JP6369790B1 - 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置 - Google Patents

紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置 Download PDF

Info

Publication number
JP6369790B1
JP6369790B1 JP2017154798A JP2017154798A JP6369790B1 JP 6369790 B1 JP6369790 B1 JP 6369790B1 JP 2017154798 A JP2017154798 A JP 2017154798A JP 2017154798 A JP2017154798 A JP 2017154798A JP 6369790 B1 JP6369790 B1 JP 6369790B1
Authority
JP
Japan
Prior art keywords
curable resin
resin composition
ultraviolet curable
organic
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017154798A
Other languages
English (en)
Other versions
JP2019031642A (ja
Inventor
祐輔 浦岡
祐輔 浦岡
山本 広志
広志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017154798A priority Critical patent/JP6369790B1/ja
Application granted granted Critical
Publication of JP6369790B1 publication Critical patent/JP6369790B1/ja
Publication of JP2019031642A publication Critical patent/JP2019031642A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】吸湿剤を含有しながら、吸湿剤による硬化物の透明性の低下を抑制でき、かつ吸湿剤による粘度の増大と保存安定性の低下とを抑制できる紫外線硬化性樹脂組成物を提供する。
【解決手段】紫外線硬化性樹脂組成物は、アクリル化合物(A)、光重合開始剤(B)、平均粒径100nm以下の吸湿剤(C)、及びアミノ基とカルボキシル基とのうちいずれか一方又は両方を有する分散剤(D)を含有する。
【選択図】図1

Description

本発明は、紫外線硬化性樹脂組成物、有機EL発光装置の製造方法及び有機EL発光装置に関し、詳しくは、有機EL発光装置における封止材を作製するために好適な紫外線硬化性樹脂組成物、この紫外線硬化性樹脂組成物を用いる有機EL発光装置の製造方法、及びこの封止材を備える有機EL発光装置に関する。
有機EL発光装置は、照明、ディスプレイなどに適用されており、今後の普及が期待されている。
有機EL発光装置のうち、トップエミッションタイプと呼ばれるものは、例えば支持基板上に有機EL素子を配置し、支持基板に対向するように透明基板を配置し、支持基板と透明基板との間に透明な封止材を充填して構成される。この場合、有機EL素子が発する光は封止材及び透明基板を通過して外部へ出射する。
封止材は、有機EL素子への水分の侵入を抑制することで、有機EL素子におけるダークスポットの発生及び成長を抑制する。ダークスポットとは、有機EL素子が水分で劣化することで生じる、発光しない部分のことである。
有機EL発光装置に封止材を設けるだけでは、水分の侵入を十分に防げないことがある。そのため、支持基板と透明基板との間に吸湿剤を設けることも行われているが、吸湿剤を設けるための工程が必要となり、有機EL発光装置の構造の複雑化及び製造効率の低下を招いてしまう。
封止材を作製するための組成物中に吸湿剤を配合することで封止材に吸湿性を付与することも提案されている。例えば特許文献1には、ラジカル重合性化合物と、重合開始剤及び/又は硬化剤と、粉末状モレキュラーシーブとを含有する有機エレクトロルミネッセンス表示素子用封止剤が開示されている。
特開2016−012559号公報
特許文献1に開示されている場合のように封止材に単に吸湿剤を分散させるだけでは、封止材の透明性の低下を招いてしまい、有機EL発光装置の発光効率が低下してしまう。吸湿剤の粒径を小さくすれば透明性の向上は期待できるが、封止材を作製するための組成物の粘度が増大することで成形性が悪化してしまう。また吸湿剤の粒径が小さいと組成物の保管中に吸湿剤が凝集してしまいやすいため、保存安定性が悪化してしまう。
本発明の課題は、吸湿剤を含有しながら、吸湿剤による硬化物の透明性の低下を抑制でき、かつ吸湿剤による粘度の増大と保存安定性の低下とを抑制できる紫外線硬化性樹脂組成物、この紫外線硬化性樹脂組成物を用いる有機EL発光装置の製造方法、及びこの紫外線硬化性樹脂組成物の硬化物からなる封止材を備える有機EL発光装置を提供することである。
本発明の一態様に係る紫外線硬化性樹脂組成物は、アクリル化合物(A)、光重合開始剤(B)、平均粒径100nm以下の吸湿剤(C)、及びアミノ基とカルボキシル基とのうちいずれか一方又は両方を有する分散剤(D)を含有する。
本発明の一態様に係る有機EL発光装置の製造方法は、有機EL素子と前記有機EL素子を覆う封止材とを備える有機EL発光装置を製造する方法であり、前記紫外線硬化性樹脂組成物をインクジェット法で成形してから、前記紫外線硬化性樹脂組成物に紫外線を照射して硬化させることで前記封止材を作製することを含む。
本発明の一態様に係る有機EL発光装置は、有機EL素子と、前記有機EL素子を覆う封止材とを備え、前記封止材は、前記紫外線硬化性樹脂組成物の硬化物である。
本発明の一態様には、吸湿剤を含有しながら、吸湿剤による硬化物の透明性の低下を抑制でき、かつ吸湿剤による粘度の増大と保存安定性の低下とを抑制できる紫外線硬化性樹脂組成物、この紫外線硬化性樹脂組成物を用いる有機EL発光装置の製造方法、及びこの紫外線硬化性樹脂組成物の硬化物からなる封止材を備える有機EL発光装置が得られる、という利点がある。
有機EL発光装置の一例を示す概略の断面図である。
以下、本発明の一実施形態について説明する。
1.実施形態の概要
本実施形態に係る有機EL発光装置1は、有機EL素子4と、有機EL素子4を覆う封止材5とを備える。有機EL発光装置1の構造の一例を、図1を参照して説明する。この有機EL発光装置1は、トップエミッションタイプである。有機EL発光装置1は、支持基板2、支持基板2と間隔をあけて対向する透明基板3、支持基板2の透明基板3と対向する面の上にある有機EL素子4、及び支持基板2と透明基板3との間に充填されている封止材5とを備える。また、図1に示す例では、有機EL発光装置1は、支持基板2の透明基板3と対向する面及び有機EL素子4を覆うパッシベーション層6を備える。
支持基板2は、例えば樹脂材料から作製されるが、これに限定されない。透明基板3は透光性を有する材料から作製される。透明基板3は、例えば、ガラス製基板又は透明樹脂製基板である。有機EL素子4は有機発光ダイオードとも呼ばれる。有機EL素子4は、例えば一対の電極と、電極間にある有機発光層とを備える。パッシベーション層6は窒化ケイ素又は酸化ケイ素から作製されることが好ましい。
封止材5を、本実施形態に係る紫外線硬化性樹脂組成物から作製することができる。すなわち、紫外線硬化性樹脂組成物は、有機EL素子4のための封止材5を作製するために用いられる。さらに言い換えれば、紫外線硬化性樹脂組成物は、好ましくは封止材作製用の組成物、有機EL素子封止用の組成物、あるいは有機EL発光装置製造用の組成物である。
2.紫外線硬化性樹脂組成物
紫外線硬化性樹脂組成物(以下、組成物(X)ともいう)について説明する。
組成物(X)は、アクリル化合物(A)、光重合開始剤(B)、平均粒径100nm以下の吸湿剤(C)、及びアミノ基とカルボキシル基とのうちいずれか一方又は両方を有する分散剤(D)を含有する。
組成物(X)に紫外線を照射すると、光重合開始剤(B)によって光ラジカル重合反応が開始されてアクリル化合物(A)が硬化することで、硬化物を作製できる。組成物(X)は、吸湿剤(C)を含有するため、硬化物は優れた吸湿性を有する。また、吸湿剤(C)の平均粒径が100nm以下であるため、吸湿剤(C)を含有するにもかかわらず、硬化物は高い透明性を有することができる。
さらに分散剤(D)は、アミノ基とカルボキシル基とのうちいずれか一方又は両方を有することで、組成物(X)中及び組成物(X)の硬化物中で、吸湿剤(C)を良好に分散させることができる。このため、組成物(X)は平均粒径が100nm以下という小さい粒径の吸湿剤(C)を含有するにもかかわらず、吸湿剤(C)による粘度の上昇を抑制でき、かつ吸湿剤(C)による硬化物の透明性の低下を抑制できる。また、分散剤(D)は、組成物(X)の保管中における吸着剤(C)の凝集を効果的に抑制でき、そのため吸湿剤(C)による組成物(X)の保存安定性の低下を抑制できる。また、組成物(X)が分散剤(D)を含有しても、硬化物と窒化ケイ素及び酸化ケイ素との間の密着性は低下しにくい。
以上のことから、組成物(X)が吸湿剤(C)を含有するにもかかわらず、吸湿剤(C)による硬化物の透明性の低下が抑制され、かつ吸湿剤(C)による組成物(X)の粘度の増大と保存安定性の低下とが抑制されうる。
組成物(X)の粘度上昇が抑制されうるため、組成物(X)を、キャスティング法、インクジェット法といった方法で成形することが可能であり、組成物(X)の組成を調整することで常温下でインクジェット法で組成物(X)を成形することも可能である。
組成物(X)の25℃における粘度は1mPa・s以上50mPa・s以下であることが好ましい。この場合、組成物(X)を常温下でキャスティング法といった方法で成形することが容易であり、組成物(X)を常温下でインクジェット法で成形することも可能である。組成物(X)をインクジェット法で成形する場合は、吸湿剤(C)の平均粒径が100nm以下であることから、組成物(X)がノズルに詰まりにくいという利点がある。この粘度が20mPa・s以下であればより好ましい。この粘度が5mPa・s以上であることも好ましい。
組成物(X)の50℃における粘度が1mPa・s以上50mPa・s以下であることも好ましい。この場合、常温における組成物(X)の粘度がいかなる値であっても、組成物(X)を僅かに加熱すれば低粘度化させることが可能である。このため、加熱すれば、組成物(X)をキャスティング法といった方法で成形することが容易であり、組成物(X)をインクジェット法で成形することも可能である。この粘度が20mPa・s以下であればより好ましい。この粘度が5mPa・s以上であることも好ましい。
このような組成物(X)の25℃又は50℃における低い粘度は、下記で詳細に説明される組成物(X)の組成によって達成可能である。
組成物(X)の、25℃の乾燥アルゴン雰囲気に6時間曝露された場合の重量減少割合は、1重量%以下であることが好ましい。この場合、組成物(X)は特に高い保存安定性を有することができる。このような組成物(X)の低い重量減少割合は、下記で詳細に説明される組成物(X)の組成によって達成可能である。
組成物(X)の硬化物は、有機EL発光装置1における封止材5として相応しい十分に高い屈折率を有することが好ましい。例えば硬化物は1.45以上1.55未満の屈折率を有することが好ましい。この場合、硬化物を有機EL発光装置1における封止材5に適用した場合に、封止材5を透過して外部へ出射する光の取り出し効率を向上できる。このような硬化物の高い屈折率も、下記で詳細に説明される組成物(X)の組成によって達成可能である。
組成物(X)の表面張力は、20mN/m以上40mN/m以下であることが好ましい。この場合、組成物(X)をインクジェット法で成形すると、組成物(X)のインクジェットノズルからの吐出精度が良好である。このような表面張力も、下記で詳細に説明される組成物(X)の組成によって達成可能である。
組成物(X)の硬化物のガラス転移温度、並びに組成物(X)から作製される封止材5のガラス転移温度は、120℃以上であることが好ましい。この場合、有機EL発光装置1の製造プロセス及び有機EL発光装置1の使用時に封止材5が加熱されても、封止材5の劣化を抑制できる。このような硬化物の高いガラス転移温度も、下記で詳細に説明される組成物(X)の組成によって達成可能である。
組成物(X)の硬化物の、厚み寸法が10μmである場合の、全光透過率は、90%以上であることが好ましい。この場合、硬化物を有機EL発光装置1における封止材5に適用した場合に、封止材5を透過して外部へ出射する光の取り出し効率を特に向上できる。このような硬化物の高い光透過性は、下記で詳細に説明される組成物(X)の組成によって達成可能である。
硬化物の吸湿率は、0.5質量%以上であることが好ましく、1質量%以上であればより好ましく、2質量%以上であれば最も好ましい。なお、吸湿率は、次の方法で求められる。アルゴン雰囲気下で、組成物(X)を塗布してから紫外線を照射することで、厚み10μmのフィルムを作製する。紫外線照射条件は、例えば紫外線のピーク波長365nm、紫外線強度3000mW/cm2、紫外線照射時間10秒間である。このフィルムを、例えば真空乾燥器を用いて、加熱温度120℃、加熱時間3時間の条件で、真空乾燥する。乾燥後のフィルムの質量を測定する。この測定結果を初期質量(M0)とする。続いて、フィルムを十分に吸湿させる。そのために、例えばフィルムを85℃、85%RHの条件下に24時間曝露する。吸湿後のフィルムの質量を測定する。この測定結果を吸湿後質量(M)という。これらの初期質量(M0)及び吸湿後質量(M)から、吸湿率を、(M−M0)/M0×100(質量%)の式で算出できる。
以上により、組成物(X)に紫外線を照射して硬化させることで作製される硬化物は、高い透明性と高い吸湿性とを兼ね備えることができ、この硬化物は、有機EL発光装置1における封止材5として好適である。すなわち、組成物(X)から、高い透明性と高い吸湿性とを兼ね備える封止材5を作製できる。
有機EL発光装置1の封止材5が高い透明性を有すると、有機EL発光装置1の高い光取り出し効率を実現できる。さらに、封止材5が高い吸湿性を有すると、有機EL発光装置1内に水分が侵入しても、水分が封止材5に吸収されるため、有機EL発光装置1への水分の侵入によるダークスポットなどの不良を抑制できる。さらに、上記のとおり、組成物(X)の硬化物と窒化ケイ素及び酸化ケイ素との間の密着性は低下しにくいため、封止材5と、ガラス製の基板、パッシベーション層6などとの間の密着性を良好に保つことができる。そのことによっても、有機EL発光装置1への水分の侵入を抑制できる。
以下、組成物(X)の成分について更に詳しく説明する。
上記のとおり、組成物(X)はアクリル化合物(A)を含有する。アクリル化合物(A)は、一分子中に一つ以上の(メタ)アクリロイル基を有する。
アクリル化合物(A)の25℃での粘度は50mPa・s以下であることが好ましい。この場合、アクリル化合物(A)は組成物(X)を特に低粘度化させることができる。アクリル化合物(A)の粘度は30mPa・s以下であれば更に好ましく、20mPa・s以下であれば特に好ましい。また、アクリル化合物(A)の粘度は例えば3mPa・s以上である。
アクリル化合物(A)の50℃での粘度が50mPa・s以下であることも好ましい。この場合、アクリル化合物(A)は、加熱された場合の組成物(X)を特に低粘度化させることができる。アクリル化合物(A)の粘度は30mPa・s以下であれば更に好ましく、20mPa・s以下であれば特に好ましい。また、アクリル化合物(A)の粘度は、例えば3mPa・s以上である。
アクリル化合物(A)は、一分子中に二つ以上の(メタ)アクリロイル基を有する多官能アクリロイル化合物(A1)を含有することが好ましい。この場合、多官能アクリロイル化合物(A1)は、硬化物のガラス転移温度を高めることができ、このため、硬化物及び封止材5の耐熱性を高めることができる。アクリル化合物(A)が多官能アクリロイル化合物(A1)のみを含有してもよい。
多官能アクリル化合物(A1)は、例えば1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールオリゴアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールオリゴアクリレート、ネオペンチルグリコールジアクリレート、トリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ジプロピレングリコールジアクリレート、シクロヘキサンジメタノールジアクリレート、トリシクロデカンジメタノールジアクリレート、プロポキシ化(2)ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートトリアクリレート、ペンタエリスリトールトリアクリレート、エトキシ化(3)トリメチロールプロパントリアクリレート、プロポキシ化(3)グリセリルトリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化(4)ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、アクリル酸2−(2−エトキシエトキシ)エチル、ヘキサジオールジアクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールトリアクリレート、ビスペンタエリスリトールヘキサアクリレート、エチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、エトキシ化1,6−ヘキサンジオールジアクリレート、ポリプロピレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,9−ノナンジオールジアクリレート、テトラエチレングリコールジアクリレート、2−n−ブチル−2−エチル−1,3−プロパンジオールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ヒドロキシピバリン酸トリメチロールプロパントリアクリレート、エトキシ化リン酸トリアクリレート、エトキシ化トリプロピレングリコールジアクリレート、ネオペンチルグリコール変性トリメチロールプロパンジアクリレート、ステアリン酸変性ペンタエリスリトールジアクリレート、テトラメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、プロポキシレートグリセリルトリアクリレート、テトラメチロールメタンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、ネオペンチルグリコールオリゴアクリレート、トリメチロールプロパンオリゴアクリレート、ペンタエリスリトールオリゴアクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、及びプロポキシ化トリメチロールプロパントリアクリレートからなる群から選択される少なくとも一種の化合物を含有する。
多官能アクリル化合物(A1)のアクリル当量は、150g/eq以下であることが好ましく、90g/eq以上150g/eq以下であることがより好ましい。多官能アクリル化合物(A1)の重量平均分子量は、例えば100以上1000以下であり、200以上800以下がより好ましい。
多官能アクリル化合物(A1)は、特に1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールオリゴアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールオリゴアクリレート、ネオペンチルグリコールジアクリレート、トリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ジプロピレングリコールジアクリレート、シクロヘキサンジメタノールジアクリレート、トリシクロデカンジメタノールジアクリレート、プロポキシ化(2)ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートトリアクリレート、ペンタエリスリトールトリアクリレート、エトキシ化(3)トリメチロールプロパントリアクリレート、プロポキシ化(3)グリセリルトリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化(4)ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、及びアクリル酸2−(2−エトキシエトキシ)エチルからなる群から選択される少なくとも一種の化合物を含有することが好ましい。
アクリル化合物(A)は、一分子中に一つのみの(メタ)アクリロイル基を有する単官能アクリロイル化合物(A2)を含有することも好ましい。単官能アクリロイル化合物(A2)は、組成物(X)の硬化時の収縮を抑制できる。
アクリル化合物(A)全量に対する単官能アクリル化合物(A2)の量は、0質量%より多く50質量%以下であることが好ましい。単官能アクリル化合物(A2)の量が0質量%より多ければ、組成物(X)の硬化時の収縮を抑制できる。また、単官能アクリル化合物(A2)の量が50質量%以下であれば、多官能アクリル化合物(A2)の量が50質量%以上になることで、硬化物及び封止材5の耐熱性を特に向上できる。単官能アクリル化合物(A2)の量が5質量%以上であれば更に好ましく、30質量%以下であることも更に好ましい。
単官能アクリル化合物(A2)は、例えば、テトラヒドロフルフリルアクリレート、イソボロニルアクリレート、2−ヒドロキシエチルアクリレート、4−ヒドロキシブチルアクリレート、イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、2−メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2−エトキシエチルアクリレート、3−メトキシブチルアクリレート、エトキシエチルアクリレート、ブトキシエチルアクリレート、エトキシジエチレングリコールアクリレート、メトキシジキシルエチルアクリレート、エチルジグリコールアクリレート、環状トリメチロールプロパンフォルマルモノアクリレート、イミドアクリレート、イソアミルアクリレート、エトキシ化コハク酸アクリレート、トリフルオロエチルアクリレート、ω−カルボキシポリカプロラクトンモノアクリレート、シクロヘキシルアクリレート、2−(2−エトキシエトキシ)エチルアクリレート、ステアリルアクリレート、ジエチレングリコールモノブチルエーテルアクリレート、ラウリルアクリレート、イソデシルアクリレート、3,3,5−トリメチルシクロヘキサノールアクリレート、イソオクチルアクリレート、オクチル/デシルアクリレート、トリデシルアクリレート、カプロラクトンアクリレート、エトキシ化(4)のニルフェノールアクリレート、メトキシポリエチレングリコール(350)モノアクリレート、メトキシポリエチレングリコール(550)モノアクリレート、フェノキシエチルアクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジルアクリレート、メチルフェノキシエチルアクリレート、4−t−ブチルシクロヘキシルアクリレート、カプロラクトン変性テトラヒドロフルフリルアクリレート、トリブロモフェニルアクリレート、エトキシ化トリブロモフェニルアクリレート、2−フェノキシエチルアクリレート、2−フェノキシエチルアクリレートのエチレンオキサイド付加物、2−フェノキシエチルアクリレートのプロピレンオキサイド付加物、アクリロイルモルホリン、イソボルニルアクリレート、フェノキシジエチレングリコールアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、1,4−シクロヘキサンジメタノールモノアクリレート、3−メタクリロイルオキシメチルシクロヘキセンオキサイド及び3−アクリロイルオキシメチルシクロヘキセンオキサイドからなる群から選択される少なくとも一種の化合物を含有する。
単官能アクリル化合物(A2)は、脂環式構造を有する化合物及び環状エーテル構造を有する化合物からなる群から選択される少なくとも一種の化合物を含有することが好ましい。
脂環式構造を有する化合物は、例えばフェノキシエチルアクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジルアクリレート、メチルフェノキシエチルアクリレート、4−t−ブチルシクロヘキシルアクリレート、カプロラクトン変性テトラヒドロフルフリルアクリレート、トリブロモフェニルアクリレート、エトキシ化トリブロモフェニルアクリレート、2−フェノキシエチルアクリレート、2−フェノキシエチルアクリレートのエチレンオキサイド付加物、2−フェノキシエチルアクリレートのプロピレンオキサイド付加物、アクリロイルモルホリン、イソボルニルアクリレート、フェノキシジエチレングリコールアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、及び1,4−シクロヘキサンジメタノールモノアクリレートからなる群から選択される少なくとも一種の化合物を含有する。
環状エーテル構造を有する化合物における環状エーテル構造の環員数は3以上が好ましく、3以上4以下がより好ましい。環状エーテル構造に含まれる炭素原子数は、2以上9以下が好ましく、2以上6以下がより好ましい。環状エーテル構造を有する化合物は、例えば3−メタクリロイルオキシメチルシクロヘキセンオキサイド及び3−アクリロイルオキシメチルシクロヘキセンオキサイドからなる群から選択される少なくとも一種の化合物を含有する。
組成物(X)は、アクリル化合物(A)以外のラジカル重合性化合物(E)を更に含有してもよい。ラジカル重合性化合物(E)は、一分子に二つ以上のラジカル重合性官能基を有する多官能ラジカル重合性化合物(E1)と、一分子に一つのみのラジカル重合性官能基を有する単官能ラジカル重合性化合物(E2)とのうち、いずれか一方又は両方を含有できる。
アクリル化合物(A)とラジカル重合性化合物(E)との合計量に対するラジカル重合性化合物(E)の量は、例えば10質量%以下である。
多官能ラジカル重合性化合物(E1)は、例えば一分子中にエチレン性二重結合を2つ以上有する芳香族ウレタンオリゴマー、脂肪族ウレタンオリゴマー、エポキシアクリレートオリゴマー、ポリエステルアクリレートオリゴマー及びその他特殊オリゴマーからなる群から選択される少なくとも一種の化合物を含有してもよい。より具体的には、多官能ラジカル重合性化合物(A)は、例えば日本合成化学工業株式会社製のUV−2000B、UV−2750B、UV−3000B、UV−3010B、UV−3200B、UV−3300B、UV−3700B、UV−6640B、UV−8630B、UV−7000B、UV−7610B、UV−1700B、UV−7630B、UV−6300B、UV−6640B、UV−7550B、UV−7600B、UV−7605B、UV−7610B、UV−7630B、UV−7640B、UV−7650B、UT−5449、UT−5454;サートマー社製のCN902、CN902J75、CN929、CN940、CN944、CN944B85、CN959、CN961E75、CN961H81、CN962、CN963、CN963A80、CN963B80、CN963E75、CN963E80、CN963J85、CN964、CN965、CN965A80、CN966、CN966A80、CN966B85、CN966H90、CN966J75、CN968、CN969、CN970、CN970A60、CN970E60、CN971、CN971A80、CN971J75、CN972、CN973、CN973A80、CN973H85、CN973J75、CN975、CN977、CN977C70、CN978、CN980、CN981、CN981A75、CN981B88、CN982、CN982A75、CN982B88、CN982E75、CN983、CN984、CN985、CN985B88、CN986、CN989、CN991、CN992、CN994、CN996、CN997、CN999、CN9001、CN9002、CN9004、CN9005、CN9006、CN9007、CN9008、CN9009、CN9010、CN9011、CN9013、CN9018、CN9019、CN9024、CN9025、CN9026、CN9028、CN9029、CN9030、CN9060、CN9165、CN9167、CN9178、CN9290、CN9782、CN9783、CN9788、CN9893;並びにダイセル・サイテック株式会社製のEBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、KRM8200、EBECRYL5129、EBECRYL8210、EBECRYL8301、EBECRYL8804、EBECRYL8807、EBECRYL9260、KRM7735、KRM8296、KRM8452、EBECRYL4858、EBECRYL8402、EBECRYL9270、EBECRYL8311、EBECRYL8701からなる群から選択される少なくとも一種の化合物を含有する。
単官能ラジカル重合性化合物(E2)は、例えばN−ビニルホルムアミド、ビニルカプロラクタム、ビニルピロリドン、フェニルグリシジルエーテル、p−tert−ブチルフェニルグリシジルエーテル、ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、アリルグリシジルエーテル、1,2−ブチレンオキサイド、1,3−ブタジエンモノオキサイド、1,2−エポキシドデカン、エピクロロヒドリン、1,2−エポキシデカン、スチレンオキサイド、シクロヘキセンオキサイド、3−ビニルシクロヘキセンオキサイド、4−ビニルシクロヘキセンオキサイド、N−ビニルピロリドン及びN−ビニルカプロラクタムからなる群から選択される少なくとも一種の化合物を含有する。
光重合開始剤(B)は、紫外線が照射されるとラジカル種を生じさせる化合物であれば、特に制限されない。光重合開始剤(B)は、例えば芳香族ケトン類、アシルフォスフィンオキサイド化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物(チオキサントン化合物、チオフェニル基含有化合物など)、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、及びアルキルアミン化合物からなる群から選択される少なくとも一種の化合物を含有する。組成物(X)100質量部に対する光重合開始剤(B)の量は、例えば1重量部以上10質量部以下である。
組成物(X)は、光重合開始剤(B)に加えて、重合促進剤を含有してもよい。重合促進剤は、例えば、p−ジメチルアミノ安息香酸エチル、p−ジメチルアミノ安息香酸−2−エチルヘキシル、p−ジメチルアミノ安息香酸メチル、安息香酸−2−ジメチルアミノエチル、p−ジメチルアミノ安息香酸ブトキシエチルといったアミン化合物を含有する。
吸湿剤(C)について説明する。吸湿剤(C)は、吸湿性を有する無機粒子であることが好ましく、例えばゼオライト粒子、シリカゲル粒子、塩化カルシウム粒子、及び酸化チタンナノチューブ粒子からなる群から選択される少なくとも一種の成分を含有することが好ましい。吸湿剤(C)がゼオライト粒子を含有することが特に好ましい。
平均粒径100nm以下のゼオライト粒子は、例えば一般的な工業的用ゼオライトを粉砕することで製造できる。ゼオライトを粉砕してから水熱合成などによって結晶化させてもよく、この場合、ゼオライト粒子は特に高い吸湿性を有することができる。このようなゼオライト粒子の製造方法は、特開2016−69266号公報、特開2013−049602号公報などにより公知である。
ゼオライト粒子は、ナトリウムイオンを含有するゼオライトを含むことが好ましく、ナトリウムイオンのうちA型ゼオライト、X型ゼオライト及びY型ゼオライトからなる群から選択される少なくとも一種の材料を含むことがより好ましい。ゼオライト粒子がA型ゼオライトのうち4A型ゼオライトを含むことが特に好ましい。これらの場合、ゼオライト粒子は、水分の吸着に好適な結晶構造を有する。
平均粒径100nm以下のゼオライト粒子の製造方法の一具体例を示す。まず、原料であるゼオライト粉を準備し、このゼオライト粉を物理粉砕する。例えばゼオライト粉を水と混合してスラリーを調製し、このスラリーをビーズミル粉砕機にかけることで、ゼオライト粉を物理粉砕できる。
続いて、水熱合成によりゼオライト粉を結晶化させる。例えば物理粉砕後のゼオライト粉を含むスラリーを、オートクレーブで加熱することで、水熱合成を行うことができる。水熱合成の条件は、例えば加熱温度150〜200℃の範囲内、加熱時間15〜24時間の範囲内である。
続いて、ゼオライト粉を乾燥する。乾燥温度は例えば150〜200℃の範囲内であり、乾燥時間は例えば2〜3時間の範囲内である。続いて、必要に応じ、乾燥後のゼオライト粉を乳鉢などを用いて解砕してから篩いにかけることで粒径を整える。
続いて、必要に応じ、ゼオライト粉にイオン交換処理を施す。特にゼオライト粉がLTAなどのナトリウムを含むゼオライトである場合は、ゼオライト粉中のナトリウムをマグネシウムと交換するイオン交換処理を施すことが好ましい。
イオン交換処理は、例えばゼオライト粉を、マグネシウムイオンを含有する水溶液中に分散させて混合物を調製し、この混合物を加熱することで行われる。より具体的には、イオン交換処理は例えば次のように行われる。まずゼオライト粉を、塩化マグネシウム及び水と混合し、得られた混合物を加熱しながら撹拌する処理をする。この処理の間、撹拌を一時的に停止してから混合物の上澄みを捨て、続いて混合物に水を補充してから撹拌を再開するという操作を、適当な間隔をあけて複数回繰り返すことが好ましい。この処理における加熱温度は40〜80℃の範囲内、処理時間は6〜8時間の範囲内であることが好ましい。
イオン交換処理を施した場合、続いて、ゼオライト粉を乾燥する。乾燥温度は例えば150〜200℃の範囲内であり、乾燥時間は例えば2〜3時間の範囲内である。続いて、必要に応じ、乾燥後のゼオライト粉を乳鉢などを用いて解砕してから篩いにかけることで粒径を整える。これにより、平均粒径100nm以下のゼオライト粒子を得ることができる。
ゼオライト粉の結晶化を、シリケート及びアルカリ金属酸化物の存在下で行うこともできる。その場合の平均粒径100nm以下のゼオライト粒子の製造方法の具体例を示す。まず、ゼオライト粉を準備する。ゼオライト粉は、aM12O・bSiO2・Al23・cMeの組成を有することが好ましい。M1はアルカリ金属、プロトン、又はアンモニウムイオン(NH4 +)であり、Meはアルカリ土類金属であり、aは0.01〜1の範囲内の数であり、bは20〜80の範囲内の数であり、cは0〜1の範囲内の数である。ゼオライト粉は、ナトリウムイオンを含有するゼオライトを含むことが好ましく、ナトリウムイオンのうちA型ゼオライト、X型ゼオライト及びY型ゼオライトからなる群から選択される少なくとも一種の材料を含むことがより好ましい。ゼオライト粉がA型ゼオライトのうち4A型ゼオライトを含むことが特に好ましい。このゼオライト粉を物理粉砕する。例えばゼオライト粉をビーズミル粉砕機にかけることで、ゼオライト粉を物理粉砕できる。
物理粉砕後のゼオライト粉を、M22O、SiO2及びH2Oを含有する溶液に分散させ、スラリーを調製する。M2はアルカリ金属であり、好ましくはK又はNaである。M22O/H2Oのモル比は例えば0.003〜0.01の範囲内であり、SiO2/H2Oのモル比は例えば0.006〜0.025である。ゼオライト粉の量は、例えば溶液100mlに対して0.5〜10gである。
このスラリーをオートクレーブで加熱することで、ゼオライト粉の結晶化を行うことができる。その条件は、例えば加熱温度100〜230℃の範囲内、加熱時間1〜24時間の範囲内である。続いて、ゼオライト粉を洗浄してから乾燥させる。これにより、平均粒径100nm以下のゼオライト粒子を得ることができる。
ゼオライト粒子のpHは7以上10以下であることが好ましい。ゼオライト粒子のpHが7以上であると、ゼオライト粒子の結晶が破壊されにくくなり、そのためゼオライト粒子を含有する組成物(X)から作製された封止材が特に高い吸湿性を有することができる。また、ゼオライト粒子のpHが10以下であると、組成物(X)を硬化させる場合にゼオライト粒子が硬化を阻害しにくい。
なお、ゼオライト粒子のpHは、イオン交換水99.95gにゼオライト粒子0.05gを入れて得られた分散液を、90℃で24時間加熱してから、分散液の上澄みのpHをpH測定器で測定することで得られる値である。pH測定器としては、例えば堀場製作所製のコンパクトpHメータ<LAQUAtwin>B−711を用いることができる。
ゼオライト粒子のpHが6〜9の範囲内であるためには、ゼオライト粒子が、カウンターカチオンとしてプロトンを有するFAU Y型のゼオライトからなることが好ましい。
ゼオライト粒子を作製する過程において、ゼオライトの水熱合成を行う場合に、pHの調整のための処理を施してもよい。pHの調整のための処理は、例えば水熱合成のために調製されたゼオライト粉を含むスラリーを加熱する前、スラリーの加熱中、又はスラリーの加熱後に行われる。pHの調整は、例えばスラリーに酸を添加することで行われる。酸は、例えば塩酸、硫酸、硝酸といった無機酸と、ギ酸、酢酸、シュウ酸といった有機酸とからなる群から選択される少なくとも一種の成分を含有する。
吸湿剤(C)の平均粒径は、10〜100nmの範囲内であることが好ましい。この平均粒径が100nm以下であれば、硬化物は特に高い透明性を有することができる。また、この平均粒径が10nm以上であれば、吸湿剤(C)の良好な吸湿性を維持できる。なお、この平均粒径は、動的光散乱法による測定結果から算出されるメディアン径、すなわち累積50%径(D50)である。なお、測定装置としては、マイクロトラック・ベル株式会社のナノトラックNanotrac Waveシリーズを用いることができる。
吸湿剤(C)の平均粒径が5〜70nmの範囲内であれば特に好ましい。この場合、硬化物は、特に良好な透明性と吸湿性とを有することができる。
吸湿剤(C)の累積90%径(D90)が100nm以下であることも好ましい。この場合、硬化物は特に高い透明性を有することができる。
組成物(X)の全量に対する吸湿剤(C)の割合は、1質量%以上20質量%以下であることが好ましい。吸湿剤(C)の割合が1質量%以上であれば硬化物は特に高い吸湿性を有することができる。また、吸湿剤(C)の割合が20質量%以下であれば組成物(X)の粘度を特に低減でき、組成物(X)がインクジェット法で塗布可能な程度の十分な低粘度を有することもできる。吸湿剤(C)の割合は、3質量%以上であれば更に好ましく、5質量%以上であれば特に好ましい。また、吸湿剤(C)の割合は、15質量%以下であればより好ましく、13質量%以下であれば特に好ましい。
組成物(X)は、吸湿剤(C)以外の無機充填材を更に含有してもよい。特に、組成物(X)は、ナノサイズの高屈折率粒子を含有することが好ましい。高屈折率粒子の例はジルコニア粒子を含む。組成物(X)が高屈折率粒子を含有すると、硬化物の良好な透明性を維持しながら、硬化物を高屈折率化することができる。そのため、硬化物を有機EL発光装置1における封止材5に適用した場合に、封止材5を透過して外部へ出射する光の取り出し効率を向上することができる。高屈折率粒子の平均粒径は、5〜30nmの範囲内であることが好ましく、10〜20nmの範囲内であれば更に好ましい。
組成物(X)中の高屈折率粒子の割合は、硬化物が所望の屈折率を有するように適宜設計される。特に高屈折率粒子は、硬化物の屈折率が1.45以上、1.55未満の範囲内になるように組成物(X)に含有されることが好ましい。この場合、有機EL発光装置1の光の取り出し効率が特に向上する。
組成物(X)は、溶剤を含有しないことが好ましい。この場合、組成物(X)から硬化物を作製する際に組成物(X)を乾燥させて溶剤を揮発させるような必要がなくなる。
上述の成分を混合することで、組成物(X)を調製できる。組成物(X)は25℃で液状であることが好ましい。
分散剤(D)について説明する。分散剤(D)は、上記のとおり、吸湿剤(C)を組成物(X)中及び硬化物中で良好に分散させることができる。これは、吸湿剤(C)がアミノ基とカルボキシル基とのうちいずれか一方又は両方を有することで、吸湿剤(C)に吸着しやすく、そのため吸湿剤(C)を分散させる作用が著しく発現するためと考えられる。
分散剤(D)が吸着剤(C)を良好に分散させることができるため、硬化物及び封止材5が吸着剤(C)を含有するにもかかわらず、硬化物及び封止材5の透明性が吸着剤(C)によって低下されにくい。また、分散剤(D)は、組成物(X)の保管中における吸着剤(C)の凝集を効果的に抑制できる。そのため組成物(X)の保存安定性が吸着剤(C)によって低下されにくい。
さらに、硬化物と窒化ケイ素及び酸化ケイ素との間の密着性が分散剤(D)によって低下されにくい。これは、分散剤(D)が前記のように吸湿剤(C)に吸着しやすいため、分散剤(D)が硬化物と窒化ケイ素及び酸化ケイ素との間の界面に影響を与えにくいからであると、考えられる。このため、封止材5はガラス製の基材との高い密着性を有することができる。また、窒化ケイ素及び酸化ケイ素は有機EL発光装置1におけるパッシベーション層6の材料として使用されることがある。このため、パッシベーション層6が窒化ケイ素又は酸化ケイ素から作製されている場合、封止材5はパッシベーション層6と高い密着性を有することができる。
分散剤(D)は、吸着剤(C)に吸着しうる界面活性剤である。分散剤(D)は、例えば吸着剤(C)の粒子に吸着しうる吸着基(アンカーともいう)と、吸着基が吸着剤(C)の粒子に吸着することでこの粒子に付着する鎖状又は櫛形状の分子骨格であるテールとを、有する。分散剤(D)は、例えばテールがアクリル系の分子鎖であるアクリル系分散剤と、テールがウレタン系の分子鎖であるウレタン系分散剤と、テールがポリエステル系の分子鎖であるポリエステル系分散剤とからなら群から選択される少なくとも一種の成分を含有する。
分散剤(D)の沸点は200℃以上であることが好ましい。この場合、組成物(X)から分散剤(D)が揮発しにくいことから、組成物(X)の保存安定性が更に向上する。
分散剤(D)は、吸着基として、アミノ基とカルボキシル基とのうちいずれか一方又は両方を有する。分散剤(D)は、例えばアミノ基を有する分散剤(D1)とカルボキシル基を有する分散剤(D2)とのうち、いずれか一方又は両方を含有する。
アミノ基を有する分散剤(D1)は、例えばビックケミー社製のDISPERBYK−108、ビックケミー社製のDISPERBYK−2013、ビックケミー社製のDISPERBYK−180及びビックケミー社製のDISPERBYK−106からなる群から選択される少なくとも一種の成分を含有する。
分散剤(D1)のアミン価は、10mgKOH/g以上であることが好ましい。また、分散剤(D1)は、リン酸基を有さないことが好ましい。分散剤(D1)がリン酸基を有する場合は、リン酸基に由来する酸価がアミン価の値以下であることが好ましい。この場合、分散剤(D1)が、吸湿剤(C)を特に良好に分散させることができ、組成物(X)の保存安定性を特に高めることができ、硬化物の透明性を特に高めることができ、更に硬化物と窒化ケイ素及び酸化ケイ素との間の密着性を特に高めることができる。分散剤(D1)に含まれうる成分のうち、アミノ基を有しリン酸基を有さない分散剤の例は、ビックケミー社製のDISPERBYK−108を含み、アミノ基及びリン酸基を有しかつリン酸基に由来する酸価がアミン価の値以下である分散剤の例は、ビックケミー社製のDISPERBYK−2013及びビックケミー社製のDISPERBYK−180を含む。
カルボキシル基を有する分散剤(D2)は、例えばビックケミー社製のDISPERBYK−P105を含有する。
吸着剤(C)100質量部に対する分散剤(D)の量は、5質量部以上50質量部以下であることが好ましい。分散剤(D)の量が5質量部以上であれば、分散剤(D)の利点を特に発揮させることができる。分散剤(D)の量が50質量部以下であれば、硬化物と、窒化ケイ素及び酸化ケイ素との間の密着性を、より高めることができる。分散剤(D)の量は40質量部以下であればより更に好ましく、30質量部以下であれば特に好ましい。
3.封止材の作製方法及び有機EL発光装置の製造方法
組成物(X)を用いる封止材5の作製方法及び有機EL発光装置1の製造方法について説明する。
本実施形態では、組成物(X)をインクジェット法で成形してから、組成物(X)に紫外線を照射して硬化することで、封止材5を作製することが好ましい。本実施形態では組成物(X)の低粘度化が可能であるため、インクジェット法で組成物(X)を成形することが可能である。
組成物(X)をインクジェット法で成形するに当たっては、組成物(X)が常温で十分に低い粘度を有する場合には、組成物(X)を加熱せずにインクジェット法で吐出することで成形できる。
組成物(X)が加熱されることで低粘度化する性質を有する場合、組成物(X)を加熱してから組成物(X)をインクジェット法で成形してもよい。組成物(X)の50℃における粘度が1mPa・s以上50mPa・s以下である場合、組成物(X)を加熱して低粘度化させてから、組成物(X)をインクジェット法で吐出することが好ましい。組成物(X)の加熱温度は、例えば20℃以上70℃以下である。
より具体的には、例えばまず、支持基板2を準備する。この支持基板2の一面上に、有機EL素子4を設ける。有機EL素子4は、蒸着法、塗布法といった適宜の方法で作製できる。特に有機EL素子4を、インクジェット法といった塗布法で作製することが好ましい。
次に、パッシベーション層6を設ける。パッシベーション層6は、例えば蒸着法で作製できる。
次に、組成物(X)をインクジェット法で、支持基板2の一面及び有機EL素子4を覆うように成形する。なお、パッシベーション層6を設けている場合にはパッシベーション層6を覆うように組成物(X)を成形する。有機EL素子4の形成と組成物(X)の塗布のいずれにもインクジェット法を適用すれば、有機EL発光装置1の製造効率を特に向上できる。
次に、透明基板3を組成物(X)に重ねる。透明基板3は、例えばガラス製基板又は透明樹脂製基板である。
次に外部から透明基板3へ向けて紫外線を照射する。紫外線は透明基板3を透過して組成物(X)へ到達する。これにより、組成物(X)内でラジカル重合反応が進行して組成物(X)が硬化し、硬化物からなる封止材5が作製される。封止材5の厚みは例えば5μm以上50μm以下である。
なお、組成物(X)をインクジェット法以外の方法で成形してもよく、例えばキャスティング法で成形してもよい。
以下、本発明の具体的な実施例を提示する。ただし、本発明は実施例のみに制限されない。
1.組成物の調製
下記表の「組成」の欄に示す成分を混合することで、実施例及び比較例の組成物を調製した。
なお、表中に示される成分の詳細は次のとおりである。また、下記の各成分の粘度はレオメータ(アントンパール・ジャパン社製、型番DHR−2)を使用し、温度25℃、せん断速度1000s-1の条件で測定された値である。
(1)多官能アクリル化合物
・VEEA:2官能のアクリル化合物であるアクリル酸2−(2−ビニロキシエトキシ)エチル、ガラス転移温度40℃、粘度4mPa・s、日本触媒社製。
・SR247:二官能のアクリル化合物であるネオペンチルグリコールジアクリレート、ガラス転移温度117、粘度64mPa・s、サートマー社製、品番SR247。
・SR351S:三官能のアクリル化合物であるトリメチロールプロパントリアクリレート、ガラス転移温度62℃、粘度106mPa・s、サートマー社製。
(2)単官能アクリル化合物
・IBXA:イソボルニルアクリレート、ガラス転移温度97℃、粘度8mPa・s、大阪有機化学社製。
・FA−513AS:ジシクロペンタニル(メタ)アクリレート、ガラス転移温度120、粘度13mPa・s、日立化成社製、品番FA−513AS。
(3)光重合開始剤
・Irgacure184:1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、BASF社製、品名Irgacure184。
・IrgacureTPO:2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、BASF社製、品名IrgacureTPO。
(4)吸湿剤
(4−1)ゼオライト粒子1
ゼオライト粒子1は、下記の方法で製造され、そのD50は20nm、そのD90は50nm、そのpHは10である。
出発物質のゼオライト粉として平均粒径5μmの4A型ゼオライト・ナトリウムイオンを用意し、このゼオライト粉100gとイオン交換水100gとを混合してスラリーを調製した。
このスラリーに粒径100μmのジルコニアビーズ400gを入れてから、ビーズミル粉砕機でスラリー中のゼオライト粉を3時間粉砕することで、Na系ゼオライトの平均粒径を120nmにした。このときのスラリー流量は10kg/h、スラリー粘度は10mPa・sである。
続いて、スラリーから粒径100μmのジルコニアビーズを取り除き、それに代えて粒径50μmのジルコニアビーズ400gを入れてから、ビーズミル粉砕機でスラリー中のNa系ゼオライトを1時間粉砕することで、ゼオライト粉の平均粒径を70nmにした。このときのスラリー流量は10kg/h、スラリー粘度は6mPa・sである。
続いて、スラリーから粒径50μmのジルコニアビーズを取り除き、それに代えて粒径30μmのジルコニアビーズ450gを入れてから、ビーズミル粉砕機でスラリー中のゼオライト粉を1時間粉砕することで、ゼオライト粉の平均粒径を20nmにした。このときのスラリー流量は10kg/h、スラリー粘度は4mPa・sである。
続いて、スラリーを、180℃の温度下で2〜3時間放置することで、微粉砕されたゼオライト粉を得た。このゼオライト粉を乳鉢で解砕してから、メッシュを通過させることで粒径を整えることで、ゼオライト粒子1を得た。
なお、ゼオライト粒子のpHは次の方法で測定した。ポリエチレン製の瓶にゼオライト粒子0.05gとイオン交換水99.95gとを入れてから、瓶を恒温槽に入れて、90℃で24時間加熱した。続いて、瓶の中の液の上澄みのpHを、堀場製作所製のコンパクトpHメータ<LAQUAtwin>B−711を用いて測定した。
(4−2)ゼオライト粒子2
ゼオライト粒子2は、下記の方法で製造され、そのD50は60nm、そのD90は110nm、そのpHは10である。
出発物質のゼオライト粉として平均粒径5μmの4A型ゼオライト・ナトリウムイオンを用意し、このゼオライト粉100gとイオン交換水100gとを混合してスラリーを調製した。このスラリー中のゼオライト粉を、ゼオライト粒子1の場合に準じた方法で、平均粒径が60nmになるように粉砕した。
続いて、スラリーを、180℃の温度下で2〜3時間放置することで、微粉砕されたゼオライト粉を得た。このゼオライト粉を乳鉢で解砕してから、メッシュを通過させることで粒径を整えることで、ゼオライト粒子1を得た。
(4−3)ゼオライト粒子3
ゼオライト粒子3は、下記の方法で製造され、そのD50は150nm、そのD90は250nm、そのpHは10である。
出発物質のゼオライト粉として平均粒径5μmの4A型ゼオライト・ナトリウムイオンを用意し、このゼオライト粉100gとイオン交換水100gとを混合してスラリーを調製した。このスラリー中のゼオライト粉を、ゼオライト粒子1の場合に準じた方法で、平均粒径が150nmになるように粉砕した。
続いて、スラリーを、180℃の温度下で2〜3時間放置することで、微粉砕されたゼオライト粉を得た。このゼオライト粉を乳鉢で解砕してから、メッシュを通過させることで粒径を整えることで、ゼオライト粒子1を得た。
(4−4)ゼオライト粒子4
ゼオライト粒子4は、下記の方法で製造され、そのD50は60nm、そのD90は110nm、そのpHは10である。
出発物質のゼオライト粉として平均粒径5μmの4A型ゼオライト・ナトリウムイオンを用意し、このゼオライト粉100gとイオン交換水100gとを混合してスラリーを調製した。このスラリー中のゼオライト粉を、ゼオライト粒子1の場合に準じた方法で、平均粒径が60nmになるように粉砕した。
処理後のスラリー中のゼオライト粉に、次の方法で水熱合成処理を施した。スラリー50gをフッ素樹脂製容器に入れ、このフッ素樹脂製容器を、オートクレーブのステンレススチール製(SUS316製)容器に入れた。ステンレススチール製容器は、容量100cc、耐熱温度200℃、耐圧力50MPaであり、安全弁を備えた蓋により密閉される密閉構造を有する。このステンレススチール製容器を乾燥機に配置して密閉し、180℃で24時間加熱した。次に、乾燥機からステンレススチール製容器を取り出し、これを常温の水の中に入れることで急冷した。
ステンレススチール製容器からフッ素樹脂製容器を取り出し、これをバットに入れて、180℃の温度下で2〜3時間放置することで、フッ素樹脂製容器内のスラリーを乾燥した。これにより、微粉砕されたゼオライト粉を得た。このゼオライト粉をフッ素樹脂製容器から取り出し、乳鉢で解砕してから、メッシュを通過させることで粒度を整えることで、ゼオライト粒子4を得た。
(4−5)ゼオライト粒子5
ゼオライト粒子5は、表面処理が施されていない粉末品である東ソー製の品番ゼオラム4A、100メッシュパス品であり、そのD50は13μm、そのD90は30μm、そのpHは10である。
(5)分散剤
・DISPERBYK−108:アミノ基を有する顔料分散剤、アミン価71mgKOH/g、酸価0mgKOH/g、沸点200℃以上、ビックケミー社製、品番DISPERBYK−108。
・DISPERBYK−2013:アミノ基とリン酸基とを有する顔料分散剤、アミン価18mgKOH/g、酸価8mgKOH/g、沸点200℃以上、ビックケミー社製、品番DISPERBYK−2013。
・DISPERBYK−180:アミノ基とリン酸基とを有する顔料分散剤、アミン価94mgKOH/g、酸価94mgKOH/g、沸点200℃以上、ビックケミー社製、品番DISPERBYK−180。
・DISPERBYK−106:アミノ基とリン酸基とを有する顔料分散剤、アミン価74mgKOH/g、酸価132mgKOH/g、沸点200℃以上、ビックケミー社製、品番DISPERBYK−106。
・DISPERBYK−102:リン酸基とを有する顔料分散剤、アミン価0mgKOH/g、酸価101mgKOH/g、沸点200℃以上、ビックケミー社製、品番DISPERBYK−102。
・BYK−P105:カルボキシル基を有する顔料分散剤、アミン価0mgKOH/g、酸価365mgKOH/g、沸点200℃以上、ビックケミー社製、品番BYK−P105。
2.評価試験
実施例及び比較例について、次の評価試験を実施した。その結果を表に示す。
(1)粘度
組成物の粘度を、レオメータ(アントンパール・ジャパン社製、型番DHR−2)を使用して、温度25℃、せん断速度1000s-1の条件で測定した。
(2)吸湿性
Ar雰囲気下のグローブボックス内で、組成物を塗布して塗膜を作製し、この塗膜を、パナソニック電工株式会社製のLED−UV照射器(ピーク波長365nm)を用いて、約30mW/cm2の条件で20秒間紫外線照射することで光硬化させることで、厚み10μmのフィルムを作製した。
このフィルムを、真空乾燥器を用いて、加熱温度120℃、加熱時間3時間の条件で真空乾燥してから、このフィルムの質量を測定した。この測定結果を初期質量(M0)とする。続いて、フィルムを85℃、85%RHの条件下に24時間曝露してから、フィルムの質量を測定した。この測定結果を吸湿後質量(M)という。これらの初期質量(M0)及び吸湿後質量(M)から、吸湿率を、(M−M0)/M0×100(質量%)の式で算出した。
その結果、吸湿率が2質量%以上の場合を「AA」、1質量%以上2質量%未満の場合を「A」、0.5質量%以上1質量%未満の場合を「B」、0.1質量%以上0.5質量%未満の場合を「C」と、0.1質量%未満の場合を「D」と、評価した。
なお、比較例1、2、実施例16の場合には、組成物中で吸湿剤が沈殿したため、組成物から作製されたフィルム中の吸湿剤の量を把握することができず、吸湿剤に起因する吸湿性を正確に評価できないため、吸湿性の評価は行わなかった。
(3)透過率
組成物を塗布して塗膜を作製し、この塗膜を、パナソニック電工株式会社製のLED−UV照射器(ピーク波長365nm)を用いて、約30mW/cm2の条件で20秒間紫外線照射して光硬化させることで、厚み10μmのフィルムを作製した。このフィルムの、JIS K7361−1による全光線透過率を測定した。
(4)インクジェット性
組成物をインクジェットプリンター(セイコーエプソン株式会社製、形式PX−B700)のカートリッジに入れ、インクジェットプリンターにおけるノズルからカートリッジ内の組成物を吐出しうることを確認してから、ノズルから組成物を吐出させてテストパターンを連続で印刷した。その結果、組成物を1時間吐出できるとともに吐出動作が安定していた場合を「A」、組成物を1時間吐出できたが吐出動作が断続的に不安定になった場合を「B」、吐出開始から1時間経過前にノズルが詰まって組成物を吐出できなくなった場合を「C」と、評価した。
(5)密着性
石英ガラス片(寸法76mm×52mm×1mm)の表面上に、組成物を塗布して厚み50μmの塗膜を形成し、この塗膜の上に別の石英ガラス片(寸法76mm×52mm×1mm)を重ねた。続いて、塗膜を、パナソニック電工株式会社製のLED−UV照射器(ピーク波長365nm)を用いて、約30mW/cm2の条件で20秒間紫外線照射することで、硬化させた。次に、二つの石英ガラス片の間の密着強度を、JIS K6854に基づくT字ピール試験を行うことで、評価した。
(6)ガラス転移温度(Tg)
組成物を塗布して塗膜を作製し、この塗膜を、パナソニック電工株式会社製のLED−UV照射器(ピーク波長365nm)を用いて、約30mW/cm2の条件で20秒間紫外線照射することで光硬化させ、厚み200μmのフィルムを作製した。このフィルムから切り出したサンプルのガラス転移温度を、粘弾性測定装置(日立ハイテクサイエンス社製、型番DMA7100)を用いて測定した。
(7)保存安定性
組成物を窒素雰囲気下、40℃の温度で1か月間放置した。この試験の前の組成物の粘度と、試験の後の組成物の粘度とを、レオメータ(アントンパール・ジャパン社製、型番DHR−2)を使用して、温度25℃、せん断速度1000s-1の条件で測定し、その結果から、粘度の変化率を算出した。この変化率が5%未満である場合を「A」、5%以上10%未満である場合を「B」、10%以上である場合を「C」と評価した。
(8)収縮性評価
組成物の容積と質量を測定し、その結果から組成物の比重を算出した。また、この組成物を塗布して塗膜を作製し、この塗膜を、パナソニック電工株式会社製のLED−UV照射器(ピーク波長365nm)を用いて、約30mW/cm2の条件で20秒間紫外線照射することで光硬化させ、厚み200μmのフィルムを作製した。このフィルムから切り出したサンプルの比重を、比重瓶を使用して測定した。これらの結果から、次の計算式により、収縮率を算出した。
収縮率(%)={1−(組成物の比重)}/(サンプルの比重)×100
その結果、収縮率が2%未満の場合を「AA」、収縮率が2%以上4%未満の場合を「A」、収縮率が4%以上7%未満の場合を「B」、収縮率が7%以上の場合を「C」と、評価した。

Claims (17)

  1. アクリル化合物(A)、
    光重合開始剤(B)、
    平均粒径100nm以下の吸湿剤(C)、及び
    アミノ基とカルボキシル基とのうちいずれか一方又は両方を有する分散剤(D)を含有する、
    紫外線硬化性樹脂組成物。
  2. 前記アクリル化合物(A1)の25℃での粘度は50mPa・s以下である、
    請求項1に記載の紫外線硬化性樹脂組成物。
  3. 前記アクリル化合物(A1)の50℃での粘度は50mPa・s以下である、
    請求項1に記載の紫外線硬化性樹脂組成物。
  4. 前記アクリル化合物(A)は、一分子中に二つ以上の(メタ)アクリロイル基を有する多官能アクリル化合物(A1)を含有する、
    請求項1から3のいずれか一項に記載の紫外線硬化性樹脂組成物。
  5. 前記アクリル化合物(A)は、一分子中に一つのみの(メタ)アクリロイル基を有する単官能アクリル化合物(A2)を更に含有し、前記アクリル化合物(A)全量に対する前記単官能アクリル化合物(A2)の量は、0質量%より多く50質量%以下である、
    請求項4に記載の紫外線硬化性樹脂組成物。
  6. 前記吸湿剤(C)はゼオライト粒子を含有する、
    請求項1から5のいずれか一項に記載の紫外線硬化性樹脂組成物。
  7. 前記分散剤(D)の沸点は200℃以上である、
    請求項1から6のいずれか一項に記載の紫外線硬化性樹脂組成物。
  8. 前記吸着剤(C)100質量部に対する前記分散剤(D)の量は5質量部以上50質量部以下である、
    請求項1から7のいずれか一項に記載の紫外線硬化性樹脂組成物。
  9. 溶媒を含有しない、
    請求項1から8のいずれか一項に記載の紫外線硬化性樹脂組成物。
  10. 硬化物の光透過率が90%以上である、
    請求項1から9のいずれか一項に記載の紫外線硬化性樹脂組成物。
  11. 25℃における粘度が1mPa・s以上50mPa・s以下である、
    請求項1から10のいずれか一項に記載の紫外線硬化性樹脂組成物。
  12. 50℃における粘度が1mPa・s以上50mPa・s以下である、
    請求項1から11のいずれか一項に記載の紫外線硬化性樹脂組成物。
  13. 有機EL素子のための封止材を作製するために用いられる、
    請求項1から12のいずれか一項に記載の紫外線硬化性樹脂組成物。
  14. インクジェット法で成形される、
    請求項1から13のいずれか一項に記載の紫外線硬化性樹脂組成物。
  15. 有機EL素子と前記有機EL素子を覆う封止材とを備える有機EL発光装置を製造する方法であり、
    請求項1から14のいずれか一項に記載の紫外線硬化性樹脂組成物をインクジェット法で成形してから、前記紫外線硬化性樹脂組成物に紫外線を照射して硬化させることで前記封止材を作製することを含む、
    有機EL発光装置の製造方法。
  16. 前記紫外線硬化性樹脂組成物を加熱してから前記紫外線硬化性樹脂組成物をインクジェット法で成形する、
    請求項15に記載の有機EL発光装置の製造方法。
  17. 有機EL素子と、前記有機EL素子を覆う封止材とを備え、前記封止材は、請求項1から14のいずれか一項に記載の紫外線硬化性樹脂組成物の硬化物である、
    有機EL発光装置。
JP2017154798A 2017-08-09 2017-08-09 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置 Active JP6369790B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017154798A JP6369790B1 (ja) 2017-08-09 2017-08-09 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017154798A JP6369790B1 (ja) 2017-08-09 2017-08-09 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置

Publications (2)

Publication Number Publication Date
JP6369790B1 true JP6369790B1 (ja) 2018-08-08
JP2019031642A JP2019031642A (ja) 2019-02-28

Family

ID=63104361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017154798A Active JP6369790B1 (ja) 2017-08-09 2017-08-09 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置

Country Status (1)

Country Link
JP (1) JP6369790B1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230697A1 (ja) * 2018-05-31 2019-12-05 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置
JP2020053310A (ja) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP2020102430A (ja) * 2018-12-25 2020-07-02 パナソニックIpマネジメント株式会社 封止材の製造方法、及び発光装置の製造方法
JP2020100795A (ja) * 2018-12-25 2020-07-02 パナソニックIpマネジメント株式会社 発光素子封止用組成物、及び発光装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590269B1 (ja) * 2018-09-27 2019-10-16 パナソニックIpマネジメント株式会社 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法、有機el発光装置、及びタッチパネル
TW202348692A (zh) * 2022-03-24 2023-12-16 日商納美仕有限公司 樹脂組成物、接著劑、密封材、硬化物、半導體裝置及電子零件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156525A (ja) * 1982-03-08 1983-09-17 Mizusawa Ind Chem Ltd 静的安定性及び動的安定性に優れたゼオライトスラリ−及びその製造方法
JP2006134888A (ja) * 2004-11-08 2006-05-25 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
WO2012057618A1 (en) * 2010-10-25 2012-05-03 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Multilayered protective layer, organic opto-electric device and method of manufacturing the same
WO2014012931A1 (en) * 2012-07-19 2014-01-23 Huntsman Advanced Materials (Switzerland) Gmbh Radiation curable composition for water scavenging layer, and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156525A (ja) * 1982-03-08 1983-09-17 Mizusawa Ind Chem Ltd 静的安定性及び動的安定性に優れたゼオライトスラリ−及びその製造方法
JP2006134888A (ja) * 2004-11-08 2006-05-25 Samsung Sdi Co Ltd 有機電界発光素子及びその製造方法
WO2012057618A1 (en) * 2010-10-25 2012-05-03 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Multilayered protective layer, organic opto-electric device and method of manufacturing the same
WO2014012931A1 (en) * 2012-07-19 2014-01-23 Huntsman Advanced Materials (Switzerland) Gmbh Radiation curable composition for water scavenging layer, and method of manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230697A1 (ja) * 2018-05-31 2019-12-05 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置
JP2019210449A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置
JP2019210481A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置
JP2020053310A (ja) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
WO2020066455A1 (ja) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP7281663B2 (ja) 2018-09-27 2023-05-26 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP2020100795A (ja) * 2018-12-25 2020-07-02 パナソニックIpマネジメント株式会社 発光素子封止用組成物、及び発光装置
JP7236672B2 (ja) 2018-12-25 2023-03-10 パナソニックIpマネジメント株式会社 封止材の製造方法、及び発光装置の製造方法
JP7236671B2 (ja) 2018-12-25 2023-03-10 パナソニックIpマネジメント株式会社 発光素子封止用組成物、及び発光装置
JP2023059913A (ja) * 2018-12-25 2023-04-27 パナソニックIpマネジメント株式会社 発光素子封止用組成物、及び発光装置
JP2020102430A (ja) * 2018-12-25 2020-07-02 パナソニックIpマネジメント株式会社 封止材の製造方法、及び発光装置の製造方法
JP2023081885A (ja) * 2018-12-25 2023-06-13 パナソニックIpマネジメント株式会社 封止材の製造方法、及び発光装置の製造方法
JP7457957B2 (ja) 2018-12-25 2024-03-29 パナソニックIpマネジメント株式会社 封止材の製造方法、及び発光装置の製造方法

Also Published As

Publication number Publication date
JP2019031642A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6369790B1 (ja) 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP6761972B2 (ja) 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP7262038B2 (ja) 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
TWI492899B (zh) A method for producing a silica-alumina alumina sol, a silica-alumina sol, a transparent coating film containing the sol, and a substrate coated with a transparent film
JP6854431B2 (ja) 紫外線硬化性樹脂組成物、有機el発光装置の製造方法、有機el発光装置、及びタッチパネル
CN106634102B (zh) 石墨相氮化碳/氧化石墨烯异质结-环氧丙烯酸酯复合材料及制备与应用
JP6913890B2 (ja) 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP7199004B2 (ja) 紫外線硬化性樹脂組成物、及び有機el発光装置
JP2020100795A (ja) 発光素子封止用組成物、及び発光装置
JP7320787B2 (ja) 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置
JP7117583B2 (ja) 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP2020172648A (ja) 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置
JP6493845B1 (ja) 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP7457957B2 (ja) 封止材の製造方法、及び発光装置の製造方法
CN110841699B (zh) 一种提高挥发性有机物处理效率的光催化剂及其制备方法
JP2019212399A (ja) 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP7281758B2 (ja) 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP7153870B2 (ja) 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
KR101453848B1 (ko) 양이온 경화형 액정 씰제, 및 액정 표시 소자
WO2020066455A1 (ja) 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP2015203036A (ja) ラジカル重合性放射線硬化型インクジェット組成物、組成物収容体、及びインクジェット方法
CN115403952B (zh) 一种改性荧光蒙脱石纳米复合填料及其制备方法和uv湿气双固化涂料
JP2020053313A (ja) 紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
TWI464198B (zh) 綠色環保奈米高分子複合基材配方及其製法
JP2020056024A (ja) 紫外線硬化性樹脂組成物、発光装置の製造方法及び発光装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180501

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180629

R151 Written notification of patent or utility model registration

Ref document number: 6369790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151