JPH02119123A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02119123A
JPH02119123A JP27222488A JP27222488A JPH02119123A JP H02119123 A JPH02119123 A JP H02119123A JP 27222488 A JP27222488 A JP 27222488A JP 27222488 A JP27222488 A JP 27222488A JP H02119123 A JPH02119123 A JP H02119123A
Authority
JP
Japan
Prior art keywords
epitaxial layer
temperature
grown
epitaxial
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27222488A
Other languages
Japanese (ja)
Inventor
Junichi Hattori
純一 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27222488A priority Critical patent/JPH02119123A/en
Publication of JPH02119123A publication Critical patent/JPH02119123A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce auto-doping by a method wherein, when an epitaxial layer is grown on a semiconductor substrate of high impurity concentration, a first epitaxial layer is grown at a temperature lower than a specified epitaxial growth temperature, and then a second epitaxial layer is grown at a specified temperature. CONSTITUTION:The whole surface of a semiconductor substrate having a high impurity concentration region is etched and cleaned at 1500 deg.C by using HCl gas. The temperature is reduced to 1000 deg.C, and a first epitaxial layer of about 0.2mum thick is grown by using SiH4 gas; then the temperature is increased to a specified temperature, i.e., 1050 deg.C, and a second epitaxial layer is grown up to a specified thickness. Thereby, even if a 2mum thick N-type layer of resistivity 1OMEGAcm is epitaxially grown on a P-type Si substrate of resistivity 10OMEGAcm where an N-type impurity region whose layer resistance is, e.g., 30OMEGA/square is formed, the impurity concentration of an interface between the substrate and the epitaxial layer exists in a sharp state as it is, so that auto-doping is extremely reduced, and a semiconductor device without generating breakdown deterioration can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に高濃度不純
物領域を有する半導体基板上へのエピタキシャル層の形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an epitaxial layer on a semiconductor substrate having a high concentration impurity region.

〔従来の技術〕[Conventional technology]

従来、高濃度不純物領域を有する半導体基板上にエピタ
キシャル成長を行う場合は、例えば第3図に示すように
、SiH4(モノシラン)のソースガスを使用し、まず
1150℃の温度でHCeガスを用いて高濃度不純物領
域を含む基板全面をエツチングして表面を清浄とし、次
いで温度を1050°Cに下げてSiH4ガスを所定の
エピタキシャル膜厚になるまで流し、エピタキシャル層
を形成する方法が主に用いられていた。
Conventionally, when epitaxial growth is performed on a semiconductor substrate having a high concentration impurity region, for example, as shown in FIG. The most commonly used method is to etch the entire surface of the substrate, including the impurity concentration region, to clean the surface, then lower the temperature to 1050°C, and flow SiH4 gas until a predetermined epitaxial film thickness is reached to form an epitaxial layer. Ta.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来のエピタキシャル成長の方
法では、ガスエツチング後所定の温度まで下げて1回の
エピタキシャル成長で所定の膜厚のエピタキシャル層を
形成していた為、エピタキシャル成長中、基板からの不
純物のオートドーピングの影響が強く、エピタキシャル
層中に高濃度下物層が形成されてしまう。
However, in the conventional epitaxial growth method described above, an epitaxial layer with a predetermined thickness is formed in one epitaxial growth by lowering the temperature to a predetermined temperature after gas etching. The influence is strong, and a highly concentrated underlayer is formed in the epitaxial layer.

例えば2択的に高濃度のN型不純領域(例えば層抵抗3
0Ω/口)を形成したP型のシリコン基板(例えば比抵
抗10Ω−C)上に厚さ2μmのN型シリコンエピタキ
シャルN(例えば比抵抗1Ω−cm )を形成した場合
、第4図に示すように、エピタキシャル層の厚さがオー
トドーピングにより実質的に減少する不純物分布となっ
ていた。この為高密度でかつ高速度の半導体装置を形成
するため薄いエピタキシャル層を用いる場合、耐圧等の
特性が劣化するという欠点があった。
For example, alternatively a high concentration N-type impurity region (for example, layer resistance 3
When N-type silicon epitaxial N (for example, resistivity 1Ω-cm) with a thickness of 2 μm is formed on a P-type silicon substrate (for example, resistivity 10Ω-C) on which a silicon substrate (for example, resistivity 10Ω-cm) has been formed, as shown in FIG. Moreover, the thickness of the epitaxial layer had an impurity distribution that was substantially reduced by autodoping. For this reason, when a thin epitaxial layer is used to form a high-density and high-speed semiconductor device, there is a drawback that characteristics such as breakdown voltage deteriorate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、高濃度不純物領域を
有する半導体基板上にエピタキシャル層を形成する半導
体装置の製造方法におて、所定のエピタキシャル成長温
度より低い温度で第1のエピタキシャル層を形成したの
ち所定の温度で第2のエピタキシャル層を形成するもの
である。
The method for manufacturing a semiconductor device of the present invention is a method for manufacturing a semiconductor device in which an epitaxial layer is formed on a semiconductor substrate having a high concentration impurity region, and the first epitaxial layer is formed at a temperature lower than a predetermined epitaxial growth temperature. A second epitaxial layer is then formed at a predetermined temperature.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を説明するための温度と時間
との関係を示す図である。
FIG. 1 is a diagram showing the relationship between temperature and time for explaining one embodiment of the present invention.

まず、1150℃の温度でHC1!ガスを用いて高濃度
不純物領域を有する半導体基板全面をエツチングし表面
を清浄とする0次に温度を1000℃まで下げSiH4
ガスを用いて厚さ0.2μm程度の第1のエピタキシャ
ル層の成長を行なう0次いで温度を所定の1050℃に
上げ、所定の膜厚になるまで第2のエピタキシャル層の
成長を行なう。
First, HC1 at a temperature of 1150℃! The entire surface of the semiconductor substrate having a high concentration impurity region is etched using gas to clean the surface.The temperature is then lowered to 1000°C and SiH4 etched.
A first epitaxial layer having a thickness of about 0.2 μm is grown using gas.Then, the temperature is raised to a predetermined temperature of 1050° C., and a second epitaxial layer is grown until a predetermined film thickness is achieved.

本実施例により、選択的に高濃度のN型不純物領域(例
えば層抵抗30Ω/口)を形成したP型のシリコン基板
(例えば比抵抗10Ω−cm>上に厚さ2μmのN型シ
リコンエピタキシャル層(例えば比抵抗1Ω−Ω)を形
成した場合、第2図に示すように、基板とエピタキシャ
ル層界面とで不純物濃度が急峻となる、オートドーピン
グのきわめて少ない不純物分布を有するエピタキシャル
層を得ることが出来る。
According to this example, an N-type silicon epitaxial layer with a thickness of 2 μm is formed on a P-type silicon substrate (for example, with a specific resistance of 10 Ω-cm) on which a high-concentration N-type impurity region (for example, a layer resistance of 30 Ω/hole) is selectively formed. (For example, when forming a resistivity of 1Ω-Ω), it is possible to obtain an epitaxial layer having an impurity distribution with very little autodoping, in which the impurity concentration becomes steep at the interface between the substrate and the epitaxial layer, as shown in Figure 2. I can do it.

上記実施例はガスエツチング工程を入れた場合について
説明したが、ガスエツチング工程を省略しても同様の効
果を有する。又、P型シリコン基板にN型高濃度不純物
領域を形成し、5il14を用いてN型シリコンをエピ
タキシャル成長する場合について説明したが、これに限
定されるものではなく、高濃度不純物領域の形成された
半導体基板上にシ’Jコ、ンガス(5iHC1B、5i
H2Ce2,5iCe 4等)の種類をとわずエピタキ
シャル成長してもよい。
Although the above embodiment has been described with reference to the case where a gas etching step is included, the same effect can be obtained even if the gas etching step is omitted. In addition, although the case where an N-type high concentration impurity region is formed on a P-type silicon substrate and N-type silicon is epitaxially grown using 5il14 has been described, the present invention is not limited to this. 5iHC1B, 5i
Any type of material (H2Ce2, 5iCe4, etc.) may be epitaxially grown.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、高濃度不純物領域を有す
る半導体基板上にエピタキシャル層を形成する場合、ま
ず所定のエピタキシャル成長温度より低い温度で第1の
エピタキシャル層を形成し、次いで所定の温度で所定の
膜厚まで第2のエピタキシャル層を形成することにより
、オートドーピングの少ない不純物分布を有するエピタ
キシャル層を形成できるなめ、耐圧等の特性劣化の少な
い高密度でかつ高速度の半導体装置を得ることができる
As explained above, when an epitaxial layer is formed on a semiconductor substrate having a high concentration impurity region, the present invention first forms a first epitaxial layer at a temperature lower than a predetermined epitaxial growth temperature, and then a predetermined epitaxial layer is formed at a predetermined temperature. By forming the second epitaxial layer to a thickness of , it is possible to form an epitaxial layer having an impurity distribution with little autodoping, and therefore it is possible to obtain a high-density and high-speed semiconductor device with less deterioration of characteristics such as breakdown voltage. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を説明するための
エピタキシャル層形成時の温度と時間との関係を示す図
及びエピタキシャル層中の不純物分布を示す図、第3図
及び第4図は従来例を説明するためのエピタキシャル形
成時の温度と時間との関係を示す図及びエピタキシャル
層中の不純物分布を示す図である。
1 and 2 are diagrams illustrating the relationship between temperature and time during epitaxial layer formation, diagrams illustrating impurity distribution in the epitaxial layer, and Figures 3 and 4 for explaining one embodiment of the present invention. The figures are a diagram showing the relationship between temperature and time during epitaxial formation and a diagram showing impurity distribution in the epitaxial layer to explain a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 高濃度不純物領域を有する半導体基板上にエピタキシャ
ル層を形成する半導体装置の製造方法におて、所定のエ
ピタキシャル成長温度より低い温度で第1のエピタキシ
ャル層を形成したのち所定の温度で第2のエピタキシャ
ル層を形成することを特徴とする半導体装置の製造方法
In a method of manufacturing a semiconductor device in which an epitaxial layer is formed on a semiconductor substrate having a high concentration impurity region, a first epitaxial layer is formed at a temperature lower than a predetermined epitaxial growth temperature, and then a second epitaxial layer is formed at a predetermined temperature. 1. A method of manufacturing a semiconductor device, comprising: forming a semiconductor device.
JP27222488A 1988-10-27 1988-10-27 Manufacture of semiconductor device Pending JPH02119123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27222488A JPH02119123A (en) 1988-10-27 1988-10-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27222488A JPH02119123A (en) 1988-10-27 1988-10-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02119123A true JPH02119123A (en) 1990-05-07

Family

ID=17510843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27222488A Pending JPH02119123A (en) 1988-10-27 1988-10-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02119123A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712900B1 (en) * 2006-07-06 2007-05-02 김영수 Beverage extracting apparatus
JP2015213102A (en) * 2014-05-01 2015-11-26 信越半導体株式会社 Method for manufacturing epitaxial wafer
WO2017183277A1 (en) * 2016-04-20 2017-10-26 信越半導体株式会社 Method for producing epitaxial wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712900B1 (en) * 2006-07-06 2007-05-02 김영수 Beverage extracting apparatus
JP2015213102A (en) * 2014-05-01 2015-11-26 信越半導体株式会社 Method for manufacturing epitaxial wafer
WO2017183277A1 (en) * 2016-04-20 2017-10-26 信越半導体株式会社 Method for producing epitaxial wafer
CN109075039A (en) * 2016-04-20 2018-12-21 信越半导体株式会社 The manufacturing method of epitaxial wafer

Similar Documents

Publication Publication Date Title
US5308785A (en) Isolation technique for silicon germanium devices
JPH05175216A (en) Hetero junction bipolar transistor and its manufacture
US5298457A (en) Method of making semiconductor devices using epitaxial techniques to form Si/Si-Ge interfaces and inverting the material
JPH02119123A (en) Manufacture of semiconductor device
JP3147338B2 (en) Semiconductor substrate manufacturing method
US5192680A (en) Method for producing semiconductor device
JP3382114B2 (en) Semiconductor device and manufacturing method thereof
JP2000021778A (en) Method for epitaxial growth
JPH0567546A (en) Semiconductor substrate and its manufacture
JPS5828731B2 (en) All silicon materials available.
JPH0684809A (en) Formation method for epitaxial layer
JPS63173362A (en) Manufacture of semiconductor device
JP2707641B2 (en) Semiconductor device
JP3018608B2 (en) Constant voltage diode and its manufacturing method
JPH01196169A (en) Manufacture of semiconductor device
JPS59124711A (en) Manufacture of semiconductor device
JP2943006B2 (en) Semiconductor substrate manufacturing method
JP3186289B2 (en) Method for manufacturing semiconductor device
JP2001196308A (en) Silicon wafer and manufacturing method thereof and semiconductor element using that
JPS59186366A (en) Semiconductor device and manufacture thereof
JPS6030150A (en) Manufacture of semiconductor device
JPH0715882B2 (en) Method of manufacturing semiconductor substrate having buried layer
JPH0689902A (en) Manufacture of semiconductor device
JPH0770694B2 (en) Semiconductor substrate
JPH05267314A (en) Manufacture of semiconductor device