JP3147338B2 - Semiconductor substrate manufacturing method - Google Patents

Semiconductor substrate manufacturing method

Info

Publication number
JP3147338B2
JP3147338B2 JP03157191A JP3157191A JP3147338B2 JP 3147338 B2 JP3147338 B2 JP 3147338B2 JP 03157191 A JP03157191 A JP 03157191A JP 3157191 A JP3157191 A JP 3157191A JP 3147338 B2 JP3147338 B2 JP 3147338B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
temperature
film
epitaxial
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03157191A
Other languages
Japanese (ja)
Other versions
JPH04245419A (en
Inventor
正晴 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12334864&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3147338(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP03157191A priority Critical patent/JP3147338B2/en
Publication of JPH04245419A publication Critical patent/JPH04245419A/en
Application granted granted Critical
Publication of JP3147338B2 publication Critical patent/JP3147338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体基板の製造方
法、特に高濃度不純物を局所または全体に有する半導体
基板へのエピタキシャル膜成長方法に係り、所定成膜温
度より高温度からの降温中に第一層目のエピタキシャル
層を成膜し、次いで所定成膜温度で第二層目のエピタキ
シャル層を成膜し、高濃度不純物領域からのオートドー
ピングを防止して、均質かつすぐれた特性のエピタキシ
ャル膜を得る半導体基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor substrate, and more particularly to a method for growing an epitaxial film on a semiconductor substrate having a high concentration impurity locally or entirely. A first epitaxial layer is formed, and then a second epitaxial layer is formed at a predetermined film forming temperature to prevent auto-doping from a high-concentration impurity region. The present invention relates to a method for manufacturing a semiconductor substrate for obtaining a film.

【0002】[0002]

【従来の技術】従来、高濃度不純物を局所的に有する半
導体基板にエピタキシャル膜形成を行なう場合には、例
えば、図2に示す如く、SiHCl3(トリクロールシ
ラン)をSi源として使用し、1150〜1190℃の
温度でH2(水素)ガスやH2+HCl(塩酸ガス)の混
合ガスにて半導体基板表面をエッチングして清浄化した
後に、1000℃に温度を下げてSiHCl3ガスに不
純物ガスを混合したガスを所定の厚さのエピタキシャル
膜になるまで、エピタキシャル膜形成の方法が主に用い
られていた。
Conventionally, when the high concentration impurity the epitaxial film formed on a semiconductor substrate having locally, for example, as shown in FIG. 2, using SiHCl 3 a (trichloroacetic silane) as an Si source, 1150 the semiconductor substrate surface with a mixed gas of H 2 (hydrogen) gas or H 2 + HCl (hydrochloric acid gas) after etched and cleaned at a temperature of ~1190 ℃, impurity gas SiHCl 3 gas temperature was lowered to 1000 ° C. Until a gas having a predetermined thickness is formed into an epitaxial film having a predetermined thickness, a method of forming an epitaxial film has been mainly used.

【0003】従来の半導体基板に半導体素子を形成した
場合、耐圧特性の劣化や電流増幅率の低下等の半導体素
子特性が劣化してしまうという問題があった。
[0003] When a semiconductor element is formed on a conventional semiconductor substrate, there has been a problem that the semiconductor element characteristics such as the breakdown voltage characteristic and the current amplification factor are deteriorated.

【0004】[0004]

【発明が解決しようとする課題】従来の半導体基板に半
導体素子を形成した場合、耐圧特性の劣化や電流増幅率
の低下等の半導体素子特性が劣化してしまうという問題
に鑑み、成膜行程を検討した結果、成膜に先駆けて行う
成膜温度以上の高温度エッチング清浄後、降温し所定の
成膜温度で成膜する際にオートドーピングがあり、これ
が膜特性を劣化させることを知見した。
In the case where a semiconductor element is formed on a conventional semiconductor substrate, in view of the problem that the semiconductor element characteristics such as the withstand voltage characteristic and the current amplification factor are deteriorated, the film forming process is reduced. As a result of the study, it was found that auto-doping occurs when the film is cooled at a predetermined film forming temperature after high-temperature etching cleaning at a film forming temperature higher than the film forming temperature prior to film forming, and this deteriorates film characteristics.

【0005】すなわち、従来のエピタキシャル成長の方
法では、半導体基板表面をエッチング清浄化した後に、
所定の温度まで温度を下げてからエピタキシャル膜を成
長していたため、エピタキシャル成長中に基板及び基板
内の高濃度不純物領域からのオートドーピングのため、
エピタキシャル膜内に高濃度不純物層や、反転層が形成
されてしまい、実効エピタキシャル膜厚みが減少するこ
とを知見した。
That is, in the conventional epitaxial growth method, after the surface of the semiconductor substrate is cleaned by etching,
Because the epitaxial film was grown after lowering the temperature to the predetermined temperature, during the epitaxial growth, for auto doping from the substrate and the high concentration impurity region in the substrate,
It has been found that a high-concentration impurity layer and an inversion layer are formed in the epitaxial film, and the effective epitaxial film thickness is reduced.

【0006】このため、従来のエピタキシャル成長によ
る半導体基板に半導体素子を形成した場合、実効エピタ
キシャル膜厚みが減少し、素子の電気的特性を劣化させ
るため、耐圧特性の劣化や電流増幅率の低下等の半導体
素子特性が劣化してしまうという問題が生じていた。
For this reason, when a semiconductor device is formed on a semiconductor substrate by conventional epitaxial growth, the effective epitaxial film thickness is reduced, and the electrical characteristics of the device are deteriorated. There has been a problem that the characteristics of the semiconductor element are deteriorated.

【0007】この発明は、表面に高濃度不純物領域を形
成した半導体基板上に形成したエピタキシャル膜の特性
の劣化を防止、すなわち実効エピタキシャル膜厚み
少させない成膜方法の提供を目的としている。
[0007] This invention prevents the deterioration of the characteristics of the epitaxial film formed on a semiconductor substrate formed with high concentration impurity regions on the surface, i.e., to provide a reduced <br/> small let no film forming method effective epitaxial film thickness The purpose is.

【0008】[0008]

【課題を解決するための手段】この発明は、表面に高濃
度不純物領域を形成した半導体基板上にエピタキシャル
層を形成する半導体基板の製造方法において、所定成膜
温度より高温度からの降温中に第一層目のエピタキシャ
ル層を成膜し、次いで所定成膜温度で第二層目のエピタ
キシャル層を成膜することを特徴とする半導体基板の製
造方法である。
SUMMARY OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor substrate in which an epitaxial layer is formed on a semiconductor substrate having a high-concentration impurity region formed on a surface thereof. A method for manufacturing a semiconductor substrate, comprising forming a first epitaxial layer and then forming a second epitaxial layer at a predetermined film forming temperature.

【0009】[0009]

【作用】この発明は、高濃度不純物領域を形成した半導
体基板上にエピタキシャル層を形成する半導体基板の製
造方法において、所定のエピタキシャル層成長温度より
高い温度より温度を下げながら、第一層目のエピタキシ
ャル層を成長させた後に所定の温度で第二層目のエピタ
キシャル層を成長させるものである。
According to the present invention, in a method of manufacturing a semiconductor substrate in which an epitaxial layer is formed on a semiconductor substrate in which a high concentration impurity region is formed, the temperature of the first layer is reduced while the temperature is lower than a predetermined epitaxial layer growth temperature. After the epitaxial layer is grown, a second epitaxial layer is grown at a predetermined temperature.

【0010】したがって、この発明による半導体基板
は、所定成膜温度より高温度からの降温中に第一層目の
エピタキシャル層を成膜するため、エピタキシャル成長
中に基板及び基板内の高濃度不純物領域からのオートド
ーピングが防止され、成膜された膜厚みの全てが利用で
き、従来の如き実効エピタキシャル膜厚みの減少がな
い。この発明による半導体基板に半導体素子を形成した
場合、素子の設計に必要な実効エピタキシャル膜厚みを
確保できるため、設計どおりの電気的特性を発揮させる
ことができる。
Therefore, in the semiconductor substrate according to the present invention, the first epitaxial layer is formed while the temperature is lowered from a temperature higher than a predetermined film forming temperature. Is prevented, the entire thickness of the formed film can be used, and there is no decrease in the effective epitaxial film thickness unlike the conventional case. When a semiconductor element is formed on a semiconductor substrate according to the present invention, an effective epitaxial film thickness required for element design can be ensured, so that electrical characteristics as designed can be exhibited.

【0011】この発明による製造方法において、所定成
膜温度より高温度とは、所定のエピタキシャル層成長温
度より高い温度であり、例えば、H2ガスによる半導体
基板表面清浄化の工程、HClガスによるガスエッチン
グ工程での雰囲気温度などをいう。すなわち、実施例で
はH2ガスによる半導体基板表面清浄化の工程を用いた
場合を示すが、HClガスによるガスエッチング工程を
導入し、かかるガスエッチングの雰囲気温度からの降温
中に第一層目のエピタキシャル層を成膜することもでき
る。
In the manufacturing method according to the present invention, the temperature higher than a predetermined film forming temperature is a temperature higher than a predetermined epitaxial layer growth temperature, for example, a step of cleaning the surface of a semiconductor substrate by H 2 gas, a gas of HCl gas, It refers to the ambient temperature in the etching step. That is, in the embodiment, the case of using the step of cleaning the surface of the semiconductor substrate using H 2 gas is shown. However, a gas etching step using HCl gas is introduced, and the temperature of the first layer is reduced during the temperature lowering from the ambient temperature of the gas etching. An epitaxial layer can also be formed.

【0012】また、高濃度不純物領域を形成した半導体
基板の成膜において、成膜前の種々の清浄工程、あるい
は成膜温度より高い熱処理工程などの工程を経る場合な
ど、いずれの場合もこの発明を適用することができる。
実施例ではP型半導体基板にN型高濃度不純物領域を形
成した上で、SiHCl3を用いてN型エピタキシャル
膜を形成する場合について説明するが、いずれの半導体
基板の製造方法にもこの発明を適用することができる。
また、エピタキシャル膜のシリコンガスとして、実施例
ではSiHCl3ガスを用いるが、他にSiH2Cl2
SiCl4を用いることもでき、何れの材質の成膜にも
この発明を適用することができる。
In addition, in the case of forming a semiconductor substrate having a high-concentration impurity region formed therein, the present invention may be applied to any of a variety of cleaning steps before the film formation, a heat treatment step higher than the film formation temperature, and the like. Can be applied.
In the embodiment, a case in which an N-type high-concentration impurity region is formed in a P-type semiconductor substrate, and then an N-type epitaxial film is formed using SiHCl 3 will be described. Can be applied.
Further, as the silicon gas for the epitaxial film, SiHCl 3 gas is used in the embodiment, but SiH 2 Cl 2 ,
SiCl 4 can also be used, and the present invention can be applied to film formation of any material.

【0013】この発明による製造方法は、所定成膜温度
より高温度からの降温中に成膜した第一層目エピタキシ
ャル層と、続く所定成膜温度での成膜による第二層目エ
ピタキシャル層とで所定膜厚みのエピタキシャル層を得
るものであるが、第一層目と第二層目の厚み比率がエピ
タキシャル膜内不純物濃度分布に影響するため、半導体
基板の用途、すなわち後工程で成膜する半導体素子等あ
るいは要求されるエピタキシャル膜の特性等に応じて、
例えば全膜厚み3μm程度の場合、第一層目のエピタキ
シャル層を0.5〜1μm程度とするなど、第一層目と
第二層目の厚み比率を適宜選定することができる。
According to the manufacturing method of the present invention, the first epitaxial layer formed while the temperature is lowered from a temperature higher than the predetermined film forming temperature, and the second epitaxial layer formed by the subsequent film formation at the predetermined film forming temperature. Is used to obtain an epitaxial layer having a predetermined film thickness, but since the thickness ratio of the first layer and the second layer affects the impurity concentration distribution in the epitaxial film, it is used for a semiconductor substrate, that is, a film is formed in a later step. Depending on the characteristics of the semiconductor device or the required epitaxial film, etc.
For example, when the total film thickness is about 3 μm, the thickness ratio of the first layer to the second layer can be appropriately selected, for example, the thickness of the first epitaxial layer is about 0.5 to 1 μm.

【0014】また、第一層目と第二層目の厚み比率に応
じて、所定成膜温度より高温度からの降温時の降温勾配
を選定したり、あるいは第一層と第二層で膜材質あるい
は成膜ガスを変えるなどの成膜手段を用いることによ
り、積極的にエピタキシャル膜内不純物濃度分布を制御
することもでき、半導体素子等あるいは要求されるエピ
タキシャル膜の特性等に応じた半導体基板を製造するこ
とができる。
In addition, depending on the thickness ratio of the first layer and the second layer, it is possible to select a temperature drop gradient when the temperature is lowered from a temperature higher than a predetermined film forming temperature, or to form a film between the first layer and the second layer. By using film forming means such as changing the material or the film forming gas, the impurity concentration distribution in the epitaxial film can be positively controlled, and the semiconductor substrate according to the characteristics of the semiconductor device or the required epitaxial film can be positively controlled. Can be manufactured.

【0015】[0015]

【実施例】図1は、P型半導体基板にN型高濃度不純物
領域を形成した上で、SiHCl3を用いてN型エピタ
キシャル膜を形成するこの発明の一実施例を示すエピタ
キシャル成長時の温度と時間の関係を示すグラフであ
る。
DETAILED DESCRIPTION FIG. 1, after forming the N-type high concentration impurity regions in the P-type semiconductor substrate, and the temperature during the epitaxial growth of an embodiment of the present invention for forming the N-type epitaxial film using SiHCl 3 It is a graph which shows the relationship of time.

【0016】まず、1170℃の温度で、H2ガスを用
いて高濃度不純物領域を有する半導体基板表面を清浄化
した後に、温度を下げながら、SiHCl3ガスをSi
源として用いて、厚さ0.5μm程度の第一層目のエピ
タキシャル層を形成する。次に、所定の温度1000℃
にて、所定の膜厚となるように第二層目のエピタキシャ
ル層を形成する。上記の製造方法にて、N型の高濃度不
純物領域(層抵抗10Ω/口)を形成したP型のシリコ
ン基板(比抵抗10〜20Ω−cm)上に、全体厚さと
して3μmで比抵抗5Ω−cmのN型エピタキシャル層
を形成した場合のエピタキシャル膜内不純物濃度分布を
図3に示す。
First, the surface of a semiconductor substrate having a high concentration impurity region is cleaned at a temperature of 1170 ° C. using H 2 gas, and then, while the temperature is lowered, SiHCl 3 gas is removed.
A first epitaxial layer having a thickness of about 0.5 μm is formed as a source. Next, a predetermined temperature of 1000 ° C.
Then, a second epitaxial layer is formed to have a predetermined thickness. According to the above-described manufacturing method, a total thickness of 3 μm and a specific resistance of 5Ω is formed on a P-type silicon substrate (specific resistance of 10 to 20 Ω-cm) on which an N-type high-concentration impurity region (layer resistance of 10 Ω / port) is formed. FIG. 3 shows the impurity concentration distribution in the epitaxial film when the −cm N-type epitaxial layer is formed.

【0017】比較のため上述の如くP型の比抵抗10〜
20Ω−cmのシリコン基板に高濃度のN型不純物を1
×1018〜1019atoms/ccの濃度で局所的に注
入した上に、図2に示す如く、従来の成膜方法で比抵抗
5Ω−cmの厚さ3μmN型エピタキシャル膜を形成し
た場合のエピタキシャル成長膜内の不純物濃度分布を図
4に示す。
For comparison, a P-type specific resistance of 10 to 10
A high-concentration N-type impurity is added to a 20 Ω-cm silicon substrate.
As shown in FIG. 2, after a local injection at a concentration of × 10 18 to 10 19 atoms / cc, a 3 μm-thick N-type epitaxial film having a specific resistance of 5Ω-cm was formed by a conventional film forming method. FIG. 4 shows the impurity concentration distribution in the film.

【0018】図4に示す如く、従来の成膜方法ではオー
トドーピングの影響により実質的なエピタキシャル膜厚
(フラットゾーン幅)が、成長エピタキシャル膜厚より
も減少していることがわかる。これに対してこの発明の
成膜方法では半導体基板とエピタキシャル膜との界面近
傍での不純物濃度勾配が、従来に比して急勾配となって
おり、エピタキシャル成長中のオートドーピングが防止
され、実効エピタキシャル膜厚みの減少がないことがわ
かる。
As shown in FIG. 4, in the conventional film forming method, the substantial epitaxial film thickness (flat zone width) is smaller than the grown epitaxial film due to the influence of auto doping. On the other hand, in the film forming method of the present invention, the impurity concentration gradient near the interface between the semiconductor substrate and the epitaxial film is steeper than in the past, so that auto doping during epitaxial growth is prevented, and the effective epitaxial growth is prevented. It can be seen that there is no decrease in the film thickness.

【0019】[0019]

【発明の効果】この発明は、上述した如く、高濃度不純
物領域を局所的または全体に形成された半導体基板上に
エピタキシャル膜を形成する場合に、所定のエピタキシ
ャル成長温度より高い温度より温度を下げながら第一層
目のエピタキシャル膜を成長させ、次に所定の温度で第
二層目のエピタキシャル膜を成長させる工程であるた
め、高濃度不純物領域からのオートドーピングを低減さ
せて、不純物濃度勾配の急なエピタキシャル膜を形成で
き、耐圧特性の優れた半導体素子用の半導体基板を得る
ことができる。
According to the present invention, as described above, when an epitaxial film is formed on a semiconductor substrate in which a high-concentration impurity region is locally or entirely formed, the temperature is lowered from a temperature higher than a predetermined epitaxial growth temperature. Since this is a step of growing the first-layer epitaxial film and then growing the second-layer epitaxial film at a predetermined temperature, the auto-doping from the high-concentration impurity region is reduced and the impurity concentration gradient is sharply increased. Thus, a semiconductor substrate for a semiconductor element having excellent withstand voltage characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示すエピタキシャル成長
時の温度と時間の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between temperature and time during epitaxial growth showing one embodiment of the present invention.

【図2】従来の成膜方法を示すエピタキシャル成長時の
温度と時間の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between temperature and time during epitaxial growth showing a conventional film forming method.

【図3】この発明による半導体基板のエピタキシャル成
長膜内の不純物濃度を示す不純物濃度分布図である。
FIG. 3 is an impurity concentration distribution diagram showing an impurity concentration in an epitaxial growth film of a semiconductor substrate according to the present invention.

【図4】従来の製造方法による半導体基板のエピタキシ
ャル成長膜内の不純物濃度を示す不純物濃度分布図であ
る。
FIG. 4 is an impurity concentration distribution diagram showing an impurity concentration in an epitaxially grown film of a semiconductor substrate according to a conventional manufacturing method.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に高濃度不純物領域を形成した半導
体基板上にエピタキシャル層を形成する半導体基板の製
造方法において、所定成膜温度より高温度からの降温中
に第一層目のエピタキシャル層を成膜し、次いで所定成
膜温度で第二層目のエピタキシャル層を成膜することを
特徴とする半導体基板の製造方法。
In a method of manufacturing a semiconductor substrate, wherein an epitaxial layer is formed on a semiconductor substrate having a high-concentration impurity region formed on a surface, a first epitaxial layer is formed during a temperature lower than a predetermined film forming temperature. A method for manufacturing a semiconductor substrate, comprising: forming a film and then forming a second epitaxial layer at a predetermined film forming temperature.
JP03157191A 1991-01-30 1991-01-30 Semiconductor substrate manufacturing method Expired - Lifetime JP3147338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03157191A JP3147338B2 (en) 1991-01-30 1991-01-30 Semiconductor substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03157191A JP3147338B2 (en) 1991-01-30 1991-01-30 Semiconductor substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH04245419A JPH04245419A (en) 1992-09-02
JP3147338B2 true JP3147338B2 (en) 2001-03-19

Family

ID=12334864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03157191A Expired - Lifetime JP3147338B2 (en) 1991-01-30 1991-01-30 Semiconductor substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP3147338B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782670B2 (en) * 2003-03-13 2011-09-28 エーエスエム アメリカ インコーポレイテッド Epitaxial Ge-containing film growth method and epitaxial semiconductor film forming system
US7682947B2 (en) 2003-03-13 2010-03-23 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
US7718225B2 (en) * 2005-08-17 2010-05-18 Applied Materials, Inc. Method to control semiconductor film deposition characteristics
JP5267176B2 (en) * 2009-02-04 2013-08-21 富士電機株式会社 Thin film formation method
US9127345B2 (en) 2012-03-06 2015-09-08 Asm America, Inc. Methods for depositing an epitaxial silicon germanium layer having a germanium to silicon ratio greater than 1:1 using silylgermane and a diluent
US9171715B2 (en) 2012-09-05 2015-10-27 Asm Ip Holding B.V. Atomic layer deposition of GeO2
US9218963B2 (en) 2013-12-19 2015-12-22 Asm Ip Holding B.V. Cyclical deposition of germanium

Also Published As

Publication number Publication date
JPH04245419A (en) 1992-09-02

Similar Documents

Publication Publication Date Title
KR100763425B1 (en) Process for producing highly doped semiconductor wafers, and dislocation-free, highly doped semiconductor wafers
US3518503A (en) Semiconductor structures of single crystals on polycrystalline substrates
US5405803A (en) Method of manufacturing a semiconductor device
US6580104B1 (en) Elimination of contaminants prior to epitaxy and related structure
US4859626A (en) Method of forming thin epitaxial layers using multistep growth for autodoping control
JP3147338B2 (en) Semiconductor substrate manufacturing method
JP2572512B2 (en) Manufacturing method of diffusion type silicon element substrate
JP2003151984A (en) Silicon epitaxial wafer and manufacturing method thereof
JP3777662B2 (en) Epitaxial wafer manufacturing method
JPS6230692B2 (en)
JPWO2002099890A1 (en) Semiconductor layer and method for forming the same, and semiconductor device and method for manufacturing the same
JP3097107B2 (en) Epitaxial growth method
JPH0574669A (en) Manufacture of semiconductor device
JPH02253622A (en) Manufacture of silicon carbide semiconductor device
JPH05175536A (en) Manufacture of semiconductor device
JP2846986B2 (en) Manufacturing method of semiconductor wafer
KR930010675B1 (en) Manufacturing method of semiconductor device using mbe process
JPH02119123A (en) Manufacture of semiconductor device
JPH0470771B2 (en)
JPH0684809A (en) Formation method for epitaxial layer
JP2006156687A (en) Epitaxial wafer
JP2000269225A (en) Semiconductor device and manufacture thereof
JPS59124711A (en) Manufacture of semiconductor device
KR960002105B1 (en) Making method of semiconductor device with pn junction
JP2829403B2 (en) Method for manufacturing compound semiconductor