JP6333109B2 - 複合熱源ヒートポンプ装置 - Google Patents

複合熱源ヒートポンプ装置 Download PDF

Info

Publication number
JP6333109B2
JP6333109B2 JP2014164420A JP2014164420A JP6333109B2 JP 6333109 B2 JP6333109 B2 JP 6333109B2 JP 2014164420 A JP2014164420 A JP 2014164420A JP 2014164420 A JP2014164420 A JP 2014164420A JP 6333109 B2 JP6333109 B2 JP 6333109B2
Authority
JP
Japan
Prior art keywords
compressor
heat
power source
temperature
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014164420A
Other languages
English (en)
Other versions
JP2016040500A (ja
Inventor
近藤 建
建 近藤
正典 上田
正典 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2014164420A priority Critical patent/JP6333109B2/ja
Publication of JP2016040500A publication Critical patent/JP2016040500A/ja
Application granted granted Critical
Publication of JP6333109B2 publication Critical patent/JP6333109B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、複合熱源ヒートポンプ装置に係り、特に、空気熱および地中熱を熱源とする複合熱源ヒートポンプ装置に関する。
近時、太陽の熱を受けて大地に蓄えられた「地中熱」は、年間を通して温度変化が少ないためこの地中熱エネルギーを有効活用できる地中熱ヒートポンプが注目されている。特に、地中熱ヒートポンプは、冬の寒さが厳しい寒冷地でも安定した暖房ができるという特質を有する。
従来、地中熱ヒートポンプと空気熱ヒートポンプを、放熱端末側の熱媒(循環液)が循環する循環回路に対して直列に連結した複合熱源ヒートポンプ装置が創案されている(例えば、特許文献1)。
特許文献1に記載された複合熱源ヒートポンプ装置では、外気温センサで検出した外気温度に基づいて、地中熱と空気熱のうち熱交換効率のよい方を優先側のヒートポンプ回路、他方を補助側のヒートポンプ回路に設定して、温水回路内を循環する温水を所定温度まで上昇させて、床暖房パネル等の暖房端末を加熱している。
そして、外気温センサは、送風ファンが空気熱ヒートポンプ回路の熱交換器に送風する外気の温度を検出している。
特開2014−35109号公報(請求項1、段落0017〜0021、図1参照)
しかしながら、特許文献1に記載された複合熱源ヒートポンプ装置では、外気温センサは、送風ファンが空気熱ヒートポンプ回路の熱交換器に送風する外気の温度を検出しているため、送風ファンが回転している時(空気熱ヒートポンプ回路が駆動中)と、送風ファンが回転していない時(空気熱ヒートポンプ回路が停止中)とでは、空気の流れが異なり、外気温センサが検出する外気温度(検出値)に差が生じる場合がある。
例えば、空気熱ヒートポンプ回路の熱交換器に送風する送風ファンが回転していない時は、空気が滞留して日射や機器からの放熱等によって、本来よりも高い外気温度を検出する場合がある。一方、空気熱ヒートポンプ回路が起動して送風ファンが回転し始めると、熱交換器に送風する空気(外気)が流動するので本来の外気温度を検出するようになる。
つまり、送風ファンが回転していない時と回転している時とで外気温センサによる外気温度の検出値が変動して、優先動力源として駆動されるヒートポンプ回路(優先側のヒートポンプ回路)と補助動力源として駆動されるヒートポンプ回路(補助側のヒートポンプ回路)の切り替えが不用意に発生するという問題があった。
従来の複合熱源ヒートポンプ装置の動作について、図7を参照しながら説明する。図7は、従来の複合熱源ヒートポンプ装置の動作を示すグラフであり、(a)は外気温センサが検出した外気温度の推移を示し、(b)は空気熱ヒートポンプ回路と地中熱ヒートポンプ回路の駆動状態を模式的に示す。
従来の複合熱源ヒートポンプ装置は、外気温センサで検出した外気温度が所定の基準温度θ3(5度)よりも高い場合には、空気熱ヒートポンプ回路(空気熱HP)の方が地中熱ヒートポンプ回路(地中熱HP)よりも採熱効率が高いため、空気熱ヒートポンプ回路の圧縮機を優先動力源と判定し、地中熱ヒートポンプ回路の圧縮機を補助動力源と判定する。
一方、外気温度が所定の基準温度θ3(5度)よりも低い場合には、地中熱ヒートポンプ回路(地中熱HP)の方が空気熱ヒートポンプ回路(空気熱HP)よりも採熱効率が高いため、地中熱ヒートポンプ回路の圧縮機を優先動力源と判定し、空気熱ヒートポンプ回路の圧縮機を補助動力源と判定する。
このため、従来の複合熱源ヒートポンプ装置では、外気温度がθ3(5度)を少し超えている状態から(時刻t0)、運転スイッチをONにすると(時刻t1)、以下のような不用意な動作を行う場合がある。
すなわち、従来の複合熱源ヒートポンプ装置は、停止しているときには、空気熱ヒートポンプ回路の送風ファンが回転していないため、空気が滞留して日射や機器からの放熱等によって、外気温センサが本来よりも高い外気温度を検出する場合がある。
したがって、外気温度がθ3(5度)を少し超えている状態から(時刻t0)、運転スイッチをONにすると(時刻t1)、空気熱ヒートポンプ回路が起動して送風ファンが回転するので、空気の流動が生じる。このとき外気温センサは、流動する空気の温度を検知するので、外気温度の検出値がθ3(5度)を下まわる場合がある(時刻t2〜)。
そうすると、優先側と補助側のヒートポンプ回路が切り替わるので、今度は地中熱ヒートポンプ回路が起動して空気熱ヒートポンプ回路が停止される(時刻t2)。空気熱ヒートポンプ回路が停止されると(時刻t2)、送風ファンが回転していない時(空気熱ヒートポンプ回路が停止中)は、空気が滞留して日射や機器からの放熱等によって、送風ファンが回転している時よりも高い外気温度を検出しやすいので、外気温度の検出値が上昇するという現象が生じる(時刻t2〜t3)。
外気温度の検出値が上昇してθ3(5度)に到達すると(時刻t2〜t3)、優先側と補助側のヒートポンプ回路が切り替わるので、再び空気熱ヒートポンプが起動して地中熱ヒートポンプ回路が停止される(時刻t3)。
このようにして、従来の複合熱源ヒートポンプ装置では、外気温度の検出値が変動して、優先動力源として駆動されるヒートポンプ回路(優先側のヒートポンプ回路)と補助動力源として駆動されるヒートポンプ回路(補助側のヒートポンプ回路)の切り替えが不用意に、しかも頻繁に発生してしまう現象が起き、効率が悪いとされる立ち上げ動作が頻繁に発生する場合があった(時刻t2,t4,t6では地中熱ヒートポンプの立ち上げ動作、時刻t3,t5では空気熱ヒートポンプの立ち上げ動作)。
本発明は、このような背景に鑑みてなされたものであり、第2圧縮機が優先動力源である状態から補助動力源である状態に適切なタイミングで切り替えて、不用意な切り替えを抑制して熱効率を向上させることができる複合熱源ヒートポンプ装置を提供することを課題とする。
前記課題を解決するため、請求項1に係る発明は、放熱端末に循環液を循環させる加熱循環回路と、この加熱循環回路に配設された凝縮器としての第1加熱熱交換器と、前記加熱循環回路における第1加熱熱交換器の下流側に直列に配設された凝縮器としての第2加熱熱交換器と、地中熱を熱源として回路内を循環する冷媒を加熱する地中熱源熱交換器と回路内を循環する冷媒を圧縮する第1圧縮機とを備え前記第1加熱熱交換器を介して前記循環液を加熱する第1ヒートポンプ回路と、空気熱を熱源として回路内を循環する冷媒を加熱する空気熱源熱交換器と回路内を循環する冷媒を圧縮する第2圧縮機とを備え前記第2加熱熱交換器を介して前記循環液を加熱する第2ヒートポンプ回路と、前記空気熱源熱交換器に外気を送風する送風ファンと、この送風ファンが送風する外気温度を検出する外気温センサと、動作を制御する制御装置と、を有する複合熱源ヒートポンプ装置であって、前記制御装置は、前記外気温センサが検出した外気温度を基準として前記第1圧縮機および前記第2圧縮機のうち一方を優先動力源、他方を補助動力源と判定し、前記外気温度が所定の切替温度よりも高い場合には前記第2圧縮機を前記優先動力源と判定し、前記外気温度が前記切替温度よりも低い場合には前記第1圧縮機を前記優先動力源と判定する優先回路判定ステップを実行し、前記制御装置は、前記優先回路判定ステップにおいて、前記第2圧縮機優先動力源である状態から補助動力源である状態に切り替える場合、前記第2圧縮機が停止中のときは、所定の停止時切替温度で切り替え、前記第2圧縮機が駆動中のときは、前記停止時切替温度よりも低く設定した所定の駆動時切替温度で切り替え、前記制御装置は、前記優先回路判定ステップにおいて、前記第2圧縮機を補助動力源である状態から優先動力源である状態に切り替える場合、前記第2圧縮機が停止中のときは、前記停止時切替温度で切り替え、前記第2圧縮機が駆動中のときは、前記停止時切替温度よりも低く前記駆動時切替温度よりも高い所定の切替温度で切り替えること、を特徴とする。
本発明に係る複合熱源ヒートポンプ装置は、前記第2圧縮機が優先動力源である状態から補助動力源に切り替えるための優先時切替温度を、前記第2圧縮機が駆動している時(θ1)と停止している時(θ3)によってそれぞれ別個に設定する。
このため、本発明に係る複合熱源ヒートポンプ装置は、前記第2圧縮機が駆動している時と停止している時とで、外気温センサが検出する外気温度(検出温度)に差が生じるようなときであっても、適切に前記第2圧縮機が優先動力源である状態から補助動力源に切り替えることができる。
また、本発明に係る複合熱源ヒートポンプ装置は、前記第2圧縮機が駆動している時の優先時切替温度を前記第2圧縮機が停止している時よりも低くしたことで、前記第2圧縮機が駆動している時の方が、停止している時よりも検出値が低くなるような場合であっても、適切なタイミングで第2圧縮機を優先動力源から補助動力源へ切り替えることができる。
また、制御装置は、第2圧縮機を補助動力源である状態から優先動力源である状態に切り替える場合、第2圧縮機が駆動中のときは、停止時切替温度よりも低く駆動時切替温度よりも高い所定の切替温度で切り替える。このように、停止時切替温度よりも低い切替温度で切り替えることによって本来の外気温度に合わせて適切なタイミングで切り替えることができるとともに、駆動時切替温度よりも高い切替温度で切り替えることによって優先側と補助側との切り替えが頻繁に発生しないようにすることができる。
本発明に係る複合熱源ヒートポンプ装置は、第2圧縮機が優先動力源である状態から補助動力源である状態に適切なタイミングで切り替えて、不用意な切り替えを抑制して熱効率を向上させることができる。
本発明の実施形態に係る複合熱源ヒートポンプ装置の主要なユニットを示す外観構成図である。 本発明の実施形態に係る複合熱源ヒートポンプ装置の全体構成を示す構成図である。 本発明の実施例1に係る優先動力源の圧縮機のみを駆動(補助動力源の圧縮機を停止)する場合における優先回路判定ステップの動作を示すグラフであり、(a)は外気温センサが検出した外気温度の推移を示し、(b)は空気熱ヒートポンプ装置と地中熱ヒートポンプ装置の駆動状態を模式的に示す。 本発明の実施例2に係る優先動力源の圧縮機と補助動力源の圧縮機を両方とも駆動させる場合における2台運転時の動作を示すグラフであり、(a)は外気温センサが検出した外気温度の推移を示し、(b)は空気熱ヒートポンプ装置と地中熱ヒートポンプ装置の駆動状態を模式的に示す。 本発明の実施例3に係る優先動力源の圧縮機のみを駆動(補助動力源の圧縮機を停止)する場合と、優先動力源の圧縮機と補助動力源の圧縮機を両方とも駆動させる場合における1台運転と2台運転が混在するときの動作を示すグラフであり、(a)は外気温センサが検出した外気温度の推移を示し、(b)は空気熱ヒートポンプ装置と地中熱ヒートポンプ装置の駆動状態を模式的に示す。 本発明の実施形態に係る複合熱源ヒートポンプ装置の動作を示す整理表であり、第2圧縮機が停止している時と駆動している時の切替温度を示す。 従来の複合熱源ヒートポンプ装置の動作を示すグラフであり、(a)は外気温センサが検出した外気温度の推移を示し、(b)は空気熱ヒートポンプ装置と地中熱ヒートポンプ装置の駆動状態を模式的に示す。
本発明の実施形態に係る複合熱源ヒートポンプ装置1の構成について適宜図1と図2を参照しながら詳細に説明する。
複合熱源ヒートポンプ装置1は、図1に示すように、放熱端末2に熱媒としての循環液L(例えば、温水)を循環させる加熱熱交換部3と、地中熱を熱源とする地中熱ヒートポンプ装置4と、空気熱を熱源とする空気熱ヒートポンプ装置5と、動作を制御する制御装置6(61,62)と、制御装置6に信号を送るリモコン60と、を備えている。
複合熱源ヒートポンプ装置1は、図2に示すように、第1ヒートポンプ回路である地中熱ヒートポンプ装置4と、第2ヒートポンプ回路である空気熱ヒートポンプ装置5とを直列に連結したハイブリッド型のヒートポンプ装置であり、暖房装置および冷房装置として機能させることができるが、以下の実施形態においては主として暖房装置として使用している場合の構成要素および動作について説明する。
放熱端末2(21,22)は、図2に示すように、被空調空間を加熱する床暖房パネルやパネルコンベクタであり、複数を配設することができるが、数量や仕様が特に限定されるものではないため、詳細な説明は省略する。
加熱熱交換部3は、放熱端末2に循環液Lを循環させる加熱循環回路31と、加熱循環回路31に配設され循環液Lを圧送する加熱循環ポンプ32と、放熱端末2に供給する循環液Lの供給をそれぞれ制御する熱動弁33(33a,33b)と、放熱端末2から流出して戻ってくる循環液Lの温度を計測する端末温度センサ34と、流路の圧力を調整するシスターン35と、を備えている。
加熱循環回路31は、地中熱ヒートポンプ装置4の凝縮器としての第1加熱熱交換器41と、空気熱ヒートポンプ装置5の凝縮器としての第2加熱熱交換器51と、を備えている。
第1加熱熱交換器41は、加熱循環回路31における第2加熱熱交換器51の上流側に直列に配設されている。
かかる構成により、冬季の寒冷地等において外気温が低く暖房負荷が過大になるような環境では、第1加熱熱交換器41が加熱した循環液Lをさらに第2加熱熱交換器51で加熱することができるため、放熱端末2を加熱する循環液Lを迅速に目標温度まで到達させることができる。
端末温度センサ34は、加熱循環回路31における第1加熱熱交換器41の上流側に配設され、放熱端末2から流出した循環液Lの温度を検出して快適な暖房が得られるように制御装置6で制御する。
地中熱ヒートポンプ装置4は、第1加熱熱交換器41に高温の冷媒C1(例えば、R410AやR32等のHFC冷媒や、二酸化炭素冷媒)を供給する冷媒循環路42と、第1加熱熱交換器41に冷媒C1を圧縮して送出する第1圧縮機43と、第1圧縮機43で圧縮された冷媒C1の温度を検出する温度センサ42aと、第1加熱熱交換器41から流出された冷媒C1を減圧する第1膨張弁44と、第1膨張弁44によって減圧された低温の冷媒C1の温度を検出する温度センサ42bと、第1膨張弁44によって減圧された低温の冷媒C1を加熱する地中熱源熱交換器45と、地中熱源熱交換器45に熱媒H1(例えば、不凍液)を供給する熱媒循環路46と、熱媒循環路46の熱媒H1を圧送する地中熱循環ポンプ47と、熱媒循環路46に配設された地中熱交換器48と、熱媒循環路46の圧力を調整するシスターン49と、を備えている。
かかる構成により、地中熱ヒートポンプ装置4は、地中熱源熱交換器45では、熱媒循環路46を循環する熱媒H1と冷媒循環路42を循環する冷媒C1とが対向して流れて熱交換が行われるため、地中熱交換器48が採熱した地中熱を冷媒C1に伝達する。そして、この冷媒C1を第1圧縮機43により圧縮して第1加熱熱交換器41に供給する。
第1加熱熱交換器41では、第1圧縮機43により圧縮された高温の冷媒C1と加熱循環回路31を通って放熱端末2から戻ってきた低温の循環液Lとが対向して流れて熱交換が行われ、循環液Lを加熱するようになっている。
空気熱ヒートポンプ装置5は、第2加熱熱交換器51に高温の冷媒C2(例えば、R410AやR32等のHFC冷媒や、二酸化炭素冷媒)を供給する冷媒循環路52と、第2加熱熱交換器51に冷媒C2を圧縮して送出する第2圧縮機53と、第2圧縮機53で圧縮された冷媒C2の温度を検出する温度センサ52aと、第2加熱熱交換器51から流出された冷媒C2を減圧する第2膨張弁54と、第2膨張弁54によって減圧された低温の冷媒C2の温度を検出する温度センサ52bと、第2膨張弁54によって減圧された低温の冷媒C2を加熱する空気熱源熱交換器55と、空気熱源交換器55に外気を送風する送風ファン56と、送風ファン56が送風する外気温度θ(図3参照)を検出する外気温センサ57と、冷媒循環路52における冷媒C2の流れ方向を変えて暖房と冷房を切り替える4方弁58と、を備えている。
空気熱源熱交換器55は、送風ファン56から送風される外気と冷媒C2との熱交換を行って冷媒C2を加熱する。
かかる構成により、空気熱ヒートポンプ装置5は、第2加熱熱交換器51では、第2圧縮機53により圧縮された高温の冷媒C2と加熱循環回路31の上流側に配設された第1加熱熱交換器41から流出してくる循環液Lとが対向して流れて熱交換が行われ、第1加熱熱交換器41で加熱された循環液Lをさらに加熱できるようになっている。
制御装置6は、加熱熱交換部3および地中熱ヒートポンプ装置4の動作を制御する地中熱ヒートポンプ制御装置61と、空気熱ヒートポンプ装置5の動作を制御する空気熱ヒートポンプ制御装置62と、を備えている。制御装置6は、外気温センサ57や温度センサ42a,42b等の各温度センサ、およびリモコン60からの信号を受けて、複合熱源ヒートポンプ装置1の動作を制御できるようになっている。
制御装置6は、外気温センサ57が検出した外気温度θ(図3参照)に応じて、地中熱ヒートポンプ装置4および空気熱ヒートポンプ装置5のうちどちらの熱効率(COP)が高いかを判定して、熱効率が高い方を優先側のヒートポンプ装置、熱効率が低い方を補助側のヒートポンプ装置と判定する優先回路判定ステップを実行する。
制御装置6は、地中熱ヒートポンプ装置4または空気熱ヒートポンプ装置5のどちらか一方(優先側のヒートポンプ装置)を作動させると共に加熱循環ポンプ32を駆動させる、あるいは地中熱ヒートポンプ装置4および空気熱ヒートポンプ装置5の双方(優先側と補助側のヒートポンプ装置)を作動させると共に加熱循環ポンプ32を駆動させて、加熱循環回路31を循環する循環液Lを加熱する暖房運転を実行する。
このような暖房運転では、その立ち上げ時には、循環液Lの温度がリモコン60等により設定された目標温度に到達するまでは、いわゆる立ち上げ運転制御(不図示)を実行し、目標温度に到達した後は、いわゆる通常運転制御(不図示)を実行する。
立ち上げ運転制御は、特に限定されるものではなく、優先側のヒートポンプ装置のみを駆動してもよいし、優先側と補助側のヒートポンプ装置の双方を駆動してもよい。
通常運転制御は、特に限定されるものではなく、優先側のヒートポンプ装置のみを駆動してもよいし、優先側と補助側のヒートポンプ装置の双方を駆動してもよい。
なお、以下、説明の便宜上、第1圧縮機43および第2圧縮機53のうち、優先側のヒートポンプ装置を構成する優先動力源の圧縮機を圧縮機HP1といい、補助側のヒートポンプ装置を構成する補助動力源の圧縮機を圧縮機HP2という。
続いて、本発明の実施形態に係る複合熱源ヒートポンプ装置1の優先回路判定ステップにおける動作について主として図3から図6を参照しながら説明する。
参照する図3は、実施例1を示し、補助動力源の圧縮機HP2を停止して優先動力源の圧縮機HP1のみを駆動する場合における動作を示す。図4は、実施例2を示し、優先動力源の圧縮機HP1と補助動力源の圧縮機HP2を両方とも駆動させる場合における動作の例であり、リモコン60の運転スイッチをONにしてからずっと2台で運転する状態を示す。図5は、実施例3を示し、補助動力源の圧縮機HP2を停止して優先動力源の圧縮機HP1のみを駆動する場合と、優先動力源の圧縮機HP1と補助動力源の圧縮機HP2を両方とも駆動させる場合とが混在した他の例であり、運転スイッチをONにしてから1台運転と2台運転が混在する状態を示す。図6は、第2圧縮機53(空気熱HP)が停止し送風ファン56が停止している時と、第2圧縮機53(空気熱HP)が駆動し送風ファン56が駆動している時の切替温度を示す整理表である。
〈優先回路判定ステップ〉
優先回路判定ステップでは、第2圧縮機53が優先動力源である状態から補助動力源に切り替えるための優先時切替温度を、第2圧縮機53が駆動している時(θ1)の方が第2圧縮機が停止している時(θ3)よりも低く設定される。
つまり、制御装置6は、優先回路判定ステップにおいて、第2圧縮機53が停止中は優先時切替温度を所定の停止時切替温度θ3(図3参照)で切り替え、第2圧縮機53が駆動中は停止時切替温度θ3よりも低く設定した所定の駆動時切替温度θ1(図3参照)で切り替える。
<実施例1>
実施例1では、図3に示すように、外気温センサ57(図2参照)で検出した外気温度θが所定の基準温度θ3(例えば、5度)よりも高い場合には(t0〜t1)、空気熱ヒートポンプ装置5(空気熱HP)の方が地中熱ヒートポンプ装置4(地中熱HP)よりも採熱効率が高いため、第2圧縮機53(空気熱HP)を優先動力源と判定し、第1圧縮機43(地中熱HP)を補助動力源と判定する(t1)。
この時、複合熱源ヒートポンプ装置1の運転スイッチがOFFの状態であるから(t0〜t1)、第2圧縮機53は優先動力源に設定された状態で停止している(t1)。
そして、使用者(不図示)が複合熱源ヒートポンプ装置1の運転スイッチをONにすると(t1)、制御装置6は、補助動力源の圧縮機HP2である第1圧縮機43を停止した状態で、優先動力源の圧縮機HP1である第2圧縮機53を駆動する。
空気熱ヒートポンプ装置5の第2圧縮機53を駆動すると(t1〜)、送風ファン56(図1参照)が回転し始めるので、それまで滞留していた外気が流動して外気温センサ57は本来の外気温度θを検出するようになるため外気温センサ57が検出する外気温度θ(検出値)は次第に下がる傾向を示す(t1〜t2)。
このため、外気温度θは、停止時切替温度θ3を通り過ぎて(t2〜)、さらに下がり続ける場合がある。この時、制御装置6は、優先動力源の圧縮機HP1である第2圧縮機53が駆動しているため、第2圧縮機53が優先動力源である状態から補助動力源に切り替えるための優先時切替温度は駆動時切替温度θ1となっているので、停止時切替温度θ3を通り過ぎても第2圧縮機53を優先動力源から補助動力源への切り替えは行わない(t2参照)。なお、外気温センサ57が検出する外気温度θは次第に下がる傾向を示す(t1〜t3)ものであるが、この温度低下は、それまで滞留していた外気が流動した結果として温度が下がるものと、実際の外気温度が低下した結果として温度が下がるものとが含まれている。
外気温度θ(検出値)がさらに下がり続けた場合には第2圧縮機53が駆動中である時の駆動時切替温度θ1に到達する(t3)。この時まで、第2圧縮機53は優先動力源に設定された状態で駆動している(〜t3)。
そうすると制御装置6は、優先回路判定ステップにおいて、第2圧縮機53を優先動力源から補助動力源に切り替えて(t3)、優先動力源の圧縮機HP1である第2圧縮機53を停止し、補助動力源の圧縮機HP2である第1圧縮機43を駆動する(t3〜)。
つまり、本発明の実施形態に係る複合熱源ヒートポンプ装置1は、第2圧縮機53が停止中(運転スイッチがOFF)のときは優先時切替温度を所定の停止時切替温度θ3(例えば、5度)で切り替える(t1)。また、第2圧縮機53を優先動力源から補助動力源へ切り替える場合には、第2圧縮機53が駆動中は停止時切替温度θ3よりも低く設定した所定の駆動時切替温度θ1(例えば、0度)で切り替えることで(t3)、適切なタイミングで優先動力源から補助動力源へ切り替えることができるため、不用意な切り替えを抑制して熱効率を向上させることができる。
停止時切替温度θ3(例えば、5度)と駆動時切替温度θ1(例えば、0度)は、送風ファン56(図1参照)が回転している時と停止している時との外気温度θ(検出値)の変動特性、その他複合熱源ヒートポンプ装置1の仕様や使用環境に応じて適宜設定することができる。
地中熱ヒートポンプ装置4の第1圧縮機53を駆動して空気熱ヒートポンプ装置5の第2圧縮機53を停止すると(t3〜)、送風ファン56(図1参照)が停止するので、それまで流動していた外気が滞留して外気温センサ57は本来よりも高い外気温度θを検出するようになるため外気温センサ57が検出する外気温度θ(検出値)はオーバーシュートしながらその後次第に上がる傾向を示す(t3〜t4)。なお、外気温センサ57が検出する外気温度θは次第に上がる傾向を示すものであるが、この温度上昇は、それまで流動していた外気が滞留した結果として温度が上がるものと、実際の外気温度が上昇した結果として温度が上がるものとが含まれている。
このため、外気温度θは、駆動時切替温度θ1を通り過ぎて(t4)、さらに上がり続ける場合がある。この時、制御装置6は、補助動力源の圧縮機HP2である第2圧縮機53が停止しているため、駆動時切替温度θ1を通り過ぎても第2圧縮機53を補助動力源から優先動力源への切り替えは行わない(t4)。
外気温度θ(検出値)がさらに上がり続けた場合には第2圧縮機53が停止中である時の停止時切替温度θ3に到達する(t5)。この時まで、第2圧縮機53は補助動力源に設定された状態で停止している(t3〜t5)。
そうすると制御装置6は、優先回路判定ステップにおいて、第2圧縮機53を補助動力源から優先動力源に切り替えて(t5)、優先動力源の圧縮機HP1である第1圧縮機43を停止し、補助動力源の圧縮機HP2である第2圧縮機53を駆動する(t5〜)。
つまり、本発明の実施形態に係る複合熱源ヒートポンプ装置1は、第2圧縮機53を補助動力源から優先動力源へ切り替える場合には、第2圧縮機53が停止中のときは優先時切替温度を所定の停止時切替温度θ3(例えば、5度)で切り替え(t5)、第2圧縮機53を優先動力源から補助動力源へ切り替える場合には、第2圧縮機53が駆動中のときは停止時切替温度θ3よりも低く設定した所定の駆動時切替温度θ1(例えば、0度)で切り替えることで(t3)、適切なタイミングで優先動力源と補助動力源とを切り替えることができるため、不用意な切り替えを抑制して熱効率を向上させることができる。
<実施例2>
実施例2では、図4に示すように、時刻t1において、外気温センサ57で検出した外気温度θが所定の基準温度θ3(例えば、5度)よりも高いので、第2圧縮機53を優先動力源と判定し、第1圧縮機43を補助動力源と判定するのは実施例1と同様であるので詳細な説明は省略する。また、以下の説明において、実施例1と同様の動作についてはその旨を記載して詳細な説明は省略する。
使用者(不図示)が複合熱源ヒートポンプ装置1の運転スイッチをONにすると(t1)、制御装置6は、補助動力源の圧縮機HP2である第1圧縮機43を所定の下限回転速度で駆動した状態で、優先動力源の圧縮機HP1である第2圧縮機53を第1圧縮機43よりも高い所定の上限回転速度で駆動する。
なお、下限回転速度、および上限回転速度は、熱効率を考慮して適宜設定することができ、特に限定されるものではないので、詳細な説明は省略する。
空気熱ヒートポンプ装置5の第2圧縮機53を駆動すると(t1〜)、送風ファン56(図1参照)が回転し始めるので、外気温センサ57が検出する外気温度θ(検出値)は第2圧縮機53が駆動中である時の駆動時切替温度θ1に到達するのは実施例1と同様である(〜t3)。
そうすると制御装置6は、第2圧縮機53を優先動力源から補助動力源に切り替えて(t2)、優先動力源の圧縮機HP1である第2圧縮機53を下限回転速度で駆動し、補助動力源の圧縮機HP2である第1圧縮機43を上限回転速度で駆動する(t3〜)。
そして、外気温センサ57が検出する外気温度θ(検出値)はオーバーシュートしながら次第に上がる傾向を示し(t3〜t4)、停止時切替温度θ3よりも低く設定された駆動時切替温度θ2(例えば、3度)に到達する(t5)。なお、外気温センサ57が検出する外気温度θは次第に上がる傾向を示すものであるが、この温度上昇は、それまで流動していた外気が滞留した結果として温度が上がるものと、実際の外気温度が上昇した結果として温度が上がるものとが含まれている。
この時、第2圧縮機53は補助動力源に設定された状態であり、下限回転速度で駆動している(〜t5)。
そうすると制御装置6は、優先回路判定ステップにおいて、第2圧縮機53を補助動力源から優先動力源に切り替えて(t5)、優先動力源の圧縮機HP1である第1圧縮機43を下限回転速度で駆動し、補助動力源の圧縮機HP2である第2圧縮機53を上限回転速度で駆動する(t5〜)。
ここで、実施例1と実施例2とを比較すると、実施例1では、図3の時刻t5において、第2圧縮機53は補助動力源に設定された状態で停止していたのに対し、実施例2では、図4の時刻t5において第2圧縮機53は補助動力源に設定された状態である点で共通し、下限回転速度で駆動している点で相違する。また、第2圧縮機53を補助動力源から優先動力源に切り替える点で共通する。
また、実施例1(補助動力源として停止中)では、図3の時刻t5において、切り替え温度が外気温度θ3(例えば、5度)であるのに対し、実施例2(補助動力源として駆動中)では、図4の時刻t5において、切り替え温度が、実施例1(補助動力源として停止中)の切替温度(外気温度θ3)よりも低い外気温度θ2(例えば、3度)である点で相違する。
つまり、第2圧縮機53を補助動力源から優先動力源へ切り替える場合において、実施例1(図3参照)に示すように、第2圧縮機53が停止中のときは所定の停止時切替温度θ3(図3の時刻t5参照)で切り替え、第2圧縮機53が駆動中のときは、実施例2に示すように、所定の駆動時切替温度θ2(図4の時刻t5参照)で切り替える。
かかる構成により、実施例2では、第2圧縮機53を補助動力源から優先動力源へ切り替える場合には、停止時切替温度θ3(例えば、5度)よりも低く設定した所定の駆動時切替温度θ2(例えば、3度)で切り替えることで、停止時切替温度θ3(図3の時刻t5参照)と駆動時切替温度θ2(図4の時刻t5参照)をそれぞれ別個に設定しているため、第2圧縮機53の停止中に外気温センサ57が検出する外気温度θ(検出温度)に合わせて適切に停止時切替温度θ3(例えば、5度)を設定し、第2圧縮機53の駆動中に外気温センサ57が検出する外気温度θ(検出温度)に合わせて適切に駆動時切替温度θ2(例えば、3度)を設定することができる。
また、実施例2では、第2圧縮機53が停止中の停止時切替温度θ3を第2圧縮機53が駆動中の駆動時切替温度θ2よりも高く設定することで、第2圧縮機53の停止中の外気温度θ(検出温度)が駆動中の外気温度θ(検出温度)よりも高く検出するような場合であっても、本来の外気温度に合わせて適切なタイミングで切り替えることができるため、不用意な切り替え動作を抑制して立ち上げ動作の回数を減少させ熱効率を向上させることができる。
また、実施例2では、第2圧縮機53が駆動している場合において、第2圧縮機53が優先動力源である状態から補助動力源に切り替えるための優先時切替温度(θ1、t3)よりも、第2圧縮機53が補助動力源である状態から優先動力源に切り替えるための優先時切替温度(θ2、t5)を高く設定している。
かかる構成により、第2圧縮機53が駆動している場合において、第2圧縮機53を優先側から補助側へ切り替える切替温度と、補助側から優先側へと切り替える切替温度に温度差(幅)を持たせて、優先側と補助側との切り替えが頻繁に発生しないようにしている。
<実施例3>
実施例3は、図5に示すように、優先動力源のみを駆動して補助動力源を停止した実施例1(図3)と優先動力源および補助動力源の双方を駆動する実施例2(図4)とを組み合わせることで、暖房負荷に応じてより好適に対応できるようにした適用例である。
実施例3では、主として実施例1および実施例2との相違点について説明し、同様の説明は省略する。実施例3では、時刻t1では実施例1と同様であり、優先動力源の第2圧縮機53のみを駆動する(t1)。
優先動力源の第2圧縮機53のみを駆動した後(t1)、実施例3では、暖房負荷と暖房出力を対比して、補助動力源の第1圧縮機43を停止した状態でも暖房負荷に対応できるような場合には優先動力源の第2圧縮機53のみを駆動し、補助動力源の第1圧縮機43を停止した状態では暖房負荷に対して暖房出力が不足するような場合には、制御装置6によって補助動力源の第1圧縮機43を駆動するように制御する(t2〜)。
なお、暖房負荷の判定手段は、目標温度に対する温度上昇率等を計測して判定することができるが、特に限定されるものではないので詳細な説明は省略する。
実施例3における時刻t3から時刻t4までは、優先動力源である第1圧縮機43を上限回転速度で駆動し、補助動力源である第2圧縮機53を下限回転速度で駆動している状態であるが、例えば目標温度に到達して暖房負荷に対する暖房出力を優先動力源である第1圧縮機43のみで賄えるような場合には、熱効率を向上させるために制御装置6によって補助動力源である第2圧縮機53を停止するように制御する。
この時、補助動力源である第2圧縮機53は停止しているので(t4)、制御装置6は、停止時切替温度θ3(例えば、5度)で第2圧縮機53を補助動力源から優先動力源に切り替えるように動作する(t5)。
続いて、実施例1から実施例3の動作の関係について、図6を参照しながら説明する。図6は、第2圧縮機53(空気熱HP)が停止し送風ファン56が停止している時と、第2圧縮機53(空気熱HP)が駆動し送風ファン56が駆動している時の切替温度を示す。
第2圧縮機53が停止している場合には、図6の左欄に示すように、外気温センサ57で検出した外気温度θが所定の基準温度θ3(例えば、5度)よりも高い場合には、空気熱ヒートポンプ装置5の方が地中熱ヒートポンプ装置4よりも採熱効率が高いため、第2圧縮機53を優先動力源と判定し、第1圧縮機43を補助動力源と判定する(図3のt1,t5、図5のt5を参照)。他方、外気温センサ57で検出した外気温度θが所定の基準温度θ3(例えば、5度)よりも低い場合には、空気熱ヒートポンプ装置5の方がよりも採熱効率が低いため、第2圧縮機53を補助動力源と判定し、第1圧縮機43を優先動力源と判定する。
第2圧縮機53が駆動している場合には、図6の右欄に示すように、第1圧縮機43(地中熱HP)が優先動力源であり、第2圧縮機53が補助動力源であるときは、外気温センサ57で検出した外気温度θが所定の基準温度θ2(例えば、3度)を上回った時に優先側と補助側を切り替える(図4のt5を参照)。
また、第2圧縮機53が駆動している場合において、図6の右欄に示すように、第2圧縮機53(空気熱HP)が優先動力源であるときは、外気温センサ57で検出した外気温度θが所定の基準温度θ1(例えば、0度)を下回った時に優先側と補助側を切り替える(図3のt3,図4のt3,図5のt3を参照)。
以上、本発明の実施形態について説明したが、本発明は、前記した実施形態に限定されず、適宜変形して実施することが可能である。例えば、本実施形態においては、第1の圧縮機43と第2圧縮機53の回転速度が同じになるように仕様を設定したが、使用される地域や天候、圧縮機の仕様等の使用条件に応じて、第1の圧縮機43と第2圧縮機53の回転速度を異なる仕様としてもよい。このような場合には、優先動力源の圧縮機HP1よりも補助動力源の圧縮機HP2の回転速度の方が高くなってもよいし低くなってもよい。要するに、第1の圧縮機43と第2圧縮機53の熱効率を考慮して、適宜回転速度を設定する。
1 複合熱源ヒートポンプ装置
2 放熱端末
3 加熱熱交換部
4 地中熱ヒートポンプ装置
5 空気熱ヒートポンプ装置
6 制御装置
31 加熱循環回路
32 加熱循環ポンプ
34 端末温度センサ
41 第1加熱熱交換器
42a,42b 温度センサ
43 第1圧縮機
44 第1膨張弁
45 地中熱源熱交換器
46 熱媒循環路
47 地中熱循環ポンプ
48 地中熱交換器
51 第2加熱熱交換器
52a,52b 温度センサ
53 第2圧縮機
54 第2膨張弁
55 空気熱源熱交換器
56 送風ファン
57 外気温センサ
61 地中熱ヒートポンプ制御装置
62 空気熱ヒ−トポンプ制御装置
C1,C2 冷媒
H1 熱媒
HP1 優先動力源の圧縮機
HP2 補助動力源の圧縮機
L 循環液

Claims (1)

  1. 放熱端末に循環液を循環させる加熱循環回路と、
    この加熱循環回路に配設された凝縮器としての第1加熱熱交換器と、
    前記加熱循環回路における第1加熱熱交換器の下流側に直列に配設された凝縮器としての第2加熱熱交換器と、
    地中熱を熱源として回路内を循環する冷媒を加熱する地中熱源熱交換器と回路内を循環する冷媒を圧縮する第1圧縮機とを備え前記第1加熱熱交換器を介して前記循環液を加熱する第1ヒートポンプ回路と、
    空気熱を熱源として回路内を循環する冷媒を加熱する空気熱源熱交換器と回路内を循環する冷媒を圧縮する第2圧縮機とを備え前記第2加熱熱交換器を介して前記循環液を加熱する第2ヒートポンプ回路と、
    前記空気熱源熱交換器に外気を送風する送風ファンと、
    この送風ファンが送風する外気温度を検出する外気温センサと、
    動作を制御する制御装置と、を有する複合熱源ヒートポンプ装置であって、
    前記制御装置は、前記外気温センサが検出した外気温度を基準として前記第1圧縮機および前記第2圧縮機のうち一方を優先動力源、他方を補助動力源と判定し、
    前記外気温度が所定の切替温度よりも高い場合には前記第2圧縮機を前記優先動力源と判定し、前記外気温度が前記切替温度よりも低い場合には前記第1圧縮機を前記優先動力源と判定する優先回路判定ステップを実行し、
    前記制御装置は、前記優先回路判定ステップにおいて、前記第2圧縮機優先動力源である状態から補助動力源である状態に切り替える場合、前記第2圧縮機が停止中のときは、所定の停止時切替温度で切り替え、前記第2圧縮機が駆動中のときは、前記停止時切替温度よりも低く設定した所定の駆動時切替温度で切り替え、
    前記制御装置は、前記優先回路判定ステップにおいて、前記第2圧縮機を補助動力源である状態から優先動力源である状態に切り替える場合、前記第2圧縮機が停止中のときは、前記停止時切替温度で切り替え、前記第2圧縮機が駆動中のときは、前記停止時切替温度よりも低く前記駆動時切替温度よりも高い所定の切替温度で切り替えること、
    を特徴とする複合熱源ヒートポンプ装置。
JP2014164420A 2014-08-12 2014-08-12 複合熱源ヒートポンプ装置 Active JP6333109B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164420A JP6333109B2 (ja) 2014-08-12 2014-08-12 複合熱源ヒートポンプ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164420A JP6333109B2 (ja) 2014-08-12 2014-08-12 複合熱源ヒートポンプ装置

Publications (2)

Publication Number Publication Date
JP2016040500A JP2016040500A (ja) 2016-03-24
JP6333109B2 true JP6333109B2 (ja) 2018-05-30

Family

ID=55540869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164420A Active JP6333109B2 (ja) 2014-08-12 2014-08-12 複合熱源ヒートポンプ装置

Country Status (1)

Country Link
JP (1) JP6333109B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7000261B2 (ja) * 2018-06-14 2022-01-19 株式会社コロナ 複合熱源ヒートポンプ装置
JP7041024B2 (ja) * 2018-08-07 2022-03-23 株式会社コロナ 複合熱源ヒートポンプ装置
CN112283968B (zh) * 2020-07-20 2022-06-03 中国建筑股份有限公司 一种地热水梯级利用系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463694B2 (ja) * 1993-06-16 2003-11-05 三菱電機株式会社 空気調和機の室温制御装置
JP3019081B1 (ja) * 1998-10-07 2000-03-13 ダイキン工業株式会社 外気温検出機能を備えた空調室外機
JP3760747B2 (ja) * 2000-09-21 2006-03-29 ダイキン工業株式会社 空気調和機
JP2006125769A (ja) * 2004-10-29 2006-05-18 Denso Corp ヒートポンプサイクル装置
KR101175385B1 (ko) * 2006-06-16 2012-08-20 엘지전자 주식회사 지열을 이용한 공기조화기
JP2010271015A (ja) * 2009-05-25 2010-12-02 Sharp Corp 室外機、空気調和機、および室外機制御方法
JP5372072B2 (ja) * 2011-06-08 2013-12-18 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の制御方法
JP5415584B2 (ja) * 2012-05-16 2014-02-12 株式会社ダイワテック 暖房システム
JP6166874B2 (ja) * 2012-08-08 2017-07-19 株式会社コロナ ヒートポンプ装置

Also Published As

Publication number Publication date
JP2016040500A (ja) 2016-03-24

Similar Documents

Publication Publication Date Title
JP5984784B2 (ja) 温冷水空調システム
JP6338761B2 (ja) 空気調和システム
JP6166874B2 (ja) ヒートポンプ装置
JP6079507B2 (ja) 温冷水空調システム
JP6231395B2 (ja) 複合熱源ヒートポンプ装置
JP6231403B2 (ja) 複合熱源ヒートポンプ装置
JP6333109B2 (ja) 複合熱源ヒートポンプ装置
JP6609198B2 (ja) 複合熱源ヒートポンプ装置
JP6351414B2 (ja) 複合熱源ヒートポンプ装置
JP2011257098A (ja) ヒートポンプサイクル装置
JP6147659B2 (ja) ヒートポンプ装置
JP2015075294A (ja) 空気調和機
WO2017138133A1 (ja) 温冷水空調システム
JP6143662B2 (ja) 複合熱源ヒートポンプ装置
JP2016057014A (ja) ヒートポンプシステム
JP6359398B2 (ja) 複合熱源ヒートポンプ装置
JP2015117881A (ja) 空気調和機
JP6251649B2 (ja) 複合熱源ヒートポンプ装置
JP6143682B2 (ja) 複合熱源ヒートポンプ装置
JP2005188923A (ja) ヒートポンプ給湯機
JP6467276B2 (ja) 複合熱源ヒートポンプ装置
JP6609195B2 (ja) ヒートポンプ装置
JP2016011819A (ja) 複合熱源ヒートポンプ装置
JP6574393B2 (ja) 複合熱源ヒートポンプ装置
JP6258800B2 (ja) 複合熱源ヒートポンプ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R150 Certificate of patent or registration of utility model

Ref document number: 6333109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250