KR930010675B1 - Manufacturing method of semiconductor device using mbe process - Google Patents

Manufacturing method of semiconductor device using mbe process Download PDF

Info

Publication number
KR930010675B1
KR930010675B1 KR1019900008528A KR900008528A KR930010675B1 KR 930010675 B1 KR930010675 B1 KR 930010675B1 KR 1019900008528 A KR1019900008528 A KR 1019900008528A KR 900008528 A KR900008528 A KR 900008528A KR 930010675 B1 KR930010675 B1 KR 930010675B1
Authority
KR
South Korea
Prior art keywords
forming
oxide film
device region
mbe
epitaxial layer
Prior art date
Application number
KR1019900008528A
Other languages
Korean (ko)
Other versions
KR920001631A (en
Inventor
고석윤
Original Assignee
금성일렉트론 주식회사
문정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성일렉트론 주식회사, 문정환 filed Critical 금성일렉트론 주식회사
Priority to KR1019900008528A priority Critical patent/KR930010675B1/en
Publication of KR920001631A publication Critical patent/KR920001631A/en
Application granted granted Critical
Publication of KR930010675B1 publication Critical patent/KR930010675B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Bipolar Transistors (AREA)

Abstract

The semiconductor device is mfd. by (a) forming a first oxide film (2) on the semiconductor substrate (1), defining a first device region, and removing the film (2), (b) forming a first epitaxial layer (3) on the region, (c) forming a second oxide film (5) on the whole surface, defining a second device region, and removing the film (5), (d) forming a second epitaxial layer (6) on the region, (e) forming a third oxide film (8) on the whole surface, defining a third device region, and removing the film (8), (f) forming a third epitaxial layer (9) on the region, (g) forming a forth oxide film (11) on the whole surface, and (h) forming a contact hole (12) on the layers (3,6,9), and forming an electrode (13).

Description

MBE를 이용한 반도체 소자 제조방법Semiconductor device manufacturing method using MBE

제1도는 종래 바이폴라 트랜지스터 구조 단면도.1 is a cross-sectional view of a conventional bipolar transistor structure.

제2a-n도는 본 발명에 의해 제조공정 단면도.Figure 2a-n is a cross-sectional view of the manufacturing process according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : P형 기판 2, 5, 8 : 산화막1: P type substrate 2, 5, 8: oxide film

3, 9 : N +에피택셜층 6 : P에피택셜층3, 9: N + epitaxial layer 6: P epitaxial layer

4, 7, 10 : PR층 4a : Pr+Si+As층4, 7, 10: PR layer 4a: Pr + Si + As layer

7a : Pr+Si+B층 10a : Pr+Si+As층7a: Pr + Si + B layer 10a: Pr + Si + As layer

11 : 필드산화막 12 : 콘택트홀11: field oxide film 12: contact hole

13 : 메탈13: metal

본 발명은 MBE(Molecular Beam Epitaxy)를 이용한 반도체 소자의 제조방법에 관한 것으로, 특히 MBE를 이용하여 1000℃이하의 낮은 온도에서 베이스, 에미터 및 콜렉터 영역에 불순물의 수직분포가 제어가능한 단결정 에피택셜층을 형성하여 수직 바이폴라 직접회로를 제조할 수 있도록 한 것이다.The present invention relates to a method for manufacturing a semiconductor device using a molecular beam epitaxy (MBE), in particular single crystal epitaxy capable of controlling the vertical distribution of impurities in the base, emitter and collector region at a low temperature below 1000 ℃ using MBE By forming a shir layer, a vertical bipolar integrated circuit can be manufactured.

종래의 기술을 첨부된 제1도에 의거하여 상술하면 다음과 같다.The prior art will be described in detail with reference to the attached FIG. 1 as follows.

먼저 P형기판 위에 콜렉터의 시리즈 리지스턴스(Series Resistance)를 줄이기 위해 고농도로 도핑된 N+매몰층을 고온에서 확산시킨 후 역시 1000℃-1150℃의 고온에서 N형 에피택셜층을 성장시킨다.First, in order to reduce the series resistance of the collector on the P-type substrate, the highly doped N + buried layer is diffused at high temperature, and then the N-type epitaxial layer is grown at a high temperature of 1000 ° C-1150 ° C.

이어 소자간의 격리영역의 형성을 위해 1000℃ 이상의 온도에서 P+를 장시간 확산시킨 후 베이스, 에미터, 콜렉터를 차례로 형성하기 위해 상기 N형 에피택셜층에 이온주입기 및 퍼네이스(Furnace)를 이용하여 N+ 및 P를 주입한다.Subsequently, P + was diffused for a long time at a temperature of 1000 ° C. or higher to form an isolation region between the devices, and then N + was formed using an ion implanter and a furnace to form a base, an emitter, and a collector. And P is injected.

다음으로 액티브영역(Active Area)에 전극을 형성하기 위해 콘택트 부위에 포토/에치 공정을 행하여 메탈을 증착시킨 후 다시 메탈부 위에 포토/에치공정을 행하여 바이폴라 트랜지스터를 완성하게 된다.Next, to form an electrode in the active area, a photo / etch process is performed on the contact portion to deposit a metal, and then a photo / etch process is performed on the metal portion to complete the bipolar transistor.

그러나 상기 종래 기술은 1100-1200℃의 고온에서 행하는 매몰층 형성공정 및 접합 격리영역 형성공정과 역시 1150℃의 고온에서 행하는 에피택셜층의 형성공정으로 인해 웨이퍼가 휘게 되고 OISE(Oxidation Induced Stacking Fault)의 결정결함이 발생될 수 있는 문제점이 있으며 또한 각각의 액티브영역을 만드는 공정이 복잡하므로 인해 공정시간이 길어지고 많은 장비가 필요하게 되는 문제점이 있었다.However, the prior art is a wafer bent due to the buried layer forming process and the junction isolation region forming process performed at a high temperature of 1100-1200 ℃ and the epitaxial layer forming process also performed at a high temperature of 1150 ℃ and OISE (Oxidation Induced Stacking Fault) There is a problem that crystal defects may occur, and because the process of making each active region is complicated, the process time is long and a lot of equipment is required.

본 발명은 상기 문제점을 제거키 위한 것으로 이를 첨부된 제2도에 의거하여 상술하면 다음과 같다.The present invention is to eliminate the above problems and will be described in detail with reference to the accompanying Figure 2 as follows.

먼저(A)와 같이 P형 기판(1) 위에 산화막(2)을 형성한 후 포토/에치공정을 거쳐(B)와 같이 콜렉터로서 N+에피택셜층(3)를 한정한다. 여기서 산화막(2)의 형성은 써멀(Thermal)산화 혹은 통상의 CVD 등 어느 것이나 무방하다.First, the oxide film 2 is formed on the P-type substrate 1 as shown in (A), and then subjected to a photo / etch process to define the N + epitaxial layer 3 as a collector as shown in (B). The oxide film 2 can be formed by any of thermal oxidation or normal CVD.

이어 (C)와 같이 MBE로 실리콘 이온과 비소이온(또는 실리콘과 안티몬)을 사용하여 N+에피택셜층(3)을 성장시킨다. 여기서 비소나 안티몬의 이온농도는 원하는 전기적 파라미터(Parameter)를 만족시켜 줄 수 있는 콜렉터 농도로 가변시킬 수 있다.Next, as shown in (C), the N + epitaxial layer 3 is grown using silicon ions and arsenic ions (or silicon and antimony) with MBE. The ion concentration of arsenic or antimony can be varied to a collector concentration that can satisfy the desired electrical parameters.

이어 (D)와 같이 통상의 리프트-오프(Lift-off) 방법을 이용하여 실리콘과 비소(또는 실리콘과 안티몬)이 Pr과 혼합된 Pr+Si+As층(4a)(또는 Pr+Si+Sb층)을 밑의 P.R층(4)과 함께 제거한다.Then, using a conventional lift-off method as shown in (D), Pr + Si + As layer 4a (or Pr + Si + Sb) in which silicon and arsenic (or silicon and antimony) are mixed with Pr Layer) is removed together with the underlying PR layer (4).

이어 상기 (A)(B)(C)(D)의 콜렉터 형성공정과 마찬가지로 (E)(F)(G)(H)와 같이 다시 산화막(5)을 형성한 후 포토/에치공정에 의해 베이스로서 P형 에피택셜층(6)을 한정하고 MBE를 이용하여 원하는 농도의 붕소와 실리콘 이온으로 P형 에피택셜층(6)을 증착시킨 다음 다시 리프트-오프 방법을 이용하여 Pr+Si+B층(7a)을 P.R층(7)과 함께 제거한다.Subsequently, the oxide film 5 is formed again as in (E) (F) (G) (H) as in the collector formation process of (A) (B) (C) (D), and then the base is subjected to a photo / etch process. As a result, the P-type epitaxial layer 6 is defined and the P-type epitaxial layer 6 is deposited using boron and silicon ions at a desired concentration using MBE, and then the Pr + Si + B layer is again lift-off. (7a) is removed together with the PR layer 7.

마찬가지로 (I)(J)(K)(L)과 같이 산화막(8)을 형성한 후 포토/에치공정을 거쳐 에미터로서 N+에피택셜층(9)을 한정한 다음 MBE를 이용하여 원하는 농도의 실리콘과 비소(또는 실리콘과 인) 이온으로 N+에피택셜층(9)을 증착시키고 리피트-오프방법을 이용하여 Pr+Si+As층(10a)(또는 PR+Si+P층)을 P.R층(10)과 함께 제거한다. 이때 상기한 MDE법은 증착법으로써 CVD에피택셜 성장법과는 다르며 이의 특징은 에피택셜 성장과는 다르게 저온에서 진행하는 것이다.Similarly, after forming the oxide film 8 as (I) (J) (K) (L), the N + epitaxial layer 9 is defined as an emitter through a photo / etch process, and then MBE is used to The N + epitaxial layer 9 is deposited with silicon and arsenic (or silicon and phosphorus) ions, and the Pr + Si + As layer 10a (or PR + Si + P layer) is formed by using a repeat-off method. 10) Remove together. At this time, the MDE method is different from the CVD epitaxial growth method as a deposition method, and its characteristic is that it proceeds at low temperature unlike epitaxial growth.

또한 외방확산(Out Diffusion), 오토도핑(auto doping)의 최소화로 도핑의 정확한 제어가 가능하고, MBE의 일반적 온도는 400-800℃로써 일반적 에피택시 온도보다 낮은 온도로서 실행한다.In addition, accurate control of doping is possible by minimizing out diffusion and auto doping. The general temperature of MBE is 400-800 ° C, which is lower than the general epitaxy temperature.

즉, 종래의 VPE(Vapor Phase Epitaxy)공정에서 사용되는 실리콘 소오스 (Source)는 SiCl4, SiHcls, SiH2Cl2, SiH4로써 적용되는 온도범위는 표 1)에 나타난 바와 같이 대부분이 1000℃ 이상이기 때문에 VPE성장법으로 불순물이 포함된 실리콘층을 성장시키면 1000℃ 이상의 고온으로 인해 불순물이 원하지 않은 부분까지 오토도핑되어 스텝 접합을 이룰 수 없는 반면, 본 발명에서 적용한 MBE법은 오토도핑이 되지 않은 낮은 온도에서 에피택셜층을 형성하고, 불순물을 전기적으로 활성화시키는 최소의 온도에서 열처리하기 때문에 원하는 스텝접합을 얻을 수 있는 것이다.That is, the silicon source (Source) used in the conventional VPE (Vapor Phase Epitaxy) process is SiCl 4 , SiHcl s , SiH 2 Cl 2 , SiH 4 The temperature range is most 1000 ℃ as shown in Table 1) Therefore, when the silicon layer containing impurities are grown by the VPE growth method, the impurities cannot be auto-doped to an undesired part due to the high temperature of 1000 ° C. or higher, whereas the MBE method applied in the present invention is not auto-doped. At this low temperature, the epitaxial layer is formed and heat treated at the minimum temperature to electrically activate the impurity, thereby obtaining a desired step junction.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

지금까지의 공정으로 형성된 콜렉터, 베이스, 에미터로서의, N+, P, N+에피택셜층(3)(6)의 실리콘은 단결정이 아니고 불순물인 As, Sb, B, P등은 액티브 상태가 아니므로 700-950℃의 온도에서 어닐링(Annealing)시킨다.Since the silicon of the N +, P, and N + epitaxial layers 3, 6 as collectors, bases, and emitters formed by the above processes are not single crystals, As, Sb, B, P, etc., which are impurities, are not active. Anneal at a temperature of 700-950 ° C.

이때 상기 어닐링 온도 700-950℃는 상기 P형 기판(1)의 휨현상(Warping) 또는 결정결함을 주지 않고 에피택셜층(3)(6)(9)에 포함된 불순물을 전기적으로 활성화시키는 온도로 일반적으로 실행된다.At this time, the annealing temperature of 700-950 ℃ is a temperature for electrically activating the impurities contained in the epitaxial layers (3) (6) (9) without warping or crystal defects of the P-type substrate (1) It is usually run.

이때(M)과 같이 필드산화막(11)이 형성되며 이 필드산화막(11)에 포토/에치공정을 행하여 콘택트홀(12)을 한정한다.At this time, the field oxide film 11 is formed as shown in M, and the contact hole 12 is defined by performing a photo / etch process on the field oxide film 11.

마지막으로 (N)과 같이 스퍼터링 방법으로 콜렉터, 베이스, 에미터인 N+, P, N+ 에피택셜층(3)(6)(9)에 전극을 형성할 수 있도록 매탈(13)을 증착시킨 후 이 메탈(13)을 포토/에치하므로써 바이폴라 트랜지스터를 완성하게 된다.Finally, after depositing metal 13 to form electrodes on the collector, base, and emitter N +, P, and N + epitaxial layers 3, 6, and 9 as shown in (N). The bipolar transistor is completed by photo / etching the metal 13.

이상과 같이 본 발명에 의하면 1000℃이하의 낮은 온도에서 베이스, 에미터, 콜렉터 영역에 불순물의 수직분포가 제어가능토록 되어있으므로 고온에서 야기될 수 있는 웨이퍼의 휨이나 결정결함이 방지될 뿐만 아니라 저절로 산화층 격리공정이 이루어지므로 종래의 접합 격리공정이 불필요함은 물론 에미터, 베이스, 콜렉터 영역의 MBE를 이용하여 불순물과 실리콘을 함께 적층시키므로 에피택셜층 공정과 불순물 도핑공정을 구분할 필요가 없어서 공정을 단순화시킬 수 있고 공정시간 또한 크게 단축시킬 수 있는 뛰어난 효과가 있는 것이다.As described above, according to the present invention, since the vertical distribution of impurities is controllable in the base, emitter, and collector regions at a temperature lower than 1000 ° C, the warpage and crystal defects of the wafer, which may be caused at high temperatures, are not only prevented, but also by themselves. Since the oxide layer isolation process is performed, the conventional junction isolation process is unnecessary, and since the impurity and silicon are laminated together using the MBE of the emitter, base, and collector regions, there is no need to distinguish between the epitaxial layer process and the impurity doping process. There is an excellent effect that can be simplified and the process time can be greatly reduced.

Claims (4)

반도체 기판(1)상에 제1산화막(2)을 형성하고 제1소자영역을 정의하고, 제1소자영역의, 제1산화막(2)을 제거하는 제1공정, 제1소자영역에 MBE법으로 제1불순물이 포함된 제1에피층(3)을 형성하는 제2공정, 전면에 제2산화막(5)을 형성하는 제2소자영역을 정의한 후 제2소자영역의 제2산화막(5)을 제거하는 제3공정, 제2소자영역에 MBE법으로 제2불순물이 포함된 제2에피층(6)을 형성하는 제4공정, 전면에 제3산화막(8)을 형성하고 제2소자영역을 정의한 후 제3소자영역의 제3산화막(8)을 제거하는 제5공정, 제3소자영역에 MBE법으로 제3불순물이 포함된 제3에피층(9)을 형성하는 제6공정, 열처리하여 제1 및 제2,제3불순물을 활성화시키고 전면에 제4산화막 (11)을 형성하는 제7공정, 상기 제1, 및 제2,제3에피층(3,6,9)에 콘택트홀 (12)을 형성하고 전극(13)을 형성하는 제8공정으로 이루어짐을 특징으로 하는 MBE를 이용한 반도체 소자 제조방법.The first step of forming the first oxide film 2 on the semiconductor substrate 1, defining the first device region, and removing the first oxide film 2 in the first device region, the MBE method in the first device region. In the second process of forming the first epitaxial layer 3 containing the first impurity, after defining the second device region for forming the second oxide film 5 on the front surface, the second oxide film 5 of the second device region A third step of removing the oxide, a fourth step of forming the second epitaxial layer 6 containing the second impurity in the second device region by the MBE method, and a third oxide film 8 formed on the entire surface of the second device region A fifth step of removing the third oxide film 8 of the third device region after the definition thereof, a sixth step of forming a third epitaxial layer 9 including the third impurity in the third device region by the MBE method, and heat treatment To activate the first, second, and third impurities and to form a fourth oxide film 11 on the entire surface, the contact holes in the first, second, and third epitaxial layers 3, 6, and 9, respectively. Eighth process of forming 12 and forming electrode 13 A semiconductor device manufacturing method using the MBE, characterized by made of an. 제1항에 있어서, 콜렉터와 베이스 및 에미터를 형성하기 위해 한정된 3활성영역에 적층되는 제1 및 제2, 제3불순물을 각각 비소, 붕소, 인으로 함을 특징으로 하는 MBE를 이용한 바이폴라 트랜지스터의 제조방법.2. A bipolar transistor using an MBE according to claim 1, wherein the first, second, and third impurities, which are stacked in three active regions defined for forming the collector, the base, and the emitter, are made of arsenic, boron, and phosphorus, respectively. Manufacturing method. 제1항에 있어서, 콜렉터와 베이스 및 에미터를 형성하기 위해 한정된 3활성영역에 적층되는 제1 및 제2, 제3불순물은 각각 안티몬, 붕소, 비소로 함을 특징으로 하는 MBE를 이용한 바이폴라 트랜지스터의 제조방법.The bipolar transistor using an MBE according to claim 1, wherein the first, second, and third impurities, which are stacked in three active regions defined to form a collector, a base, and an emitter, are formed of antimony, boron, and arsenic, respectively. Manufacturing method. 제1항에 있어서, 어닐링시의 온도는 700℃-950℃로 함을 특징으로 하는 MBE를 이용한 바이폴라 트랜지스터의 제조방법.The method of claim 1, wherein the annealing temperature is 700 ° C-950 ° C.
KR1019900008528A 1990-06-11 1990-06-11 Manufacturing method of semiconductor device using mbe process KR930010675B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900008528A KR930010675B1 (en) 1990-06-11 1990-06-11 Manufacturing method of semiconductor device using mbe process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900008528A KR930010675B1 (en) 1990-06-11 1990-06-11 Manufacturing method of semiconductor device using mbe process

Publications (2)

Publication Number Publication Date
KR920001631A KR920001631A (en) 1992-01-30
KR930010675B1 true KR930010675B1 (en) 1993-11-05

Family

ID=19299959

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900008528A KR930010675B1 (en) 1990-06-11 1990-06-11 Manufacturing method of semiconductor device using mbe process

Country Status (1)

Country Link
KR (1) KR930010675B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101687593B1 (en) * 2016-09-19 2016-12-21 한국기계연구원 Method of manufacturing austenitic light-weight high-strength steel with excellent balance between strength and ductility
KR101687592B1 (en) * 2016-09-19 2016-12-21 한국기계연구원 Method of manufacturing austenitic light-weight high-strength steel with excellent properties of welds

Also Published As

Publication number Publication date
KR920001631A (en) 1992-01-30

Similar Documents

Publication Publication Date Title
US5057439A (en) Method of fabricating polysilicon emitters for solar cells
KR19990072884A (en) Method for producing a polycrystalline silicon structure
US5677209A (en) Method for fabricating a vertical bipolar transistor
KR900005123B1 (en) Bipolar transistor manufacturing method
EP0051534B1 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
JPS61180482A (en) L-high speed manufacturing method for fast bipolar analog large integrated circuit
JP2859760B2 (en) Lateral transistor and manufacturing method thereof
US3762966A (en) Method of fabricating high emitter efficiency semiconductor device with low base resistance by selective diffusion of base impurities
KR930010675B1 (en) Manufacturing method of semiconductor device using mbe process
JPH0521448A (en) Manufacture of semiconductor device
US4132573A (en) Method of manufacturing a monolithic integrated circuit utilizing epitaxial deposition and simultaneous outdiffusion
US3577045A (en) High emitter efficiency simiconductor device with low base resistance and by selective diffusion of base impurities
GB2137019A (en) Semiconductor Device and Method for Manufacturing
EP0042380B1 (en) Method for achieving ideal impurity base profile in a transistor
JPH079929B2 (en) Method of manufacturing integrated circuit
JP3062065B2 (en) Method for manufacturing semiconductor device
JP2618921B2 (en) Method for manufacturing semiconductor device
JPS6155250B2 (en)
US3959810A (en) Method for manufacturing a semiconductor device and the same
JP3051088B2 (en) Method for manufacturing extrinsic base of NPN transistor using high frequency bipolar technology
JPH11345811A (en) Manufacture of semiconductor device
KR940008884B1 (en) Poly silicon resistance
KR0144340B1 (en) Method of fabricating ultra thin epitaxial film
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH04233737A (en) Manufacture of transistor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021018

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee