JP6369379B2 - 質量流量計および速度計 - Google Patents

質量流量計および速度計 Download PDF

Info

Publication number
JP6369379B2
JP6369379B2 JP2015084451A JP2015084451A JP6369379B2 JP 6369379 B2 JP6369379 B2 JP 6369379B2 JP 2015084451 A JP2015084451 A JP 2015084451A JP 2015084451 A JP2015084451 A JP 2015084451A JP 6369379 B2 JP6369379 B2 JP 6369379B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
sensor
conversion element
fluid
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015084451A
Other languages
English (en)
Other versions
JP2016011949A (ja
Inventor
原田 敏一
敏一 原田
坂井田 敦資
敦資 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015084451A priority Critical patent/JP6369379B2/ja
Application filed by Denso Corp filed Critical Denso Corp
Priority to US15/315,742 priority patent/US10288464B2/en
Priority to EP15802995.9A priority patent/EP3153826A4/en
Priority to PCT/JP2015/063198 priority patent/WO2015186464A1/ja
Priority to KR1020167033067A priority patent/KR101901415B1/ko
Priority to CN201580029242.6A priority patent/CN106461438A/zh
Priority to TW104116235A priority patent/TWI595218B/zh
Publication of JP2016011949A publication Critical patent/JP2016011949A/ja
Application granted granted Critical
Publication of JP6369379B2 publication Critical patent/JP6369379B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6888Thermoelectric elements, e.g. thermocouples, thermopiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/0007Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm for discrete indicating and measuring

Description

本発明は、質量流量計および速度計に関するものである。
従来の質量流量計として、フローセンサを用いた熱式質量流量計がある。このフローセンサは、ダイアフラムおよびダイアフラム直下の空間を有するセンサチップにおいて、ダイアフラムに2つのセンサ用抵抗体とヒータ用抵抗体を形成している。2つのセンサ用抵抗体とヒータ用抵抗体は、流体の流れ方向でセンサ用抵抗体、ヒータ用抵抗体、センサ用抵抗体の順に配置されている(例えば、特許文献1参照)。
センサ用抵抗体は、温度変化によって抵抗値が変化するものである。ダイアフラムは、センサ用抵抗体が受けるダイアフラムの熱容量による影響を小さくするために、可能な限り薄くされる。ダイアフラムの直下の空間は、センサ用抵抗体が受けるセンサチップからの熱的影響を小さくするためのものである。
従来の質量流量計では、流体の質量流量変化に伴う流体の温度変化を、センサ用抵抗体を用いて検出している。
特開平8−136566号公報
上記の通り、フローセンサは、薄いダイアフラムおよびその直下に空間が形成されたダイアフラム構造を有しているため、ダイアフラムが衝撃によって破損し易いという問題があった。
同様に、移動する物体にセンサを設け、そのセンサによって移動する物体の移動速度を計測する速度計においても、センサが上記したダイアフラム構造を有していると、衝撃によって破損し易いという問題が生じる。
本発明は上記点に鑑みて、ダイアフラム構造を有するセンサよりも破損し難いセンサを備える質量流量計および速度計を提供することを第1の目的とする。また、本発明は、上記した従来の質量流量計とは、流体の温度変化の検出方式が異なる質量流量計および速度計を提供することを第2の目的とする。
上記第1の目的を達成するため、請求項1に記載の発明の質量流量計では、
一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10、20)と、
一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14、240)とを備え、
センサは、熱可塑性樹脂で構成され、複数積層された絶縁層(100、110、120、210、220)と、絶縁層に対して形成され、異なる導電体で構成されるとともに、互いに接続された第1、第2導電体(130、140、250、260)とを備え、複数の絶縁層が加熱しながら加圧されて一体化した多層基板で構成され、
熱電変換素子は、互いに接続された第1、第2導電体で構成されるとともに、熱源体から放出された熱を有する流体が一面に沿って移動したときに、一面に位置する第1領域と、センサのうち第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
さらに、熱電変換素子で発生した出力と、この出力と流体の質量流量との関係とに基づいて、流体の質量流量を演算する演算部(2)とを備え
センサは、熱電変換素子として、一面に平行な方向で熱源を挟んだ両側のそれぞれに位置する第1熱電変換素子と第2熱電変換素子とを有し、
熱源体から放出された熱を有する流体が一面に沿って移動したときに、第1熱電変換素子は、センサのうち第1熱電変換素子が形成された領域(11)における一面に位置する第1領域と他面に位置する第2領域との間に生じる温度差に応じた大きさの出力を発生するとともに、第2熱電変換素子は、センサのうち第2熱電変換素子が形成された領域(12)における一面に位置する第1領域と他面に位置する第2領域との間に生じる温度差に応じた大きさの出力を発生するようになっており、
第1熱電変換素子と第2熱電変換素子は、一面と他面の高温側と低温側の関係が同じときの出力の極性が異なるように構成されており、
演算部は、第1、第2熱電変換素子で発生した出力を合わせた総出力と、総出力と流体の質量流量との関係とに基づいて、流体の質量流量を演算することを特徴としている。
また、請求項2に記載の発明の質量流量計では、
一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10)と、
一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14)とを備え、
センサは、熱可塑性樹脂で構成され、複数積層された絶縁層(100、110、120)と、絶縁層に対して形成され、異なる導電体で構成されるとともに、互いに接続された第1、第2導電体(130、140)とを備え、複数の絶縁層が加熱しながら加圧されて一体化した多層基板で構成され、
熱電変換素子は、互いに接続された第1、第2導電体で構成されるとともに、熱源体から放出された熱を有する流体が一面に沿って移動したときに、一面に位置する第1領域と、センサのうち第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
さらに、熱電変換素子で発生した出力と、出力と流体の質量流量との関係とに基づいて、流体の質量流量を演算する演算部(2)とを備え、
熱電変換素子は、絶縁層に厚さ方向に貫通して形成された第1、第2ビアホールに、第1、第2導電体が埋め込まれた構造を有することを特徴としている。
ここで、センサの一面側の流体に熱源体から熱を放出している状態で、流体の質量流量が変化すると、センサの一面側の流体の温度が変化する。本発明では、熱源体から放出された熱を有する流体がセンサの一面に沿って移動したときに、熱電変換素子がセンサの一面側の温度に応じた電気的な出力を発生するようになっている。このため、本発明によれば、流体の質量流量変化に伴う流体の温度変化を熱電変換素子の出力で検出することができるので、この出力から流体の質量流量を求めることができる。
また、本発明で使用するセンサは、複数の絶縁層が加熱しながら加圧されて一体化されて製造された構造であり、ダイアフラム直下の空間のような大きな空間が存在しない構造である。このため、本発明によれば、ダイアフラム構造を有するセンサよりも破損し難いセンサを備える質量流量計を提供できる。
上記第1の目的を達成するため、請求項に記載の発明の速度計では、
流体内を移動する移動体に設置され、一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10、20)と、
一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14、240)とを備え、
センサは、熱可塑性樹脂で構成され、複数積層された絶縁層(100、210、22)と、絶縁層に対して形成され、異なる導電体で構成されるとともに、互いに接続された第1、第2導電体(130、140、250、260)とを備え、複数の絶縁層が加熱しながら加圧されて一体化した多層基板で構成され、
熱電変換素子は、互いに接続された第1、第2導電体で構成されるとともに、センサからみて、相対的に、熱源体から放出された熱を有する流体が一面に沿って移動したときに、一面に位置する第1領域と、センサのうち第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
さらに、熱電変換素子で発生した出力と、この出力と移動体の移動速度との関係とに基づいて、移動体の移動速度を演算する演算部(2)とを備え
センサは、熱電変換素子として、一面に平行な方向で熱源を挟んだ両側のそれぞれに位置する第1熱電変換素子と第2熱電変換素子とを有し、
熱源体から放出された熱を有する流体が一面に沿って移動したときに、第1熱電変換素子は、センサのうち第1熱電変換素子が形成された領域(11)における一面に位置する第1領域と他面に位置する第2領域との間に生じる温度差に応じた大きさの出力を発生するとともに、第2熱電変換素子は、センサのうち第2熱電変換素子が形成された領域(12)における一面に位置する第1領域と他面に位置する第2領域との間に生じる温度差に応じた大きさの出力を発生するようになっており、
第1熱電変換素子と第2熱電変換素子は、一面と他面の高温側と低温側の関係が同じときの出力の極性が異なるように構成されており、
演算部は、第1、第2熱電変換素子で発生した出力を合わせた総出力と、総出力と移動体の移動速度との関係とに基づいて、移動体の移動速度を演算することを特徴としている。
また、請求項6に記載の速度計では、
流体内を移動する移動体に設置され、一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10)と、
一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14)とを備え、
センサは、熱可塑性樹脂で構成され、複数積層された絶縁層(100、110、120)と、絶縁層に対して形成され、異なる導電体で構成されるとともに、互いに接続された第1、第2導電体(130、140)とを備え、複数の絶縁層が加熱しながら加圧されて一体化した多層基板で構成され、
熱電変換素子は、互いに接続された第1、第2導電体で構成されるとともに、センサからみて、相対的に、熱源体から放出された熱を有する流体が一面に沿って移動したときに、一面に位置する第1領域と、センサのうち第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
さらに、熱電変換素子に発生した出力と、出力と移動体の移動速度との関係とに基づいて、移動体の移動速度を演算する演算部(2)とを備え、
熱電変換素子は、絶縁層に厚さ方向に貫通して形成された第1、第2ビアホールに、第1、第2導電体が埋め込まれた構造を有することを特徴としている。
ここで、センサの一面側の流体に熱源体から熱を放出している状態で、移動体の移動速度が変化したときでは、センサからみると、センサの一面側に存在する流体の温度が変化する。本発明では、センサからみて、相対的に、熱源体から放出された熱を有する流体がセンサの一面に沿って移動したときに、熱電変換素子がセンサの一面側の温度に応じた電気的な出力を発生するようになっている。このため、本発明によれば、移動体の移動速度の変化に伴う流体の温度変化を熱電変換素子の出力で検出することができるので、この出力から移動体の移動速度を求めることができる。
また、本発明で使用するセンサは、複数の絶縁層が加熱しながら加圧されて一体化されて製造された構造であり、ダイアフラム直下の空間のような大きな空間が存在しない構造である。このため、本発明によれば、ダイアフラム構造を有するセンサよりも破損し難いセンサを備える速度計を提供できる。
上記第2の目的を達成するため、請求項に記載の発明の質量流量計では、
一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10、20)と、
一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14、240)とを備え、
熱電変換素子は、異なる導電体であって、互いに接続された第1、第2導電体で構成されるとともに、熱源体から放出された熱を有する流体が一面に沿って移動したときに、一面に位置する第1領域と、センサのうち第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
さらに、熱電変換素子で発生した出力と、この出力と流体の質量流量との関係とに基づいて、流体の質量流量を演算する演算部(2)とを備え
センサは、熱電変換素子として、一面に沿う方向で熱源を挟んだ両側のそれぞれに位置する第1熱電変換素子と第2熱電変換素子とを有し、
熱源体から放出された熱を有する流体が一面に沿って移動したときに、第1熱電変換素子は、センサのうち第1熱電変換素子が形成された領域(11)における一面に位置する第1領域と他面に位置する第2領域との間に生じる温度差に応じた大きさの出力を発生するとともに、第2熱電変換素子は、センサのうち第2熱電変換素子が形成された領域(12)における一面に位置する第1領域と他面に位置する第2領域との間に生じる温度差に応じた大きさの出力を発生するようになっており、
第1熱電変換素子と第2熱電変換素子は、一面と他面の高温側と低温側の関係が同じときの出力の極性が異なるように構成されており、
演算部は、第1、第2熱電変換素子で発生した出力を合わせた総出力と、総出力と流体の質量流量との関係とに基づいて、流体の質量流量を演算することを特徴としている。
また、請求項4に記載の発明の質量流量計では、
一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10)と、
一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14)とを備え、
熱電変換素子は、異なる導電体であって、互いに接続された第1、第2導電体で構成されるとともに、熱源体から放出された熱を有する流体が一面に沿って移動したときに、一面に位置する第1領域と、センサのうち第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
さらに、熱電変換素子で発生した出力と、出力と流体の質量流量との関係とに基づいて、流体の質量流量を演算する演算部(2)とを備え、
センサは、複数積層された絶縁層(100、110、120)を備え、
熱電変換素子は、絶縁層に厚さ方向に貫通して形成された第1、第2ビアホールに、第1、第2導電体が埋め込まれた構造を有することを特徴としている。
ここで、センサの一面側の流体に熱源体から熱を放出している状態で、流体の質量流量が変化すると、センサの一面側の流体の温度が変化する。本発明では、熱源体から放出された熱を有する流体がセンサの一面に沿って移動したときに、熱電変換素子がセンサの一面側の温度に応じた電気的な出力を発生するようになっている。このため、本発明によれば、流体の質量流量変化に伴う流体の温度変化を熱電変換素子の出力で検出することができるので、この出力から流体の質量流量を求めることができる。よって、本発明によれば、上記した従来の質量流量計とは、流体の温度変化の検出方式が異なる質量流量計を提供できる。
上記第2の目的を達成するため、請求項に記載の発明の速度計では、
流体内を移動する移動体に設置され、一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10、20)と、
一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14、240)とを備え、
熱電変換素子は、異なる導電体であって、互いに接続された第1、第2導電体で構成されるとともに、センサからみて、相対的に、熱源体から放出された熱を有する流体が一面に沿って移動したときに、一面に位置する第1領域と、センサのうち第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
さらに、熱電変換素子に発生した出力と、出力と移動体の移動速度との関係とに基づいて、移動体の移動速度を演算する演算部(2)とを備え、
センサは、熱電変換素子として、一面に沿う方向で熱源を挟んだ両側のそれぞれに位置する第1熱電変換素子と第2熱電変換素子とを有し、
熱源体から放出された熱を有する流体が一面に沿って移動したときに、第1熱電変換素子は、センサのうち第1熱電変換素子が形成された領域(11)における一面に位置する第1領域と他面に位置する第2領域との間に生じる温度差に応じた大きさの出力を発生するとともに、第2熱電変換素子は、センサのうち第2熱電変換素子が形成された領域(12)における一面に位置する第1領域と他面に位置する第2領域との間に生じる温度差に応じた大きさの出力を発生するようになっており、
第1熱電変換素子と第2熱電変換素子は、一面と他面の高温側と低温側の関係が同じときの出力の極性が異なるように構成されており、
演算部は、第1、第2熱電変換素子で発生した出力を合わせた総出力と、総出力と移動体の移動速度との関係とに基づいて、移動体の移動速度を演算することを特徴としている。
また、請求項8に記載の発明の速度計では、
流体内を移動する移動体に設置され、一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10)と、
一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14)とを備え、
熱電変換素子は、異なる導電体であって、互いに接続された第1、第2導電体で構成されるとともに、センサからみて、相対的に、熱源体から放出された熱を有する流体が一面に沿って移動したときに、一面に位置する第1領域と、センサのうち第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
さらに、熱電変換素子に発生した出力と、出力と移動体の移動速度との関係とに基づいて、移動体の移動速度を演算する演算部(2)とを備え、
センサは、複数積層された絶縁層(100、110、120)を備え、
熱電変換素子は、絶縁層に厚さ方向に貫通して形成された第1、第2ビアホールに、第1、第2導電体が埋め込まれた構造を有することを特徴としている。
ここで、センサの一面側の流体に熱源体から熱を放出している状態で、移動体の移動速度が変化したときでは、センサからみると、センサの一面側に存在する流体の温度が変化する。本発明では、センサからみて、相対的に、熱源体から放出された熱を有する流体がセンサの一面に沿って移動したときに、熱電変換素子がセンサの一面側の温度に応じた電気的な出力を発生するようになっている。このため、本発明によれば、移動体の移動速度の変化に伴う流体の温度変化を熱電変換素子の出力で検出することができるので、この出力から移動体の移動速度を求めることができる。よって、本発明によれば、上記した従来の質量流量計とは、流体の温度変化の検出方式が異なる速度計を提供できる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
第1実施形態における質量流量計の全体構成を示す図である。 図1中の流量センサの平面図である。 図2AのIIB−IIB線断面に対応する模式図である。 図2AのIII−III線断面図である。 流量センサの製造工程を説明するための断面図である。 第1実施形態において、流体流れが無い状態のときの流量センサ近傍の温度分布を示す図である。 第1実施形態において、流体流れが有る状態のときの流量センサ近傍の温度分布を示す図である。 比較例1において、流体流れが無い状態のときの流量センサ近傍の温度分布を示す図である。 比較例1において、流体流れが有る状態のときの流量センサ近傍の温度分布を示す図である。 第2実施形態における流量センサの計測場所への設置方法を説明するための斜視図である。 第3実施形態における流量センサの計測場所への設置方法を説明するための斜視図である。 第4実施形態における流量センサの計測場所への設置方法を説明するための斜視図である。 第4実施形態における流量センサの計測場所への設置方法を説明するための斜視図である。 第4実施形態における流量センサの計測場所への設置方法を説明するための斜視図である。 第4実施形態における流量センサの計測場所への設置方法を説明するための斜視図である。 第5実施形態における流量センサの計測場所への設置方法を説明するための斜視図である。 第6実施形態における流量センサの断面図である。 第7実施形態における流量センサの平面図である。 図14のXV−XV線断面図である。 第7実施形態において、流体流れが無い状態のときの流量センサ近傍の温度分布を示す図であって、図14のXVI−XVI線断面に対応する模式図である。 第7実施形態において、流体流れが有る状態のときの流量センサ近傍の温度分布を示す図であって、図14のXVII−XVII線断面に対応する模式図である。 第8実施形態における流量センサの平面図である。 第8実施形態における流量センサの底面図である。 図18のXXA−XXA線断面図である。 第8実施形態における流量センサの製造工程を説明するための断面図であって、図20Aに対応する断面図である。 図18のXXIA−XXIA線断面図である。 第8実施形態における流量センサの製造工程を説明するための断面図であって、図21Aに対応する断面図である。 第8実施形態において、流体流れが無い状態のときの流量センサ近傍の温度分布を示す図である。 第8実施形態において、流体流れが有る状態のときの流量センサ近傍の温度分布を示す図である。 第9実施形態における流量センサの平面図である。 第9実施形態における流量センサの底面図である。 図24のXXVIA−XXVIA線断面図である。 第9実施形態における流量センサの製造工程を説明するための断面図であって、図26Aに対応する断面図である。 図24のXXVIIA−XXVIIA線断面図である。 第9実施形態における流量センサの製造工程を説明するための断面図であって、図21Aに対応する断面図である。 第10実施形態における流量センサの平面図である。 第10実施形態における流量センサの底面図である。 図28のXXXA−XXXA線断面図である。 第10実施形態における流量センサの製造工程を説明するための断面図であって、図30Aに対応する断面図である。 図28のXXXIA−XXXIA線断面図である。 第10実施形態における流量センサの製造工程を説明するための断面図であって、図31Aに対応する断面図である。 第10実施形態において、流体流れが無い状態のときの流量センサ近傍の温度分布を示す図である。 第10施形態において、流体流れが有る状態のときの流量センサ近傍の温度分布を示す図である。 第11実施形態における速度計の全体構成を示す図である。 第11実施形態において、移動体が停止状態のときの速度センサ近傍の温度分布を示す図である。 第11実施形態において、移動体が移動状態のときの速度センサ近傍の温度分布を示す図である。 他の実施形態における流量センサの平面図である。 他の実施形態における流量センサの平面図である。 他の実施形態における流量センサの平面図である。 他の実施形態における流量センサの平面図である。 他の実施形態における流量センサの平面図である。 他の実施形態における流量センサの平面図である。 他の実施形態における流量センサの平面図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
本実施形態では、配管内を流れる流体の質量流量を計測する質量流量計について説明する。図1に示すように、質量流量計1は、1つの流量センサ10と、1つの制御装置2とを備えている。
流量センサ10は、流体の質量流量の計測場所である配管3内に設置され、配管3内を流れる流体の質量流量に応じたセンサ信号を制御装置2に出力するものである。流量センサ10は、一面とその反対側の他面とを有する矩形の平板状のものである。流量センサ10は、円筒状の配管3の内面に沿って湾曲した状態で、図示しない接着層を介して、配管3の内面に接着されている。
配管3は、配管3内を流れる流体と比較して、熱が移動し難い材料である樹脂で構成されている。
図2A、2Bに示すように、流量センサ10は、上面10aとその反対側の下面10bとを有する多層基板で構成されている。以下では、流量センサ10を多層基板10とも呼ぶ。上面10aと下面10bがそれぞれ流量センサ10の一面と他面に対応する。
この流量センサ10は、1つの多層基板10内に第1、第2センサ部11、12とヒータ部13とが形成されたものである。第1、第2センサ部11、12およびヒータ部13は、多層基板10の上面10aおよび下面10bに平行な方向で、第1センサ部11、ヒータ部13、第2センサ部12の順に並んで配置されている。流量センサ10は、流体の流れ方向D1、D2に平行な方向で、ヒータ部13の両側に第1センサ部11と第2センサ部12とが位置するように、流体の質量流量の計測箇所である配管3内に設置される。なお、本実施形態では、第1、第2センサ部11、12およびヒータ部13が、多層基板10の上面10aおよび下面10bに平行な方向に並んでいたが、厳密に平行でなくてもよく、多層基板10の上面10aおよび下面10bに沿った方向に並んで配置されていればよい。
第1、第2センサ部11、12は、それぞれ、多層基板10の上面10aおよび下面10bに垂直な方向で多層基板10の内部を通過する熱流の大きさに応じた起電力、すなわち、電圧を発生する熱電変換素子が形成されている。換言すると、第1、第2センサ部11、12は、それぞれ、多層基板10の上面10aと下面10bの温度差に応じた起電力を発生する熱電変換素子が形成されている。
なお、本実施形態では、第1、第2センサ部11、12に形成された熱電変換素子が、それぞれ、特許請求の範囲に記載の第1、第2熱電変換素子に対応する。また、本実施形態では、第1、第2センサ部11、12が、それぞれ、特許請求の範囲に記載の第1、第2熱電変換素子が形成された領域に対応する。また、流量センサ10の上面10aのうち第1センサ部11の領域が、特許請求の範囲に記載のセンサの一面に位置する第1領域に対応し、流量センサ10の下面10bにおける第1センサ部11の領域が、センサのうち第1領域とは異なる位置の第2領域に対応する。同様に、流量センサ10の上面10aのうち第2センサ部12の領域が、特許請求の範囲に記載のセンサの一面に位置する第1領域に対応し、流量センサ10の下面10bにおける第2センサ部12の領域が、センサのうち第1領域とは異なる位置の第2領域に対応する。
また、第1、第2センサ部11、12は、同じ向きの熱流によって発生する起電力の極性が逆の関係となるように構成されている。本実施形態では、第1センサ部11は、図2B中の矢印のように、内部を通過する熱流の向きが上向きのとき、第1センサ部11で発生する起電力(電圧)が正の値となるように構成されている。一方、第2センサ部12は、図2B中の矢印のように、内部を通過する熱流の向きが下向きのとき、第2センサ部12で発生する起電力(電圧)が正の値となるように構成されている。
なお、本実施形態では、第1、第2センサ部11、12は、その形状および大きさが同じであって、ヒータ部13からの距離が同じである。すなわち、第1、第2センサ部11、12は、流量センサ10の上面10aに平行な方向でのヒータ部13の中心を通り、上面10aに垂直なヒータ部13の中心線を基準とした線対称の関係を有している。
そして、第1、第2センサ部11、12は、図2A中に破線で示すように、直列に電気的に接続され、制御装置2に電気的に接続されている。なお、図2A中の破線は配線を示している。これにより、第1、第2センサ部11、12のそれぞれの起電力を合わせた総起電力が、流量センサ10から制御装置2に向けて出力される。
ヒータ部13は、温熱を発生する熱源体であり、本実施形態では、ニクロム線等の通電により発熱する電熱線によって構成されている。ヒータ部13は、制御装置2と電気的に接続されている。
制御装置2は、例えば、マイクロコンピュータ、記憶手段としてのメモリ、その周辺回路にて構成される電子制御装置である。制御装置2は、流量センサ10から出力されたセンサ信号(起電力)に基づいて、流体の質量流量の演算処理を行う演算部として機能する。また、制御装置2は、ヒータ部13の作動と停止を制御する制御部としても機能する。
次に、流量センサ10の具体的な内部構造について説明する。
図3に示すように、流量センサ10は、絶縁基材100と、絶縁基材100の表面100aに配置された表面保護部材110と、絶縁基材100の裏面100bに配置された裏面保護部材120が積層されて一体化された多層基板で構成されている。絶縁基材100、表面保護部材110および裏面保護部材120は、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)等に代表される平面矩形状の熱可塑性樹脂フィルムにて構成されている。このように、本実施形態の流量センサ10は、熱可塑性樹脂で構成された絶縁層が複数積層されたものであり、可撓性を有している。このため、円筒状の配管3の内面に応じて湾曲させた状態で、流量センサ10を配管3の内面に接着させることができる。
第1センサ部11と第2センサ部12では、絶縁基材100に、その厚さ方向に貫通する複数の第1、第2ビアホール101、102が形成されている。複数の第1、第2ビアホール101、102は、図示しないが、絶縁基材100の平面方向において、互い違いになるように千鳥パターンに形成されている。なお、第1センサ部11の構造と第2センサ部12の構造は、ヒータ部13を基準とした線対称の関係であり、基本的な構造は同じである。
そして、第1ビアホール101には第1層間接続部材130が配置され、第2ビアホール102には第2層間接続部材140が配置されている。つまり、絶縁基材100には、第1、第2層間接続部材130、140が互い違いになるように配置されている。
第1、第2層間接続部材130、140は、ゼーベック効果を発揮するように、互いに異なる導電体で構成されている。導電体とは、金属や半導体といった導電性材料である。したがって、本実施形態では、第1、第2層間接続部材130、140が特許請求の範囲に記載の第1、第2導電体に対応する。
例えば、第1層間接続部材130は、P型を構成するBi−Sb−Te合金の粉末が、焼結前における複数の金属原子の結晶構造を維持するように固相焼結された金属化合物で構成される。また、第2層間接続部材140は、N型を構成するBi−Te合金の粉末が、焼結前における複数の金属原子の結晶構造を維持するように固相焼結された金属化合物で構成される。
表面保護部材110には、絶縁基材100と対向する一面110a側に銅箔等がパターニングされた複数の表面パターン111が互いに離間するように形成されている。そして、各表面パターン111は、それぞれ、第1、第2層間接続部材130、140と適宜電気的に接続されている。
具体的には、図3に示されるように、隣接する1つの第1層間接続部材130と1つの第2層間接続部材140とを1つの組150としたとき、各組150の第1、第2層間接続部材130、140は同じ表面パターン111と接続されている。つまり、各組150の第1、第2層間接続部材130、140は表面パターン111を介して電気的に接続されている。
裏面保護部材120には、絶縁基材100と対向する一面120a側に銅箔等がパターニングされた複数の裏面パターン121が互いに離間するように形成されている。そして、各裏面パターン121は、それぞれ、第1、第2層間接続部材130、140と適宜電気的に接続されている。
具体的には、図3に示されるように、隣り合う2つの組150において、一方の組150の第1層間接続部材130と他方の組150の第2層間接続部材140とが同じ裏面パターン121と接続されている。つまり、組150を跨いで第1、第2層間接続部材130、140が同じ裏面パターン121を介して電気的に接続されている。
このようにして、各組150は、直列に接続されるとともに、図2A中の破線で示すように、繰り返し折り返されるように、多層基板内に配置されている。なお、一組の互いに接続された第1、第2層間接続部材130、140が1つの熱電変換素子を構成している。したがって、第1、第2センサ部11、12は、それぞれ、直列に接続された複数の熱電変換素子を備えている。また、第1センサ部11に形成された熱電変換素子が第1熱電変換素子であり、第2センサ部12に形成された熱電変換素子が第2熱電変換素子である。
多層基板のうちヒータ部13では、絶縁基材100の内部に電熱線13aが埋設されている。また、多層基板のヒータ部13の下に、ヒータ部13を跨ぐように裏面パターン121が形成されている。この裏面パターン121によって、第1センサ部11の第1、第2層間接続部材130、140と、第2センサ部12の第1、第2層間接続部材130、140とが直列に接続されている。
以上が本実施形態における流量センサ10の基本的な構成である。この流量センサ10では、多層基板10の第1、第2センサ部11、12のそれぞれの領域において、互いに接続された第1、第2層間接続部材130、140の上端側が多層基板10の上面10a側に位置し、下端側が多層基板10の下面10b側に位置している。このため、多層基板10の第1センサ部11の領域において、多層基板10の両面10a、10bに温度差が生じると、第1センサ部11の交互に直列接続された第1、第2層間接続部材130、140に、その温度差に応じた起電力が発生する。同様に、多層基板10の第2センサ部12の領域において、多層基板10の両面10a、10bに温度差が生じると、第2センサ部12の交互に直列接続された第1、第2層間接続部材130、140に、その温度差に応じた起電力が発生する。
また、本実施形態では、上記の通り、第1、第2ビアホール101、102内に第1、第2層間接続部材130、140を配置しているため、第1、第2ビアホール101、102の数や径、間隔等を適宜変更することで、第1、第2層間接続部材130、140の高密度化が可能となる。これにより、交互に直列接続された第1、第2層間接続部材130、140にて発生する起電力を大きくでき、第1、第2センサ部11、12の高感度化が可能である。
また、上記の通り、第1、第2層間接続部材130、140を形成する金属は、複数の金属原子が当該金属原子の結晶構造を維持した状態で焼結された焼結合金である。これにより、交互に直列接続された第1、第2層間接続部材130、140にて発生する起電力を大きくでき、第1、第2センサ部11、12の高感度化が可能である。
また、上記の通り、第1センサ部11の構造と第2センサ部12の構造は、ヒータ部13を基準とした線対称の関係である。すなわち、第1層間接続部材130と第2層間接続部材140の接続順が逆の関係となっている。このため、第1センサ部11と第2センサ部12では、発生する起電力の極性が逆となる。
次に、上記流量センサ10の製造方法について図4を参照しつつ説明する。
まず、図4(a)に示される絶縁基材100を用意する。これは、次のようにして形成される。
電熱線13aが埋め込まれた絶縁基材100を用意し、複数の第1ビアホール101をドリルやレーザ等によって形成する。次に、各第1ビアホール101に第1導電性ペースト131を充填する。なお、第1ビアホール101に第1導電性ペースト131を充填する方法(装置)としては、本出願人による特願2010−50356号に記載の方法(装置)を採用すると良い。
簡単に説明すると、図示しないが、吸着紙を介して保持台上に、裏面100bが吸着紙と対向するように絶縁基材100を配置する。そして、第1導電性ペースト131を溶融させつつ、第1ビアホール101内に第1導電性ペースト131を充填する。これにより、第1導電性ペースト131の有機溶剤の大部分が吸着紙に吸着され、第1ビアホール101に合金の粉末が密接して配置される。
なお、吸着紙は、第1導電性ペースト131の有機溶剤を吸収できる材質のものであれば良く、一般的な上質紙等が用いられる。また、第1導電性ペースト131は、金属原子が所定の結晶構造を維持しているBi−Sb−Te合金の粉末を融点が43℃であるパラフィン等の有機溶剤を加えてペースト化したものが用いられる。このため、第1導電性ペースト131を充填する際には、絶縁基材100の表面100aが約43℃に加熱された状態で行われる。
続いて、絶縁基材100に複数の第2ビアホール102をドリルやレーザ等によって形成する。この第2ビアホール102は、上記のように、第1ビアホール101と互い違いとなり、第1ビアホール101と共に千鳥パターンを構成するように形成される。
次に、各第2ビアホール102に第2導電性ペースト141を充填する。この工程は、第1導電性ペースト131を充填する工程と同様に行うことができる。すなわち、図示しないが、吸着紙を介して保持台上に裏面100bが吸着紙と対向するように絶縁基材100を配置した後、第2ビアホール102内に第2導電性ペースト141を充填する。これにより、第2導電性ペースト141の有機溶剤の大部分が吸着紙に吸着され、第2ビアホール102に合金の粉末が密接して配置される。
第2導電性ペースト141は、第1導電性ペースト131を構成する金属原子と異なる金属原子が所定の結晶構造を維持しているBi−Te合金の粉末を融点が常温であるテレピネ等の有機溶剤を加えてペースト化したものが用いられる。つまり、第2導電性ペースト141を構成する有機溶剤は、第1導電性ペースト131を構成する有機溶剤より融点が低いものが用いられる。そして、第2導電性ペースト141を充填する際には、絶縁基材100の表面100aが常温に保持された状態で行われる。言い換えると、第1導電性ペースト131に含まれる有機溶剤が固化された状態で、第2導電性ペースト141の充填が行われる。これにより、第1ビアホール101に第2導電性ペースト141が混入することが抑制される。
なお、第1導電性ペースト131に含まれる有機溶剤が固化された状態とは、第1導電性ペースト131を充填する工程において、吸着紙に吸着されずに第1ビアホール101に残存している有機溶剤のことである。
また、図4(b)、(c)に示される表面保護部材110および裏面保護部材120を用意する。これらは、次のようにして形成される。まず、表面保護部材110および裏面保護部材120のうち絶縁基材100と対向する一面110a、120aに銅箔等を形成する。そして、この銅箔を適宜パターニングすることにより、表面保護部材110および裏面保護部材120に対して、互いに離間している複数の表面パターン111および互いに離間している複数の裏面パターン121を形成する
その後、図4(d)に示されるように、裏面保護部材120、絶縁基材100、表面保護部材110を順に積層して積層体170を形成する。この積層体170を図示しない一対のプレス板の間に配置し、積層方向の上下両面から真空状態で加熱しながら加圧することにより、積層体を一体化する。具体的には、第1、第2導電性ペースト131、141が固相焼結されて第1、第2層間接続部材130、140を形成すると共に、第1、第2層間接続部材130、140と表面パターン111および裏面パターン121とが接続されるように加熱しながら加圧して積層体170を一体化する。
なお、特に限定されるものではないが、積層体170を一体化する際には、積層体170とプレス板との間にロックウールペーパー等の緩衝材を配置してもよい。以上のようにして、上記流量センサ10が製造される。
次に、本実施形態の質量流量計1による流体の質量流量の計測方法について、図5、6を用いて説明する。なお、図5、6は、図2Bに対応した図である。
流体の質量流量の計測時では、ヒータ部13を作動させて発熱させる。以下では、配管3内に流体流れが無い状態ときと、配管3内に流体流れが有る状態のときの流量センサ10の状態を説明する。流体流れが無い状態とは、流体は存在するが、流体の質量流量が0の状態であり、流体の流量変化が無い状態である。流体流れが有る状態とは、流体の質量流量の絶対値が0よりも大きい状態であり、流体の質量流量が0の状態と比較して流体の流量変化が起きている状態である。
図5に示すように、流体流れが無い状態のときでは、ヒータ部13からの熱が伝わることで、流量センサ10の上面10a側に存在する流体に図5中の等温線で示す温度分布が形成されるとともに、流量センサ10の下面10b側の配管3に図5中の等温線で示す温度分布が形成される。流量センサ10の上面10aは流体の温度分布に応じた温度となり、流量センサ10の下面10bは配管3の温度分布に応じた温度となる。
このとき、流体および配管3に対してヒータ部13から放出された熱がヒータ部13を挟んだ両側に均等に伝わるため、流体および配管3の温度分布は、ヒータ部13を挟んだ両側で同じである。また、本実施形態では、流体の方が配管3よりも熱が伝わりやすいので、流体の温度分布と配管3の温度分布とが異なる。具体的には、流量センサ10の上面10aと下面10bにおけるヒータ部13からの距離が同じ位置同士の温度を比較すると、流体側の上面10aの方が配管3側の下面10bよりも温度が高くなる。
このため、第1、第2センサ部11、12は、どちらも、上面10aが高温側となり、下面10bが低温側となり、上面10aと下面10bの温度差が同じとなる。このため、第1、第2センサ部11、12の内部に同じ向きで同じ大きさの熱流が流れる。したがって、第1センサ部11で生じる起電力と第2センサ部12で生じる起電力は、同じ大きさであって正負の極性が異なるので、両者を合わせると互いに打ち消しあい、流量センサ10から出力される総起電力は0となる。
図6に示すように、流体流れが有る状態のときでは、流体流れ無しの状態のときと比較して、流量センサ10の上面10a側の流体の温度分布が変化する。すなわち、流量センサ10の上面10aに沿って流体が流れると、図6中の等温線で示すように、ヒータ部13からの熱によって高温となる流体の高温部が流体流れ方向D1にシフトする。図6では、流体の流れ方向D1が右方向なので、流体のうち80℃の高温部が、流体流れが無い状態のときよりも右側にシフトする。なお、流量センサ10の下面10b側には流体が流れないので、流量センサ10の下面10b側に位置する配管3の温度分布は変化しない、もしくは、その変化は小さい。
このため、図6に示すように、ヒータ部13よりも流体流れ下流側の第2センサ部12では、上面10aが高温側、下面10bが低温側となり、図6中に矢印で示す下向きの熱流が第2センサ部12を通過することとなる。また、上面10aと下面10bの温度差が、流体流れが無い状態のときよりも大きくなる。したがって、第2センサ部12で生じる起電力は正となり、流体流れが無い状態のときよりも電圧値が大きくなる。
一方、ヒータ部13よりも流体流れ上流側の第1センサ部11では、上面10aが低温側、下面10bが高温側となり、図6中の矢印で示す上向きの熱流が第1センサ部11を通過することとなる。したがって、第1センサ部11で生じる起電力は、流体流れが無い状態のときの起電力とは反対の正となる。
この結果、第1センサ部11で生じた起電力と第2センサ部12で生じた起電力を合わせた正の総起電力が流量センサ10から出力される。このとき、多層基板10の上面10aにおける第1、第2センサ部11、12の領域の温度と流体の質量流量との間に一定の関係がある。このため、流量センサ10から出力される総起電力と流体の質量流量との間に一定の関係がある。そこで、制御装置2は、流量センサ10から出力された総起電力の大きさと、その総起電力の大きさと流体の質量流量との関係とに基づいて、流体の質量流量を演算する。このようにして、流体の質量流量を計測することができる。なお、流量センサ10から出力される総起電力と流体の質量流量との関係は、予め実験等によって求められ、制御装置2のメモリに予め記憶されている。
以上の説明の通り、本実施形態の流量センサ10は、裏面保護部材120、絶縁基材100、表面保護部材110が加熱しながら加圧されて一体化されて製造された構造であり、中身が詰まった中実の構造体である。このため、本実施形態の流量センサ10は、従来のフローセンサが有するダイアフラム直下の空間のような大きな空間が存在しないので、ダイアフラム構造を有するセンサよりも破損し難いものである。なお、ここでいう中実の構造体とは、従来のフローセンサが有するダイアフラム直下の空間のような大きな空間が存在せずに中身が詰まった構造体を意味する。ただし、センサを構成する各構成部材間に形成される小さな隙間を有する構造体を排除する意味ではない。
ここで、本実施形態における流量センサ10の設置状態と、図7、8に示す比較例1における流量センサ10の設置状態とを比較する。比較例1は、上記した流量センサ10を、流量センサ10の上面10aと下面10bの両面が配管3の内部を流れる流体と接するように、配管3内の内部に設置している。
比較例1では、図7に示す流体流れが無い状態のとき、図7中の等温線のように、流量センサ10の上面10a側と下面10b側の流体の温度分布は同じである。このため、第1、第2センサ部11、12のどちらも、上面10aと下面10bにおけるヒータ部13からの距離が同じ位置同士の温度が同じであり、内部に熱流が生じないため、起電力が発生しない。
また、比較例1では、図8に示す流体流れが有る状態のときも、流量センサ10の上面10a側と下面10b側に流体が流れるため、図8中の等温線のように、流量センサ10の上面10a側と下面10b側の流体の温度分布は同じである。このため、第1、第2センサ部11、12のどちらも、上面10aと下面10bにおけるヒータ部13からの距離が同じ位置同士の温度が同じであり、内部に熱流が生じないため、起電力が発生しない。このように、流量センサ10の両面10a、10b側を流体が流れる場合、流体流れが無い状態のときと比較して、第1、第2センサ部11、12のそれぞれにおける上面10aと下面10bの温度差に変化が生じない。したがって、比較例1では、流体の質量流量を計測することができない。
これに対して、本実施形態では、計測対象の流体と比較して熱が移動し難い配管3の内面に、流量センサ10の下面10bを接着させている。すなわち、本実施形態では、流量センサ10の下面10bに、流体と比較して熱が移動し難い配管3が存在する状態で、流量センサ10が配管3に設置されている。
これにより、流体流れが有る状態のときでは、流量センサ10の上面10a側は、流体流れによって流体流れ方向にヒータ部13からの熱が移動するのに対して、流量センサ10の下面10b側は、上面10a側と比較して、ヒータ部13からの熱の移動が抑制された状態となる。この結果、流体流れが有る状態のとき、流体流れが無い状態のときと比較して、第1、第2センサ部11、12のそれぞれにおける上面10aと下面10bの温度差に変化を生じさせることができる。この結果、本実施形態によれば、第1、第2センサ部11、12のそれぞれにおける上面10aと下面10bの温度差に応じた起電力の合計に基づいて、流体の質量流量を計測することができる。
また、本実施形態の流量センサ10は、ヒータ部13の両側に第1、第2センサ部11、12を有しており、第1、第2センサ部11、12が、同じ向きの熱流によって発生する起電力の極性が異なるように構成されているとともに、多層基板の内部で電気的に直列に接続された構成となっている。
ここで、流量センサ10は、第1、第2センサ部11、12の一方のみを有する構成を採用したものであってもよい。この場合であっても、流体流れが有る状態のとき、第1、第2センサ部11、12のどちらも、流体流れが無い状態と比較して上面と下面の温度差が変化するので(図5、6参照)、第1、第2センサ部11、12の一方のみの起電力に基づいても、流体の質量流量を計測することができる。
ただし、次の理由により、本実施形態の流量センサ10の方が好ましい。すなわち、本実施形態の流量センサ10は、上記の通り、流体流れが有る状態のときに、第1、第2センサ部11、12から同じ極性の起電力が発生し、両方の起電力を合わせたものを出力する。このため、本実施形態によれば、第1、第2センサ部11、12の一方のみを有する構成の流量センサと比較して、流量センサ10が出力する起電力を大きくでき、すなわち、感度を大きくできる。
また、本実施形態の流量センサ10と異なり、第1、第2センサ部11、12が、同じ向きの熱流によって発生する起電力の極性が同じとなるように構成してもよい。このとき、第1、第2センサ部11、12を直列に接続しても良く、両者を独立させて制御装置2と電気的に接続してもよい。
ただし、第1、第2センサ部11、12が、同じ向きの熱流によって発生する起電力の極性が同じとなるように構成され、両者が直列に接続された流量センサでは、流体の流れ方向が順方向と逆方向で、流量センサから出力される電圧値の極性は同じである。このため、流体の流れ方向が順方向と逆方向で入れ替わった場合に、流体の流れ方向を特定することができない。
これに対して、本実施形態の流量センサ10は、流体の流れ方向が順方向と逆方向で入れ替わった場合、流量センサ10から出力される電圧値の極性が異なる。このため、出力された電圧値の極性から、流体の流れ方向が順方向か逆方向かを特定することができる。
また、本実施形態の流量センサ10と異なり、流量センサが、第1、第2センサ部11、12の一方のみを有する場合や、第1、第2センサ部11、12が、同じ向きの熱流によって発生する起電力の極性が同じとなるように構成されている場合では、周りの環境の温度変化により発生した熱流の変化をキャンセルできないという問題が生じる。例えば、直射日光によって配管3内の温度が上昇すると、流体流れが無い状態であっても、流量センサを通過する熱流が変化するため、流量センサから出力される起電力が変化する。このため、流体の質量流量の計測結果に誤差が生じてしまう。
これに対して、本実施形態の流量センサ10では、周りの環境の温度変化により第1、第2センサ部11、12を通過する熱流に変化が生じても、その変化は同じであるため、第1、第2センサ部11、12で生じる起電力を合わせることで、熱流の変化分をキャンセルすることができる。これにより、流体の質量流量の測定結果の精度を高めることができる。
なお、本実施形態の流量センサ10が、従来のフローセンサよりも破損し難いことについては、次のように説明することもできる。
従来のフローセンサは、流体流れに伴う熱移動によるダイアフラムの表面の温度変化をセンサ用抵抗体で検出する。このため、センサ用抵抗体が受けるダイアフラムの熱容量による影響を小さくするため、ダイアフラムが可能な限り薄くされている。換言すると、流体流れに伴う熱移動が生じたとき、ダイアフラム全体、すなわち、ダイアフラムの一面と他面の両方が同じ温度となる方が、流体流れに伴う熱移動によるダイアフラムの表面の温度変化を高感度に検出できる。
一方、本実施形態の流量センサ10は、流体流れに伴う熱移動によって生じる基板の厚さ方向に流れる熱流の変化を第1、第2熱電変換素子11、12で検出する。このとき、基板の両面が同じ温度になってしまうと、基板の厚さ方向に流れる熱流が生じない。このため、本実施形態の流量センサ10では、基板の厚さを、従来のフローセンサのダイアフラムのように、薄くする必要がない。なお、ここでいう基板とは、一面とその反対側の他面とを有する板状の流量センサ10自体を意味する。
したがって、本実施形態の流量センサ10は、従来のフローセンサのように、薄いダイアフラムおよびダイアフラムの直下の大きな空間が存在しない構造であり、従来のフローセンサよりも破損し難い。
(第2実施形態)
本実施形態は、第1実施形態に対して、流量センサ10の配管3への設置方法を変更したものである。
図9に示すように、流量センサ10は、平板状の剛体4の表面上に載せられた状態で、配管3の内部に設置される。流量センサ10の下面と剛体4の上面とが、図示しない接着層を介して、接着される。剛体4は、図示しない固定手段によって、配管3に固定される。
剛体4は、流量センサ10よりも剛性が高いものであって、流量センサ10を支持するための支持部材である。また、剛体4は、流体と比較して熱が移動し難い部材である。したがって、剛体4は、流量センサ10よりも剛性が高く、流体よりも熱が移動し難い樹脂等で構成される。なお、剛体4は、面方向の大きさが、流量センサ10よりも大きい。
本実施形態においても、流量センサ10の下面に、計測対象の流体と比較して熱が移動し難い剛体4を設けているので、第1実施形態と同様に、流量有り状態のとき、流体流れ無しのときと比較して、第1、第2センサ部11、12のそれぞれにおける上面10aと下面10bの温度差に変化を生じさせることができ、流体の質量流量を計測することができる。
また、配管3が金属等の熱移動し易い材料で構成されている場合、流量センサ10を配管3の内面に直接張り付けると、第1、第2センサ部11、12のそれぞれにおける上面10aと下面10bの温度差が小さくなってしまう。これに対して、本実施形態によれば、このような問題を解消できる。
(第3実施形態)
本実施形態は、第1実施形態に対して、流量センサ10の配管3への設置方法を変更したものである。
図10に示すように、流量センサ10は、その下面に平板5が接着されるとともに、その側面に棒状の剛体6が接着されている。流量センサ10は、剛体6に支持された状態で、配管3の内部に設置される。平板5および剛体6は、図示しない接着層を介して、流量センサ10と接着される。剛体6は、図示しない固定手段によって、配管3に固定される。
平板5は、流体と比較して熱が移動し難い部材であり、樹脂等で構成されたものである。剛体6は、第2実施形態の剛体4と同様に、流量センサ10よりも剛性が高いものであって、流量センサ10を支持するための支持部材である。
本実施形態においても、流量センサ10の下面に、計測対象の流体と比較して熱が移動し難い平板5を設けているので、第1実施形態と同様に、流量有り状態のとき、流体流れ無しのときと比較して、第1、第2センサ部11、12のそれぞれにおける上面10aと下面10bの温度差に変化を生じさせることができ、流体の質量流量を計測することができる。
(第4実施形態)
本実施形態は、第1実施形態に対して、流量センサ10の配管3への設置方法を変更したものである。
本実施形態では、図11A、11Bに示すように、開口部7aを有するシート状の弾性体7の表面上に流量センサ10を配置する。このとき、流量センサ10の一部と開口部7aとを対向させる。弾性体7は、弾性変形するものであり、例えば、PET等の樹脂で構成される。弾性体7は、熱伝導を良くするため、薄くされる。
そして、図11C、11Dに示すように、流量センサ10とシート状の弾性体7は、流量センサ10の搭載面を配管3の内面側に向けるとともに、配管3の内面に沿って曲げられたた状態で、配管3の内部に設置される。
ここで、弾性体7は、配管3の内周方向に対応する幅方向での長さが、配管3の直径よりも長いものである。このため、曲げられた状態から平らな状態に戻ろうとする弾性体7の復元力によって、弾性体7が配管3の内面に固定される。これにより、流量センサ10の下面(図2B参照)が配管3の内面に接するとともに、弾性体7によって流量センサ10が配管3に固定される。したがって、本実施形態によれば、流量センサ10を配管3に強固に固定でき、流量センサ10を配管3に固定するための配管3側への加工を不要にできる。
また、本実施形態によれば、開口部7aによって流量センサ10を露出させているので、流量センサ10を流体と接触させることができる。よって、弾性体7で覆われることによる流量センサ10の感度低下を防止できる。
(第5実施形態)
本実施形態では、第4実施形態で説明したシート状の弾性体7の表面上に、流量センサ10に加えて無線ユニット8と熱電変換モジュール9を配置し、無線ユニット8と熱電変換モジュール9とともに、流量センサ10を配管3に設置する。
無線ユニット8は、流量センサ10から出力されるセンサ信号を制御装置2に向けて無線送信する無線送信手段であり、無線送信するための送信部等を備えている。
熱電変換モジュール9は、配管3の内部を流れる流体と配管3の温度差によって生じた電力を、流量センサ10のヒータ部13へ供給する電力供給手段である。熱電変換モジュール9は、複数の熱電変換素子が直列に接続されたものである。熱電変換モジュール9としては、流量センサ10の第1、第2センサ部11、12と同じ構造のものを用いることができる。
ところで、配管3の内部に設置した流量センサ10と配管3の外部の制御装置2とを配線で接続する場合では、配線を配管3の内部から外部に取り出すために、例えば、配管3に配線設置用の穴をあける必要がある。
これに対して、本実施形態によれば、無線送信によって流量センサ10のセンサ信号を制御装置2に出力するとともに、配管3の内部に設置した熱電変換モジュール9からヒータ部13へ給電するので、配線を配管3の内部から外部に取り出す必要がなくなり、配管3に配線設置用の穴をあけなくても済む。
(第6実施形態)
本実施形態は、第1実施形態の流量センサ10において、ヒータ部13の位置を変更したものである。第1実施形態では、ヒータ部13が多層基板10の上面10aおよび下面10bに垂直な方向での中央部に位置していたが、本実施形態では、ヒータ部13は多層基板10の上面10aに位置している。
すなわち、図13に示すように、本実施形態では、ヒータ部13は、通電により発熱する抵抗体13bによって構成されている。この抵抗体13bは、表面保護部材110に設けられている。抵抗体13bは、表面保護部材110から露出している。
(第7実施形態)
図14に示すように、本実施形態は、第1実施形態の流量センサ10において、ヒータ部13をペルチェ素子部14に変更したものである。ペルチェ素子部14は、温熱と冷熱の両方を発生する熱源体である。ペルチェ素子部14は、第1、第2センサ部11、12とともに、1つの多層基板10に形成されている。
図15に示すように、ペルチェ素子部14は、第1センサ部11と同じ構造である。すなわち、ペルチェ素子部14には、互いに接続された第1、第2層間接続部材130、140が形成されている。互いに接続された第1、第2層間接続部材130、140がペルチェ素子を構成している。互いに接続された第1、第2層間接続部材130、140は、電力が供給されると、図16に示すように、多層基板10の上面10a側が発熱し、多層基板10の下面10b側が吸熱する。
なお、本実施形態の流量センサ10は、第1実施形態で説明した流量センサ10の製造方法において、多層基板10のペルチェ素子部14となる領域に、第1センサ部11と同じ構造であって、第1センサ部11と電気的に独立したものを形成するように変更することで製造される。
また、本実施形態の流量センサ10は、流量センサ10の上面10aと下面10bの両面が配管3の内部を流れる流体と接するように、配管3の内部に設置される。例えば、図10に示される剛体6を流量センサ10の側面に接着した状態で、配管3の内部に設置される。なお、このとき、図10に示される平板5を流量センサ10の下面10bに接着しない。
そして、図16に示すように、流体の質量流量の計測時では、ペルチェ素子部14を作動させて、流量センサ10の上面10a側の流体に温熱を放出させるとともに、流量センサ10の下面16b側の流体に冷熱を放出させる。
流体流れが無い状態のときでは、図16中の等温線で示すように、流量センサ10の上面10a側の流体は、ペルチェ素子部14に近いほど温度が高いという温度分布が形成され、流量センサ10の上面10a側の流体は、ペルチェ素子部14に近いほど温度が低いという温度分布が形成される。
このとき、上面10a側、下面10b側の流体に対してペルチェ素子部14から放出された熱がヒータ部13を挟んだ両側に均等に伝わるため、上面10a側、下面10b側の流体の温度分布は、ペルチェ素子部14を挟んだ両側で同じである。
このため、第1、第2センサ部11、12は、どちらも、上面10aが高温側となり、下面10bが低温側となり、上面10aと下面10bの温度差が同じとなるため、第1、第2センサ部11、12の内部に同じ向きで同じ大きさの熱流が流れる。したがって、第1センサ部11で生じる起電力と第2センサ部12で生じる起電力は、同じ大きさであって正負の極性が異なるので、両者を合わせると互いに打ち消しあい、流量センサ10から出力される起電力は0となる。
図17に示すように、流体流れが有る状態のときでは、流体流れ無しの状態のときと比較して、流量センサ10の上面10a側および下面10b側の流体の温度分布が変化する。すなわち、図17中の等温線で示すように、流体流れ無しの状態のときと比較して、流量センサ10の上面10a側の流体のうち50℃の高温部が流体の流れ方向D1にシフトするとともに、流量センサ10の下面10b側の流体のうち5℃の低温部が流体の流れ方向D1にシフトする。
このため、ペルチェ素子部14よりも流体流れ下流側の第2センサ部12では、流体流れ無しの状態のときと比較して、上面10aと下面10bの温度差が45℃となる領域が増大し、第2センサ部12全体における上面10aと下面10bの温度差の平均値が増大する。すなわち、図17中の矢印で示すように、流体流れ無しの状態のときと比較して、第2センサ部12を通過する熱流の大きさが増大する。したがって、第2センサ部12で生じる起電力は正となり、流体流れが無い状態のときよりも電圧値が大きくなる。
一方、ペルチェ素子部14よりも流体流れ上流側の第1センサ部11では、流体流れ無しの状態のときと比較して、上面10aと下面10bの温度差が45℃となる領域が減少し、第2センサ部12全体における上面10aと下面10bの温度差の平均値が低下する。したがって、第2センサ部12で生じる起電力は負であって、流体流れが無い状態のときよりも電圧値の絶対値が小さくなる。
この結果、第1センサ部11で生じた起電力と第2センサ部12で生じた起電力を合わせた正の起電力が流量センサ10から出力される。
このように、本実施形態によれば、ペルチェ素子部14を用いることで、流体の流量変化が生じたときに、ペルチェ素子部14よりも流体流れ上流側と下流側とにおいて、流量センサ10の上面10aと下面10bの温度差を変化させることができる。これにより、第1〜第4実施形態のように、流量センサ10の下面10bに熱移動し難い部材を接触させなくても、流体の質量流量を計測することができる。なお、本実施形態においても、第1〜第4実施形態のように、流量センサ10の下面10bに熱移動し難い部材を接触させた状態として、流量センサ10を計測箇所に設置してもよい。
また、本実施形態によれば、流体の流れが始まった直後に、図17に示すように、流量センサ10の上面10a側の流体のうち50℃の高温部が流体の流れ方向D1にシフトするとともに、流量センサ10の下面10b側の流体のうち5℃の低温部が流体の流れ方向D1にシフトするので、流体の流れが始まった直後から流体の質量流量を計測することができる。
(第8実施形態)
本実施形態は、第1実施形態に対して流量センサの構造を変更したものである。本実施形態の流量センサ20は、図18、19、20A、21Aに示すように、多層基板に形成した熱電変換素子の一端側部分と他端側部分を、多層基板の表面に平行な方向で、ヒータ部240の両側のそれぞれに配置したものである。
具体的には、流量センサ20は、図20A、21Aに示すように、第1絶縁層210と、第1絶縁層210の表面210aに配置された第2絶縁層220と、第2絶縁層220の表面220aに配置された表面保護フィルム層270と、第1絶縁層210の裏面210bに配置された裏面保護フィルム層280が積層されて一体化された多層基板で構成されている。第1絶縁層210、第2絶縁層220、表面保護フィルム層270、裏面保護フィルム層280は、第1実施形態の絶縁基材100、表面保護部材110および裏面保護部材120と同様に、熱可塑性樹脂フィルムにて構成されている。
第2絶縁層220の表面220aには、第1接続用パターン231と、ヒータ部240と、第2接続用パターン232とが配置されている。第1接続用パターン231と第2接続用パターン232は、銅箔等の膜膜状の導体がパターニングされたものである。ヒータ部240は、温熱を放出する熱源体であり、電熱線や薄膜抵抗体等によって構成されたものである。
図18に示すように、ヒータ部240は、一方向に長く延びた形状である。第1接続用パターン231は、ヒータ部240を挟んだ両側の一方、すなわち、図18中の上側に配置されているとともに、ヒータ部240の長手方向に沿って互いに離間して複数配置されている。同様に、第2接続用パターン232は、ヒータ部240を挟んだ両側の他方、すなわち、図18中の下側に配置されているとともに、ヒータ部240の長手方向に沿って互いに離間して複数配置されている。なお、本実施形態では、ヒータ部240の長手方向に垂直な方向におけるヒータ部240から第1接続用パターン231までの距離とヒータ部240から第2接続用パターン232までの距離は同じである。
また、図20A、21Aに示すように、第1絶縁層210の裏面210bには、薄膜状のP型素子250と薄膜状のN型素子260が形成されている。P型素子250とN型素子260は、それぞれ、第1実施形態で説明した第1、第2層間接続部材130、140に対応するものである。
図18、19に示すように、1つのP型素子250と1つのN型素子260は、どちらも、その一端側部分と他端側部分がヒータ部240を挟んだ両側に位置するように、一端側から他端側まで延びた形状である。なお、図19は、図18中の多層基板の裏側の平面図であり、図18と上下が逆となっている。そして、P型素子250とN型素子260は、ヒータ部240の長手方向に沿って交互に複数配置されている。
また、隣り合う1つのP型素子250と1つのN型素子260は、どちらも、その一端側部分が共通の第1接続用パターン231と接続されている。これにより、1つのP型素子250と1つのN型素子260とが接続されている。また、隣り合う1つのP型素子250と1つのN型素子260であって、共通の第1接続用パターン231と接続されていないものは、その他端側部分が共通の第2接続用パターン232と接続されている。これにより、互いに接続されたP型素子250とN型素子260を一組として、複数組のP型素子250とN型素子260が直列に接続されている。本実施形態では、一組の互いに接続されたP型素子250とN型素子260が1つの熱電変換素子を構成している。したがって、流量センサ20は、直列に接続された複数の熱電変換素子を備えている。
なお、図20Aに示すように、1つのP型素子250と第1接続用パターン231との接続は、第1、第2絶縁層210、220のうち第1接続用パターン231の直下に形成されたビア211、221を介して行われている。同様に、1つのP型素子250と第2接続用パターン232との接続は、第1、第2絶縁層210、220のうち第2接続用パターン232の直下に形成されたビア212、222を介して行われている。
また、図21Aに示すように、1つのN型素子260と第1接続用パターン231との接続は、第1、第2絶縁層210、220のうち第1接続用パターン231の直下に形成されたビア211、221を介して行われている。同様に、1つのN型素子260と第2接続用パターン232との接続は、第1、第2絶縁層210、220のうち第2接続用パターン232の直下に形成されたビア212、222を介して行われている。
以上が本実施形態における流量センサ20の基本的な構成である。この流量センサ20では、互いに接続されたP型素子250とN型素子260の一端側部分が、ヒータ部240を挟んだ両側の一方にヒータ部240から離れて配置され、接続されたP型素子250とN型素子260の他端側部分が、ヒータ部240を挟んだ両側の他方にヒータ部240から離れて配置されている。このため、流量センサ20のヒータ部240を挟んだ両側の部分に温度差が生じたとき、互いに接続されたP型素子250とN型素子260に、その温度差に応じた起電力が発生する。
次に、本実施形態の流量センサ20の製造方法について説明する。
図20B、21Bに示すように、P型素子材料251、N型素子材料261のパターンが形成された第1絶縁層210と、P型素子材料251、N型素子材料261がビア221、222に充填された第2絶縁層220と、表面保護フィルム層270と、裏面保護フィルム層280とを用意する。P型素子材料251、N型素子材料261は、それぞれ、第1実施形態で説明した第1導電性ペースト131、第2導電性ペースト141に対応するものである。
そして、第1実施形態と同様に、裏面保護フィルム層280、第1絶縁層210、第2絶縁層220、表面保護フィルム層270の順に積層して積層体を形成し、この積層体を加熱しながら加圧することにより、積層体を一体化する。このとき、積層体の一体化の際の加熱によって、P型素子材料251、N型素子材料261が固相焼結されて、P型素子250、N型素子260が形成される。以上のようにして、上記流量センサ20が製造される。
次に、本実施形態の流量センサ20を用いた流体の質量流量の計測方法について、図22、23を用いて説明する。なお、図22、23は、図20Aに対応した図であり、図20A中の表面保護フィルム層270、裏面保護フィルム層280を省略している。
流量センサ20は、例えば、上面20aと下面20bの両面が、配管3の内部を流れる流体と接するように、配管3内の内部に設置される。流量センサ20の設置方法としては、第7実施形態で説明した設置方法を採用することができる。このように設置された状態では、第1接続用パターン231は、流量センサ20の上面20aおよび下面20bのうち第1接続用パターン231に対応する領域と接する流体とほぼ同じ温度となる。同様に、第2接続用パターン232は、流量センサ20の上面20aおよび下面20bのうち第2接続用パターン232に対応する領域と接する流体とほぼ同じ温度となる。
そして、図22に示すように、流体の質量流量の計測時では、ヒータ部240を作動させて発熱させる。
流体流れが無い状態のときでは、ヒータ部240からの熱が伝わることで、流量センサ20の上面20a側と下面20b側の両側に存在する流体に図22中の等温線で示す温度分布が形成される。このとき、流体に対してヒータ部240から放出された熱がヒータ部240を挟んだ両側に均等に伝わるため、流体の温度分布は、ヒータ部240を挟んだ両側で同じである。また、第1接続用パターン231と第2接続用パターン232は、ヒータ部240からの距離が同じである。このため、第1接続用パターン231と第2接続用パターン232は、同じ温度となり、温度差が生じない。したがって、流量センサ20の熱電変換素子には起電力が発生しない。
図23示すように、流体流れが有る状態のときでは、流体流れ無しの状態のときと比較して、流量センサ20の上面20a側と下面20b側の両側の流体の温度分布が変化する。すなわち、図23中の等温線で示すように、流体流れ無しの状態のときと比較して、流量センサ20の両面20a、20b側の流体の高温部が流体の流れ方向D1にシフトする。このとき、上面20aと下面20bにおけるヒータ部240からの距離が同じ位置同士の温度は同じであるが、ヒータ部240よりも流体流れ下流側の第2接続用パターン232は、ヒータ部240よりも流体流れ上流側の第1接続用パターン231よりも温度が高くなる。したがって、流量センサ20の熱電変換素子には、第1接続用パターン231と第2接続用パターン232の温度差に応じた起電力が発生し、この起電力が流量センサ20から出力される。このように、流量センサ20の熱電変換素子には、上面20a、下面20bのうち第1接続用パターン231に対応する領域と上面20a、下面20bのうち第2接続用パターン232に対応する領域との間に生じる温度差に応じた起電力が発生する。なお、上面20aのうち第1接続用パターン231に対応する領域と第2接続用パターン232に対応する領域とが、それぞれ、特許請求の範囲に記載のセンサの一面に位置する第1領域と、センサのうち第1領域とは異なる位置の第2領域に対応する。
このとき、流量センサ20の第1接続用パターン231と第2接続用パターン232の温度差と流体の質量流量との間に一定の関係がある。このため、流量センサ20から出力される起電力と流体の質量流量との間に一定の関係がある。そこで、制御装置2は、流量センサ20から出力された起電力の大きさと、その起電力の大きさと流体の質量流量との関係とに基づいて、流体の質量流量を演算する。このようにして、流体の質量流量を計測することができる。
上述の通り、本実施形態では、熱電変換素子の一端側部分と他端側部分をヒータ部240の両側のそれぞれに配置した流量センサ20を用いるので、流量センサ20の両面20a、20bに温度差が生じなくても、ヒータ部240の上流側と下流側の流体に温度差が生じれば、起電力が発生する。このため、本実施形態によれば、第1〜第4実施形態のように、流量センサ20の下面20bに熱移動し難い部材を接触させなくても、流体の質量流量を計測することができる。
なお、本実施形態においても、第1〜第4実施形態のように、流量センサ20の下面20bに熱移動し難い部材を接触させた状態として、流量センサ20を計測箇所に設置してもよい。この場合、流量センサ20の熱電変換素子には、ヒータ部240から放出された熱を有する流体が上面20aに沿って移動したときに、上面20aのうちヒータ部240よりも上流側に位置する第1領域と、上面20bのうちヒータ部240よりも下流側に位置する第2領域との間に生じる温度差に応じた大きさの起電力を発生する。なお、流体の流れ方向が図18流の矢印D1方向のとき、第1領域は、第1接続用パターン231に対応する領域であり、第2領域は、第2接続用パターン232に対応する領域である。
また、本実施形態では、第1接続用パターン231と第2接続用パターン232は、ヒータ部240からの距離が同じであったが、異なっていてもよい。この場合、流体流れが無い状態のときでも、第1接続用パターン231と第2接続用パターン232に温度差が生じるため、熱電変換素子に起電力が発生する。流体流れが有る状態のときでは、流体流れが無い状態のときと比較して、起電力が変化する。そこで、流量センサ20で発生した起電力と流体流れが無い状態のときの起電力との相違に基づくことで、流体の質量流量を流体の質量流量を求めることができる。
(第9実施形態)
本実施形態は、図24、25、26A、27Aに示すように、第8実施形態の流量センサ20に対して、各絶縁層の積層方向におけるP型素子250、N型素子260の配置を変更したものである。その他の構成は、第8実施形態と同じである。
本実施形態の流量センサ20では、P型素子250とN型素子260が、第1絶縁層210と第2絶縁層220の間に配置されている。
本実施形態の流量センサ20は、次のようにして製造される。図26B、27Bに示すように、裏面保護フィルム層280と、第1絶縁層210と、第2絶縁層220と、表面保護フィルム層270とを用意する。このとき、第2絶縁層220は、表面220aに第1接続用パターン231と第2接続用パターン232が形成されている。また、第2絶縁層220は、ビア221、222にP型素子材料251およびN型素子材料261が充填されるとともに、裏面220bにP型素子材料252およびN型素子材料261のパターンが形成されている。そして、裏面保護フィルム層280と、第1絶縁層210と、第2絶縁層220と、表面保護フィルム層270とを順に積層した積層体を加熱しながら加圧することで一体化する。
本実施形態においても、第8実施形態と同様に、流体の質量流量を測定することができる。なお、本実施形態では、P型素子250とN型素子260の両方を第1絶縁層210と第2絶縁層220の間に配置したが、P型素子250とN型素子260の一方を第1絶縁層210と第2絶縁層220の間に配置し、P型素子250とN型素子260の他方を第1絶縁層210の裏面210bに配置してもよい。
(第10実施形態)
本実施形態は、図28、29、30A、31Aに示すように、第9実施形態の流量センサ20に対して、各絶縁層の積層方向における第1、第2接続用パターン231、232の配置を変更したものである。その他の構成は、第9実施形態と同じである。
本実施形態の流量センサ20では、P型素子250とN型素子260に加えて、第1、第2接続用パターン231、232が、第1絶縁層210と第2絶縁層220の間に配置されている。
本実施形態の流量センサ20は、次のようにして製造される。図30B、31Bに示すように、裏面保護フィルム層280と、第1絶縁層210と、第2絶縁層220と、表面保護フィルム層270とを用意する。このとき、第1絶縁層210の表面210aに、P型素子材料251およびN型素子材料のパターンが形成されている。第2絶縁層220の裏面220bに第1、第2接続用パターン231、232が形成されている。また、第2絶縁層220の表面220aにヒータ部240が配置される。そして、裏面保護フィルム層280と、第1絶縁層210と、第2絶縁層220と、表面保護フィルム層270とを順に積層して積層体を形成し、この積層体を加熱しながら加圧することで一体化する。
本実施形態においても、図32に示す流体流れ無しのとき、第1、第2接続用パターン231、232は温度差が無く、図33に示す流体流れ有りのとき、第1、第2接続用パターン231、232は温度差が生じる。このため、本実施形態においても、第8、第9実施形態と同様に、流体の質量流量を測定することができる。
(第11実施形態)
本実施形態では、移動体の速度を計測する速度計について説明する。図34に示すように、速度計1Aは、移動体30に設置される速度センサ10と、制御装置2とを備えている。
移動体30は、流体内を移動するものである。本実施形態では、移動体30は野球用のバットである。バットを振るとき、バットは流体としての空気内を移動する。バットの表面に1つの速度センサ10を貼り付けている。
本実施形態の速度センサ10は、第1実施形態の流量センサ10と同じ構造のものである。このため、本実施形態の速度センサ10は、第1実施形態の流量センサ10と同様に、ダイアフラム構造を有するセンサよりも破損し難いものである。
速度センサ10は、移動体30の移動方向D3、D4に平行な方向で、ヒータ部13の両側に第1、第2センサ部11、12が位置するように、移動体30に固定される。なお、速度センサ10と制御装置2とを電気的に接続する配線については、移動体30に巻き付けたり、移動体30に穴をあけてその穴を通して移動体30の内部に配置したりして、まとめておいた方が邪魔にならずによい。
次に、本実施形態の速度計1Aによる移動体30の移動速度の計測方法について、図35、36を用いて説明する。なお、図35、36は、図5、6に対応した図である。
まず、移動体30の移動速度の計測時では、ヒータ部13を作動させて発熱させる。
図35に示すように、移動体30が停止中のときでは、速度センサ10の上面10a側に存在する流体、本実施形態では空気に図35中の等温線で示す温度分布が形成されるとともに、速度センサ10の下面10b側の移動体30に図35中の等温線で示す温度分布が形成される。このときの流体と移動体30に形成される温度分布は、第1実施形態で説明した流体の流量無しの状態のときと同じである。
一方、図36に示すように、移動体30が移動方向D3に移動しているときでは、速度センサ10からみて、相対的に、移動体30の移動方向D3の反対方向に向かって、空気(流体)が速度センサ10の上面10aに沿って流れている状態と同じである。このため、図36中の等温線で示すように、流体と移動体30に形成される温度分布は、第1実施形態で説明した流体の流量有りの状態のときと同じである。
このことから、速度計1Aによる移動体30の移動速度は、基本的に、第1実施形態の質量流量計1による流体の質量流量の計測時と同様の方法によって計測することができる。
すなわち、移動体30が移動すると、多層基板10の上面10aにおける第1、第2センサ部11、12の領域に温度差が生じる。このため、流量センサ10の第1、第2センサ部11、12で生じた起電力を合わせた起電力が速度センサ10から出力される。このとき、多層基板10の上面10aにおける第1、第2センサ部11、12の領域の温度と移動体30の移動速度との間に一定の関係がある。このため、速度センサ10から出力される起電力と移動体30の移動速度との間に一定の関係がある。そこで、制御装置2は、速度センサ10から出力された起電力の大きさと、その起電力の大きさと移動体30の移動速度との関係とに基づいて、移動体30の移動速度を演算する。このようにして、移動体30の移動速度を計測することができる。
したがって、本実施形態の速度計1Aによれば、バットを振ったときのバットのスイング速度を計測することができる。
なお、本実施形態では、移動体30の例として野球用のバットを挙げたが、移動体30としては、野球用のバットの他に、ゴルフクラブ、テニスラケット、卓球ラケットなどが挙げられる。また、その他にも、移動体30としては、製造設備やアームロボットの可動部や、ゲーム機用のコントローラ等が挙げられる。なお、現在、加速度センサを利用しているゲーム機用のコントローラがある。加速度センサを利用したものは、コントローラをたたくだけでも大きく反応してしまうが、本実施形態の速度センサ20を用いた場合では、実際にコントローラを早く動かさなければ大きく反応させることができない。
また、本実施形態では、速度センサ10として、第1実施形態の流量センサ10と同じ構造のものを用いたが、第2〜第7実施形態の流量センサ10や第8〜第10実施形態の流量センサ20と同じ構造のものを用いてもよい。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、下記のように、特許請求の範囲に記載した範囲内において適宜変更が可能である。
(1)上記した各実施形態では、熱源体がセンサを構成する多層基板と一体となっていたが、熱源体は多層基板と別体であってもよい。また、第1、第8実施形態等では、熱源体として、ヒータ部13、240を用いていたが、冷熱を放出する熱源体を用いてもよい。また、第8〜第10実施形態では、熱源体としてヒータ部240を用いていたが、第7実施形態で説明したペルチェ素子部14を用いてもよい。
(2)上記した各実施形態では、センサで発生した電圧値に基づいて、流体の質量流量や移動体の移動速度を算出したが、電圧値の代わりに、電流値に基づいて算出してもよい。要するに、熱電変換素子で発生した電圧や電流といった電気的な出力に基づいて、流体の質量流量や移動体の移動速度を算出することができる。
(3)上記各実施形態では、第1、第2層間接続部材130、140を形成する金属が、それぞれ、Bi−Sb−Te合金、Bi−Te合金であったが、他の合金であってもよい。 また、上記各実施形態では、第1、第2層間接続部材130、140を形成する金属の両方が、固相焼結された焼結合金であったが、少なくとも一方が固相焼結された焼結合金であればよい。これにより、第1、第2層間接続部材130、140を形成する金属の両方が固相焼結された焼結金属でない場合と比較して、起電力を大きくでき、流量センサおよび速度センサの高感度化が可能である。
(4)第1〜第6実施形態の流量センサ10では、図2Aに示されるように、1つの流量センサ10の構成を、ヒータ部13を挟んで、1つの熱電変換素子11と1つの熱電変換素子12とが配置された構成としていたが、他の構成としてもよい。例えば、図37に示すように、1つの流量センサ10の構成を、ヒータ部13を挟んだ一方側(図中の上側)と他方側(図中の下側)において、一方側に1つの熱電変換素子11を配置し、他方側に2つの熱電変換素子12A、12Bを配置した構成としてもよい。また、図38に示すように、ヒータ部13を挟んだ一方側に2つの熱電変換素子11A、11Bを配置し、他方側に1つの熱電変換素子12を配置してもよい。また、図39に示すように、ヒータ部13を挟んだ一方側に2つの熱電変換素子11A、11Bを配置し、他方側に2つの熱電変換素子12A、12Bを配置してもよい。このように、ヒータ部13を挟んだ一方側と他方側のそれぞれに配置される熱電変換素子11、12の数は任意に変更可能である。同様に、第7実施形態においても、ペルチェ素子部14を挟んだ一方側と他方側のそれぞれに配置される熱電変換素子11、12の数は任意に変更可能である。なお、図37〜39中の熱電変換素子11、12は、それぞれ、第1センサ部11、第2センサ部12に形成された熱電変換素子のことである。また、ここでいう1つの熱電変換素子とは、第1層間接続部材130と第2層間接続部材140とが直列に接続されて構成されたものである。
(5)第1〜第6実施形態の流量センサ10では、図2Aに示されるように、ヒータ部13を挟んで配置された2つの熱電変換素子11、12の平面形状が、それぞれ、長方形であったが、他の形状としてもよい。例えば、2つの熱電変換素子11、12の平面形状を、それぞれ、図40に示す台形や、図41に示す円や、図42に示す三角形としてもよい。また、2つの熱電変換素子11、12の形状を同じ形状でなく、図43に示すように、異なる形状としてもよい。なお、熱電変換素子の平面形状とは、熱電変換素子の形成領域の平面形状である。すなわち、第1、第2層間接続部材130、140が形成された領域において、最外周に位置する第1、第2層間接続部材130、140に沿って、全ての第1、第2層間接続部材130、140を囲むように線を引いたときに、この線によって形成される平面形状である。第7実施形態の流量センサ10においても同様である。
(6)第1〜第7実施形態では、複数の絶縁層、すなわち、絶縁基材100、表面保護部材110、裏面保護部材120が、それぞれ、熱可塑性樹脂で構成されていたが、熱硬化性樹脂、ゴム等の他の可撓性材料で構成されていてもよい。同様に、第8〜第10実施形態においても、複数の絶縁層210、220、270、280が、熱硬化性樹脂、ゴム等の他の可撓性材料で構成されていてもよい。可撓性材料は、複数の絶縁層を加熱しながら加圧したときに、熱融着によって複数の絶縁層を一体化できる材料であればよい。
(7)第1〜第7実施形態では、流量センサ10が、複数の絶縁層100、110、120が積層された多層構造であったが、1層の絶縁層(例えば、絶縁基材100)に対して第1、第2導電体(例えば、第1、第2層間接続部材130、140)が形成された構造であってもよい。この場合においても、1層の絶縁層100と第1、第2導電体130、140とが加熱しながら加圧されて一体化されて製造された構造とすることができる。同様に、第8〜第10実施形態の流量センサ20においても、1層の絶縁層に対して第1、第2導電体(例えば、P型素子250とN型素子260)が形成された構造であってもよい。
(8)上記各実施形態では、流量センサ10、20が、複数の絶縁層が加熱しながら加圧されて一体化されて製造されたものであったが、他の製造方法で製造されたものであってもよい。例えば、図4(a)に示す構造の絶縁基材100を、接着性を有する材料で構成し、この絶縁基材100と表面パターンおよび裏面パターンとを接着することで、流量センサ10を製造してもよい。また、図4(a)に示す構造の絶縁基材100の表面と裏面に対して、導体パターンや絶縁層を順次積層することで、図3に示す多層構造の流量センサ10を製造してもよい。
また、流量センサ10、20は、上記各実施形態の構造に限定されず、流量センサの内部に熱電変換素子が形成されていれば、他の構造であってもよい。なお、上記した他の実施形態は、第11実施形態の速度センサについても適用可能である。
(9)上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
2 制御装置(演算部)
10 流量センサ、速度センサ(センサ)
11 第1センサ部
12 第2センサ部
13 ヒータ部(熱源体)
14 ペルチェ素子部(熱源体)
130 第1層間接続部材(第1導電体)
140 第2層間接続部材(第2導電体)
240 ヒータ部
250 P型素子(第1導電体)
260 N型素子(第2導電体)

Claims (8)

  1. 一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10、20)と、
    前記一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14、240)とを備え、
    前記センサは、熱可塑性樹脂で構成され、複数積層された絶縁層(100、110、120、210、220)と、前記絶縁層に対して形成され、異なる導電体で構成されるとともに、互いに接続された第1、第2導電体(130、140、250、260)とを備え、複数の前記絶縁層が加熱しながら加圧されて一体化した多層基板で構成され、
    前記熱電変換素子は、互いに接続された前記第1、第2導電体で構成されるとともに、前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記一面に位置する第1領域と、前記センサのうち前記第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
    さらに、前記熱電変換素子で発生した前記出力と、前記出力と前記流体の質量流量との関係とに基づいて、前記流体の質量流量を演算する演算部(2)とを備え
    前記センサは、前記熱電変換素子として、前記一面に平行な方向で前記熱源を挟んだ両側のそれぞれに位置する第1熱電変換素子と第2熱電変換素子とを有し、
    前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記第1熱電変換素子は、前記センサのうち前記第1熱電変換素子が形成された領域(11)における前記一面に位置する前記第1領域と前記他面に位置する前記第2領域との間に生じる温度差に応じた大きさの前記出力を発生するとともに、前記第2熱電変換素子は、前記センサのうち前記第2熱電変換素子が形成された領域(12)における前記一面に位置する前記第1領域と前記他面に位置する前記第2領域との間に生じる温度差に応じた大きさの前記出力を発生するようになっており、
    前記第1熱電変換素子と前記第2熱電変換素子は、前記一面と前記他面の高温側と低温側の関係が同じときの前記出力の極性が異なるように構成されており、
    前記演算部は、前記第1、第2熱電変換素子で発生した前記出力を合わせた総出力と、前記総出力と前記流体の質量流量との関係とに基づいて、前記流体の質量流量を演算することを特徴とする質量流量計。
  2. 一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10と、
    前記一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14とを備え、
    前記センサは、熱可塑性樹脂で構成され、複数積層された絶縁層(100、110、120と、前記絶縁層に対して形成され、異なる導電体で構成されるとともに、互いに接続された第1、第2導電体(130、140とを備え、複数の前記絶縁層が加熱しながら加圧されて一体化した多層基板で構成され、
    前記熱電変換素子は、互いに接続された前記第1、第2導電体で構成されるとともに、前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記一面に位置する第1領域と、前記センサのうち前記第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
    さらに、前記熱電変換素子で発生した前記出力と、前記出力と前記流体の質量流量との関係とに基づいて、前記流体の質量流量を演算する演算部(2)とを備え
    前記熱電変換素子は、前記絶縁層に厚さ方向に貫通して形成された第1、第2ビアホールに、前記第1、第2導電体が埋め込まれた構造を有することを特徴とする質量流量計。
  3. 一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10、20)と、
    前記一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14、240)とを備え、
    前記熱電変換素子は、異なる導電体であって、互いに接続された第1、第2導電体で構成されるとともに、前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記一面に位置する第1領域と、前記センサのうち前記第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
    さらに、前記熱電変換素子で発生した前記出力と、前記出力と前記流体の質量流量との関係とに基づいて、前記流体の質量流量を演算する演算部(2)とを備え
    前記センサは、前記熱電変換素子として、前記一面に沿う方向で前記熱源を挟んだ両側のそれぞれに位置する第1熱電変換素子と第2熱電変換素子とを有し、
    前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記第1熱電変換素子は、前記センサのうち前記第1熱電変換素子が形成された領域(11)における前記一面に位置する前記第1領域と前記他面に位置する前記第2領域との間に生じる温度差に応じた大きさの前記出力を発生するとともに、前記第2熱電変換素子は、前記センサのうち前記第2熱電変換素子が形成された領域(12)における前記一面に位置する前記第1領域と前記他面に位置する前記第2領域との間に生じる温度差に応じた大きさの前記出力を発生するようになっており、
    前記第1熱電変換素子と前記第2熱電変換素子は、前記一面と前記他面の高温側と低温側の関係が同じときの前記出力の極性が異なるように構成されており、
    前記演算部は、前記第1、第2熱電変換素子で発生した前記出力を合わせた総出力と、前記総出力と前記流体の質量流量との関係とに基づいて、前記流体の質量流量を演算することを特徴とする質量流量計。
  4. 一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10と、
    前記一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14とを備え、
    前記熱電変換素子は、異なる導電体であって、互いに接続された第1、第2導電体で構成されるとともに、前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記一面に位置する第1領域と、前記センサのうち前記第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
    さらに、前記熱電変換素子で発生した前記出力と、前記出力と前記流体の質量流量との関係とに基づいて、前記流体の質量流量を演算する演算部(2)とを備え
    前記センサは、複数積層された絶縁層(100、110、120)を備え、
    前記熱電変換素子は、前記絶縁層に厚さ方向に貫通して形成された第1、第2ビアホールに、前記第1、第2導電体が埋め込まれた構造を有することを特徴とする質量流量計。
  5. 流体内を移動する移動体に設置され、一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10、20)と、
    前記一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14、240)とを備え、
    前記センサは、熱可塑性樹脂で構成され、複数積層された絶縁層(100、110、120、210、220)と、前記絶縁層に対して形成され、異なる導電体で構成されるとともに、互いに接続された第1、第2導電体(130、140、250、260)とを備え、複数の前記絶縁層が加熱しながら加圧されて一体化した多層基板で構成され、
    前記熱電変換素子は、互いに接続された前記第1、第2導電体で構成されるとともに、前記センサからみて、相対的に、前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記一面に位置する第1領域と、前記センサのうち前記第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
    さらに、前記熱電変換素子に発生した前記出力と、前記出力と前記移動体の移動速度との関係とに基づいて、前記移動体の移動速度を演算する演算部(2)とを備え
    前記センサは、前記熱電変換素子として、前記一面に平行な方向で前記熱源を挟んだ両側のそれぞれに位置する第1熱電変換素子と第2熱電変換素子とを有し、
    前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記第1熱電変換素子は、前記センサのうち前記第1熱電変換素子が形成された領域(11)における前記一面に位置する前記第1領域と前記他面に位置する前記第2領域との間に生じる温度差に応じた大きさの前記出力を発生するとともに、前記第2熱電変換素子は、前記センサのうち前記第2熱電変換素子が形成された領域(12)における前記一面に位置する前記第1領域と前記他面に位置する前記第2領域との間に生じる温度差に応じた大きさの前記出力を発生するようになっており、
    前記第1熱電変換素子と前記第2熱電変換素子は、前記一面と前記他面の高温側と低温側の関係が同じときの前記出力の極性が異なるように構成されており、
    前記演算部は、前記第1、第2熱電変換素子で発生した前記出力を合わせた総出力と、前記総出力と前記移動体の移動速度との関係とに基づいて、前記移動体の移動速度を演算することを特徴とする速度計。
  6. 流体内を移動する移動体に設置され、一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10と、
    前記一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14とを備え、
    前記センサは、熱可塑性樹脂で構成され、複数積層された絶縁層(100、110、120と、前記絶縁層に対して形成され、異なる導電体で構成されるとともに、互いに接続された第1、第2導電体(130、140とを備え、複数の前記絶縁層が加熱しながら加圧されて一体化した多層基板で構成され、
    前記熱電変換素子は、互いに接続された前記第1、第2導電体で構成されるとともに、前記センサからみて、相対的に、前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記一面に位置する第1領域と、前記センサのうち前記第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
    さらに、前記熱電変換素子に発生した前記出力と、前記出力と前記移動体の移動速度との関係とに基づいて、前記移動体の移動速度を演算する演算部(2)とを備え
    前記熱電変換素子は、前記絶縁層に厚さ方向に貫通して形成された第1、第2ビアホールに、前記第1、第2導電体が埋め込まれた構造を有することを特徴とする速度計。
  7. 流体内を移動する移動体に設置され、一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10、20)と、
    前記一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14、240)とを備え、
    前記熱電変換素子は、異なる導電体であって、互いに接続された第1、第2導電体で構成されるとともに、前記センサからみて、相対的に、前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記一面に位置する第1領域と、前記センサのうち前記第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
    さらに、前記熱電変換素子に発生した前記出力と、前記出力と前記移動体の移動速度との関係とに基づいて、前記移動体の移動速度を演算する演算部(2)とを備え、
    前記センサは、前記熱電変換素子として、前記一面に沿う方向で前記熱源を挟んだ両側のそれぞれに位置する第1熱電変換素子と第2熱電変換素子とを有し、
    前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記第1熱電変換素子は、前記センサのうち前記第1熱電変換素子が形成された領域(11)における前記一面に位置する前記第1領域と前記他面に位置する前記第2領域との間に生じる温度差に応じた大きさの前記出力を発生するとともに、前記第2熱電変換素子は、前記センサのうち前記第2熱電変換素子が形成された領域(12)における前記一面に位置する前記第1領域と前記他面に位置する前記第2領域との間に生じる温度差に応じた大きさの前記出力を発生するようになっており、
    前記第1熱電変換素子と前記第2熱電変換素子は、前記一面と前記他面の高温側と低温側の関係が同じときの前記出力の極性が異なるように構成されており、
    前記演算部は、前記第1、第2熱電変換素子で発生した前記出力を合わせた総出力と、前記総出力と前記移動体の移動速度との関係とに基づいて、前記移動体の移動速度を演算することを特徴とする速度計。
  8. 流体内を移動する移動体に設置され、一面(10a)とその反対側の他面(10b)を有し、内部に熱電変換素子が形成されたセンサ(10と、
    前記一面側に存在する流体に対して温熱と冷熱の一方の熱を放出する熱源体(13、14とを備え、
    前記熱電変換素子は、異なる導電体であって、互いに接続された第1、第2導電体で構成されるとともに、前記センサからみて、相対的に、前記熱源体から放出された熱を有する前記流体が前記一面に沿って移動したときに、前記一面に位置する第1領域と、前記センサのうち前記第1領域とは異なる位置の第2領域との間に生じる温度差に応じた大きさの電気的な出力を発生するようになっており、
    さらに、前記熱電変換素子に発生した前記出力と、前記出力と前記移動体の移動速度との関係とに基づいて、前記移動体の移動速度を演算する演算部(2)とを備え、
    前記センサは、複数積層された絶縁層(100、110、120)を備え、
    前記熱電変換素子は、前記絶縁層に厚さ方向に貫通して形成された第1、第2ビアホールに、前記第1、第2導電体が埋め込まれた構造を有することを特徴とする速度計。
JP2015084451A 2014-06-03 2015-04-16 質量流量計および速度計 Active JP6369379B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015084451A JP6369379B2 (ja) 2014-06-03 2015-04-16 質量流量計および速度計
EP15802995.9A EP3153826A4 (en) 2014-06-03 2015-05-07 Mass flowmeter and speedometer
PCT/JP2015/063198 WO2015186464A1 (ja) 2014-06-03 2015-05-07 質量流量計および速度計
KR1020167033067A KR101901415B1 (ko) 2014-06-03 2015-05-07 질량 유량계 및 속도계
US15/315,742 US10288464B2 (en) 2014-06-03 2015-05-07 Mass flowmeter and velocimeter
CN201580029242.6A CN106461438A (zh) 2014-06-03 2015-05-07 质量流量计以及速度计
TW104116235A TWI595218B (zh) 2014-06-03 2015-05-21 質量流量計及速度計

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014114823 2014-06-03
JP2014114823 2014-06-03
JP2015084451A JP6369379B2 (ja) 2014-06-03 2015-04-16 質量流量計および速度計

Publications (2)

Publication Number Publication Date
JP2016011949A JP2016011949A (ja) 2016-01-21
JP6369379B2 true JP6369379B2 (ja) 2018-08-08

Family

ID=54766542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084451A Active JP6369379B2 (ja) 2014-06-03 2015-04-16 質量流量計および速度計

Country Status (7)

Country Link
US (1) US10288464B2 (ja)
EP (1) EP3153826A4 (ja)
JP (1) JP6369379B2 (ja)
KR (1) KR101901415B1 (ja)
CN (1) CN106461438A (ja)
TW (1) TWI595218B (ja)
WO (1) WO2015186464A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222853A1 (en) * 2016-06-23 2017-12-28 3M Innovative Properties Company Thermoelectric tape
US10274353B2 (en) * 2017-03-22 2019-04-30 A. O. Smith Corporation Flow sensor with hot film anemometer
EP3899445A1 (en) * 2018-12-20 2021-10-27 Edwards Lifesciences Corporation Thermal mass fluid flow sensor
US10775217B1 (en) * 2019-04-19 2020-09-15 Honeywell International Inc. Thermophile-based flow sensing device
CN115598373A (zh) * 2022-10-24 2023-01-13 南方电网数字电网研究院有限公司(Cn) 基于珀尔帖效应的风速风向传感器、检测装置及电子设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624137A (en) 1981-10-09 1986-11-25 Honeywell Inc. Semiconductor device
US4696188A (en) 1981-10-09 1987-09-29 Honeywell Inc. Semiconductor device microstructure
US4472239A (en) 1981-10-09 1984-09-18 Honeywell, Inc. Method of making semiconductor device
JPH04372865A (ja) * 1991-06-21 1992-12-25 Nippon Steel Corp シリコンを用いた流速測定装置
JPH0599722A (ja) * 1991-10-11 1993-04-23 Nippon Steel Corp シリコンを用いた流速測定装置
JPH0599942A (ja) * 1991-10-11 1993-04-23 Nippon Steel Corp シリコンを用いた流速測定装置
JP3566999B2 (ja) 1994-11-14 2004-09-15 東京瓦斯株式会社 熱式流速センサ
US5557967A (en) * 1995-02-24 1996-09-24 Pacesetter, Inc. Thermopile flow sensor
CN1077283C (zh) * 1996-08-23 2002-01-02 李韫言 一种微细加工的热式流量传感器及其制造方法
JP4599767B2 (ja) * 2001-06-27 2010-12-15 株式会社デンソー 温度センサの製造方法
JP2005283381A (ja) 2004-03-30 2005-10-13 Hitachi Ltd 発熱抵抗式流量測定装置
JP4343816B2 (ja) 2004-11-12 2009-10-14 株式会社岡村製作所 筆記ボードスタンド
JP2008034791A (ja) * 2006-06-28 2008-02-14 Denso Corp 熱電変換装置およびその装置の製造方法
JP5423487B2 (ja) 2010-03-08 2014-02-19 株式会社デンソー 貫通ビアへの導電材料充填装置およびその使用方法
JP5376087B1 (ja) 2012-05-30 2013-12-25 株式会社デンソー 熱電変換装置の製造方法
JP2014007376A (ja) 2012-05-30 2014-01-16 Denso Corp 熱電変換装置
GB201220651D0 (en) * 2012-11-16 2013-01-02 Oxford Medical Diagnostics Ltd Portable breath VOC analyser and method

Also Published As

Publication number Publication date
CN106461438A (zh) 2017-02-22
TW201610396A (zh) 2016-03-16
JP2016011949A (ja) 2016-01-21
TWI595218B (zh) 2017-08-11
EP3153826A4 (en) 2018-01-24
US20170102255A1 (en) 2017-04-13
WO2015186464A1 (ja) 2015-12-10
KR20160148645A (ko) 2016-12-26
EP3153826A1 (en) 2017-04-12
KR101901415B1 (ko) 2018-09-21
US10288464B2 (en) 2019-05-14

Similar Documents

Publication Publication Date Title
JP6369379B2 (ja) 質量流量計および速度計
JP5999066B2 (ja) 振動検出器
JP6485206B2 (ja) 熱流分布測定装置
TWI579543B (zh) State detection sensor
JP5987811B2 (ja) 車両用の異常判定装置
JP6380168B2 (ja) 熱式流量センサ
JP5376087B1 (ja) 熱電変換装置の製造方法
WO2013179840A1 (ja) 熱電変換装置の製造方法、熱電変換装置を備える電子装置の製造方法、熱電変換装置
TWI521319B (zh) Heat control device
JP6011514B2 (ja) 液面高さ検出計
US9543495B2 (en) Method for roll-to-roll production of flexible, stretchy objects with integrated thermoelectric modules, electronics and heat dissipation
US10345328B2 (en) Wind direction meter, wind direction/flow meter, and movement direction meter
JP2013077837A5 (ja)
JP6256536B2 (ja) 熱流束センサモジュールおよびその製造方法
JP6500841B2 (ja) 熱流測定装置
JP2013186108A5 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R151 Written notification of patent or utility model registration

Ref document number: 6369379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250