JPH06112512A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06112512A
JPH06112512A JP4254680A JP25468092A JPH06112512A JP H06112512 A JPH06112512 A JP H06112512A JP 4254680 A JP4254680 A JP 4254680A JP 25468092 A JP25468092 A JP 25468092A JP H06112512 A JPH06112512 A JP H06112512A
Authority
JP
Japan
Prior art keywords
layer
wafer
sub
epitaxial growth
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4254680A
Other languages
Japanese (ja)
Other versions
JP2716914B2 (en
Inventor
Tatsuyuki Kamimura
辰之 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP4254680A priority Critical patent/JP2716914B2/en
Publication of JPH06112512A publication Critical patent/JPH06112512A/en
Application granted granted Critical
Publication of JP2716914B2 publication Critical patent/JP2716914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor device in which a highly accurate high- resistance epitaxially grown layer can be obtained. CONSTITUTION:Thermally oxidized films 11 are formed at the peripheral parts on the rear surface, side faces, and front surface of an N<+> layer (sub-wafer) 10 and a high-resistance N<-> layer 12 is formed on the surface of the layer 10 by epitaxial growth. Therefore, auto-doping of the layer 12 with an impurity gas can be prevented by the films 11 at the time of performing the epitaxial growth for forming the layer 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスに関
し、詳細にはサブウエハから高抵抗エピタキシャル成長
層への不純物ガスのオートドープを抑えた半導体デバイ
ス(特にPINダイオード)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device (particularly a PIN diode) which suppresses auto-doping of an impurity gas from a sub-wafer to a high resistance epitaxial growth layer.

【0002】[0002]

【従来の技術】半導体デバイスとして、例えばPINダ
イオードは、一般的に高抵抗半導体層(I層)の一方側
に低抵抗のP+ 層を、他方側に低抵抗のN+ 層を有する
サンドイッチ構造のダイオードであり、その構造からP
INダイオードと呼ばれている。このようなPINダイ
オードで、サブウエハとなるN+ 層上に高抵抗半導体層
をエピタキシャル成長させる場合、不純物ガスの濃度を
下げると共に、N+ 層から出た不純物ガス(例えばP)
がI層(N- 層)に高濃度にドーピングされるのを防ぐ
ために、図7の(a)に示すようにN+ 層70の裏面を
CVD膜71等でコーティングしておき、その上でN+
層70上にI層72をエピタキシャル成長させている
〔図7の(b)参照〕。
2. Description of the Related Art As a semiconductor device, for example, a PIN diode is generally a sandwich structure having a low resistance P + layer on one side of a high resistance semiconductor layer (I layer) and a low resistance N + layer on the other side. Is a diode of
It is called an IN diode. In such a PIN diode, when a high resistance semiconductor layer is epitaxially grown on an N + layer to be a sub-wafer, the concentration of the impurity gas is lowered and the impurity gas (eg, P) emitted from the N + layer is reduced.
In order to prevent the I layer (N layer) from being doped with a high concentration, the back surface of the N + layer 70 is coated with a CVD film 71 or the like as shown in FIG. N +
An I layer 72 is epitaxially grown on the layer 70 [see (b) of FIG. 7].

【0003】[0003]

【発明が解決しようとする課題】N+ 層70の裏面をC
VD膜71等で覆えば、N+ 層70の裏面からは不純物
ガスが出なくなるが、N+ 層70の側面は露出している
ため、側面から不純物ガスが出る。その結果、不純物ガ
スがN+ 層70上のI層72にドーピングされてしまう
ため、不純物の少ない高抵抗(200Ω・cm以上)の
エピタキシャル成長層(I層)が得られ難くなる。
The back surface of the N + layer 70 is C
When covered with the VD film 71 or the like, the impurity gas does not come out from the back surface of the N + layer 70, but since the side surface of the N + layer 70 is exposed, the impurity gas comes out from the side surface. As a result, the impurity gas is doped into the I layer 72 on the N + layer 70, so that it is difficult to obtain an epitaxial growth layer (I layer) with few impurities and high resistance (200 Ω · cm or more).

【0004】従って、本発明の目的は、精度の良い高抵
抗エピタキシャル成長層が得られる半導体デバイスを提
供することにある。
Therefore, an object of the present invention is to provide a semiconductor device in which a highly accurate high resistance epitaxial growth layer can be obtained.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明の半導体デバイスは、サブウエハと、サブウ
エハの裏面、側面、及び少なくとも表面の周縁部分に設
けられた絶縁膜と、サブウエハの表面に形成された高抵
抗エピタキシャル成長層とを備えることを特徴とする。
In order to achieve the above object, a semiconductor device of the present invention comprises a sub-wafer, an insulating film provided on a back surface, a side surface, and at least a peripheral portion of the front surface of the sub-wafer, and a front surface of the sub-wafer. And a high resistance epitaxial growth layer formed on the substrate.

【0006】本発明の半導体デバイスでは、サブウエハ
の裏面だけでなく側面をも絶縁膜で覆ってあるため、サ
ブウエハ上に高抵抗エピタキシャル成長層(I層、N-
層等)を成長させる際に、不純物ガスがサブウエハの裏
面は勿論のこと側面からも出ず、サブウエハからの不純
物ガスが高抵抗エピタキシャル成長層に殆どドーピング
されない。しかも、サブウエハ表面の周縁部分にも絶縁
膜を設けてあるため、サブウエハと高抵抗エピタキシャ
ル成長層との境界面からの不純物ガスのドーピングをも
防止することができる。このため、サブウエハ表面上に
高抵抗エピタキシャル成長層を精度良く成長させること
が可能となる。
[0006] In the semiconductor device of the present invention, since the side as well as back surface of Sabuueha are covered with an insulating film, a high-resistance epitaxial growth layer on Sabuueha (I layer, N -
When a layer or the like) is grown, the impurity gas does not come out not only from the back surface but also from the side surface of the sub-wafer, and the impurity gas from the sub-wafer is hardly doped into the high resistance epitaxial growth layer. Moreover, since the insulating film is also provided on the peripheral portion of the surface of the sub-wafer, doping of the impurity gas from the boundary surface between the sub-wafer and the high resistance epitaxial growth layer can be prevented. Therefore, the high resistance epitaxial growth layer can be grown on the surface of the sub-wafer with high accuracy.

【0007】サブウエハ表面上に設ける絶縁膜は、サブ
ウエハと高抵抗エピタキシャル成長層との境界面から不
純物ガスが高抵抗エピタキシャル成長層にドーピングさ
れるのを防ぐために、少なくとも表面の周縁部分を被覆
すれば十分である。しかし、以下の実施例からも分かる
ように、デバイスを作製する面以外の全ての表面を絶縁
膜で覆えば、不純物ガスのドーピングをより一層効果的
に防止することができる。勿論、この場合にサブウエハ
表面上に設ける絶縁膜のパターンは、デバイスの構造等
に応じて種々に変更すればよい。
It is sufficient that the insulating film provided on the surface of the sub-wafer covers at least the peripheral portion of the surface in order to prevent the impurity gas from being doped into the high-resistance epitaxial growth layer from the interface between the sub-wafer and the high-resistance epitaxial growth layer. is there. However, as can be seen from the following examples, if the entire surface other than the surface for manufacturing the device is covered with the insulating film, the doping of the impurity gas can be prevented more effectively. Of course, in this case, the pattern of the insulating film provided on the surface of the sub-wafer may be variously changed according to the device structure and the like.

【0008】なお、本発明でいうところの高抵抗とは、
少なくとも200Ω・cm以上を指し、本発明のデバイ
スは200Ω・cm以上の高抵抗エピタキシャル成長層
を有するものである。
The high resistance as referred to in the present invention means
At least 200 Ω · cm or more, and the device of the present invention has a high resistance epitaxial growth layer of 200 Ω · cm or more.

【0009】[0009]

【実施例】以下、本発明の半導体デバイスを実施例に基
づいて説明する。図1に半導体デバイスの基本構造の一
例を示す。この基本構造は、Sb等をドープしたN+
(サブウエハ)10の裏面、側面及び表面の周縁部分に
絶縁膜としての熱酸化膜(例えばSiO2 )11がコー
ティングされ、N+ 層10の表面上に高抵抗エピタキシ
ャル成長層としてN- 層12がエピタキシャル成長され
たものである。
EXAMPLES The semiconductor device of the present invention will be described below based on examples. FIG. 1 shows an example of the basic structure of a semiconductor device. In this basic structure, a thermal oxide film (eg, SiO 2 ) 11 as an insulating film is coated on the back surface, side surface, and peripheral portion of the surface of an N + layer (sub-wafer) 10 doped with Sb or the like, and the surface of the N + layer 10 is An N layer 12 is epitaxially grown as a high resistance epitaxial growth layer thereon.

【0010】この基本構造を得るには、まず、図2の
(a)に示すN+ 層10の全面に熱酸化膜11をコーテ
ィングする〔図2の(b)参照〕。次に、N+ 層10の
裏面、側面及び表面の周縁部分に存在する熱酸化膜11
を残し、それ以外の熱酸化膜部分をフォトリソグラフィ
及びフォトエッチングによって除去する〔図2の(c)
参照〕。次いで、N+ 層10の表面にN- 層12をエピ
タキシャル成長させる。この際、N+ 層10の裏面、側
面及び表面の周縁部分が熱酸化膜11によって被覆され
ているため、N+ 層10の裏面及び側面からは不純物ガ
スが放散せず、不純物ガスのオートドーピングが防止さ
れると共に、N+ 層10とN- 層12との境界面から
も、不純物ガスがN- 層12にオートドーピングされな
くなる。従って、不純物の少ない高抵抗のN- 層12を
精度良く成長させることができる。
In order to obtain this basic structure, first, the entire surface of the N + layer 10 shown in FIG. 2A is coated with a thermal oxide film 11 [see FIG. 2B]. Next, the thermal oxide film 11 existing on the back surface, side surface, and peripheral portion of the surface of the N + layer 10
And the other thermal oxide film portion is removed by photolithography and photoetching [(c) of FIG. 2].
reference〕. Next, the N layer 12 is epitaxially grown on the surface of the N + layer 10. At this time, since the back surface of the N + layer 10, the peripheral portion of the side surface and the surface is covered by a thermal oxide film 11, the impurity gas is not dissipated from the back surface and side surfaces of the N + layer 10, the impurity gas autodoping In addition, the impurity gas is not auto-doped into the N layer 12 from the interface between the N + layer 10 and the N layer 12. Therefore, the high resistance N layer 12 containing few impurities can be accurately grown.

【0011】図3に別の基本構造を示す。この基本構造
では、熱酸化膜21をN+ 層20の表面の周縁部分以外
にも設けてある。表面上の熱酸化膜21aのパターン
は、デバイスの構造に従うものであり、例えば図4に示
すように円形の領域(膜無しの部分)Aが一定間隔を置
いて形成されたものである。この領域A上にデバイスが
作製され、熱酸化膜21a上にはデバイスを作製するこ
とができない。このようなパターンの熱酸化膜21aを
得るには、フォトリソグラフィの際に図4に示すような
パターンに対応するフォトレジストを使用してエッチン
グを行えばよい。
FIG. 3 shows another basic structure. In this basic structure, the thermal oxide film 21 is provided not only on the peripheral portion of the surface of the N + layer 20. The pattern of the thermal oxide film 21a on the surface conforms to the structure of the device, and for example, as shown in FIG. 4, circular regions (non-film portions) A are formed at regular intervals. The device is manufactured on this region A, and the device cannot be manufactured on the thermal oxide film 21a. In order to obtain the thermal oxide film 21a having such a pattern, etching may be performed using a photoresist corresponding to the pattern shown in FIG. 4 at the time of photolithography.

【0012】次に、図1に示した基本構造を用いて作製
したPINダイオードを図5に示す。このダイオードは
次のようにして製造される。まず図1の基本構造におい
て、N- 層12のパッシベーション(表面安定化)のた
めに、N- 層12上を例えばシリコン酸化膜(Si
2 )15で被覆する。このシリコン酸化膜15に所定
パターンでエッチングした後、P型不純物をドープし
て、N- 層12の上層をP層16とする。次いで、P層
16上に例えばアルミニウムからなる上部電極17を形
成する。そして、図5には示していないが、N+ 層10
の裏面側を熱酸化膜11と共に研削して、N+ 層10を
所定厚さまで薄くした後、N+ 層10の裏面に下部電極
を形成する。
Next, FIG. 5 shows a PIN diode manufactured by using the basic structure shown in FIG. This diode is manufactured as follows. First, in the basic structure of FIG. 1, N - for passivation layer 12 (passivation), N - layer 12 on a silicon oxide film (Si
Coat with O 2 ) 15. After etching the silicon oxide film 15 in a predetermined pattern, it is doped with P-type impurities to form an upper layer of the N layer 12 as a P layer 16. Next, the upper electrode 17 made of, for example, aluminum is formed on the P layer 16. Although not shown in FIG. 5, the N + layer 10
The back surface of the N + layer 10 is ground together with the thermal oxide film 11 to thin the N + layer 10 to a predetermined thickness, and then a lower electrode is formed on the back surface of the N + layer 10.

【0013】又、図3に示す基本構造を用いてなるPI
Nダイオードを図6に示す。このダイオードでは、先述
と同様にパッシベーションのためにN- 層22上にシリ
コン酸化膜25を設け、N- 層22の上層をP層26と
し、酸化膜25を設けていない部分に上部電極27を形
成してある。更に、図示していないが、上記と同様にN
+ 層20の裏面側を熱酸化膜21と共に研削し、この裏
面側に下部電極を設ける。なお、この例では、シリコン
酸化膜25は熱酸化膜21a上に位置し、デバイス作製
領域A上には存在しない。
A PI having the basic structure shown in FIG.
The N diode is shown in FIG. In this diode, similarly to the above, a silicon oxide film 25 is provided on the N layer 22 for passivation, the upper layer of the N layer 22 is a P layer 26, and the upper electrode 27 is provided on a portion where the oxide film 25 is not provided. Has been formed. Further, although not shown, N
The back surface side of the + layer 20 is ground together with the thermal oxide film 21, and a lower electrode is provided on this back surface side. In this example, the silicon oxide film 25 is located on the thermal oxide film 21a and does not exist on the device manufacturing region A.

【0014】[0014]

【発明の効果】以上説明したように、本発明の半導体デ
バイスは、サブウエハの裏面、側面、及び少なくとも表
面の周縁部分に絶縁膜を設け、その上でサブウエハの表
面に高抵抗エピタキシャル成長層を形成してなるもので
あるため、下記の効果を有する。 (1)サブウエハ裏面及び側面に絶縁膜が在るため、エ
ピタキシャル成長層を成長させる際に、サブウエハ裏面
及び側面からの不純物ガスのオートドープを防止するこ
とができる。 (2)サブウエハ表面の周縁部分にも絶縁膜が存在する
ため、エピタキシャル成長層を成長させる際に、エピタ
キシャル成長層とサブウエハとの境界面からの不純物ガ
スのオートドープをも防ぐことができる。 (3)サブウエハ表面において、その周縁部分の他に、
デバイス作製面以外の全ての面に絶縁膜を設けること
で、不純物ガスのオートドープをより一層効果的に防止
することができる。 (4)(1)〜(3)より、不純物の少ない高抵抗エピ
タキシャル成長層が精度良く得られる。
As described above, in the semiconductor device of the present invention, the insulating film is provided on the back surface, side surface, and at least the peripheral portion of the surface of the sub-wafer, and the high resistance epitaxial growth layer is formed on the surface of the sub-wafer. Therefore, it has the following effects. (1) Since the insulating film exists on the back surface and the side surface of the sub-wafer, it is possible to prevent the automatic doping of the impurity gas from the back surface and the side surface of the sub-wafer when the epitaxial growth layer is grown. (2) Since the insulating film is also present in the peripheral portion of the surface of the sub-wafer, it is possible to prevent the automatic doping of the impurity gas from the boundary surface between the epitaxial growth layer and the sub-wafer when the epitaxial growth layer is grown. (3) On the surface of the sub-wafer, in addition to the peripheral portion,
By providing the insulating film on all surfaces other than the device manufacturing surface, autodoping of the impurity gas can be prevented more effectively. (4) From (1) to (3), a high resistance epitaxial growth layer containing few impurities can be obtained with high precision.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半導体デバイスの基本
構造断面図である。
FIG. 1 is a basic structural cross-sectional view of a semiconductor device according to an embodiment of the present invention.

【図2】図1に示す基本構造を得るための工程図であ
る。
FIG. 2 is a process drawing for obtaining the basic structure shown in FIG.

【図3】本発明の別実施例に係る半導体デバイスの基本
構造断面図である。
FIG. 3 is a basic structural cross-sectional view of a semiconductor device according to another embodiment of the present invention.

【図4】図3に示す基本構造における絶縁膜のパターン
図である。
FIG. 4 is a pattern diagram of an insulating film in the basic structure shown in FIG.

【図5】図1に示す基本構造を用いて作製したPINダ
イオードの断面図である。
5 is a cross-sectional view of a PIN diode manufactured by using the basic structure shown in FIG.

【図6】図3に示す基本構造を用いて作製したPINダ
イオードの断面図である。
6 is a cross-sectional view of a PIN diode manufactured by using the basic structure shown in FIG.

【図7】従来例に係る半導体デバイスの基本構造を得る
ための工程図である。
FIG. 7 is a process diagram for obtaining a basic structure of a semiconductor device according to a conventional example.

【符号の説明】[Explanation of symbols]

10,20 N+ 層(サブウエハ) 11,21 熱酸化膜(絶縁膜) 12,22 N- 層(高抵抗エピタキシャル成長層)10,20 N + layer (sub-wafer) 11,21 Thermal oxide film (insulating film) 12,22 N layer (high resistance epitaxial growth layer)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】サブウエハと、サブウエハの裏面、側面、
及び少なくとも表面の周縁部分に設けられた絶縁膜と、
サブウエハの表面に形成された高抵抗エピタキシャル成
長層とを備えることを特徴とする半導体デバイス。
1. A sub-wafer, a back surface and a side surface of the sub-wafer,
And an insulating film provided on at least the peripheral portion of the surface,
A high resistance epitaxial growth layer formed on the surface of a sub-wafer.
【請求項2】前記半導体デバイスがPINダイオードで
あることを特徴とする請求項1記載の半導体デバイス。
2. The semiconductor device according to claim 1, wherein the semiconductor device is a PIN diode.
JP4254680A 1992-09-24 1992-09-24 Semiconductor device Expired - Fee Related JP2716914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254680A JP2716914B2 (en) 1992-09-24 1992-09-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254680A JP2716914B2 (en) 1992-09-24 1992-09-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH06112512A true JPH06112512A (en) 1994-04-22
JP2716914B2 JP2716914B2 (en) 1998-02-18

Family

ID=17268375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254680A Expired - Fee Related JP2716914B2 (en) 1992-09-24 1992-09-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2716914B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103562A (en) * 2006-10-19 2008-05-01 Fuji Electric Device Technology Co Ltd Manufacturing method of semiconductor device
JP2014112593A (en) * 2012-12-05 2014-06-19 Denso Corp Method of manufacturing semiconductor device having super-junction structure
CN106252213A (en) * 2016-08-22 2016-12-21 上海华力微电子有限公司 The method preventing the elemental release at heavily doped silicon substrate edge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227356A (en) * 1975-08-27 1977-03-01 Nec Corp Manufacturing process of silicon epitaxial wafer
JPS53126871A (en) * 1977-04-12 1978-11-06 Mitsubishi Electric Corp Diode
JPS5517498A (en) * 1978-07-19 1980-02-06 Siemens Ag Von karman*s vortex street flowing meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227356A (en) * 1975-08-27 1977-03-01 Nec Corp Manufacturing process of silicon epitaxial wafer
JPS53126871A (en) * 1977-04-12 1978-11-06 Mitsubishi Electric Corp Diode
JPS5517498A (en) * 1978-07-19 1980-02-06 Siemens Ag Von karman*s vortex street flowing meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103562A (en) * 2006-10-19 2008-05-01 Fuji Electric Device Technology Co Ltd Manufacturing method of semiconductor device
JP2014112593A (en) * 2012-12-05 2014-06-19 Denso Corp Method of manufacturing semiconductor device having super-junction structure
CN106252213A (en) * 2016-08-22 2016-12-21 上海华力微电子有限公司 The method preventing the elemental release at heavily doped silicon substrate edge

Also Published As

Publication number Publication date
JP2716914B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JPS6252963A (en) Manufacture of bipolar transistor
JPH06112512A (en) Semiconductor device
JPH0645340A (en) Semiconductor device and its manufacture
JPS6021560A (en) Complementary type mos semiconductor device and manufacture thereof
JPH02119123A (en) Manufacture of semiconductor device
JPS5840337B2 (en) Manufacturing method of semiconductor integrated circuit
JPH0864843A (en) Fabrication of zener diode
JPH0689902A (en) Manufacture of semiconductor device
JP2762447B2 (en) Method for manufacturing semiconductor device
JP2000164892A (en) Semiconductor device and manufacturing method therefor
JPS62262471A (en) Manufacture of semiconductor device
JPH06163556A (en) Semiconductor device
JP2002222938A (en) Semiconductor device
JPS5851417B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6034033A (en) Manufacture of semiconductor device
JPH1126835A (en) Semiconductor hall element and its manufacture
JP2000195811A (en) Solid phase diffusion method and semiconductor device manufacturing method using the method
JPS6046820B2 (en) Manufacturing method for semiconductor devices
JPS5840832A (en) Manufacture of semiconductor device
JPS6136370B2 (en)
JPS6261359A (en) Manufacture of semiconductor device
JPH05235018A (en) Manufacture of semiconductor device
JPH01248067A (en) Manufacture of semiconductor acceleration sensor
JPH06341913A (en) Integrated semiconductor pressure sensor
JPH0620072B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees