JPS5840337B2 - Manufacturing method of semiconductor integrated circuit - Google Patents

Manufacturing method of semiconductor integrated circuit

Info

Publication number
JPS5840337B2
JPS5840337B2 JP3453376A JP3453376A JPS5840337B2 JP S5840337 B2 JPS5840337 B2 JP S5840337B2 JP 3453376 A JP3453376 A JP 3453376A JP 3453376 A JP3453376 A JP 3453376A JP S5840337 B2 JPS5840337 B2 JP S5840337B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal semiconductor
wafer
integrated circuit
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3453376A
Other languages
Japanese (ja)
Other versions
JPS52119084A (en
Inventor
真治 奥原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3453376A priority Critical patent/JPS5840337B2/en
Publication of JPS52119084A publication Critical patent/JPS52119084A/en
Publication of JPS5840337B2 publication Critical patent/JPS5840337B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Description

【発明の詳細な説明】 本発明は誘電体絶縁分離を施した半導体集積回路の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit with dielectric isolation.

半導体集積回路において、回路素子間を電気的に絶縁す
るために、通常はPN接合による壁を逆バイアス状態に
保つPN接合絶縁分離法が用いられているが、更に寄生
能動回路の除去、結合容量の低減等を目的に、二酸化シ
リコン膜などの絶縁物による絶縁を計った誘電体絶縁分
離法を用いる場合がある。
In semiconductor integrated circuits, in order to electrically insulate between circuit elements, a PN junction isolation method is normally used in which the walls of the PN junction are kept in a reverse bias state. In some cases, a dielectric isolation method using an insulator such as a silicon dioxide film is used for the purpose of reducing the noise.

従来の誘電体絶縁分離を施した半導体集積回路は、第1
図に示すように、複数の単結晶半導体領域1 、1’(
別名、島と呼ばれる。
Conventional semiconductor integrated circuits with dielectric isolation
As shown in the figure, a plurality of single crystal semiconductor regions 1, 1' (
Also known as the island.

)が、その低面側面を二酸化シリコンなどの誘電体2,
2′でつつまれで、多結晶半導体母体3に支持された構
造をなしている。
), but its lower side is covered with a dielectric material 2 such as silicon dioxide,
2', and has a structure supported by a polycrystalline semiconductor matrix 3.

そして、この各単結晶半導体領域には、表面から不純物
拡散あるいはイオン注入等の技術で、第1図に例示した
如きNPN)ランジスタ、あるいは図示しない抵抗、ダ
イオード、その他の回路素子を形成して半導体集積回路
と成している。
Then, in each single crystal semiconductor region, an NPN (NPN) transistor as exemplified in FIG. 1, a resistor, a diode, and other circuit elements (not shown) are formed from the surface by techniques such as impurity diffusion or ion implantation to form a semiconductor. It is made up of an integrated circuit.

しかし、この従来の誘電体絶縁分離による半導体集積回
路は単結晶半導体領域1,1′と多結晶半導体母体3と
の複合材料から成っているため、誘電体絶縁分離加工途
中の熱履歴あるいは後の拡散処理等の回路素子形成課程
の熱処理などにおいてウェハの湾曲変形、結晶欠陥の増
大などを生ずる欠点があった。
However, since this conventional semiconductor integrated circuit using dielectric insulation separation is made of a composite material of single-crystal semiconductor regions 1, 1' and polycrystalline semiconductor matrix 3, thermal history during dielectric insulation separation processing and subsequent There have been drawbacks such as wafer deformation in curvature and increase in crystal defects during heat treatment during the circuit element formation process such as diffusion treatment.

すなわち、従来の第1図図示の半導体集積回路は単結晶
半導体ウェハに分離用の溝を加工後その表面に酸化膜等
の誘電体を形成し、更に半導体材料(主にシリコン)を
堆積させ、単結晶半導体ウェハの大部分を研摩除去して
絶縁分離された単結晶半導体領域を得る工法により製造
されるため、誘電体上に堆積した半導体材料は単結晶と
はならずに多結晶状となり、単結晶と多結晶との物理的
な性質の差から熱履歴等において湾曲変形をもたらして
いた。
That is, in the conventional semiconductor integrated circuit shown in FIG. 1, a isolation groove is formed in a single crystal semiconductor wafer, a dielectric material such as an oxide film is formed on the surface of the wafer, and a semiconductor material (mainly silicon) is further deposited. Because it is manufactured using a method that obtains isolated single crystal semiconductor regions by polishing away most of the single crystal semiconductor wafer, the semiconductor material deposited on the dielectric material is not single crystal but polycrystalline. Differences in physical properties between single crystals and polycrystals have led to curved deformation due to thermal history, etc.

このため、湾曲変形によって集積回路製造時のホトエツ
チング精度が低下し、あるいは変形防止の為に多結晶中
に若干の酸素を含ませるとか多結晶中に複数の絶縁膜を
増設するなど特殊技術が要求され、集積回路のコストが
高くなる欠点をもっていた。
For this reason, the photoetching accuracy during integrated circuit manufacturing decreases due to the bending deformation, or special techniques are required to prevent deformation, such as adding a small amount of oxygen to the polycrystal or adding multiple insulating films to the polycrystal. However, it had the disadvantage of increasing the cost of integrated circuits.

本発明は、上記した従来の誘電体絶縁分離法による半導
体集積回路の製造方法を改善したものでウェハの湾曲変
形等を防止し、又、絶縁分離工程上の研摩作業を簡易化
できる経済的な半導体集積回路の製造方法を提供するも
のである。
The present invention is an improved method of manufacturing semiconductor integrated circuits using the conventional dielectric insulation separation method described above, and is an economical method that prevents wafer bending and deformation, and simplifies the polishing work in the insulation separation process. A method for manufacturing a semiconductor integrated circuit is provided.

本発明は、単結晶半導体ウェハに分離用の溝を加工した
後、イオン注入によって誘電体領域を単結晶ウェハの内
部に形成し、続いて単結晶半導体を成長させ最後に元の
単結晶ウェハの大部分を除去することによって、単結晶
半導体母体に支えられ、誘電体によって絶縁分離された
複数の単結晶半導体母体を形成したものである。
In the present invention, after processing a separation groove in a single crystal semiconductor wafer, a dielectric region is formed inside the single crystal wafer by ion implantation, and then a single crystal semiconductor is grown, and finally the original single crystal wafer is By removing a large portion, a plurality of single crystal semiconductor base bodies supported by the single crystal semiconductor base body and insulated and separated by a dielectric material are formed.

以下本発明を図面によって詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第2図は、本発明を実施した半導体集積回路の部分断面
図であり、複数の単結晶半導体領域11゜11′が、誘
電体膜12,12’に包まれて単結晶半導体母体13に
支えられている。
FIG. 2 is a partial cross-sectional view of a semiconductor integrated circuit embodying the present invention, in which a plurality of single crystal semiconductor regions 11°11' are supported by a single crystal semiconductor matrix 13 surrounded by dielectric films 12, 12'. It is being

この単結晶半導体母体13は、第2図中点線で区分され
た2つの部分13a 、13bから成っており、誘電体
膜12,12’に近い部分13aは元来単結晶半導体領
域11,11’と同一の素材であったものであり、誘電
体膜12,12’から遠い部分13bは、部分13aの
表面に成長させた単結晶半導体である。
This single crystal semiconductor matrix 13 consists of two parts 13a and 13b divided by dotted lines in FIG. The portion 13b far from the dielectric films 12, 12' is a single crystal semiconductor grown on the surface of the portion 13a.

そして、単結晶領域11.11’には適宜回路素子が形
成され、図示しない配線が施されて集積回路が完成する
Then, appropriate circuit elements are formed in the single crystal regions 11 and 11', and wiring (not shown) is provided to complete an integrated circuit.

回路素子間は、誘電体膜12 、12’によって絶縁分
離されたこととなる。
The circuit elements are insulated and separated by the dielectric films 12 and 12'.

第3図a−dは、第2図に示した半導体集積回路を本発
明により製造する製造工程図を表わす。
3a to 3d represent manufacturing process diagrams for manufacturing the semiconductor integrated circuit shown in FIG. 2 according to the present invention.

まず、第3図aの如く、単結晶半導体ウェハ21に、ホ
トエツチングされた二酸化シリコン、ホトレジスト等の
エツチングマスク22を助けとして溝23,23’を形
成する。
First, as shown in FIG. 3a, grooves 23 and 23' are formed in a single crystal semiconductor wafer 21 using an etching mask 22 such as photoetched silicon dioxide or photoresist.

この場合ウェハ21に(100)面方位の単結晶半導体
を用い、結晶軸の方向によってエツチング速度の異なる
異方性エツチング液を用いたとすれば、溝23.23’
の形状は図示の如く正確なりサビ形にできる。
In this case, if a single crystal semiconductor with a (100) plane orientation is used for the wafer 21 and an anisotropic etching solution is used that has different etching rates depending on the direction of the crystal axis, the grooves 23, 23'
As shown in the figure, the shape can be accurate or can be a rust shape.

次に、エツチングマスク22を取除いた後第3図すの如
く、図の下方からイオン注入を行ない、ウェハ21の下
面から一定距離離れた部分に誘電体膜24を形成する。
Next, after removing the etching mask 22, as shown in FIG. 3, ions are implanted from the bottom of the figure to form a dielectric film 24 at a certain distance from the bottom surface of the wafer 21.

尚、この場合注入するイオンには、酸素、窒素、炭素等
が用いられ、注入された領域には半導体元素の酸化膜、
窒化膜、炭化膜等の誘電体膜24が構成される。
In this case, the ions to be implanted are oxygen, nitrogen, carbon, etc., and the implanted region is covered with an oxide film of a semiconductor element,
A dielectric film 24 such as a nitride film or a carbide film is formed.

ここで、ウェハ21の下表面には薄い単結晶半導体領域
25がまだ残っていることが特徴である。
Here, a feature is that a thin single crystal semiconductor region 25 still remains on the lower surface of the wafer 21.

続いて、第3図Cの如く、ウェハ21の下表面に、半導
体母体26を厚く堆積させる。
Subsequently, as shown in FIG. 3C, a semiconductor matrix 26 is deposited thickly on the lower surface of the wafer 21.

半導体母体26は単結晶半導体領域25の表面に堆積さ
せるため、通常の半導体技術においてエピタキシャル成
長技術と呼ばれる単結晶半導体の成長技術がそのまま利
用でき、単結晶として堆積できる。
Since the semiconductor matrix 26 is deposited on the surface of the single crystal semiconductor region 25, a single crystal semiconductor growth technique called epitaxial growth technique in ordinary semiconductor technology can be used as is, and it can be deposited as a single crystal.

従って、その堆積厚さは正確にコントロールでき、又、
その体積抵抗率、不純物成分等も制御可能で且、堆積後
の表面27も平滑である。
Therefore, the deposition thickness can be precisely controlled, and
Its volume resistivity, impurity components, etc. can be controlled, and the surface 27 after deposition is also smooth.

最後に、元の単結晶半導体ウェハ21を上表面から研摩
あるいはエツチング等によって少しずつ除去し、誘電体
膜24を表面に露出させると、第3図dの如く誘電体膜
24によって絶縁分離された複数の単結晶半導体領域2
8が単結晶半導体母体26に支えられた誘電体絶縁分離
ウェハが完成する。
Finally, when the original single crystal semiconductor wafer 21 is removed little by little from the upper surface by polishing or etching to expose the dielectric film 24 on the surface, the dielectric film 24 is insulated and isolated as shown in FIG. Multiple single crystal semiconductor regions 2
A dielectric insulation separated wafer in which 8 is supported by the single crystal semiconductor base body 26 is completed.

その後通常の技術によって、回路素子が形成される。Circuit elements are then formed using conventional techniques.

以上の工程において、ウェハ21に予め不純物濃度に段
差をつけておけば、第3図Cからdに移る工程での研摩
作業は、不純物濃度差を利用したエツチングによって精
度良く単結晶半導体領域28を残すことが可能である。
In the above steps, if a step is created in advance in the impurity concentration on the wafer 21, the polishing work in the steps from C to d in FIG. It is possible to leave it.

又、必要によっては、単結晶半導体母体26の下表面も
更に平滑に研摩エツチングしてもよい。
Further, if necessary, the lower surface of the single crystal semiconductor base body 26 may be polished and etched to make it smoother.

単結晶半導体母体26を、単結晶半導体領域28と逆導
電形になるように微量の特定不純物を添加して形成すれ
ば、結晶堆積あるいは回路素子形成中に領域25も母体
26と同導電形に不純物が拡散し、仮りに誘電体膜24
にピンホールなどの部分的な欠陥が存在しても、単結晶
半導体領域28と単結晶半導体母体26間に整流性接合
が形成できるため、複数の単結晶半導体領域間で絶縁不
良となることが防止できる。
If the single crystal semiconductor base body 26 is formed by adding a small amount of a specific impurity so that it has the opposite conductivity type to the single crystal semiconductor region 28, the region 25 also becomes the same conductivity type as the base body 26 during crystal deposition or circuit element formation. The impurity diffuses and temporarily forms the dielectric film 24.
Even if there is a partial defect such as a pinhole in the single crystal semiconductor region 28, a rectifying junction can be formed between the single crystal semiconductor region 28 and the single crystal semiconductor matrix 26, so there is no possibility of poor insulation between the plurality of single crystal semiconductor regions. It can be prevented.

これらは、本発明の構成の具体的応用例の一つである。These are one of the specific application examples of the configuration of the present invention.

以上説明した如く、本発明を実施すれば誘電体絶縁分離
による複数の単結晶半導体領域が単結晶半導体母体に支
えられた構成となったため、従来の多結晶半導体母体で
支えるものと異って、単結晶と多結晶との酸化膜成長速
度の差あるいは多結晶の熱による再結晶化による収縮な
どに起因する従来技術でのウェハの変形等は全く生じな
くなる。
As explained above, by implementing the present invention, a plurality of single crystal semiconductor regions separated by dielectric insulation are supported by a single crystal semiconductor matrix, unlike conventional systems supported by a polycrystalline semiconductor matrix. The deformation of the wafer, which is caused by the difference in the growth rate of the oxide film between the single crystal and the polycrystal, or the shrinkage of the polycrystal due to recrystallization due to heat, which occurs in the prior art, does not occur at all.

また、多結晶半導体は強度的にもろいものであるが、単
結晶母体が実現できることによって強度も向上し、母体
の厚さは従来の多結晶母体を使う場合より薄くすること
が可能となり、結晶成長時間も短縮できる。
In addition, polycrystalline semiconductors are fragile in terms of strength, but by creating a single crystal matrix, the strength is improved, and the thickness of the matrix can be made thinner than when using a conventional polycrystalline matrix, allowing crystal growth. It can also save time.

更に、多結晶母体の表面は、不規則な凹凸が多数存在し
、単結晶ウエノ\側の研摩前に、予め多結晶母体表面を
平滑に研摩する必要があったが、本発明を実施すれば母
体は単結晶となる為にその堆積面は平滑であり、研摩工
程を削除なり軽減できる。
Furthermore, the surface of the polycrystalline matrix has many irregular irregularities, and it was necessary to polish the surface of the polycrystalline matrix smooth before polishing the single crystal Ueno side. However, by implementing the present invention, Since the base material is a single crystal, its deposition surface is smooth, and the polishing process can be eliminated or reduced.

これらの結果、本発明の技術によれば、精度の高い経済
的な半導体集積回路の製造が可能となる。
As a result, according to the technique of the present invention, it is possible to manufacture semiconductor integrated circuits with high precision and economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の誘電体絶縁分離法による半導体集積回
路の部分断面図、第2図は本発明を実施した半導体集積
回路の部分断面図、第3図a=dは、第2図回路を本発
明による半導体集積回路の製造方法で製造する工程図を
示す。 11.11.11’、2B・・・・・・単結晶半導体領
域、12,12’、24・・・・・・誘電体膜、13゜
26・・・・・・単結晶半導体母体、21・・・・・・
単結晶半導体ウェハ 22・・・・・・マスク、23・
・・・・・溝。
FIG. 1 is a partial cross-sectional view of a semiconductor integrated circuit using the conventional dielectric isolation method, FIG. 2 is a partial cross-sectional view of a semiconductor integrated circuit according to the present invention, and FIG. 3 a and d are the circuits in FIG. 1 is a process diagram for manufacturing a semiconductor integrated circuit according to the method of manufacturing a semiconductor integrated circuit according to the present invention. 11.11.11', 2B... Single crystal semiconductor region, 12, 12', 24... Dielectric film, 13° 26... Single crystal semiconductor matrix, 21・・・・・・
Single crystal semiconductor wafer 22...Mask, 23.
·····groove.

Claims (1)

【特許請求の範囲】 1 単結晶半導体ウェハの表面に溝を形成し、該表面側
からイオン注入することによりウェハ内部に誘電体膜を
形成し、続いて該表面に単結晶半導体を成長し、その後
上記誘電体膜の一部が露出するまでウェハの裏面側の部
分を除去し、誘電体膜により絶縁分離され単結晶半導体
母体によって支えられた複数個の単結晶半導体領域を形
成し、この各単結晶半導体領域に回路素子を形成するこ
とを特徴とする半導体集積回路の製造方法。 子 単結晶半導体母体が誘電体膜により分離された単結
晶半導体領域とは逆導電形に形成されることを特徴とす
る特許請求の範囲第1項記載の半導体集積回路の製造方
法。
[Claims] 1. Forming a groove on the surface of a single crystal semiconductor wafer, forming a dielectric film inside the wafer by implanting ions from the surface side, and then growing a single crystal semiconductor on the surface, Thereafter, a portion of the back side of the wafer is removed until a portion of the dielectric film is exposed, forming a plurality of single crystal semiconductor regions insulated and separated by the dielectric film and supported by a single crystal semiconductor matrix. A method for manufacturing a semiconductor integrated circuit, comprising forming circuit elements in a single crystal semiconductor region. 2. The method of manufacturing a semiconductor integrated circuit according to claim 1, wherein the single crystal semiconductor base body is formed to have a conductivity type opposite to that of the single crystal semiconductor region separated by a dielectric film.
JP3453376A 1976-03-31 1976-03-31 Manufacturing method of semiconductor integrated circuit Expired JPS5840337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3453376A JPS5840337B2 (en) 1976-03-31 1976-03-31 Manufacturing method of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3453376A JPS5840337B2 (en) 1976-03-31 1976-03-31 Manufacturing method of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS52119084A JPS52119084A (en) 1977-10-06
JPS5840337B2 true JPS5840337B2 (en) 1983-09-05

Family

ID=12416902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3453376A Expired JPS5840337B2 (en) 1976-03-31 1976-03-31 Manufacturing method of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5840337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0137871Y2 (en) * 1984-09-26 1989-11-14

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621341A (en) * 1979-07-28 1981-02-27 Oki Electric Ind Co Ltd Manufacture of dielectric insulating separation substrate
JPS57112045A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Manufacture of semiconductor device
US7421258B2 (en) * 2003-10-10 2008-09-02 Rosemount Inc. Compact temperature transmitter with improved lead connections

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0137871Y2 (en) * 1984-09-26 1989-11-14

Also Published As

Publication number Publication date
JPS52119084A (en) 1977-10-06

Similar Documents

Publication Publication Date Title
US4017341A (en) Method of manufacturing semiconductor integrated circuit with prevention of substrate warpage
US3966577A (en) Dielectrically isolated semiconductor devices
US5131963A (en) Silicon on insulator semiconductor composition containing thin synthetic diamone films
US3574008A (en) Mushroom epitaxial growth in tier-type shaped holes
US4193836A (en) Method for making semiconductor structure
US3997378A (en) Method of manufacturing a semiconductor device utilizing monocrystalline-polycrystalline growth
US4649630A (en) Process for dielectrically isolated semiconductor structure
US3447235A (en) Isolated cathode array semiconductor
US3471922A (en) Monolithic integrated circuitry with dielectric isolated functional regions
JPS5840337B2 (en) Manufacturing method of semiconductor integrated circuit
JPS5828731B2 (en) All silicon materials available.
JPS6244415B2 (en)
JPS59177940A (en) Manufacture of element isolation region
JPS6298639A (en) Manufacture of dielectric isolated substrate
JPS5839026A (en) Semiconductor device and manufacture thereof
JPS6244413B2 (en)
JP2731308B2 (en) Method for manufacturing semiconductor device
JPS63108717A (en) Manufacture of semiconductor device
JPS61184845A (en) Manufacture of complementary type insulator isolating substrate
JPS6221269B2 (en)
JPS6226181B2 (en)
JPS61285754A (en) Manufacture of semiconductor device
JPS6244411B2 (en)
JPS62124753A (en) Manufacture of dielectric isolation substrate
JPS6245042A (en) Manufacture of semiconductor ic