JP6344390B2 - 並列共振回路 - Google Patents

並列共振回路 Download PDF

Info

Publication number
JP6344390B2
JP6344390B2 JP2015530665A JP2015530665A JP6344390B2 JP 6344390 B2 JP6344390 B2 JP 6344390B2 JP 2015530665 A JP2015530665 A JP 2015530665A JP 2015530665 A JP2015530665 A JP 2015530665A JP 6344390 B2 JP6344390 B2 JP 6344390B2
Authority
JP
Japan
Prior art keywords
power supply
resonant circuit
parallel resonant
parallel
circuit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015530665A
Other languages
English (en)
Other versions
JPWO2015019523A1 (ja
Inventor
貴文 那須
貴文 那須
晋一朗 上村
晋一朗 上村
淳史 大原
淳史 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socionext Inc
Original Assignee
Socionext Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socionext Inc filed Critical Socionext Inc
Publication of JPWO2015019523A1 publication Critical patent/JPWO2015019523A1/ja
Application granted granted Critical
Publication of JP6344390B2 publication Critical patent/JP6344390B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3211Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H5/00One-port networks comprising only passive electrical elements as network components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J5/00Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner
    • H03J5/02Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with variable tuning element having a number of predetermined settings and adjustable to a desired one of these settings
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45394Indexing scheme relating to differential amplifiers the AAC of the dif amp comprising FETs whose sources are not coupled, i.e. the AAC being a pseudo-differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45631Indexing scheme relating to differential amplifiers the LC comprising one or more capacitors, e.g. coupling capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45634Indexing scheme relating to differential amplifiers the LC comprising one or more switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45638Indexing scheme relating to differential amplifiers the LC comprising one or more coils
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45644Indexing scheme relating to differential amplifiers the LC comprising a cross coupling circuit, e.g. comprising two cross-coupled transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45658Indexing scheme relating to differential amplifiers the LC comprising two diodes of current mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45688Indexing scheme relating to differential amplifiers the LC comprising one or more shunting potentiometers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45694Indexing scheme relating to differential amplifiers the LC comprising more than one shunting resistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45696Indexing scheme relating to differential amplifiers the LC comprising more than two resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45712Indexing scheme relating to differential amplifiers the LC comprising a capacitor as shunt
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45714Indexing scheme relating to differential amplifiers the LC comprising a coil as shunt
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45718Indexing scheme relating to differential amplifiers the LC comprising a resistor as shunt
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45726Indexing scheme relating to differential amplifiers the LC comprising more than one switch, which are not cross coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/10Tuning of a resonator by means of digitally controlled capacitor bank

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Filters And Equalizers (AREA)
  • Networks Using Active Elements (AREA)

Description

本発明は、チューナシステム等に利用される並列共振回路に関するものである。
複数のチャンネルにより構成される送信信号を受信し、所望チャンネルを選択して復調を行うチューナシステムには低歪特性が要求される。例えば、日本の地上波デジタルテレビ放送(ISDB−T)は1チャンネル当たり6MHzの信号帯域で第13チャンネル(473.143MHz)から第52チャンネル(707.143MHz)までの計40チャンネルで構成されており、チューナシステムには、各受信チャンネルにおいて妨害チャンネル入力レベルに対して50dBc以上の耐妨害波特性が求められる。
こうした受信特性を実現するために、チューナシステムでは初段の低雑音増幅器において、受信チャンネルに応じて中心周波数を可変にした並列共振回路によって妨害波の除去が行われることが多い。一方で、モバイル端末向け等では低消費電力であることも重要である。
ある従来技術によれば、インダクタ部と可変容量部と可変抵抗部とが並列接続されてなる並列共振回路をトランスコンダクタンス増幅器の負荷として増幅回路が構成される。可変抵抗部は複数のブランチを並列接続してなり、各ブランチは抵抗とMOSスイッチとの直列回路を有する。可変容量部も同様に複数のブランチを並列接続してなり、各ブランチは容量とMOSスイッチとの直列回路を有する(非特許文献1参照)。
Y. Kanazawa et al.,"A 130M to 1GHz Digitally Tunable RF LC-Tracking Filter for CMOS RF receivers", IEEE Asian Solid-State Circuits Conference, Nov. 2008, pp.469-472.
上記のように並列共振回路をトランスコンダクタンス増幅器の負荷として増幅回路を構成した場合、増幅回路の出力電圧Voは、当該増幅回路の電源電圧Vddに交流成分Vacが重畳されたものとなる。そして、可変抵抗部のオフ状態のPMOSスイッチのゲートにはVddが入力される。この場合の出力電圧Voとオフ状態のPMOSスイッチのゲート・ソース間電圧Vgsとの関係は、
Vgs=Vdd−Vo=Vdd−(Vdd+Vac)=−Vac
のようになる。
ところが、交流成分VacがPMOSスイッチを構成するトランジスタの閾値電圧Vth以上になると、オフ状態のPMOSスイッチが一時的にオン状態になる。これにより、出力インピーダンスが大きく変動し、増幅回路の歪特性及び飽和特性が劣化する。また、ゲート・ソース間だけではなく、ソース・バックゲート間の寄生ダイオードに順方向バイアスが印加されることによるインピーダンスの変動も、歪特性及び飽和特性を劣化させる原因となる。そして、これらは低消費電力化のために閾値電圧Vthの低いトランジスタを用いると、より顕著になる。
本発明の目的は、歪特性及び飽和特性の良好な並列共振回路を低消費電力で実現することにある。
上記目的を達成するために、本発明のある観点によれば、インダクタ部と容量部と可変抵抗部とが並列接続され、かつ第1の電源が接続されてなる並列共振回路において、前記可変抵抗部は、1つのブランチ又は複数のブランチの並列接続からなり、前記ブランチの各々は、抵抗とMOSスイッチとの直列回路を有し、前記MOSスイッチの各々のゲートに与えられる制御信号の電源を供給し、かつ前記MOSスイッチの各々にバックゲート電圧を供給する第2の電源の電源電圧は、前記第1の電源の電源電圧よりも高いこととした。
本発明の他の観点によれば、インダクタ部と可変容量部とが並列接続され、かつ第1の電源が接続されてなる並列共振回路において、前記可変容量部は、複数のブランチを並列接続してなり、前記ブランチの各々は、容量とMOSスイッチとの直列回路を有し、前記MOSスイッチの各々のゲートに与えられる制御信号の電源を供給し、かつ前記MOSスイッチの各々にバックゲート電圧を供給する第2の電源の電源電圧は、前記第1の電源の電源電圧よりも高いこととした。
本発明によれば、MOSスイッチのゲート電圧及びバックゲート電圧を高くしたことにより、当該MOSスイッチがオフ状態を維持しやすくなるので、並列共振回路の歪特性及び飽和特性が改善する。
本発明の第1の実施形態に係る並列共振回路をトランスコンダクタンス増幅器の負荷として構成した増幅回路の回路図である。 図1中の可変容量部の詳細構成例を示す回路図である。 図1中の可変容量部の他の詳細構成例を示す回路図である。 図1中の抵抗値制御回路の詳細構成例を示す回路図である。 本発明の第2の実施形態に係る並列共振回路を差動型トランスコンダクタンス増幅器の負荷として構成した増幅回路の回路図である。 図5中の可変容量部の詳細構成例を示す回路図である。 図5中の可変容量部の他の詳細構成例を示す回路図である。 図5中の可変容量部の更に他の詳細構成例を示す回路図である。 図1又は図5の増幅回路を可変増幅回路として備えたチューナシステムのブロック図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
《第1の実施形態》
図1は、本発明の第1の実施形態に係る並列共振回路をトランスコンダクタンス増幅器の負荷として構成した増幅回路の回路図である。図1の増幅回路は、トランスコンダクタンス増幅器10と、並列共振回路20と、抵抗値制御回路30とで構成される。Vinは増幅回路の入力電圧、Voは増幅回路の出力電圧である。
並列共振回路20は、インダクタ部Lと、可変容量部VCと、可変抵抗部VRとが並列接続されてなり、第1の電源の電源電圧(以下、第1の電源電圧という。)Vdd1と、Voとの間に挿入されている。可変抵抗部VRはn個(nは1以上の整数)のブランチの並列接続からなり、第1ブランチはPMOSスイッチSW1と抵抗R1との直列回路からなり、第2ブランチはPMOSスイッチSW2と抵抗R2との直列回路からなり、第nブランチはPMOSスイッチSWnと抵抗Rnとの直列回路からなる。n本の抵抗R1,R2,…,Rnの各々の抵抗値は、互いに異なる重み付けがなされている。
抵抗値制御回路30は、PMOSスイッチSW1,SW2,…,SWnの各々のゲートに与えられる制御信号を生成するように、ESD(electro-static discharge)対策用抵抗Resdを介して第2の電源の電源電圧(以下、第2の電源電圧という。)Vdd2が供給されている。また、PMOSスイッチSW1,SW2,…,SWnの各々のバックゲートにも、ESD対策用抵抗Resdを介してVdd2が供給されている。しかも、PMOSスイッチSW1,SW2,…,SWnの各々を構成するトランジスタは、ESD耐性が向上するように、トランスコンダクタンス増幅器10を構成するMOSトランジスタよりも高耐圧になっている。ここに、Vdd2>Vdd1であって、例えばVdd2=3.3V、Vdd1=1.8Vである。
図1中に例示したように、第2ブランチのPMOSスイッチSW2のみがオフ状態となるような制御信号群が抵抗値制御回路30に与えられたものとする。増幅回路の出力電圧Voは、Vdd1に交流成分Vacが重畳されたものとなる。したがって、オフ状態のPMOSスイッチSW2のゲート・ソース間電圧Vgsは、
Vgs=Vdd2−Vo
=Vdd2−(Vdd1+Vac)
=−Vac+(Vdd2−Vdd1)
で表される。
このように、2つの電源電圧の差(Vdd2−Vdd1)だけPMOSスイッチSW2が従来よりオンしづらくなる結果、増幅回路の歪特性及び飽和特性が改善する。また、ソース・バックゲート間の寄生ダイオードをオンさせないため、PMOSスイッチSW1,SW2,…,SWnの各々のバックゲートもVdd2に接続している。
なお、n本の抵抗R1,R2,…,Rnの全てにMOSスイッチが直列接続される必要はない。
図2は、図1中の可変容量部VCの詳細構成例を示す回路図である。図2の可変容量部VCは、Vdd1とVoとの間に挿入されており、m個(mは2以上の整数)のブランチを並列接続してなり、第1ブランチはPMOSスイッチCSW1と容量C1との直列回路からなり、第2ブランチはPMOSスイッチCSW2と容量C2との直列回路からなり、第mブランチはPMOSスイッチCSWmと容量Cmとの直列回路からなる。m個の容量C1,C2,…,Cmの各々の容量値は、互いに異なる重み付けがなされている。PMOSスイッチCSW1,CSW2,…,CSWmの各々のゲートに与えられる制御信号は、容量値制御回路40により生成される。Vdd1は、容量値制御回路40の電源電圧でもあり、かつPMOSスイッチCSW1,CSW2,…,CSWmの各々のバックゲートにも与えられている。
図2の構成によれば、並列共振回路20の可変の共振周波数を実現できる。なお、m個の容量C1,C2,…,Cmの全てにMOSスイッチが直列接続される必要はない。
図3は、図1中の可変容量部VCの他の詳細構成例を示す回路図である。図3では、図2に比べてPMOSスイッチCSW1,CSW2,…,CSWmと容量C1,C2,…,Cmとの位置が逆転している。また、容量値制御回路40は、PMOSスイッチCSW1,CSW2,…,CSWmの各々のゲートに与えられる制御信号を生成するように、前述の抵抗値制御回路30と同様に、ESD対策用抵抗Resdを介してVdd2(>Vdd1)が供給されている。また、PMOSスイッチCSW1,CSW2,…,CSWmの各々のバックゲートにも、ESD対策用抵抗Resdを介してVdd2が供給されている。しかも、PMOSスイッチCSW1,CSW2,…,CSWmの各々を構成するトランジスタは、高耐圧MOSトランジスタである。
図3の構成によれば、可変容量部VCにおけるMOSスイッチに起因した歪特性及び飽和特性の劣化を抑制できる。
図4は、図1中の抵抗値制御回路30の詳細構成例を示す回路図である。図4の抵抗値制御回路30は、第3の電源の電源電圧(以下、第3の電源電圧という。)Vdd3で動作する論理回路31と、論理回路31の出力をもとにVdd2で動作してPMOSスイッチSW1,SW2,…,SWnの各々のゲート制御信号を出力するレベルシフタ32とで構成される。ここに、Vdd3≦Vdd1であって、例えばVdd3=1.2Vである。
図4の構成によれば、低消費電力を達成できる。なお、図3中の容量値制御回路40も、図4と同様の構成で実現できる。
《第2の実施形態》
図5は、本発明の第2の実施形態に係る並列共振回路を差動型トランスコンダクタンス増幅器の負荷として構成した増幅回路の回路図である。Vinp及びVinnは増幅回路の差動入力電圧、Vop及びVonは増幅回路の差動出力電圧である。
図5では、トランスコンダクタンス増幅器10が差動型であるのに対応して、並列共振回路20も差動構成になっている。第1に、VopとVdd1との間に正側のインダクタLpが、Vdd1とVonとの間に負側のインダクタLnがそれぞれ接続されている。また、可変抵抗部VRはn個(nは1以上の整数)のブランチの並列接続からなり、第1ブランチは抵抗R1pとPMOSスイッチSW1と抵抗R1nとの直列回路からなり、第2ブランチは抵抗R2pとPMOSスイッチSW2と抵抗R2nとの直列回路からなり、第nブランチは抵抗RnpとPMOSスイッチSWnと抵抗Rnnとの直列回路からなる。その他の点は図1と同様であって、抵抗値制御回路30は、PMOSスイッチSW1,SW2,…,SWnの各々のゲートに与えられる制御信号を生成するように、ESD対策用抵抗Resdを介してVdd2(>Vdd1)が供給されている。また、PMOSスイッチSW1,SW2,…,SWnの各々のバックゲートにも、ESD対策用抵抗Resdを介してVdd2が供給されている。しかも、PMOSスイッチSW1,SW2,…,SWnの各々を構成するトランジスタは、高耐圧MOSトランジスタである。
図5の構成によれば、第1の実施形態の効果に加えて、差動構成の採用により2次歪特性や外乱ノイズ耐性が改善する。
図6は、図5中の可変容量部VCの詳細構成例を示す回路図である。図6の可変容量部VCは、VopとVonとの間に挿入されており、m個(mは2以上の整数)のブランチを並列接続してなり、第1ブランチは容量C1pとNMOSスイッチCSW1と容量C1nとの直列回路からなり、第2ブランチは容量C2pとNMOSスイッチCSW2と容量C2nとの直列回路からなり、第mブランチは容量CmpとNMOSスイッチCSWmと容量Cmnとの直列回路からなる。その他の点は、図2と同様である。
図7は、図5中の可変容量部VCの他の詳細構成例を示す回路図である。ただし、第1ブランチ以外のブランチの図示を省略している。図7に示したブランチは、図6の場合と同様に容量C1pとNMOSスイッチCSW1と容量C1nとの直列回路からなるだけでなく、NMOSスイッチCSW1のオン抵抗を小さくするためのバイアス回路を更に備えている。当該バイアス回路は、2段のインバータ42,43からなる論理回路41と、2本の抵抗44,45とで構成される。1段目のインバータ42の出力はNMOSスイッチCSW1のゲートに接続され、2段目のインバータ43の出力は抵抗44を介してNMOSスイッチCSW1のドレインに接続される。また、2段目のインバータ43の出力は、抵抗45を介してNMOSスイッチCSW1のソースにも接続される。NMOSスイッチCSW1のバックゲートは、接地電圧Vssに接続される。
バイアス回路の作用により、NMOSスイッチCSW1のオン時には、ゲートがH電圧、ソース及びドレインがL電圧なので、オン抵抗が低下する。一方、NMOSスイッチCSW1のオフ時には、ゲートがL電圧、ソース及びドレインがH電圧なので、オフ抵抗が増加する。
図7の構成によれば、可変容量部VCにてMOSスイッチのオン抵抗を小さくできることから、フィルタ特性を急峻にできる効果が得られる。また、MOSスイッチで歪特性及び飽和特性が劣化しない。
図8は、図5中の可変容量部VCの更に他の詳細構成例を示す回路図である。図8の可変容量部VCは、VopとVonとの間に挿入されており、m個(mは2以上の整数)のブランチを並列接続してなり、第1ブランチはPMOSスイッチCSW1pと容量C1とPMOSスイッチCSW1nとの直列回路からなり、第2ブランチはPMOSスイッチCSW2pと容量C2とPMOSスイッチCSW2nとの直列回路からなり、第mブランチはPMOSスイッチCSWmpと容量CmとPMOSスイッチCSWmnとの直列回路からなる。その他の点は図3と同様であって、容量値制御回路40は、PMOSスイッチCSW1p,CSW2p,…,CSWmp;CSW1n,CSW2n,…,CSWmnの各々のゲートに与えられる制御信号を生成するように、ESD対策用抵抗Resdを介してVdd2(>Vdd1)が供給されている。また、PMOSスイッチCSW1p,CSW2p,…,CSWmp;CSW1n,CSW2n,…,CSWmnの各々のバックゲートにも、ESD対策用抵抗Resdを介してVdd2が供給されている。しかも、PMOSスイッチCSW1p,CSW2p,…,CSWmp;CSW1n,CSW2n,…,CSWmnの各々を構成するトランジスタは、高耐圧MOSトランジスタである。
図9は、図1又は図5の増幅回路を可変増幅回路として備えたチューナシステムのブロック図である。図9のチューナシステムは、アンテナ1と、図1又は図5の増幅回路を採用した可変増幅回路2と、PLL(phase-locked loop)3と、ミキサ4と、LPF(low pass filter)5と、ADC(analog-to-digital converter)6と、DSP(digital signal processor)7とで構成されている。図9の構成によれば、耐妨害波特性の良好なチューナシステムを実現できる。
以上のように、本願において開示する技術の例示として、第1及び第2の実施形態を説明した。しかしながら、本願における技術は、これに限定されず、適宜、変更、置き換え、付加、省略等を行った実施形態にも適用可能である。また、上記で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。
以上説明してきたとおり、本発明に係る並列共振回路は、MOSスイッチのオフ状態を維持しやすくしたことで歪特性及び飽和特性の改善効果を有し、チューナシステムにおけるトラッキングフィルタ等として有用である。
1 アンテナ
2 可変増幅回路
3 PLL
4 ミキサ
5 LPF
6 ADC
7 DSP
10 トランスコンダクタンス増幅器
20 並列共振回路
30 抵抗値制御回路
31 論理回路
32 レベルシフタ
40 容量値制御回路
41 論理回路
42,43 インバータ
44,45 抵抗
C1,C2,…,Cm 容量
C1p,C2p,…,Cmp 容量
C1n,C2n,…,Cmn 容量
CSW1,CSW2,…,CSWm MOSスイッチ
CSW1p,CSW2p,…,CSWmp MOSスイッチ
CSW1n,CSW2n,…,CSWmn MOSスイッチ
L,Lp,Ln インダクタ
R1,R2,…,Rn 抵抗
R1p,R2p,…,Rnp 抵抗
R1n,R2n,…,Rnn 抵抗
Resd ESD対策用抵抗
SW1,SW2,…,SWn MOSスイッチ
VC 可変容量部
VR 可変抵抗部
Vdd1 第1の電源電圧(第1の電源の電源電圧)
Vdd2 第2の電源電圧(第2の電源の電源電圧)
Vdd3 第3の電源電圧(第3の電源の電源電圧)

Claims (20)

  1. インダクタ部と容量部と可変抵抗部とが並列接続され、かつ第1の電源が接続されてなる並列共振回路であって、
    前記可変抵抗部は、1つのブランチ又は複数のブランチの並列接続からなり、
    前記ブランチの各々は、抵抗とMOSスイッチとの直列回路を有し、
    前記MOSスイッチの各々のゲートに与えられる制御信号の電源を供給し、かつ前記MOSスイッチの各々にバックゲート電圧を供給する第2の電源の電源電圧は、前記第1の電源の電源電圧よりも高いことを特徴とする並列共振回路。
  2. 請求項1記載の並列共振回路において、
    前記MOSスイッチの各々は、前記第1の電源の電源電圧で動作するMOSトランジスタに比べて高耐圧であることを特徴とする並列共振回路。
  3. 請求項1記載の並列共振回路において、
    前記MOSスイッチ各々のバックゲートと前記第2の電源との間に挿入されたESD対策用の抵抗を更に備えたことを特徴とする並列共振回路。
  4. 請求項1記載の並列共振回路において、
    前記MOSスイッチの各々のゲートに前記制御信号を与える制御回路は、
    第3の電源の電源電圧で動作する論理回路と、
    前記論理回路の出力をもとに前記第2の電源の電源電圧で動作して前記制御信号を出力するレベルシフタとを備え、
    前記第3の電源の電源電圧は、前記第1の電源の電源電圧よりも高くないことを特徴とする並列共振回路。
  5. 請求項1記載の並列共振回路において、
    前記容量部は、可変容量部を有することを特徴とする並列共振回路。
  6. 請求項5記載の並列共振回路において、
    前記可変容量部は、複数のブランチを並列接続してなり、
    前記可変容量部にて、前記ブランチの各々は、容量とMOSスイッチとの直列回路を有することを特徴とする並列共振回路。
  7. 請求項6記載の並列共振回路において、
    前記第2の電源は、前記可変容量部にて、前記MOSスイッチの各々のゲートに与えられる制御信号の電源を供給し、かつ前記MOSスイッチの各々にバックゲート電圧を供給することを特徴とする並列共振回路。
  8. 請求項7記載の並列共振回路において、
    前記可変容量部にて、前記MOSスイッチの各々は、前記第1の電源の電源電圧で動作するMOSトランジスタに比べて高耐圧であることを特徴とする並列共振回路。
  9. 請求項1記載の並列共振回路において、
    差動構成であることを特徴とする並列共振回路。
  10. 請求項9記載の並列共振回路において、
    前記容量部は、可変容量部を有することを特徴とする並列共振回路。
  11. 請求項10記載の並列共振回路において、
    前記可変容量部は、複数のブランチを並列接続してなり、
    前記可変容量部にて、前記ブランチの各々は、MOSスイッチと当該MOSスイッチの両端にそれぞれ接続された容量との直列回路を有することを特徴とする並列共振回路。
  12. 請求項11記載の並列共振回路において、
    前記可変容量部にて、前記ブランチの各々は、前記MOSスイッチのオン抵抗を小さくするためのバイアス回路を更に有することを特徴とする並列共振回路。
  13. 請求項10記載の並列共振回路において、
    前記可変容量部は、複数のブランチを並列接続してなり、
    前記可変容量部にて、前記ブランチの各々は、容量と当該容量の両端にそれぞれ接続されたMOSスイッチとの直列回路を有することを特徴とする並列共振回路。
  14. 請求項1記載の並列共振回路をトランスコンダクタンス増幅器の負荷として構成したことを特徴とする増幅回路。
  15. 請求項14記載の増幅回路を備えたことを特徴とするチューナシステム。
  16. インダクタ部と可変容量部とが並列接続され、かつ第1の電源が接続されてなる並列共振回路であって、
    前記可変容量部は、複数のブランチを並列接続してなり、
    前記ブランチの各々は、容量とMOSスイッチとの直列回路を有し、
    前記MOSスイッチの各々のゲートに与えられる制御信号の電源を供給し、かつ前記MOSスイッチの各々にバックゲート電圧を供給する第2の電源の電源電圧は、前記第1の電源の電源電圧よりも高いことを特徴とする並列共振回路。
  17. 請求項16記載の並列共振回路において、
    前記インダクタ部と前記可変容量部とに対して並列接続された抵抗部を更に備えたことを特徴とする並列共振回路。
  18. 請求項17記載の並列共振回路において、
    前記抵抗部は、可変抵抗部を有することを特徴とする並列共振回路。
  19. 請求項16記載の並列共振回路をトランスコンダクタンス増幅器の負荷として構成したことを特徴とする増幅回路。
  20. 請求項19記載の増幅回路を備えたことを特徴とするチューナシステム。
JP2015530665A 2013-08-08 2014-04-15 並列共振回路 Active JP6344390B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013164841 2013-08-08
JP2013164841 2013-08-08
PCT/JP2014/002141 WO2015019523A1 (ja) 2013-08-08 2014-04-15 並列共振回路

Publications (2)

Publication Number Publication Date
JPWO2015019523A1 JPWO2015019523A1 (ja) 2017-03-02
JP6344390B2 true JP6344390B2 (ja) 2018-06-20

Family

ID=52460887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015530665A Active JP6344390B2 (ja) 2013-08-08 2014-04-15 並列共振回路

Country Status (4)

Country Link
US (1) US9564858B2 (ja)
JP (1) JP6344390B2 (ja)
CN (1) CN105379110B (ja)
WO (1) WO2015019523A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059116B1 (fr) * 2016-11-24 2019-02-01 Continental Automotive France Dispositif d'interface pour unite de traitement permettant de connecter une pluralite de circuits et d'acquerir leur valeur d'etat au moyen d'un unique port d'entree
US10574245B2 (en) * 2018-03-21 2020-02-25 Globalfoundries Inc. Digitally controlled oscillator for a millimeter wave semiconductor device
JP7077816B2 (ja) * 2018-06-25 2022-05-31 株式会社ソシオネクスト 半導体装置
JP7300968B2 (ja) * 2019-11-14 2023-06-30 三菱電機株式会社 半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775577A (en) * 1972-04-20 1973-11-27 Environment One Corp Induction cooking apparatus having pan safety control
US6462962B1 (en) * 2000-09-08 2002-10-08 Slobodan Cuk Lossless switching DC-to-DC converter
US6424222B1 (en) * 2001-03-29 2002-07-23 Gct Semiconductor, Inc. Variable gain low noise amplifier for a wireless terminal
JP3840468B2 (ja) * 2003-09-29 2006-11-01 松下電器産業株式会社 Pll周波数シンセサイザ
CN101057396B (zh) * 2004-09-10 2012-07-18 卡莱汉系乐有限公司 在较宽频率范围上具有平坦增益响应的可调谐共射共基lna
JP2006325163A (ja) * 2005-05-20 2006-11-30 Toyota Industries Corp 広帯域送受信装置
WO2007099622A1 (ja) * 2006-03-01 2007-09-07 Fujitsu Limited 増幅回路
CA2655619C (en) * 2006-06-27 2013-09-03 Sensormatic Electronics Corporation Resonant circuit tuning system with dynamic impedance matching
US7764125B2 (en) * 2007-05-24 2010-07-27 Bitwave Semiconductor, Inc. Reconfigurable tunable RF power amplifier
JP5079595B2 (ja) * 2008-05-21 2012-11-21 シャープ株式会社 フィルタ回路および無線機器
JP2011249982A (ja) * 2010-05-25 2011-12-08 Alps Electric Co Ltd テレビジョンチューナの入力同調回路
US8704598B2 (en) * 2010-05-28 2014-04-22 Rf Micro Devices, Inc. Linear FET feedback amplifier
US10903753B2 (en) * 2011-03-29 2021-01-26 Texas Instruments Incorporated Resonant isolated converters for power supply charge balancing systems and other systems
WO2013157039A1 (ja) * 2012-04-18 2013-10-24 三菱電機株式会社 経路切替電力増幅器
US20130277333A1 (en) * 2012-04-24 2013-10-24 Applied Materials, Inc. Plasma processing using rf return path variable impedance controller with two-dimensional tuning space
CN104756391B (zh) * 2012-11-02 2018-03-02 丹麦科技大学 自激振荡谐振电力转换器

Also Published As

Publication number Publication date
US20160156315A1 (en) 2016-06-02
US9564858B2 (en) 2017-02-07
JPWO2015019523A1 (ja) 2017-03-02
WO2015019523A1 (ja) 2015-02-12
CN105379110A (zh) 2016-03-02
CN105379110B (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
US8558611B2 (en) Peaking amplifier with capacitively-coupled parallel input stages
US7479830B2 (en) Differential amplifier using body-source cross coupling
US8106700B2 (en) Wideband voltage translators
US7663441B2 (en) Low noise amplifier
US5963094A (en) Monolithic class AB shunt-shunt feedback CMOS low noise amplifier having self bias
US8583072B1 (en) Multiphase local oscillator generator circuit for a broadband tuner device
JP6344390B2 (ja) 並列共振回路
JP5677930B2 (ja) 半導体スイッチ及び無線機器
JP2008193380A (ja) 可変利得増幅回路、受信機および受信機用ic
US10469121B2 (en) Non-linear shunt circuit for third order harmonic reduction in RF switches
JP2007243777A (ja) 半導体集積回路
US7688145B2 (en) Variable gain amplifying device
US8503960B2 (en) Amplifier and associated receiver
JP4991915B2 (ja) 周波数変換回路、信号処理回路及び受信機
JP5433614B2 (ja) 半導体集積回路および受信装置
JP2015170892A (ja) 低雑音増幅回路
US8229382B2 (en) Switched current resistor programmable gain array for low-voltage wireless LAN and method using the same
JP5524754B2 (ja) 正負電圧論理出力回路及びこれを用いた高周波スイッチ回路
US10389317B2 (en) Differential amplifier circuit and radar device
Khoshroo et al. A low-power current-reuse resistive-feedback LNA in 90nm CMOS
KR101960181B1 (ko) 안정적으로 이득을 부스팅하는 주파수 혼합기
JP2010056606A (ja) トランスコンダクタンスアンプ
US20100033249A1 (en) Differential amplifier
US20060145763A1 (en) Low voltage class ab transconductor circuits
JP4899992B2 (ja) フロントエンド集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6344390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150