JPH0864843A - Fabrication of zener diode - Google Patents

Fabrication of zener diode

Info

Publication number
JPH0864843A
JPH0864843A JP6201850A JP20185094A JPH0864843A JP H0864843 A JPH0864843 A JP H0864843A JP 6201850 A JP6201850 A JP 6201850A JP 20185094 A JP20185094 A JP 20185094A JP H0864843 A JPH0864843 A JP H0864843A
Authority
JP
Japan
Prior art keywords
epitaxial layer
semiconductor substrate
polycrystalline silicon
silicon film
zener diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6201850A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nishina
俊之 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP6201850A priority Critical patent/JPH0864843A/en
Publication of JPH0864843A publication Critical patent/JPH0864843A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66098Breakdown diodes
    • H01L29/66106Zener diodes

Abstract

PURPOSE: To eliminate crystal defects of a high concentration epitaxial layer by causing the epitaxial layer of the concentration similar to that of a semiconductor substrate to grow thereon of high inpurity concentration. CONSTITUTION: An epitaxial layer 7 is grown in the thickness of 15 to 25μm with the specific resistance of 3 to 6mΩ.cm on a semiconductor substrate 1 consisting of an N-type silicon having the similar specific resistance of 5 to 18mΩ.cm. Next, window is selectively opened to an oxide film 9 formed by thermal oxidation on the surface of the epitaxial layer 7 and the P-type impurity is diffused to form a guard ring 3. After the oxide film 9 is removed, an insulating film 9 is provided at the surface of epitaxial layer 7 and a polycrystalline silicon film 8 adding the P-type impurity is deposited in the thickness of about 1μm in such manner as covering the aperture. Finally, an electrode 4 for bump is formed with Ag, etc., on the polycrystalline silicon film 8. Thereby, short- circuit by alloy spike can be prevented and a zener diode of the voltage of about 1 to 2V can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ツェナーダイオードの
製造方法に関し、特に低電圧のツェナーダイオードの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a Zener diode, and more particularly to a method of manufacturing a low voltage Zener diode.

【0002】[0002]

【従来の技術】ツェナーダイオードは、PN接合に逆バ
イアスを印可することで生じる降伏現象(ツェナー降
伏)を利用したダイオードである。ツェナー降伏を生じ
ている範囲では、電圧が一定値に保持される特性を有す
ることからツェナーダイオードは定電圧素子として使用
されている。
2. Description of the Related Art A Zener diode is a diode which utilizes a breakdown phenomenon (Zener breakdown) which occurs when a reverse bias is applied to a PN junction. The Zener diode is used as a constant voltage element because it has a characteristic that the voltage is held at a constant value in the range where Zener breakdown occurs.

【0003】一般にツェナーダイオードの構造は、図3
に示すように、高濃度の例えば、N + 型の半導体基板1
の表層部の選択箇所にP型の拡散領域2を設けると共
に、拡散領域2の周辺にP+ 型のガードリング3を設け
ている。そして、拡散領域2上にはAl,Ag等のアノ
ード用の電極4が形成されており、半導体基板1の裏面
にはカソード用の電極5が形成されている。なお、半導
体基板1の表面は、拡散領域2上に形成された電極4の
部分を除き、絶縁膜6で覆われている。
Generally, the structure of a Zener diode is shown in FIG.
As shown in FIG. + Type semiconductor substrate 1
When a P-type diffusion region 2 is provided at a selected location on the surface layer of
And P around the diffusion region 2+ Type guard ring 3
ing. Then, an anode such as Al or Ag is formed on the diffusion region 2.
The back surface of the semiconductor substrate 1 on which the electrode 4 for the substrate is formed.
An electrode 5 for a cathode is formed on the. In addition, semi-conduction
The surface of the body substrate 1 has electrodes 4 formed on the diffusion region 2.
Except for the portion, it is covered with the insulating film 6.

【0004】上述の構造を有するツェナーダイオードの
ツェナー電圧は、N+ 型半導体基板1に形成されるP型
の拡散領域2の深さと、N+ 型半導体基板1の不純物濃
度によって所定の値に決定される。その値は、拡散領域
2の深さを浅くし、かつ半導体基板1の不純物濃度を高
くするほど低く(低電圧化)することができ、現在で
は、ツェナー電圧が3〜50Vのものが一般に量産され
ている。
[0004] determining the Zener voltage of the Zener diode having the structure described above, the depth of the P-type diffusion region 2 formed in the N + semiconductor substrate 1, the impurity concentration of the N + -type semiconductor substrate 1 to a predetermined value To be done. The value can be lowered (lowered in voltage) as the depth of the diffusion region 2 is made shallower and the impurity concentration of the semiconductor substrate 1 is made higher. At present, a Zener voltage of 3 to 50 V is generally used for mass production. Has been done.

【0005】ところで、近年の電子機器の駆動電圧の低
電圧化に伴いツェナー電圧が1〜2Vのツェナーダイオ
ードが求められている。この要望に答えるため、P型の
拡散領域2の深さとN+ 型半導体基板1の不純物濃度を
調整することで、ツェナー電圧が1〜2V程度となるツ
ェナーダイオードの開発若しくは製造が進められてい
る。
Incidentally, with the recent decrease in the drive voltage of electronic equipment, a Zener diode having a Zener voltage of 1 to 2 V is required. In order to meet this demand, development or manufacture of a Zener diode having a Zener voltage of about 1 to 2 V is underway by adjusting the depth of the P type diffusion region 2 and the impurity concentration of the N + type semiconductor substrate 1. .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ツェナ
ーダイオードのツェナー電圧を1〜2V程度にするに
は、次の点から非常に困難であった。まず、ツェナー電
圧を決定する一つの要因である、高濃度のN+ 型の半導
体基板は、不純物を添加しながら種結晶を回転させて引
き上げる方法(CZ法)で作成されたシリコン単結晶棒
をスライス加工することで製造されている。しかし、C
Z法では、種結晶を回転しながら引き上げるので、不純
物濃度がシリコン単結晶棒内でばらつき、この結果、こ
れをスライス加工した半導体基板も不純物濃度がらつく
という問題を生じていた。このため、特に、CZ法によ
る半導体基板を用いてツェナー電圧を1〜2Vの範囲に
精度よく制御することは非常に困難なものとなってい
た。さらには、CZ法による半導体基板の表面層はダイ
オードの製造過程で結晶欠陥等の不具合を生じ易く、P
N接合の形成に悪影響を与えツェナー電圧を1〜2Vに
精度よく制御する妨げとなっていた。
However, it was very difficult to set the Zener voltage of the Zener diode to about 1 to 2 V from the following points. First, for a high-concentration N + type semiconductor substrate, which is one factor that determines the Zener voltage, a silicon single crystal ingot produced by a method of rotating a seed crystal and pulling it while adding impurities (CZ method) is used. It is manufactured by slicing. But C
In the Z method, since the seed crystal is pulled up while rotating, the impurity concentration varies within the silicon single crystal ingot, and as a result, the semiconductor substrate obtained by slicing this has a problem that the impurity concentration also fluctuates. For this reason, it has been extremely difficult to control the Zener voltage in the range of 1 to 2 V with high accuracy by using the semiconductor substrate according to the CZ method. Furthermore, the surface layer of the semiconductor substrate formed by the CZ method is liable to cause defects such as crystal defects in the process of manufacturing the diode.
This adversely affects the formation of the N-junction and hinders accurate control of the Zener voltage to 1 to 2V.

【0007】また、ツェナー電圧を決定する他の要因で
ある、P型の拡散領域は、通常イオン打込みにより形成
されるが、この方法では拡散領域を一定以下に浅くする
ことは困難であり、ツェナー電圧を1〜2Vの範囲に相
当する深さに制御するのは困難であった。仮に、拡散領
域を非常に浅くできたとしても、この拡散領域上に電極
を形成した際に生じるアロイスパイクによるショートを
充分に防止することはできなかった。
The P-type diffusion region, which is another factor that determines the Zener voltage, is usually formed by ion implantation, but it is difficult to make the diffusion region shallower than a certain level by this method. It was difficult to control the voltage to a depth corresponding to the range of 1 to 2V. Even if the diffusion region could be made extremely shallow, it was not possible to sufficiently prevent a short circuit due to an alloy spike generated when an electrode was formed on the diffusion region.

【0008】本発明の目的は、上述した問題点を除去し
たツェナーダイオードの製造方法を提供することにあ
る。
An object of the present invention is to provide a method of manufacturing a Zener diode which eliminates the above-mentioned problems.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の目的を
達成するために次のような構成をとる。すなわち、本発
明のツェナーダイオードの製造方法は、一導電型の半導
体基板上に前記半導体基板と不純物濃度が同程度の一導
電型のエピタキシャル層を形成する工程と、前記エピタ
キシャル層の表面に設けた絶縁膜に開口部を形成する工
程と、前記開口部に他導電型の不純物を添加した多結晶
シリコン膜を堆積した後、前記多結晶シリコン膜中の前
記不純物を前記エピタキシャル層内に拡散させ他導電型
の拡散領域を形成する工程と、前記多結晶シリコン膜上
及び半導体基板の裏面に電極を被着する工程を具備する
ことを特徴とするものである。
The present invention has the following constitution in order to achieve the above object. That is, the method for manufacturing a Zener diode of the present invention includes a step of forming an epitaxial layer of one conductivity type on a semiconductor substrate of one conductivity type having an impurity concentration approximately the same as that of the semiconductor substrate, and providing the surface of the epitaxial layer. Forming an opening in the insulating film, depositing a polycrystalline silicon film doped with impurities of other conductivity type in the opening, and diffusing the impurities in the polycrystalline silicon film into the epitaxial layer The method is characterized by including a step of forming a conductive type diffusion region and a step of depositing an electrode on the polycrystalline silicon film and the back surface of the semiconductor substrate.

【0010】[0010]

【作用】本発明では、高不純物濃度の半導体基板上にさ
らに前記半導体基板と同程度の濃度のエピタキシャル層
を成長させているので、高濃度のエピタキシャル層には
結晶欠陥が少なく、しかも不純物濃度のばらつきもほと
んどないので精度よく半導体基板の不純物濃度を制御で
きる。
According to the present invention, since the epitaxial layer having the same concentration as that of the semiconductor substrate is further grown on the semiconductor substrate having high impurity concentration, the high concentration epitaxial layer has few crystal defects and has high impurity concentration. Since there is almost no variation, the impurity concentration of the semiconductor substrate can be controlled accurately.

【0011】また、本発明では、多結晶シリコン膜を形
成して該膜中の不純物をエピタキシャル層内に拡散領域
を形成しているのでその深さを浅くすることができる。
さらに、拡散領域の形成に利用した多結晶シリコン膜を
残して該膜上に電極を形成しているのでアロイスパイク
によるショートを防止することができる。このような方
法を利用することでツェナー電圧が1〜2V程度のツェ
ナーダイオードを得ることができる。
Further, in the present invention, since the polycrystalline silicon film is formed and the impurity in the film is formed as the diffusion region in the epitaxial layer, the depth can be made shallow.
Furthermore, since the polycrystalline silicon film used for forming the diffusion region is left and the electrode is formed on the film, a short circuit due to alloy spike can be prevented. By using such a method, a zener diode having a zener voltage of about 1 to 2 V can be obtained.

【0012】[0012]

【実施例】以下、本発明の実施例を図1を参照しつつ説
明する。尚、従来と同一部分や相当部分には同一の符号
を付している。まず、図1(a)に示すように、比抵抗
5〜18mΩ・cmのN型のシリコンからなる半導体基
板1上に、これと同程度の比抵抗3〜6mΩ・cmで厚
さの15〜25μmのエピタキシャル層7を成長させ
る。この半導体基板1は比抵抗5〜18mΩ・cmとす
るためCZ法で製造されたシリコン単結晶棒をスライス
加工したものが使用されている。エピタキシャル層7を
成長させることにより該層中には結晶欠陥がなく、しか
も不純物濃度のばらつきもない半導体基板を得ることが
できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. Incidentally, the same reference numerals are given to the same or corresponding portions as in the conventional case. First, as shown in FIG. 1A, on a semiconductor substrate 1 made of N-type silicon having a specific resistance of 5 to 18 mΩ · cm, a specific resistance of 3 to 6 mΩ · cm and a thickness of 15 to A 25 μm epitaxial layer 7 is grown. As this semiconductor substrate 1, a silicon single crystal ingot manufactured by the CZ method is sliced so as to have a specific resistance of 5 to 18 mΩ · cm. By growing the epitaxial layer 7, it is possible to obtain a semiconductor substrate having no crystal defects in the layer and no variation in impurity concentration.

【0013】次に、図1(b)に示すように、エピタキ
シャル層7の表面に熱酸化により形成した酸化膜9に選
択的に窓を開け、P型不純物を拡散してガードリング3
を形成する。このガードリング3は、ツェナー降伏をで
きるだけ半導体基板の内部で起こさせるために設けられ
ている。次に、酸化膜9を除去した後、図1(c)に示
すように、エピタキシャル層7の表面に絶縁膜6を設
け、フォトレジストプロセスで開口部10を形成する。
この後、CVD法により温度約600〜750℃で、開
口部10を覆うようにP型の不純物、例えばボロンを添
加した多結晶シリコン膜8を厚さ約1μm程度に堆積す
る。
Next, as shown in FIG. 1B, a window is selectively opened in the oxide film 9 formed on the surface of the epitaxial layer 7 by thermal oxidation to diffuse the P-type impurities and to form the guard ring 3.
To form. The guard ring 3 is provided to cause Zener breakdown inside the semiconductor substrate as much as possible. Next, after removing the oxide film 9, as shown in FIG. 1C, the insulating film 6 is provided on the surface of the epitaxial layer 7, and the opening 10 is formed by a photoresist process.
After that, a polycrystalline silicon film 8 to which a P-type impurity such as boron is added is deposited to a thickness of about 1 μm by the CVD method at a temperature of about 600 to 750 ° C. so as to cover the opening 10.

【0014】次に、図1(d)に示すように、図示しな
いポリボロンフィルムを多結晶シリコン膜8上に塗布し
た後、8温度約800〜850℃のN2 雰囲気中で熱処
理することにより多結晶シリコン膜8に含まれているP
型の不純物がエピタキシャル層7中に拡散し、深さ0.
2〜0.3μmの拡散領域2が形成される。ここでP型
の不純物は多結晶シリコン膜8から拡散させているの
で、非常に浅い拡散領域2を形成することができるとと
もに、多結晶シリコン膜8は電極を形成する際に発生す
るアロイスパイクに対するバッファ層として利用でき
る。
Next, as shown in FIG. 1D, a polyboron film (not shown) is applied on the polycrystalline silicon film 8 and then heat-treated in a N 2 atmosphere at a temperature of about 800 to 850 ° C. P contained in the polycrystalline silicon film 8
Type impurities diffuse into the epitaxial layer 7 to a depth of 0.
A diffusion region 2 of 2 to 0.3 μm is formed. Here, since the P-type impurity is diffused from the polycrystalline silicon film 8, a very shallow diffusion region 2 can be formed, and the polycrystalline silicon film 8 can prevent alloy spikes generated when forming an electrode. It can be used as a buffer layer.

【0015】最後に、図1(e)に示すように、蒸着等
により多結晶シリコン膜8上にAgまたはAl等の金属
を被着しバンプ用、またはワイヤボンディング用の電極
4を形成するとともに、半導体基板1の裏面に電極5を
形成する。本実施例では、アロイスパイクによるショー
トをより確実に防止するため、多結晶シリコン膜8と電
極4の間に厚さ500〜4000オングストロームのT
iのバッファ層11を設けている。
Finally, as shown in FIG. 1E, a metal such as Ag or Al is deposited on the polycrystalline silicon film 8 by vapor deposition or the like to form electrodes 4 for bumps or wire bonding. The electrode 5 is formed on the back surface of the semiconductor substrate 1. In this embodiment, in order to prevent a short circuit due to alloy spikes more reliably, a T-thickness of 500 to 4000 angstrom is provided between the polycrystalline silicon film 8 and the electrode 4.
i buffer layer 11 is provided.

【0016】次に、図2は本発明の方法により製造され
たツェナーダイオードのツェナー電圧を測定した結果を
示したグラフである。本測定ではIZ=20mAを流し
たときのツェナー電圧(VZ )のばらつきを示してい
る。本測定から明らかなように本発明により製造された
ツェナーダイオードは、従来のツェナーダイオードに比
較して低いツェナー電圧にすることができる。
Next, FIG. 2 is a graph showing the results of measuring the Zener voltage of the Zener diode manufactured by the method of the present invention. In this measurement, the variation of the Zener voltage (VZ) when IZ = 20 mA is shown is shown. As is apparent from this measurement, the Zener diode manufactured according to the present invention can have a lower Zener voltage than the conventional Zener diode.

【0017】[0017]

【効果】上述のように、本発明の製造方法によれば、結
晶欠陥がほとんどなく、しかも不純物濃度のばらつきの
ない高濃度の半導体基板を得ることができる。また、多
結晶シリコン膜から不純物を拡散してエピタキシャル層
内に拡散領域を形成しているのでその深さを浅くするこ
とができる。さらに、拡散領域の形成に利用した多結晶
シリコン膜を残して電極を形成しているので、多結晶シ
リコン膜がアロイスパイクに対するバッファ層となりシ
ョートを防止することができる。
As described above, according to the manufacturing method of the present invention, it is possible to obtain a high-concentration semiconductor substrate having few crystal defects and no variation in impurity concentration. Further, since the impurity is diffused from the polycrystalline silicon film to form the diffusion region in the epitaxial layer, the depth can be made shallow. Further, since the electrode is formed by leaving the polycrystalline silicon film used for forming the diffusion region, the polycrystalline silicon film serves as a buffer layer for alloy spikes and short circuit can be prevented.

【0018】そして、上記の効果により低いツェナー電
圧のツェナーダイオードを得ることができる。
A Zener diode having a low Zener voltage can be obtained by the above effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法の実施例を説明する図面。FIG. 1 is a diagram illustrating an embodiment of a manufacturing method of the present invention.

【図2】IZ=20mAを流したときのVZのばらつきを
示すグラフ。
FIG. 2 is a graph showing variations in VZ when IZ = 20 mA is applied.

【図3】従来のツェナーダイオードを示す説明図。FIG. 3 is an explanatory diagram showing a conventional Zener diode.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 拡散領域 3 ガードリング 4,5 電極 6 絶縁膜 7 エピタキシャル層 8 多結晶シリコン膜 10 開口部 1 Semiconductor Substrate 2 Diffusion Region 3 Guard Ring 4, 5 Electrode 6 Insulating Film 7 Epitaxial Layer 8 Polycrystalline Silicon Film 10 Opening

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板上に前記半導体基
板と不純物濃度が同程度の一導電型のエピタキシャル層
を形成する工程と、前記エピタキシャル層の表面に設け
た絶縁膜に開口部を形成する工程と、前記開口部に他導
電型の不純物を添加した多結晶シリコン膜を堆積した
後、前記多結晶シリコン膜中の前記不純物を前記エピタ
キシャル層内に拡散させ他導電型の拡散領域を形成する
工程と、前記多結晶シリコン膜上及び半導体基板の裏面
に電極を被着する工程を具備することを特徴とするツェ
ナーダイオードの製造方法。
1. A step of forming an epitaxial layer of one conductivity type having the same impurity concentration as that of the semiconductor substrate on a semiconductor substrate of one conductivity type, and forming an opening in an insulating film provided on the surface of the epitaxial layer. And a step of depositing a polycrystalline silicon film to which an impurity of another conductivity type is added in the opening, and then diffusing the impurities in the polycrystalline silicon film into the epitaxial layer to form a diffusion region of another conductivity type. And a step of depositing an electrode on the polycrystalline silicon film and on the back surface of the semiconductor substrate.
JP6201850A 1994-08-26 1994-08-26 Fabrication of zener diode Pending JPH0864843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6201850A JPH0864843A (en) 1994-08-26 1994-08-26 Fabrication of zener diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6201850A JPH0864843A (en) 1994-08-26 1994-08-26 Fabrication of zener diode

Publications (1)

Publication Number Publication Date
JPH0864843A true JPH0864843A (en) 1996-03-08

Family

ID=16447926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6201850A Pending JPH0864843A (en) 1994-08-26 1994-08-26 Fabrication of zener diode

Country Status (1)

Country Link
JP (1) JPH0864843A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013129A (en) * 2004-06-25 2006-01-12 Nec Electronics Corp Semiconductor apparatus
WO2015050776A1 (en) * 2013-10-01 2015-04-09 Vishay General Semiconductor Llc Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
US9190470B2 (en) 2013-11-06 2015-11-17 Seiko Epson Corporation Semiconductor device which suppresses fluctuations in breakdown voltage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013129A (en) * 2004-06-25 2006-01-12 Nec Electronics Corp Semiconductor apparatus
WO2015050776A1 (en) * 2013-10-01 2015-04-09 Vishay General Semiconductor Llc Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
US9202935B2 (en) 2013-10-01 2015-12-01 Vishay General Semiconductor Llc Zener diode haviing a polysilicon layer for improved reverse surge capability and decreased leakage current
US9331142B2 (en) 2013-10-01 2016-05-03 Vishay General Semiconductor Llc Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
CN105556679A (en) * 2013-10-01 2016-05-04 威世通用半导体公司 Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
EP3053198A1 (en) * 2013-10-01 2016-08-10 Vishay General Semiconductor LLC Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
JP2016536778A (en) * 2013-10-01 2016-11-24 ヴィシェイ ジェネラル セミコンダクター,エルエルシーVishay General Semiconductor,Llc Zener diode with polysilicon layer with improved reverse surge capability and reduced leakage current
EP3053198A4 (en) * 2013-10-01 2017-05-03 Vishay General Semiconductor LLC Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
US9966429B2 (en) 2013-10-01 2018-05-08 Vishay General Semiconductor Llc Zener diode having a polysilicon layer for improved reverse surge capability and decreased leakage current
US9190470B2 (en) 2013-11-06 2015-11-17 Seiko Epson Corporation Semiconductor device which suppresses fluctuations in breakdown voltage

Similar Documents

Publication Publication Date Title
JPH0216591B2 (en)
US4408386A (en) Method of manufacturing semiconductor integrated circuit devices
JPH0864843A (en) Fabrication of zener diode
JPH0645340A (en) Semiconductor device and its manufacture
JPS59165455A (en) Semiconductor device
JPS5852843A (en) Manufacture of semiconductor integrated circuit device
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPS5834943A (en) Semiconductor device and manufacture thereof
US4905070A (en) Semiconductor device exhibiting no degradation of low current gain
KR100600850B1 (en) Thin film silicon solar cell and method for fabricating the same
JP3432877B2 (en) Zener diode
JPH08107222A (en) Zener diode
JPH0464179B2 (en)
JP2002222938A (en) Semiconductor device
KR810000726B1 (en) Manufacturing method of semiconductor device
RU845678C (en) Method of manufacturing hf p- &&& -p transistors
JPS63138772A (en) Schottky barrier type semiconductor device and manufacture thereof
JPH03198344A (en) Semiconductor device and photoelectric transducer using same
JPS5913379A (en) Zener diode
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH01112779A (en) Voltage reference diode and manufacture thereof
JPS60226175A (en) Manufacture of semiconductor device
JPH05136338A (en) Semiconductor device and its manufacture
EP0244452A1 (en) Subcollector for bipolar transistors
JPS6184831A (en) Manufacture of semiconductor device