperature at which the number of stacking faults becomes the minimum (around the temperature of 1100 ° C. in FIG. 2D). The numbers are almost flat over a wide range of temperatures from 1040 ° C to 1130 ° C. Furthermore, as shown in FIG. 2C, even when the growth rate is 2.0 μm / min, the number of stacking faults formed on the fabricated epitaxial wafer is almost the same over the temperature range of 1040 ° C. to 1130 ° C. It is leveling off. On the other hand, as shown in FIGS. 2A and 2B, in the epitaxial wafer manufactured at a growth rate of 4.0 μm / min or more, the number of stacking faults does not remain in a wide range, and it depends on the temperature during epitaxial growth. It changes a lot. Therefore, it is possible to suppress stacking faults by epitaxial growth at a temperature near 1100 ° C. at a low growth rate.

なお、図2A〜図2Dの各図において、最も低温側の領域にプロットされた点が計測した積層欠陥の数がオーバーフローした点となる。これらの点における欠陥は、主に数十nm、幅数μmの図3に示すような凸欠陥であった。反対に図2A〜図2Dの各図において高温側(1160℃側)の領域にプロットされた点における欠陥は、積層欠陥及び図4に示すサブミクロンの微小なピットであった。これらの欠陥は、赤燐がドープされた低抵抗率基板以外では見られず、この基板特有の現象である。   In each figure of Drawing 2A-Drawing 2D, the point plotted in the field on the lowest temperature side is a point where the number of stacking faults measured overflowed. Defects at these points were mainly convex defects as shown in FIG. 3 having several tens of nm and a width of several μm. On the other hand, the defects at the points plotted in the region on the high temperature side (1160 ° C. side) in each of FIGS. 2A to 2D were stacking faults and minute pits of submicron shown in FIG. These defects are not seen except in the low resistivity substrate doped with red phosphorus, and are a phenomenon peculiar to this substrate.

以上から、エピタキシャル成長時の成長速度を2μm/min以下にし、その成長時の温度を1040℃以上かつ1130℃以下にすることにより、積層欠陥の発生を抑制するエピタキシャルウェーハを製造することできる。好ましくはエピタキシャル成長時の成長速度は2μm/min以下であり、成長時の温度が1060℃以上かつ1120℃以下である。より好ましくはエピタキシャル成長時の成長速度は1μm/min以下であり、成長時の温度が1060℃以上かつ1120℃以下である。   From the above, by setting the growth rate during epitaxial growth to 2 μm / min or less and the temperature during the growth to 1040 ° C. or more and 1130 ° C. or less, an epitaxial wafer that suppresses the occurrence of stacking faults can be manufactured. Preferably, the growth rate during epitaxial growth is 2 μm / min or less, and the temperature during growth is 1060 ° C. or more and 1120 ° C. or less. More preferably, the growth rate during epitaxial growth is 1 μm / min or less, and the temperature during growth is 1060 ° C. or more and 1120 ° C. or less.

なお、図5に示すように基板Wに対して図1と同様にベーク工程(S1)からパージ工程(S3)を行った後、図1の成長工程(S4)の代わりに第1、第2の成長工程(S4a、S4b)を実施してもよい。第1の成長工程(S4a)においては、エピタキシャル成長時のエピタキシャル層の成長速度を2.0μm/min以下にし、その成長時の温度を1040℃以上かつ1130℃以下にして基板Wにノンドープのエピタキシャル層をエピタキシャル成長させる。その後、第2の成長工程(S4b)として、第1の成長工程(S4a)の成長速度を超える成長速度(例えば、4.0μm/min)でエピタキシャル層が所定の膜厚になるまで成長させる。第1の成長工程(S4a)では、エピタキシャル層を成長させるのに時間を要し、生産性が大きく低下する。そこで、第1の成長工程(S4a)後に第2の成長工程(S4b)を行うことにより生産性をあまり落とさずに積層欠陥を抑制したエピタキシャルウェーハを製造することが可能となる。   As shown in FIG. 5, after performing the baking step (S1) to the purging step (S3) on the substrate W as in FIG. 1, the first and second steps are performed instead of the growth step (S4) in FIG. The growth step (S4a, S4b) may be performed. In the first growth step (S4a), the growth rate of the epitaxial layer during epitaxial growth is set to 2.0 μm / min or less, the temperature during the growth is set to 1040 ° C. or more and 1130 ° C. or less, and the substrate W is non-doped epitaxial layer. Is epitaxially grown. Thereafter, as the second growth step (S4b), the epitaxial layer is grown at a growth rate (for example, 4.0 μm / min) exceeding the growth rate of the first growth step (S4a) until the epitaxial layer has a predetermined thickness. In the first growth step (S4a), it takes time to grow the epitaxial layer, and the productivity is greatly reduced. Therefore, by performing the second growth step (S4b) after the first growth step (S4a), it is possible to manufacture an epitaxial wafer in which stacking faults are suppressed without significantly reducing productivity.

以下、実施例と比較例を挙げて本発明を具体的に説明するが、これらは本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, these do not limit this invention.

(実施例)
実施例1では、抵抗率0.71mΩ・cm〜0.74mΩ・cmとなる直径200mm、厚さ735μmで主表面が鏡面研磨処理された基板Wを2枚用意した。次に、用意した2枚の基板Wのそれぞれに気相成長装置を用いて図1に示す工程S1〜S4を実施し、2枚のシリコンエピタキシャルウェーハを作製した。作製条件としては、S2のエッチング工程では、エッチング速度を0.090μm/min、エッチング量を0.045μmに設定した。また、S3のパージ工程では、1130℃で水素ガスを30秒流した。S4の成長工程では、成長速度を1.0μm/min、温度を1100℃にして膜厚2.1μmのシリコンエピタキシャル層を成長した。そして、作製したエピタキシャルウェーハをパーティクルカウンター(KLA−Tencor社製のSurfscan SP1)で測定し、エピタキシャルウェーハに発生した積層欠陥の数(個/ウェーハ)を計測した。
(Example)
In Example 1, two substrates W having a diameter of 200 mm and a thickness of 735 μm having a resistivity of 0.71 mΩ · cm to 0.74 mΩ · cm and a mirror-polished main surface were prepared. Next, steps S1 to S4 shown in FIG. 1 were performed on each of the prepared two substrates W using a vapor phase growth apparatus, and two silicon epitaxial wafers were produced. As manufacturing conditions, in the etching step of S2, the etching rate was set to 0.090 μm / min, and the etching amount was set to 0.045 μm. In the purge step of S3, hydrogen gas was flowed at 1130 ° C. for 30 seconds. In the growth step of S4, a silicon epitaxial layer having a thickness of 2.1 μm was grown at a growth rate of 1.0 μm / min and a temperature of 1100 ° C. The produced epitaxial wafer was measured with a particle counter (Surfscan SP1 manufactured by KLA-Tencor), and the number of stacking faults (pieces / wafer) generated on the epitaxial wafer was measured.

実施例2では、図1のパージ工程(S3)までは実施例1と同様にし、その後、図1の成長工程(S4)の代わりに図5の第1、第2の成長工程(S4a、S4b)を実施した。S4aの第1の成長工程では、成長速度を1.0μm/min及び温度を1100℃にして膜厚0.1μmのエピタキシャル層を成長した。次に、S4bの第2の成長工程では、成長速度を4.0μm/min及び温度を1150℃として膜厚2μmのエピタキシャル層を成長した。このようにしてエピタキシャルウェーハを作製し、実施例1と同様に作製したエピタキシャルウェーハに発生した積層欠陥の数(個/ウェーハ)を計測した。   In the second embodiment, the process is the same as that in the first embodiment until the purge process (S3) in FIG. 1, and then the first and second growth processes (S4a, S4b in FIG. 5) instead of the growth process (S4) in FIG. ). In the first growth step of S4a, an epitaxial layer having a thickness of 0.1 μm was grown at a growth rate of 1.0 μm / min and a temperature of 1100 ° C. Next, in the second growth step of S4b, an epitaxial layer having a thickness of 2 μm was grown at a growth rate of 4.0 μm / min and a temperature of 1150 ° C. Thus, the epitaxial wafer was produced and the number of stacking faults (pieces / wafer) generated in the epitaxial wafer produced in the same manner as in Example 1 was measured.

(比較例)
比較例では、図1のパージ工程(S3)までを実施例1と同様に行い、その後、図1の成長工程(S4)の代わりに成長速度を4.0μm/min及び温度を1150℃として膜厚が2.1μmのエピタキシャル層を成長する成長工程を実施し、エピタキシャルウェーハを作製した。そして、実施例1と同様に作製したエピタキシャルウェーハに発生した積層欠陥の数(個/ウェーハ)を計測した。
(Comparative example)
In the comparative example, the process up to the purge step (S3) in FIG. 1 is performed in the same manner as in Example 1, and then the growth rate is set to 4.0 μm / min and the temperature is set to 1150 ° C. instead of the growth step (S4) in FIG. An epitaxial process was performed by growing an epitaxial layer having a thickness of 2.1 μm. And the number (piece / wafer) of the stacking fault which generate | occur | produced in the epitaxial wafer produced similarly to Example 1 was measured.

図6は、実施例1、2及び比較例で作製したエピタキシャルウェーハに発生した積層欠陥の数を示す。実施例1では、積層欠陥の数が348(個/ウェーハ)、324(個/ウェーハ)であり、実施例2では、積層欠陥の数が222(個/ウェーハ)、172(個/ウェーハ)である。一方、比較例では、積層欠陥の数が4348(個/ウェーハ)、3820(個/ウェーハ)となった。   FIG. 6 shows the number of stacking faults generated in the epitaxial wafers produced in Examples 1 and 2 and the comparative example. In Example 1, the number of stacking faults is 348 (pieces / wafer) and 324 (pieces / wafer). In Example 2, the number of stacking faults is 222 (pieces / wafer) and 172 (pieces / wafer). is there. On the other hand, in the comparative example, the number of stacking faults was 4348 (pieces / wafer) and 3820 (pieces / wafer).

図6に示すように比較例のように成長速度が2μm/minを超えると、積層欠陥の数が十分に抑制されないのに対し、実施例1のように成長速度が2μm/min以下であり、成長時の温度が1100℃であると、積層欠陥の数を十分に抑制できる。また、実施例2のように実施例1と同様の条件(成長速度が2μm/min以下、かつ、温度が1100℃)でエピタキシャル層を成長させた後、それより高速の成長速度でエピタキシャル層を成長する場合においても積層欠陥の数を十分に抑制できた。よって、生産効率を上げた状態で積層欠陥の数を抑制したエピタキシャルウェーハを製造することができる。   As shown in FIG. 6, when the growth rate exceeds 2 μm / min as in the comparative example, the number of stacking faults is not sufficiently suppressed, whereas the growth rate is 2 μm / min or less as in Example 1, If the temperature during growth is 1100 ° C., the number of stacking faults can be sufficiently suppressed. Further, after growing an epitaxial layer under the same conditions as in Example 1 (growth rate is 2 μm / min or less and temperature is 1100 ° C.) as in Example 2, the epitaxial layer is grown at a higher growth rate than that. Even in the case of growth, the number of stacking faults was sufficiently suppressed. Therefore, it is possible to manufacture an epitaxial wafer in which the number of stacking faults is suppressed with increased production efficiency.

以上、本発明の実施例を説明したが、本発明はその具体的な記載に限定されることなく、例示した構成等を技術的に矛盾のない範囲で適宜組み合わせて実施することも可能であるし、またある要素、処理を周知の形態に置き換えて実施することもできる。   The embodiments of the present invention have been described above. However, the present invention is not limited to the specific description, and the illustrated configurations and the like can be appropriately combined within a technically consistent range. In addition, certain elements and processes may be replaced with known forms.

W 基板(シリコン単結晶基板)   W substrate (silicon single crystal substrate)

Claims (5)

リンが5×1019atоms/cm以上ドープされたシリコン単結晶基板を準備する工程と、
前記シリコン単結晶基板に1040℃以上かつ1130℃以下の温度でエピタキシャル層を2μm/min以下の成長速度で成長する第1工程と、
前記第1工程後に、前記成長速度を超える成長速度で前記エピタキシャル層にエピタキシャル層を成長する第2工程と、
を備え
前記第2工程では、前記第1工程で成長させるエピタキシャル層の膜厚よりも大きい膜厚のエピタキシャル層を成長させることを特徴とするエピタキシャルウェーハの製造方法。
Preparing a silicon single crystal substrate doped with phosphorus of 5 × 10 19 atoms / cm 3 or more;
A first step of growing an epitaxial layer on the silicon single crystal substrate at a growth rate of 2 μm / min or less at a temperature of 1040 ° C. or more and 1130 ° C. or less;
A second step of growing an epitaxial layer on the epitaxial layer at a growth rate exceeding the growth rate after the first step;
Equipped with a,
In the second step, an epitaxial layer having a thickness larger than that of the epitaxial layer grown in the first step is grown .
前記準備する工程は、前記リンが8×1019atоms/cm以上ドープされた前記シリコン単結晶基板を準備する請求項1に記載のエピタキシャルウェーハの製造方法。 2. The method for producing an epitaxial wafer according to claim 1, wherein in the preparing step, the silicon single crystal substrate doped with 8 × 10 19 atoms / cm 3 or more of phosphorus is prepared. 前記準備する工程と前記第1工程の間に、前記シリコン単結晶基板の主表面を塩化水素ガスにより気相エッチングする工程を備える請求項1又は2に記載のエピタキシャルウェーハの製造方法。   The manufacturing method of the epitaxial wafer of Claim 1 or 2 provided with the process of carrying out the vapor phase etching of the main surface of the said silicon single crystal substrate with hydrogen chloride gas between the said process to prepare and the said 1st process. 前記気相エッチングする工程は、エッチング量が、0.025μm以上、かつ、1.000μm以下である請求項3に記載のエピタキシャルウェーハの製造方法。   4. The method for producing an epitaxial wafer according to claim 3, wherein in the step of performing vapor phase etching, an etching amount is 0.025 μm or more and 1.000 μm or less. 前記第1工程では、1060℃以上かつ1120℃以下の温度、1μm/min以下の成長速度でエピタキシャル層を成長させる請求項1ないし4のいずれか1項に記載のエピタキシャルウェーハの製造方法。5. The method for manufacturing an epitaxial wafer according to claim 1, wherein in the first step, the epitaxial layer is grown at a temperature of 1060 ° C. or more and 1120 ° C. or less and a growth rate of 1 μm / min or less.
JP2016084435A 2016-04-20 2016-04-20 Epitaxial wafer manufacturing method Active JP6372709B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016084435A JP6372709B2 (en) 2016-04-20 2016-04-20 Epitaxial wafer manufacturing method
KR1020187029969A KR102521336B1 (en) 2016-04-20 2017-02-21 Manufacturing method of epitaxial wafer
PCT/JP2017/006250 WO2017183277A1 (en) 2016-04-20 2017-02-21 Method for producing epitaxial wafer
CN201780023720.1A CN109075039B (en) 2016-04-20 2017-02-21 Method for manufacturing epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084435A JP6372709B2 (en) 2016-04-20 2016-04-20 Epitaxial wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2017195273A JP2017195273A (en) 2017-10-26
JP6372709B2 true JP6372709B2 (en) 2018-08-15

Family

ID=60115947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084435A Active JP6372709B2 (en) 2016-04-20 2016-04-20 Epitaxial wafer manufacturing method

Country Status (4)

Country Link
JP (1) JP6372709B2 (en)
KR (1) KR102521336B1 (en)
CN (1) CN109075039B (en)
WO (1) WO2017183277A1 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119123A (en) * 1988-10-27 1990-05-07 Nec Corp Manufacture of semiconductor device
JP3298467B2 (en) * 1997-07-18 2002-07-02 信越半導体株式会社 Manufacturing method of epitaxial wafer
US6231933B1 (en) * 1999-03-18 2001-05-15 Primaxx, Inc. Method and apparatus for metal oxide chemical vapor deposition on a substrate surface
JP2005079134A (en) * 2003-08-28 2005-03-24 Toshiba Ceramics Co Ltd Semiconductor substrate and its producing process
JP4865290B2 (en) * 2005-10-06 2012-02-01 株式会社Sumco Manufacturing method of semiconductor substrate
JP2009176784A (en) * 2008-01-22 2009-08-06 Covalent Materials Tokuyama Corp Method of manufacturing thin film epitaxial wafer
JP2010153631A (en) * 2008-12-25 2010-07-08 Sumco Techxiv株式会社 Epitaxial silicon wafer, and manufacturing method thereof
JP5609025B2 (en) * 2009-06-29 2014-10-22 株式会社Sumco Epitaxial silicon wafer manufacturing method
JP2012114138A (en) * 2010-11-22 2012-06-14 Sumco Corp Epitaxial growth method of silicon wafer
JP5589867B2 (en) * 2011-01-26 2014-09-17 信越半導体株式会社 Manufacturing method of silicon epitaxial wafer
JP5865777B2 (en) * 2012-05-16 2016-02-17 三菱電機株式会社 Method for manufacturing silicon carbide epitaxial wafer
JP5845143B2 (en) * 2012-06-29 2016-01-20 株式会社Sumco Epitaxial silicon wafer manufacturing method and epitaxial silicon wafer
JP6142496B2 (en) * 2012-10-12 2017-06-07 富士電機株式会社 Manufacturing method of semiconductor device
KR20140055338A (en) * 2012-10-31 2014-05-09 엘지이노텍 주식회사 Epitaxial wafer and method for fabricating the same
JP5931780B2 (en) * 2013-03-06 2016-06-08 東京エレクトロン株式会社 Selective epitaxial growth method and film forming apparatus
DE112014002133B4 (en) * 2013-04-24 2017-06-22 Sumco Techxiv Corporation A production method of a single crystal, silicon single crystal, a method of producing a silicon wafer, a production method of a silicon epitaxial wafer, and silicon epitaxial wafers
JP6150075B2 (en) * 2014-05-01 2017-06-21 信越半導体株式会社 Epitaxial wafer manufacturing method

Also Published As

Publication number Publication date
KR20180134907A (en) 2018-12-19
JP2017195273A (en) 2017-10-26
CN109075039A (en) 2018-12-21
CN109075039B (en) 2023-06-09
KR102521336B1 (en) 2023-04-13
WO2017183277A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
CN107533959B (en) Method for manufacturing epitaxial silicon wafer
KR20120125315A (en) Process for producing epitaxial single-crystal silicon carbide substrate and epitaxial single-crystal silicon carbide substrate obtained by the process
JP2015185653A (en) Silicon carbide semiconductor device manufacturing method
US8659020B2 (en) Epitaxial silicon wafer and method for manufacturing same
JP5246065B2 (en) Epitaxial silicon wafer and manufacturing method thereof
JP5533869B2 (en) Epitaxial silicon wafer and manufacturing method thereof
JP6358472B2 (en) Epitaxial wafer manufacturing method
JP5710104B2 (en) Silicon epitaxial wafer and method for manufacturing silicon epitaxial wafer
JP5463693B2 (en) Manufacturing method of silicon epitaxial wafer
JP6447960B2 (en) Manufacturing method of silicon epitaxial wafer
JP6432879B2 (en) Epitaxial wafer manufacturing method
JP6372709B2 (en) Epitaxial wafer manufacturing method
JP5589867B2 (en) Manufacturing method of silicon epitaxial wafer
JP5359991B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JP6598140B2 (en) Epitaxial wafer manufacturing method
JP5315944B2 (en) Manufacturing method of silicon epitaxial wafer
JP5803722B2 (en) Manufacturing method of silicon epitaxial wafer
WO2010098012A1 (en) Silicon epitaxial wafer and method for manufacturing silicon epitaxial wafer
JP2014013835A (en) Silicon epitaxial wafer manufacturing method
JP2013045805A (en) Silicon epitaxial wafer manufacturing method
JPWO2013108335A1 (en) Epitaxial wafer manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6372709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250