JP6342937B2 - 微粒子測定装置および微粒子測定システム - Google Patents

微粒子測定装置および微粒子測定システム Download PDF

Info

Publication number
JP6342937B2
JP6342937B2 JP2016079720A JP2016079720A JP6342937B2 JP 6342937 B2 JP6342937 B2 JP 6342937B2 JP 2016079720 A JP2016079720 A JP 2016079720A JP 2016079720 A JP2016079720 A JP 2016079720A JP 6342937 B2 JP6342937 B2 JP 6342937B2
Authority
JP
Japan
Prior art keywords
unit
auxiliary electrode
fine particle
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016079720A
Other languages
English (en)
Other versions
JP2017083420A (ja
Inventor
薫 久田
薫 久田
敏郎 中西
敏郎 中西
佑一 後藤
佑一 後藤
克則 矢澤
克則 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to US15/332,148 priority Critical patent/US10094757B2/en
Priority to DE102016012807.0A priority patent/DE102016012807B4/de
Publication of JP2017083420A publication Critical patent/JP2017083420A/ja
Application granted granted Critical
Publication of JP6342937B2 publication Critical patent/JP6342937B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、被測定ガスに含まれる煤などの微粒子の量を測定する微粒子測定装置および微粒子測定システムに関する。
従来、被測定ガス(例えば、内燃機関から排出される排気ガスなど)に含まれる微粒子(例えば煤)の量を測定する微粒子測定システムが知られている(例えば、特許文献1を参照)。
微粒子測定システムは、被測定ガスに晒されて、微粒子を検出する微粒子センサを備えている。微粒子センサは、イオン発生部と、帯電室と、捕捉部と、補助電極部と、を備えている。
そして、微粒子測定システムは、コロナ放電によりイオン発生部で発生させたイオンを用いて、帯電室にて被測定ガス中の少なくとも一部の微粒子を帯電させ、捕捉部にて捕捉したイオンの量に基づいて微粒子の量を測定する。なお、補助電極部は、上記イオンが反発する電位に設定されることで、捕捉部でのイオンの捕捉を補助する。
特開2013−195069号公報
しかし、上述のような微粒子測定システムでは、微粒子センサに微粒子(煤など)が付着すると、微粒子量の測定精度が低下したり、微粒子量の測定ができなくなったりするという問題があった。
例えば、微粒子センサに付着した微粒子等によって補助電極部と基準電位(グランド電位)との間の絶縁抵抗値が低下すると、付着した微粒子等を介して不正電流が発生する虞がある。また、補助電極部に電圧をするための電圧印加経路において電気的異常(例えば、電圧印加経路とグランドとの短絡)が発生することにより不正電流が発生する虞がある。このような不正電流が発生すると、捕捉部でのイオンの捕捉量に誤差が生じてしまい、微粒子量の測定に悪影響が生じる。
本発明は、微粒子センサの測定性能の低下を抑制することを目的とする。
上記目的を達成するためになされた本発明は、イオン発生部と、帯電室と、捕捉部と、補助電極部とを備えて微粒子の量を測定する微粒子センサを制御する微粒子測定装置である。イオン発生部は、コロナ放電によってイオンを発生する。帯電室は、被測定ガス中の少なくとも一部の微粒子をイオンを用いて帯電させる。捕捉部は、イオン発生部で発生させたイオンのうち微粒子の帯電に使用されなかったイオンの少なくとも一部を捕捉する。補助電極部は、イオンが反発する電位に設定されて捕捉部でのイオンの捕捉を補助する。
そして、本発明の微粒子測定装置は、電圧印加部と、電流検出部と、状態判断部とを備える。電圧印加部は、捕捉部でのイオンの捕捉を補助するための電圧を電圧印加経路を介して補助電極部へ印加する。電流検出部は、電圧印加経路に流れる補助電極電流を検出する。状態判断部は、電流検出部によって検出された補助電極電流の値に基づいて、微粒子センサの状態および電圧印加経路の状態の少なくとも一方を判断する。
なお、上記の電圧印加経路とは、電圧印加部からの出力電圧が加わることで電圧印加部からの出力電圧と等しい電圧となる部位(例えば、電圧印加部と補助電極部とを接続する導線など)をいう。
このように構成された本発明の微粒子測定装置は、微粒子センサが正常状態である場合には流れない補助電極電流を検出することにより、微粒子センサおよび電圧印加経路の少なくとも一方が正常ではない状態であると判断することができる。
補助電極電流が流れる状態では、微粒子センサの測定性能が低下するおそれがある。これに対して、本発明の微粒子測定装置は、補助電極電流が流れている状態を判断することができるため、補助電極電流が流れていることにより測定性能が低下している状態で微粒子センサが用いられる状況が継続するのを抑制し、微粒子センサの測定性能の低下を抑制することができる。
また、本発明の微粒子測定装置では、状態判断部が、微粒子センサの状態と補助電極電流の値との間の対応関係に基づいて予め設定された状態判定値と、補助電極電流の値とを比較することにより、微粒子センサの状態を判断するようにしてもよい。
このように構成された微粒子測定装置は、補助電極電流の値と状態判定値とを比較するという簡便な方法で微粒子センサの状態を判断することができ、微粒子測定装置の処理負荷を低減することができる。
また、本発明の微粒子測定装置では、状態判定値が複数設定され、状態判断部が、複数の状態判定値と補助電極電流の値との比較結果に基づいて、複数の状態判定値のそれぞれに対応して互いに異なるように予め設定された状態を、微粒子センサの状態として判断するようにしてもよい。
このように構成された微粒子測定装置は、補助電極電流の値に応じて、互いに異なる複数の微粒子センサ状態を判断することができる。このため、本発明の微粒子測定装置は、微粒子センサの測定性能の低下を抑制するための処理を補助電極電流の値に応じて適切に行うことが可能となる。
また、本発明の微粒子測定装置では、状態判断部による判断結果に応じて、微粒子センサの測定性能の低下を抑制するための抑制処理を実行する抑制処理実行部を備えるようにしてもよい。これにより、本発明の微粒子測定装置は、微粒子センサの測定性能の低下を抑制するために、微粒子センサの状態に応じた適切な処理を行うことができる。
また、本発明の微粒子測定装置では、抑制処理が、状態判断部による判断結果を報知することであるようにしてもよい。
このように構成された本発明の微粒子測定装置は、状態判断部による判断結果を報知することにより、微粒子測定装置の使用者に対して、微粒子センサの交換を喚起したり、微粒子センサに付着した微粒子を除去する処理の実行を喚起したりすることができる。このため、本発明の微粒子測定装置は、補助電極電流が流れていることにより測定性能が低下している状態で微粒子センサが用いられる状況が継続するのを抑制し、微粒子センサの測定性能の低下を抑制することができる。
また、本発明の微粒子測定装置では、微粒子センサが、補助電極部の周囲に設置されて通電により加熱する補助電極加熱部を備え、抑制処理が、補助電極加熱部へ通電することであるようにしてもよい。
このように構成された本発明の微粒子測定装置は、補助電極加熱部へ通電することにより補助電極部の付近に付着している微粒子を除去し、補助電極電流が流れない状態へ復帰させることが可能である。このため、本発明の微粒子測定装置は、補助電極電流が流れていることにより測定性能が低下している状態で微粒子センサが用いられる状況が継続するのを抑制し、微粒子センサの測定性能の低下を抑制することができる。
また、本発明の微粒子測定システムは、上記した微粒子測定装置に微粒子センサを接続した構成をなすものであり、当該微粒子測定装置に接続された微粒子センサが正常状態である場合には流れない補助電極電流を検出することにより、微粒子センサが正常ではない状態であると判断することができる。このため、本発明の微粒子測定システムは、微粒子センサの測定性能の低下を抑制する微粒子測定システムを提供することができる。
微粒子測定システムの全体構成を説明するための説明図である。 微粒子センサの先端部の概略構成を模式的に示した説明図である。 電気回路部の概略構成を例示した説明図である。 イオン電流測定回路の概略構成を例示した説明図である。 コロナ電流測定回路の概略構成を例示した説明図である。 補助電極電流測定回路の概略構成を例示した説明図である。 第1実施形態のセンサ状態判断処理を示すフローチャートである。 第2実施形態のセンサ状態判断処理を示すフローチャートである。 第3実施形態の電気回路部の概略構成を例示した説明図である。 微粒子除去処理を示すフローチャートである。
以下、本発明が適用された実施形態について、図面を用いて説明する。
尚、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
[1.第1実施形態]
[1−1.全体構成]
本実施形態に係る微粒子測定システムの構成について説明する。
図1は、第1実施形態に係る微粒子測定システム10の全体構成を説明するための説明図である。図1(a)は、微粒子測定システム10を搭載した車両500の概略構成を例示した説明図である。図1(b)は、車両500に取り付けられた微粒子測定システム10の概略構成を例示した説明図である。
微粒子測定システム10は、微粒子センサ100と、ケーブル200と、微粒子測定装置300とを含んで構成され、内燃機関400から排出される排ガスに含まれる煤などの微粒子の量を測定する。内燃機関400とは、車両500の動力源であり、ディーゼルエンジン等によって構成されている。
微粒子センサ100は、内燃機関400から延びる排ガス配管402に取り付けられるとともに、ケーブル200によって微粒子測定装置300と電気的に接続されている。本実施形態では、微粒子センサ100は、排ガス配管402のうちフィルタ装置410(例えば、DPF(Diesel particulate filter ))よりも下流側部分に取り付けられている。微粒子センサ100は、排ガスに含まれる微粒子の量に相関する信号を微粒子測定装置300に出力する。
微粒子測定装置300は、微粒子センサ100を駆動させるとともに、微粒子センサ100から入力される信号に基づいて、排ガス中の微粒子の量を検出(測定)する。微粒子測定装置300が検出する「排ガス中の微粒子の量」とは、排ガス中の微粒子の表面積の合計に比例する値であってもよいし、微粒子の質量の合計に比例する値であってもよい。または、排ガスの単位体積中に含まれる微粒子の個数に比例する値であってもよい。
車両制御部420は、内燃機関400の燃焼状態や、燃料配管405を介して燃料供給部430から内燃機関400に供給される燃料の供給量などを制御する。微粒子測定装置300と車両制御部420は、それぞれ電源部440に電気的に接続されており、電源部440から電力が供給される。
図1(b)に示すように、微粒子センサ100は、円筒形状の先端部100eを備えており、この先端部100eが排ガス配管402の内側に挿入された状態で、排ガス配管402の外表面に固定されている。ここでは、微粒子センサ100の先端部100eは、排ガス配管402の延伸方向DLに対してほぼ垂直に挿入されている。先端部100eのケーシングCSの表面には、排ガスをケーシングCSの内部に取り込むための流入孔45と、取り込んだ排ガスをケーシングCSの外部に排出するための排出孔35と、が設けられている。排ガス配管402の内部を流通する排ガスの一部は、流入孔45を介して先端部100eのケーシングCSの内部に取り込まれる。取り込まれた排ガス中に含まれる微粒子は、微粒子センサ100が生成するイオン(ここでは、陽イオン)によって帯電される。帯電した微粒子を含む排ガスは、排出孔35を介してケーシングCSの外部に排出される。ケーシングCSの内部の構成や、微粒子センサ100の具体的な構成については後述する。
微粒子センサ100の後端部100rには、ケーブル200が取り付けられている。ケーブル200は、第1配線221と、第2配線222と、信号線223と、空気供給管224と、を束ねた構成を備えている。ケーブル200を構成する配線221〜223と、空気供給管224は、それぞれ可撓性の部材によって構成されている。第1配線221、第2配線222、および、信号線223は、微粒子測定装置300の電気回路部700に電気的に接続され、空気供給管224は、微粒子測定装置300の空気供給部800に接続されている。
微粒子測定装置300は、制御部600と、電気回路部700と、空気供給部800と、筐体910と、表示部920と、操作入力部930と、を備えている。
筐体910は、箱状に形成されており、制御部600と、電気回路部700と、空気供給部800と、表示部920と、操作入力部930を収容する。なお、この筐体910は、使用者が持ち運び可能な構成となっており、使用者が微粒子センサ100を取り付けたい車両に持ち運び、当該車両に載置して使用できるようになっている。
表示部920は、筐体910に設置された表示装置を備え、表示装置の表示画面に各種画像を表示する。
操作入力部930は、筐体910に設置されたスイッチを備え、使用者がスイッチを介して行った入力操作を特定するための入力操作情報を出力する。
制御部600は、マイクロコンピュータ(以下、マイコンという)を含んで構成されており、電気回路部700および操作入力部930からの入力に基づいて各種処理を実行し、電気回路部700、空気供給部800および表示部920を制御する。また、制御部600は、電気回路部700から入力される信号に基づいて、排ガス中の微粒子の量を検出(測定)する。
電気回路部700は、第1配線221および第2配線222を介して、微粒子センサ100を駆動するための電力を供給する。また、電気回路部700は、信号線223を介して微粒子センサ100から排ガスに含まれる微粒子の量に相関する信号が入力される。電気回路部700は、信号線223から入力される信号を用いて、排ガス中の微粒子量に応じた信号を制御部600に出力する。これらの信号の具体的な内容については後述する。
空気供給部800は、ポンプ(図示しない)を含んで構成されており、制御部600からの指示に基づいて、空気供給管224を介して、高圧空気を微粒子センサ100に供給する。空気供給部800から供給される高圧空気は、微粒子センサ100の駆動に用いられる。なお、空気供給部800が供給するガスの種類は空気以外であってもよい。
[1−2.微粒子センサ]
図2は、微粒子センサ100の先端部100eの概略構成を模式的に示した説明図である。
微粒子センサ100の先端部100eは、イオン発生部110と、排ガス帯電部120と、イオン捕捉部130と、を備えている。ケーシングCSは、イオン発生部110、排ガス帯電部120、および、イオン捕捉部130の3つの機構部が、この順に先端部100eの基端側(図2の上方)から先端側(図2の下方)に向かって(微粒子センサ100の軸線方向に沿って)並んだ構成を有している。ケーシングCSは、導電性部材によって形成され、信号線223(図1)を介して二次側グランドSGL(図3)に接続されている。
イオン発生部110は、排ガス帯電部120に供給するイオン(ここでは陽イオン)を発生するための機構部であり、イオン発生室111と、第1電極112と、を含んで構成されている。イオン発生室111は、ケーシングCSの内側に形成された小空間であり、内周面には空気供給孔55とノズル41とが設けられ、内部には第1電極112が突出した状態で取り付けられている。空気供給孔55は、空気供給管224(図1)と連通しており、空気供給部800(図1)から供給される高圧空気をイオン発生室111に供給する。ノズル41は、イオン発生部110と排ガス帯電部120との間を区画する隔壁42の中心部付近に設けられた微小孔(オリフィス)であり、イオン発生室111で発生したイオンを排ガス帯電部120の帯電室121に供給する。第1電極112は、棒状の外形を備え、先端部が隔壁42と近接するようにして基端部がセラミックパイプ25を介してケーシングCSに固定されている。第1電極112は、第1配線221(図1)を介して電気回路部700(図1)に接続されている。
イオン発生部110は、電気回路部700から供給される電力により、第1電極112を陽極とし、隔壁42を陰極として、電圧(例えば、2〜3kV)が印加されるよう構成されている。イオン発生部110は、この電圧の印加によって、第1電極112の先端部と、隔壁42との間にコロナ放電を生じさせることによって、陽イオンPIを発生する。イオン発生部110において発生した陽イオンPIは、空気供給部800(図1)から供給される高圧空気とともに、ノズル41を介して排ガス帯電部120の帯電室121に噴射される。ノズル41から噴射される空気の噴射速度は音速程度としてもよい。
排ガス帯電部120は、排ガスに含まれる微粒子を陽イオンPIによって帯電させるための部位であり、帯電室121を備えている。帯電室121は、イオン発生室111と隣接する小空間であり、ノズル41を介してイオン発生室111と連通している。また、帯電室121は、流入孔45を介して、ケーシングCSの外部と連通し、ガス流路31を介してイオン捕捉部130の捕捉室131と連通している。帯電室121は、ノズル41から陽イオンPIを含む空気が噴射されたときに内部が負圧になり、流入孔45を介してケーシングCSの外部の排ガスが流入するように構成されている。そのため、ノズル41から噴射された陽イオンPIを含む空気と、流入孔45から流入した排ガスとは、帯電室121の内部において混合される。このとき、流入孔45から流入した排ガスに含まれる煤S(微粒子)の少なくとも一部には、ノズル41から供給される陽イオンPIが帯電される。帯電した煤Sと帯電に供されなかった陽イオンPIとを含む空気は、ガス流路31を介してイオン捕捉部130の捕捉室131に供給される。
イオン捕捉部130は、煤S(微粒子)の帯電に使用されなかったイオンを捕捉するための部位であり、捕捉室131と、第2電極132と、を含んで構成されている。捕捉室131は、帯電室121と隣接する小空間であり、ガス流路31を介して帯電室121と連通している。また、捕捉室131は、排出孔35を介して、ケーシングCSの外部と連通している。第2電極132は、略棒状の外形を備え、長手方向がガス流路31を流通する空気の流通方向(ケーシングCSの延伸方向)に沿うようにしてケーシングCSに固定されている。第2電極132は、第2配線222(図1)を介して電気回路部700(図1)に接続されている。第2電極132は、ケーシングCSとは電気的に絶縁されている。
第2電極132は、100V程度の電圧が印加されており、煤Sの帯電に供されなかった陽イオンの捕捉を補助する補助電極として機能する。具体的には、イオン捕捉部130は、電気回路部700から供給される電力によって、第2電極132を陽極とし、帯電室121及び捕捉室131を構成するケーシングCSを陰極とした電圧が印加されている。これにより、煤Sの帯電に用いられなかった陽イオンPIは、第2電極132から斥力を受けて、その移動方向が第2電極132から離れる方向へと反らされる。移動方向が反らされた陽イオンPIは、陰極として機能する捕捉室131やガス流路31の内周壁に捕捉される。一方、陽イオンPIが帯電された煤Sは、陽イオンPIの単体と同様に第2電極132から斥力を受けるが、質量が陽イオンPIと比較して大きいため、斥力によってその進行方向に与えられる影響が、単体の陽イオンPIに比較して小さい。そのため、帯電した煤Sは、排ガスの流れに従って、排出孔35からケーシングCSの外部へと排出される。
微粒子センサ100は、イオン捕捉部130における陽イオンPIの捕捉量に応じた電流の変化を示す信号を出力する。制御部600(図1)は、微粒子センサ100から出力された信号に基づいて、排ガス中に含まれる煤Sの量を検出する。微粒子センサ100から出力される信号に基づいて、排ガス中に含まれる煤Sの量を算出する方法については後述する。
[1−3.電気回路部]
図3は、電気回路部700の概略構成を例示した説明図である。
電気回路部700は、電源回路710と、絶縁トランス720と、コロナ電流測定回路730と、イオン電流測定回路740と、第1整流回路751と、第2整流回路752と、補助電極電流測定回路780と、を備えている。
電源回路710は、第1電源回路710aと、第2電源回路710bと、を備える。絶縁トランス720は、第1絶縁トランス720aと、第2絶縁トランス720bと、を備える。
第1電源回路710aは、電源部440から供給される電力を昇圧して第1絶縁トランス720aに供給するとともに、第1絶縁トランス720aを駆動させる。第1電源回路710aは、第1放電電圧制御回路711aと、第1トランス駆動回路712aと、を備えている。第1放電電圧制御回路711aは、制御部600の制御によって、第1絶縁トランス720aに供給される電力の電圧値を任意に変更可能に構成されている。ここでは、制御部600は、第1配線221を介して微粒子センサ100の第1電極112に供給される入力電流Iinの電流値が予め設定された目標電流値Ita(例えば、5μA)となるように第1絶縁トランス720aに供給される電力の電圧値を制御する。この制御の方法については後述する。これにより、イオン発生部110において、コロナ放電によって発生する陽イオンPIの発生量を一定にすることができる。
第1トランス駆動回路712aは、第1絶縁トランス720aの一次側のコイルに流れる電流の方向を切り換え可能なスイッチを含んで構成されており、このスイッチの切り換えによって第1絶縁トランス720aを駆動させる。本実施形態では、第1絶縁トランス720aの回路方式は、プッシュプルとして構成されているが、第1絶縁トランス720aの回路方式は、これに限定されず、例えば、ハーフブリッジやフルブリッジなどであってもよい。
第1絶縁トランス720aは、第1電源回路710aから供給される電力に対して電圧変換をおこない、変換後の電力を二次側の第1整流回路751に供給する。本実施形態の第1絶縁トランス720aは、一次側のコイルと二次側のコイルとが物理的に接触しておらず、磁気によって結合するように構成されている。第1絶縁トランス720aの一次側の回路としては、第1電源回路710aのほか、制御部600や電源部440が含まれる。第1絶縁トランス720aの二次側の回路としては、微粒子センサ100や第1整流回路751が含まれる。
第2電源回路710bは、電源部440から供給される電力(ここでは、直流電力)を昇圧して第2絶縁トランス720bに供給するとともに、第2絶縁トランス720bを駆動させる。第2電源回路710bは、第2放電電圧制御回路711bと、第2トランス駆動回路712bと、を備えている。第2放電電圧制御回路711bは、制御部600の制御によって、第2絶縁トランス720bに供給される電力の電圧値を任意に変更可能に構成されている。ここでは、制御部600は、第2配線222を介して微粒子センサ100の第2電極132に印加される電圧が予め定められた目標電圧値(例えば、100V)となるように、第2絶縁トランス720bに供給される電力の電圧値を制御する。
第2トランス駆動回路712bは、第2絶縁トランス720bの一次側のコイルに流れる電流の方向を切り換え可能なスイッチを含んで構成されており、このスイッチの切り換えによって第2絶縁トランス720bを駆動させる。本実施形態では、第2絶縁トランス720bの回路方式は、プッシュプルとして構成されているが、第2絶縁トランス720bの回路方式は、これに限定されず、例えば、ハーフブリッジやフルブリッジなどであってもよい。
第2絶縁トランス720bは、第2電源回路710bから供給される電力に対して電圧変換を行い、変換後の電力を二次側の第2整流回路752に供給する。本実施形態の第2絶縁トランス720bは、一次側のコイルと二次側のコイルとが物理的に接触しておらず、磁気によって結合するように構成されている。第2絶縁トランス720bの一次側の回路としては、第2電源回路710bのほか、制御部600や電源部440が含まれる。第2絶縁トランス720bの二次側の回路としては、微粒子センサ100や第2整流回路752が含まれる。
コロナ電流測定回路730、イオン電流測定回路740および補助電極電流測定回路780は、絶縁トランス720(第1絶縁トランス720a,第2絶縁トランス720b)の一次側の回路と二次側の回路との間に跨がる回路であり、両方の回路にそれぞれ電気的に接続されている。コロナ電流測定回路730は、後述するように、絶縁トランス720(第1絶縁トランス720a,第2絶縁トランス720b)の一次側の回路に電気的に接続される回路部分と、二次側の回路に電気的に接続されている回路部分との間が物理的に絶縁されている。ここでは、一次側の回路の基準電位を示すグランド(接地配線)を「一次側グランドPGL」とも呼び、二次側の回路の基準電位を示すグランドを「二次側グランドSGL」とも呼ぶ。
絶縁トランス720(第1絶縁トランス720a,第2絶縁トランス720b)は、一次側のコイルの端部が一次側グランドPGLに接続され、二次側のコイルの端部が二次側グランドSGLに接続されている。信号線223は、一方の端部がケーシングCSに接続され、他方の端部が二次側グランドSGLに接続されている。
第1整流回路751は、ショート保護用抵抗753を介して第1電極112に接続されており、変換した電力を第1配線221を介して第1電極112に供給する。すなわち、第1整流回路751から供給される電圧は、ほぼ第1電極112における放電電圧となり、第1整流回路751から供給される電流は、第1電極112に入力される入力電流Iinとなる。第2整流回路752は、ショート保護用抵抗754を介して第2電極132に接続されており、変換した電圧を第2配線222を介して第2電極132に印加する。
イオン電流測定回路740は、イオン捕捉部130において捕捉されずに流出した陽イオンPIに相当する電流(Iesc)の電流値を検出するとともに、流出した陽イオンPIに相当する電流(補償電流Ic)を二次側の回路に供給する。イオン電流測定回路740は、配線771を介して二次側の信号線223(詳細には、信号線223のうち、シャント抵抗230のイオン電流測定回路740側に接続されるとともに、配線772および配線773を介して一次側の制御部600に接続される。また、イオン電流測定回路740は、配線775を介して一次側グランドPGLに接続されている。イオン電流測定回路740は、配線772を介して、イオン捕捉部130において捕捉されずに流出した陽イオンPIの量に相当する電流値を示す信号SWescを制御部600に出力する。また、イオン電流測定回路740は、配線773を介して、信号SWescを増幅させた高感度信号としての信号SSescを制御部600に出力する。
コロナ電流測定回路730は、配線761、762を介して信号線223に接続され、配線763を介して制御部600に接続されている。配線761と配線762は、信号線223に設けられたシャント抵抗230を間に挟んでそれぞれ信号線223に接続されている。コロナ電流測定回路730は、信号線223をケーシングCSから二次側グランドSGLに向けて流れる二次側電流(Idc+Itrp+Ic)の電流値を示す信号Sdc+trp+cを制御部600に出力する。ここで「電流値を示す信号」とは、電流値を直接的に示す信号に限定されず、電流値を間接的に示す信号も該当する。例えば、信号から得られる情報に演算式やマップを適用することによって電流値を特定できる信号も「電流値を示す信号」に含まれる。なお、イオン電流測定回路740から供給(補充)される補償電流Icは、ケーシングCSから流出した陽イオンPIに相当する電流に相当するため、この補償電流Icを加えた形でケーシングCSから二次側グランドSGLに流れる二次側電流の電流値、即ちシャント抵抗230に流れる二次側電流(Idc+Itrp+Ic)の電流値は、入力電流Iinの電流値と等しくなる。
制御部600は、コロナ電流測定回路730から入力される信号Sdc+trp+cを用いて、入力電流Iinの電流値が目標電流値Itaとなるように、第1放電電圧制御回路711aを制御する。すなわち、コロナ電流測定回路730と制御部600は、コロナ電流(=入力電流Iin)の電流値を一定にするための定電流回路を構成する。コロナ電流の電流値は、イオン発生部110における陽イオンPIの発生量と相関するため、この定電流回路によってイオン発生部110における陽イオンPIの発生量が一定に保たれる。
イオン捕捉部130で捕捉されずに流出した陽イオンPIに相当する電流の電流値を、イオン電流測定回路740で検出する方法について説明する。
ここでは、第1配線221から第1電極112に供給される電流を「入力電流Iin」と呼ぶほか、コロナ放電により、第1電極112から隔壁42を介してケーシングCSに流れる電流を「放電電流Idc」と呼び、コロナ放電により発生した陽イオンPIのうち、煤Sの帯電に用いられ、ケーシングCSの外部へと漏洩する陽イオンPIの電荷に相当する電流を「漏洩電流Iesc」と呼び、ケーシングCSに捕捉された陽イオンPIの電荷に相当する電流を「捕捉電流Itrp」と呼ぶ。これらの4つの電流は、下記の式(1)の関係が成り立つ。
Iin = Idc + Itrp + Iesc ・・・(1)
ここで、漏洩電流Iescは、イオン電流測定回路740が出力する、流出した陽イオンPIに相当する電流(補償電流Ic)に相当する電流値を示す信号である。そこで、イオン電流測定回路740が、この補償電流Icを検出することで、イオン捕捉部130において捕捉されずに流出した陽イオンPIに相当する電流(Iesc)の電流値を検出することができる。なお、補償電流Icは、一次側グランドPGLと二次側グランドSGLとの差分値を示す信号でもある。
補助電極電流測定回路780は、配線781、782を介して第2配線222に接続され、配線783を介して制御部600に接続されている。配線781と配線782は、第2配線222に設けられたショート保護用抵抗754を間に挟んでそれぞれ第2配線222に接続されている。ショート保護用抵抗754は、短絡時の回路保護用抵抗としての機能に加えて、電流検出用のシャント抵抗としての機能を有している。
補助電極電流測定回路780は、第2配線222に流れる補助電極電流Iirの電流値を示す補助電極電流信号Sirを制御部600に出力する。なお、微粒子センサ100の正常時には、第2電極132とケーシングCSとが電気的に絶縁されているため、第2配線222には電流は流れない。しかし、例えば、煤などによって第2電極132とケーシングCSとが電気的に短絡されると、第2配線222に補助電極電流Iirが流れる場合がある。ここで「電流値を示す信号」とは、電流値を直接的に示す信号に限定されず、電流値を間接的に示す信号も該当する。例えば、信号から得られる情報に演算式やマップを適用することによって電流値を特定できる信号も「電流値を示す信号」に含まれる。
[1−4.イオン電流測定回路]
図4は、イオン電流測定回路740の概略構成を例示した説明図である。
イオン電流測定回路740は、第1オペアンプAMP1と、第2オペアンプAMP2と、第3オペアンプAMP3と、抵抗値が既知の抵抗RE1〜RE5と、を含んで構成されている。
第1オペアンプAMP1の一方の入力端子は、配線771および信号線223(シャント抵抗230を含む)を介して二次側グランドSGLに接続されており、他方の入力端子は、配線775を介して一次側グランドPGLに接続されている。第1オペアンプAMP1の出力端子は、配線772を介して制御部600に接続されている。また、第1オペアンプAMP1の出力端子は、配線772の一部と配線LI1を介して第2オペアンプAMP2の一方の入力端子に接続され、配線772の一部と配線LI2を介して配線771に接続されている。配線LI1には、抵抗RE1が設けられ、配線LI2には、抵抗RE2が設けられている。
第2オペアンプAMP2の一方の入力端子は、配線LI1の一部と配線772を介して第1オペアンプAMP1に接続され、他方の入力端子は、配線LI3と配線775を介して一次側グランドPGLに接続されている。配線LI3には、抵抗RE3と第3オペアンプAMP3とが設けられており、抵抗RE3と第3オペアンプAMP3との間には、配線LI4が接続されている。配線LI3は、抵抗RE4が設けられた配線LI4を介して配線LI1に接続されている。第3オペアンプAMP3は、出力側の電流変化による電圧変化を抑えるためのボルテージフォロアとして構成されている。第2オペアンプAMP2の出力端子は、配線773を介して制御部600に接続されるとともに、配線773と配線LI5を介して配線LI3に接続されている。配線LI5には、抵抗RE5が設けられている。
漏洩電流Iescが発生すると、二次側グランドSGLの基準電位は、漏洩電流Iescの大きさに応じて、一次側グランドPGLの基準電位よりも低下する。これは、電源回路710を含む一次側から微粒子センサ100に供給されるエネルギー(電力)と、信号線223を介して微粒子センサ100から出力されるエネルギー(電力)との間に、漏洩電流Iescに対応するエネルギー分の差異が生じるためである。漏洩電流Iescの発生により、二次側グランドSGLの基準電位と一次側グランドPGLの基準電位との間に差異が生じると第1オペアンプAMP1は、この差異に応じた電圧を出力する。第1オペアンプAMP1が出力する電圧は、漏洩電流Iescの電流値に相関するため、この電圧値は、漏洩電流Iescの電流値を示す信号SWescとして、配線772を介して制御部600に出力される。
また、第1オペアンプAMP1が出力する電圧は、配線LI2から抵抗RE2を介することによって、補償電流Icとして配線771に供給される。この補償電流Icは、上述したように漏洩電流Iescと電流値が等しく、二次側の回路を構成する配線771に供給されることで、二次側グランドSGLの基準電位と一次側グランドPGLの基準電位との間の差異を補償する。
第2オペアンプAMP2は、第1オペアンプAMP1から入力される信号SWescを増幅させた信号SSescを制御部600に出力する。第2オペアンプAMP2は、差動増幅回路として構成されており、一方の入力端子から入力される信号SWescとしての電圧と、他方の入力端子から入力される一次側グランドPGLの基準電位との差分に応じた電圧を出力する。すなわち、第2オペアンプAMP2は、入力された信号SWescの電圧値に対して所定の増幅率(例えば、10倍)で増幅させた電圧を信号SSescとして制御部600に出力する。
制御部600は、イオン電流測定回路740から入力される低感度信号としての信号SWescと、高感度信号としての信号SSescと、を用いて排ガス中に含まれる煤Sの量を検出する。漏洩電流Iescの電流値を示すこれらの信号を用いて排ガス中に含まれる煤Sの量を検出する方法については、特に限定されない。例えば、制御部600は、信号の電圧値と排ガス中の煤Sの量との対応関係が示されているマップや、信号の電圧値と排ガス中の煤Sの量との関係式を記憶していれば、これらを用いることによって、排ガス中に含まれる煤Sの量を算出することができる。
本実施形態の制御部600は、信号SWescおよび信号SSescとして入力されるアナログ信号としての電圧値を所定の分解能(例えば、8ビット)によってデジタル値として取得する。また、制御部600は、入力される信号SSescと信号SWescのいずれにおいても電圧値の読み取り可能な範囲(フルスケールの範囲)が同じ大きさとなるように構成されている。
高感度信号としての信号SSescは、低感度信号としての信号SWescに比べて、漏洩電流Iescの電流値に対する感度(分解能)が高い。例えば、信号SWescの1Vが漏洩電流Iescの1nAに相当するのに対して、信号SSescの1Vは漏洩電流Iescの1pAに相当する。一方、制御部600における信号SSesc,SWescの電圧の分解能(最小識別可能電位差)は等しい(例えば、0.02V)。従って、制御部600の電圧分解能に相当する漏洩電流Iescの電流値は、信号SSescでは小さく(例えば、0.02pA)、信号SWescでは大きい(例えば、0.02nA)。換言すれば、制御部600は、信号SSescから、信号SWescに比べて、漏洩電流Iescのより小さな変動を検出することが可能である。
よって、信号SSescを用いて取得できる排ガス中の煤Sの量は、信号SWescを用いて取得できる排ガス中の煤Sの量よりも最小識別可能単位が小さく精度が高い。一方、制御部600の読み取り可能な電圧範囲(例えば、0〜5V)は、信号SWescの電圧範囲の全体が含まれるように設定されている。そのため、信号SWescを用いて測定可能な排ガス中の煤Sの量の範囲は、信号SSescを用いて測定可能な排ガス中の煤Sの量の範囲よりも広く、排ガス中の煤Sの量が、信号SWescの全電圧範囲に相当する範囲内であれば、その全範囲において煤Sの量を測定することができる。
このことから、制御部600は、信号SSescの電圧値が読み取り可能範囲にある場合には、信号SSescを用いて排ガス中の煤Sの量を精度良く測定し、信号SSescの電圧値が読み取り可能範囲にない場合には、広い範囲で測定可能な信号SWescを用いて排ガス中の煤Sの量を測定することができる。
[1−5.コロナ電流測定回路]
図5は、コロナ電流測定回路730の概略構成を例示した説明図である。
コロナ電流測定回路730は、入力側と出力側との間が絶縁されたいわゆる光結合式のアイソレーションアンプとして構成されている。コロナ電流測定回路730の入力側は電気回路部700(図3)の二次側に属し、出力側は電気回路部700の一次側に属している。コロナ電流測定回路730は、二次側オペアンプ731と、A/Dコンバータ732と、発光部733と、受光部734と、一次側オペアンプ735と、D/Aコンバータ736と、を備えている。
二次側オペアンプ731の2つの入力端子は、配線761と配線762にそれぞれ接続されており、出力端子は、A/Dコンバータ732に接続されている。二次側オペアンプ731は、配線761と配線762との電位差を増幅してA/Dコンバータ732に出力する。配線761と配線762との電位差は、抵抗値が既知のシャント抵抗230(図3)の両側の電位差であり、信号線223(図3)を流れる電流(二次側電流(Idc+Itrp+Ic))の電流値と相関する。すなわち、二次側オペアンプ731は、信号線223(図3)を流れる電流の電流値を示すアナログの電圧信号を増幅させてA/Dコンバータ732に出力する。
A/Dコンバータ732は、二次側オペアンプ731と発光部733に接続されており、二次側オペアンプ731から出力されたアナログ信号をデジタル信号に変換して発光部733に出力する。
発光部733は、LEDを含んで構成されており、A/Dコンバータ732と二次側グランドSGLに接続されている。発光部733は、A/Dコンバータ732から出力されたデジタルの電圧信号を光信号に変換する。
受光部734は、フォトダイオードを含んで構成されており、一次側オペアンプ735と一次側グランドPGLに接続されている。受光部734は、発光部733から出力される光信号を電流信号に変換して一次側オペアンプ735に出力する。このように、発光部733と受光部734との間は、電気的、物理的に絶縁されており、光によって信号の伝達がおこなわれる。
一次側オペアンプ735は、受光部734とD/Aコンバータ736に接続されており、電流−電圧変換回路を含んで構成されている。一次側オペアンプ735は、受光部734から出力された電流信号を電圧信号に変換してD/Aコンバータ736に出力する。D/Aコンバータ736は、一次側オペアンプ735と配線763に接続されており、一次側オペアンプ735から出力されたデジタル信号をアナログ信号に変換して配線763を介して制御部600(図3)に出力する。コロナ電流測定回路730は、上述の構成を備えることによって、一次側と二次側との間の絶縁を保ちつつ、二次側の信号線223から入力された信号を一次側の制御部600に出力することができる。
[1−6.補助電極電流測定回路]
図6は、補助電極電流測定回路780の概略構成を例示した説明図である。
補助電極電流測定回路780は、抵抗784と、オペアンプ785と、トランジスタTr1と、抵抗786と、を備えて構成されている。
オペアンプ785の一方の入力端子は、第2配線222のうちショート保護用抵抗754と第2電極132との間に接続されている。オペアンプ785の他方の入力端子は、抵抗784を介して第2配線222のうちショート保護用抵抗754と第2整流回路752との間に接続されるとともに、トランジスタTr1のエミッタに接続されている。第1オペアンプ785の出力端子は、トランジスタTr1のベースに接続されている。トランジスタTr1は、PNP型トランジスタを備えて構成されており、コレクタが抵抗786を介して二次側グランドSGLに接続されている。
トランジスタTr1のコレクタと抵抗786との接続点は、制御部600に接続されている。つまり、補助電極電流測定回路780は、抵抗786の両端電圧VR3を示す補助電極電流信号Sirを制御部600に出力するように構成されている。なお、両端電圧VR3は、補助電極電流Iirの電流値に応じて変化することから、補助電極電流信号Sirは、補助電極電流Iirの電流値を示す信号としても利用できる。
ここで、微粒子センサ100の正常時には、第2整流回路752から第2配線222を介して第2電極132に電圧が印加されるものの、第2電極132とケーシングCSとが電気的に絶縁されているため、第2配線222には電流は流れない。しかし、例えば、煤などによって第2電極132とケーシングCSとの間の絶縁抵抗値が低下して電気的に短絡されると、第2電極132とケーシングCSとの間に補助電極電流Iirが流れてしまい、第2配線222に補助電極電流Iirが流れる。
このとき、補助電極電流Iirの電流値は、式(2)によって算出することができる。
Iir = VR3 × R2/{(R1×R3)×(1−1/hFE)} ・・・(2)
ここで、VR3は、抵抗786に発生する両端電圧であり、hFEは、トランジスタTr1の直流電流増幅率であり、R1は、ショート保護用抵抗754の抵抗値であり、R2は、抵抗784の抵抗値であり、R3は、抵抗786の抵抗値である。このうち、直流電流増幅率hFEは、トランジスタTr1の特性により定められる既知の値であり、抵抗値R1、R2、R3は、それぞれショート保護用抵抗754,抵抗784,抵抗786の特性により定められる既知の数値である。
上述の通り、制御部600は、補助電極電流測定回路780から受信する補助電極電流信号Sirに基づいて抵抗786の両端電圧VR3を検出できることから、予め式(2)を記憶しておくことで、両端電圧VR3および式(2)を用いて補助電極電流Iirの電流値を演算することができる。
[1−7.制御部600の処理]
制御部600のマイコンは、センサ状態判断処理を実行する。図7は、センサ状態判断処理を示すフローチャートである。このセンサ状態判断処理は、微粒子センサ100が起動して微粒子量を検出可能な状態になった直後に、その処理を開始する。
このセンサ状態判断処理が実行されると、制御部600のマイコンは、まずS10にて、両端電圧VR3と式(2)を用いて、補助電極電流Iirの電流値(以下、補助電極電流値という)を算出する。そしてS12にて、S10で算出した補助電極電流値が、第2配線222が二次側グランドSGLと短絡していることを示す予め設定されたGNDショート判定値以上であるか否かを判断する。なお、GNDショート判定値は、後述する洗浄判定値と比較して非常に大きい値に設定される。ここで、補助電極電流値がGNDショート判定値未満である場合には(S12:NO)、S20に移行する。一方、補助電極電流値がGNDショート判定値以上である場合には(S12:YES)、S14にて、第2配線222が二次側グランドSGLと短絡していることを示すGNDショート報知画像を表示部920に表示させるとともに、微粒子センサ100の制御を停止し、センサ状態判断処理を終了する。
またS20に移行すると、S10で算出した補助電極電流値が、微粒子センサ100の洗浄を要することを示す予め設定された洗浄判定値(本実施形態では、例えば100μA)以上であるか否かを判断する。ここで、補助電極電流値が洗浄判定値未満である場合には(S20:NO)、S30にて、マイコンのRAMに設けられている報知カウンタをリセット(0に設定)し、S10に移行する。
一方、補助電極電流値が洗浄判定値以上である場合には(S20:YES)、S40にて、報知カウンタをインクリメント(1加算)する。そしてS50にて、報知カウンタの値が予め設定された報知判定値(本実施形態では例えば10秒に相当する値)以上であるか否かを判断する。
ここで、報知カウンタの値が報知判定値未満である場合には(S50:NO)、S10に移行する。一方、報知カウンタの値が報知判定値以上である場合には(S50:YES)、S60にて、微粒子センサ100の洗浄を喚起する洗浄喚起画像を表示部920に表示させるとともに、微粒子センサ100の制御を停止し、センサ状態判断処理を終了する。
このように構成された微粒子測定装置300は、イオン発生部110と、排ガス帯電部120と、イオン捕捉部130と、第2電極132とを備えて微粒子の量を測定する微粒子センサ100を制御する。
イオン発生部110は、コロナ放電によってイオンを発生する。排ガス帯電部120は、被測定ガス中の少なくとも一部の微粒子をイオンを用いて帯電させる。イオン捕捉部130は、イオン発生部110で発生させたイオンのうち微粒子の帯電に使用されなかったイオンの少なくとも一部を捕捉する。第2電極132は、イオンが反発する電位に設定されてイオン捕捉部130でのイオンの捕捉を補助する。
また微粒子測定装置300は、第2絶縁トランス720bと、補助電極電流測定回路780を備える。第2絶縁トランス720bは、イオン捕捉部130でのイオンの捕捉を補助するための電圧を第2配線222を介して第2電極132へ印加する。補助電極電流測定回路780は、第2配線222に流れる補助電極電流Iirを検出する。
そして微粒子測定装置300は、補助電極電流測定回路780によって検出された補助電極電流Iirの値に基づいて、微粒子センサ100の状態および第2配線222の状態を判断する(S10,S12,S20〜S50)。
このように微粒子測定装置300は、微粒子センサ100が正常状態である場合には流れない補助電極電流Iirを検出することにより、微粒子センサ100および第2配線222の状態が正常ではない状態であると判断することができる。
補助電極電流Iirが流れる状態では、微粒子センサ100の測定性能が低下するおそれがある。これに対して、微粒子測定装置300は、補助電極電流Iirが流れている状態を判断することができるため、補助電極電流Iirが流れていることにより測定性能が低下している状態で微粒子センサ100が用いられる状況が継続するのを抑制し、微粒子センサ100の測定性能の低下を抑制することができる。
また、微粒子測定装置300は、微粒子センサ100の状態と補助電極電流値との間の対応関係に基づいて予め設定された洗浄判定値と、補助電極電流値とを比較することにより、微粒子センサ100の状態を判断する(S20)。
このように微粒子測定装置300は、補助電極電流値と洗浄判定値とを比較するという簡便な方法で微粒子センサ100の状態を判断することができ、微粒子測定装置300の処理負荷を低減することができる。
また、微粒子測定装置300は、補助電極電流値が洗浄判定値以上である状態が報知判定値に対応する時間継続すると、微粒子センサの測定性能の低下を抑制するために微粒子センサ100の洗浄を喚起する洗浄喚起画像を表示する(S60)。また、微粒子測定装置300は、補助電極電流値がGNDショート判定値以上である場合に、GNDショート報知画像を表示する(S14)。これにより、微粒子測定装置300は、補助電極電流Iirが流れていることにより測定性能が低下している状態で微粒子センサ100が用いられる状況が継続するのを抑制し、微粒子センサ100の測定性能の低下を抑制することができる。
以上説明した実施形態において、排ガス帯電部120は本発明における帯電室、イオン捕捉部130は本発明における捕捉部、第2電極132は本発明における補助電極部、第2絶縁トランス720bは本発明における電圧印加部、S10,S12,S20〜S50の処理は本発明における状態判断部である。
また、第2配線222は本発明における電圧印加経路、洗浄判定値は本発明における状態判定値、S60,S14の処理は本発明における抑制処理実行部である。
[2.第2実施形態]
第2実施形態の微粒子測定システム10は、センサ状態判断処理が変更された点が第1実施形態と異なる。
図8は、第2実施形態のセンサ状態判断処理を示すフローチャートである。このセンサ状態判断処理は、微粒子センサ100が起動して微粒子量を検出可能な状態になった直後に、その処理を開始する。
このセンサ状態判断処理が実行されると、制御部600のマイコンは、まずS210にて、第1実施形態のS10と同様にして、補助電極電流値を算出する。そして、S220にて、S210で算出した補助電極電流値が予め設定された少付着判定値以上であるか否かを判断する。この少蓄積判定値は、微粒子センサ100の内部に付着した微粒子の量が少ないことを示す予め設定された少付着量であるときの補助電極電流値である。
ここで、補助電極電流値が少付着判定値未満である場合には(S220:NO)、S230にて、マイコンのRAMに設けられている少付着カウンタと中付着カウンタと多付着カウンタをリセットし、S210に移行する。
一方、補助電極電流値が少付着判定値以上である場合には(S220:YES)、S240にて、S210で算出した補助電極電流値が予め設定された中付着判定値以上であるか否かを判断する。この中付着判定値は、少付着判定値よりも大きく、微粒子センサ100の内部に付着した微粒子の量が中程度であることを示す予め設定された中付着量であるときの補助電極電流値である。
ここで、補助電極電流値が中付着判定値未満である場合には(S240:NO)、S250にて、少付着カウンタをインクリメントする。そしてS260にて、少付着カウンタの値が予め設定された報知判定値以上であるか否かを判断する。ここで、少付着カウンタの値が報知判定値未満である場合には(S260:NO)、S210に移行する。一方、少付着カウンタの値が報知判定値以上である場合には(S260:YES)、S270にて、微粒子センサ100の内部に少量の微粒子が付着していることを報知する少付着報知画像を表示部920に表示させて、S210に移行する。
またS240にて、補助電極電流値が中付着判定値以上である場合には(S240:YES)、S280にて、S210で算出した補助電極電流値が予め設定された多付着判定値以上であるか否かを判断する。この多付着判定値は、中付着判定値よりも大きく、微粒子センサ100の内部に付着した微粒子の量が多いことを示す予め設定された多付着量であるときの補助電極電流値である。
ここで、補助電極電流値が多付着判定値未満である場合には(S280:NO)、S290にて、中付着カウンタをインクリメントする。そしてS300にて、中付着カウンタの値が予め設定された報知判定値以上であるか否かを判断する。ここで、中付着カウンタの値が報知判定値未満である場合には(S300:NO)、S210に移行する。一方、中付着カウンタの値が報知判定値以上である場合には(S300:YES)、S310にて、微粒子センサ100の内部に中程度の量の微粒子が付着していることを報知する中付着報知画像を表示部920に表示させて、S210に移行する。
またS280にて、補助電極電流値が多付着判定値以上である場合には(S280:YES)、S320にて、多付着カウンタをインクリメントする。そしてS330にて、多付着カウンタの値が予め設定された報知判定値以上であるか否かを判断する。ここで、多付着カウンタの値が報知判定値未満である場合には(S330:NO)、S210に移行する。一方、多付着カウンタの値が報知判定値以上である場合には(S330:YES)、S340にて、微粒子センサ100の内部に多量の微粒子が付着していることを報知する多付着報知画像を表示部920に表示させて、S210に移行する。
このように構成された微粒子測定装置300は、補助電極電流測定回路780によって検出された補助電極電流Iirの値に基づいて、微粒子センサ100の状態を判断する(S210〜S260,S280〜S300,S320〜S330)。
このように微粒子測定装置300は、微粒子センサ100が正常状態である場合には流れない補助電極電流Iirを検出することにより、微粒子センサ100が正常ではない状態であると判断することができる。これにより、微粒子測定装置300は、補助電極電流Iirが流れていることにより測定性能が低下している状態で微粒子センサ100が用いられる状況が継続するのを抑制し、微粒子センサ100の測定性能の低下を抑制することができる。
また、微粒子測定装置300では、複数の状態判定値として、少付着判定値、中付着判定値および多付着判定値が設定されている。そして微粒子測定装置300は、少付着判定値、中付着判定値および多付着判定値と補助電極電流値との比較結果に基づいて、複数の状態判定値のそれぞれに対応して互いに異なるように予め設定された状態を、微粒子センサの状態として判断する。
これにより微粒子測定装置300は、補助電極電流値に応じて、互いに異なる複数の微粒子センサ100の状態を判断することができる。このため、微粒子測定装置300は、微粒子センサ100の測定性能の低下を抑制するための処理を補助電極電流値に応じて適切に行うことが可能となる。例えば、少付着報知画像、中付着報知画像、多付着報知画像の順で微粒子センサ100の洗浄時間を長くするようにするとよい。
以上説明した実施形態において、S210〜S260,S280〜S300,S320〜S330の処理は本発明における状態判断部、少付着判定値、中付着判定値および多付着判定値は本発明における状態判定値、S270,S310,S340の処理は本発明における抑制処理実行部である。
[3.第3実施形態]
第3実施形態の微粒子測定システム10は、微粒子センサ100と電気回路部700の構成が変更された点と、センサ状態判断処理の代わりに微粒子除去処理を実行する点が第1実施形態と異なる。
図9は、第3実施形態の電気回路部700の概略構成を例示した説明図である。
第3実施形態の微粒子センサ100は、補助電極加熱部140を備える。補助電極加熱部140は、第2電極132の周囲を被覆する絶縁パイプと、絶縁パイプ内に埋め込まれているヒータとを備える。
第3実施形態の電気回路部700は、ヒータ通電回路790を備える。ヒータ通電回路790は、PWM制御により補助電極加熱部140のヒータに通電することにより補助電極加熱部140を加熱する回路であり、ヒータ配線791を介してヒータの一端に接続されるとともに、ヒータ配線792を介してヒータの他端に接続される。
第3実施形態の制御部600のマイコンは、微粒子除去処理を実行する。図10は、微粒子除去処理を示すフローチャートである。この微粒子除去処理は、微粒子センサ100が起動して微粒子量を検出可能な状態になった直後に、その処理を開始する。
この微粒子除去処理が実行されると、制御部600のマイコンは、まずS510にて、第1実施形態のS10と同様にして、補助電極電流値を算出する。そして、S520にて、S510で算出した補助電極電流値が、微粒子除去を要することを示す予め設定された除去判定値(本実施形態では、例えば100μA)以上であるか否かを判断する。ここで、補助電極電流値が除去判定値未満である場合には(S520:NO)、S530にて、マイコンのRAMに設けられている通電カウンタをリセットし、S510に移行する。
一方、補助電極電流値が除去判定値以上である場合には(S520:YES)、S540にて、通電カウンタをインクリメント(1加算)する。そしてS550にて、通電カウンタの値が予め設定された開始判定値(本実施形態では例えば10秒に相当する値)以上であるか否かを判断する。
ここで、通電カウンタの値が開始判定値未満である場合には(S550:NO)、S510に移行する。一方、通電カウンタの値が開始判定値以上である場合には(S550:YES)、S560にて、ヒータ通電回路790により、予め設定された除去通電時間継続して補助電極加熱部140のヒータへ通電し、S510に移行する。
このように構成された微粒子測定装置300は、補助電極電流測定回路780によって検出された補助電極電流Iirの値に基づいて、微粒子センサ100の状態を判断する(S510〜S550)。このように微粒子測定装置300は、微粒子センサ100が正常状態である場合には流れない補助電極電流Iirを検出することにより、微粒子センサ100が正常ではない状態であると判断することができる。これにより、微粒子測定装置300は、補助電極電流Iirが流れていることにより測定性能が低下している状態で微粒子センサ100が用いられる状況が継続するのを抑制し、微粒子センサ100の測定性能の低下を抑制することができる。
また、微粒子測定装置300は、補助電極電流値が除去判定値以上である状態が開始判定値に対応する時間継続すると、微粒子センサ100の測定性能の低下を抑制するために補助電極加熱部140のヒータへ通電する(S560)。これにより、微粒子測定装置300は、第2電極132の付近に付着している微粒子を除去し、補助電極電流Iirが流れない状態へ復帰させることが可能である。このため、微粒子測定装置300は、補助電極電流Iirが流れていることにより測定性能が低下している状態で微粒子センサ100が用いられる状況が継続するのを抑制し、微粒子センサ100の測定性能の低下を抑制することができる。
以上説明した実施形態において、S510〜S550の処理は本発明における状態判断部、除去判定値は本発明における状態判定値、S560の処理は本発明における抑制処理実行部である。
[4.他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採ることができる。
例えば上記第2実施形態では、少付着判定値、中付着判定値および多付着判定値と補助電極電流値との比較結果に基づいて、微粒子センサ100の内部に付着した微粒子の量を示す画像を表示するものを示した。しかし、上記第3実施形態のように補助電極加熱部140のヒータへ通電することができる場合には、少付着判定値、中付着判定値および多付着判定値と補助電極電流値との比較結果に基づいて、付着した微粒子の量が多いほど、ヒータへの通電時間を長くするようにしてもよい。
また上記実施形態では、画像を表示することにより、微粒子測定装置300の使用者に対して、微粒子センサ100の状態を報知するものを示した。しかし、微粒子センサ100の状態を報知する方法はこれに限定されるものではなく、例えば、文字列を表示するようにしてもよいし、ランプを点灯または点滅させるようにしてもよいし、音声を出力するようにしてもよい。
10…微粒子測定システム、100…微粒子センサ、110…イオン発生部、120…排ガス帯電部、130…イオン捕捉部、132…第2電極、140…補助電極加熱部、222…第2配線、300…微粒子測定装置、600…制御部、700…電気回路部、710…電源回路、710b…第2電源回路、711b…第2放電電圧制御回路、712b…第2トランス駆動回路、720…絶縁トランス、720b…第2絶縁トランス、780…補助電極電流測定回路、790…ヒータ通電回路

Claims (7)

  1. コロナ放電によってイオンを発生するイオン発生部と、被測定ガス中の少なくとも一部の微粒子を前記イオンを用いて帯電させるための帯電室と、前記イオン発生部で発生させた前記イオンのうち前記微粒子の帯電に使用されなかった前記イオンの少なくとも一部を捕捉する捕捉部と、前記イオンが反発する電位に設定されて前記捕捉部での前記イオンの捕捉を補助する補助電極部とを備えて前記微粒子の量を測定する微粒子センサを制御する微粒子測定装置であって、
    前記捕捉部での前記イオンの捕捉を補助するための電圧を電圧印加経路を介して前記補助電極部へ印加する電圧印加部と、
    前記電圧印加経路に流れる補助電極電流を検出する電流検出部と、
    前記電流検出部によって検出された前記補助電極電流の値に基づいて、前記微粒子センサの状態および前記電圧印加経路の状態の少なくとも一方を判断する状態判断部とを備える
    ことを特徴とする微粒子測定装置。
  2. 前記状態判断部は、前記微粒子センサの状態と前記補助電極電流の値との間の対応関係に基づいて予め設定された状態判定値と、前記補助電極電流の値とを比較することにより、前記微粒子センサの状態を判断する
    ことを特徴とする請求項1に記載の微粒子測定装置。
  3. 前記状態判定値は、複数設定され、
    前記状態判断部は、複数の前記状態判定値と前記補助電極電流の値との比較結果に基づいて、複数の前記状態判定値のそれぞれに対応して互いに異なるように予め設定された状態を、前記微粒子センサの状態として判断する
    ことを特徴とする請求項2に記載の微粒子測定装置。
  4. 前記状態判断部による判断結果に応じて、前記微粒子センサの測定性能の低下を抑制するための抑制処理を実行する抑制処理実行部を備える
    ことを特徴とする請求項1〜請求項3の何れか1項に記載の微粒子測定装置。
  5. 前記抑制処理は、前記状態判断部による判断結果を報知することである
    ことを特徴とする請求項4に記載の微粒子測定装置。
  6. 前記微粒子センサは、前記補助電極部の周囲に設置されて通電により加熱する補助電極加熱部を備え、
    前記抑制処理は、前記補助電極加熱部へ通電することである
    ことを特徴とする請求項4に記載の微粒子測定装置。
  7. 請求項1〜請求項6の何れか1項に記載の微粒子測定装置に、前記微粒子センサを接続してなる
    ことを特徴とする微粒子測定システム。
JP2016079720A 2015-10-27 2016-04-12 微粒子測定装置および微粒子測定システム Active JP6342937B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/332,148 US10094757B2 (en) 2015-10-27 2016-10-24 Particulate measurement apparatus and particulate measurement system
DE102016012807.0A DE102016012807B4 (de) 2015-10-27 2016-10-26 Partikelmessvorrichtung und Partikelmesssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015210884 2015-10-27
JP2015210884 2015-10-27

Publications (2)

Publication Number Publication Date
JP2017083420A JP2017083420A (ja) 2017-05-18
JP6342937B2 true JP6342937B2 (ja) 2018-06-13

Family

ID=58712915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016079720A Active JP6342937B2 (ja) 2015-10-27 2016-04-12 微粒子測定装置および微粒子測定システム

Country Status (1)

Country Link
JP (1) JP6342937B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20106395A0 (fi) * 2010-12-31 2010-12-31 Pegasor Oy Laitteisto
JP5213979B2 (ja) * 2011-03-17 2013-06-19 日本特殊陶業株式会社 微粒子センサおよびその取付構造
JP5667102B2 (ja) * 2012-02-21 2015-02-12 日本特殊陶業株式会社 微粒子センサ
JP5829556B2 (ja) * 2012-03-15 2015-12-09 日本特殊陶業株式会社 微粒子検知システム
US9541488B2 (en) * 2012-09-21 2017-01-10 Msp Corporation Particle sampling and measurement in the ambient air
JP6138652B2 (ja) * 2013-10-01 2017-05-31 日本特殊陶業株式会社 微粒子測定システム

Also Published As

Publication number Publication date
JP2017083420A (ja) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6730154B2 (ja) 微粒子測定装置および微粒子測定システム
JP6053603B2 (ja) 微粒子測定システム
JP6383248B2 (ja) 微粒子測定システム
JP6383247B2 (ja) 微粒子測定システム
JP6730155B2 (ja) 微粒子測定装置および微粒子測定システム
JP6110754B2 (ja) 微粒子測定システム
US10094756B2 (en) Particulate measurement system
JP6580945B2 (ja) 微粒子測定装置および微粒子測定システム
US10094757B2 (en) Particulate measurement apparatus and particulate measurement system
JP6831181B2 (ja) 微粒子検出システム
JP6335861B2 (ja) 微粒子測定システム
JP6138652B2 (ja) 微粒子測定システム
JP6342937B2 (ja) 微粒子測定装置および微粒子測定システム
JP2016075674A (ja) 微粒子測定システム
JP2019020349A (ja) 微粒子検出装置および車両
JP6396881B2 (ja) 微粒子測定システム
US20180259439A1 (en) Particulate matter detection system
JP2018081056A (ja) 微粒子検知システム
JP6346577B2 (ja) 微粒子測定システム
JP2017198488A (ja) 電流測定装置および微粒子検出装置
JP6435213B2 (ja) 微粒子測定システム
JP2018004474A (ja) 電流測定装置および微粒子検出装置
JP2019032188A (ja) 微粒子検出装置および車両
JP2018128360A (ja) 微粒子検出装置、車両、微粒子検出方法および微粒子径推定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6342937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250