JP6328862B1 - 電源電圧に対する感度が制御されるリング発振器アーキテクチャ - Google Patents

電源電圧に対する感度が制御されるリング発振器アーキテクチャ Download PDF

Info

Publication number
JP6328862B1
JP6328862B1 JP2017559126A JP2017559126A JP6328862B1 JP 6328862 B1 JP6328862 B1 JP 6328862B1 JP 2017559126 A JP2017559126 A JP 2017559126A JP 2017559126 A JP2017559126 A JP 2017559126A JP 6328862 B1 JP6328862 B1 JP 6328862B1
Authority
JP
Japan
Prior art keywords
transistor
pmos transistor
nmos
gate
pmos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017559126A
Other languages
English (en)
Other versions
JP2018515999A (ja
Inventor
ユ、シンシン
スワミナサン、アショク
ベネラス、クリスチャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Application granted granted Critical
Publication of JP6328862B1 publication Critical patent/JP6328862B1/ja
Publication of JP2018515999A publication Critical patent/JP2018515999A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/011Modifications of generator to compensate for variations in physical values, e.g. voltage, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
    • H03L7/0997Controlling the number of delay elements connected in series in the ring oscillator

Landscapes

  • Amplifiers (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

リング発振器段の電源感度を制御するための方法及び装置が提供される。装置は、電源電圧(vdd)に基づいてPMOSバイアスモジュール(604)のための第1のバイアス信号を及び電源電圧に基づいてNMOSバイアスモジュール(606)のための第2のバイアス信号を、電圧バイアスモジュール(608)を介して、生成することと、第1のバイアス信号に基づいて、反転モジュール(602)のトライオードPMOS縮退に、PMOSバイアスモジュールを介して、バイアスをかけることと、第2のバイアス信号に基づいて、反転モジュールのトライオードNMOS縮退に、NMOSバイアスモジュールを介して、バイアスをかけることと、反転モジュールを介して入力(in)を受けることと、バイアスがかけられたトライオードNMOS縮退とバイアスがかけられたトライオードPMOS縮退とに基づいて、受けた入力の反転バージョン(out)を、反転モジュールを介して、出力することとを行うように構成される。【選択図】 図6

Description

関連出願への相互参照
[0001]本願は、2015年3月13日に出願された「RING OSCILLATOR ARCHITECTURE WITH CONTROLLED SENSITIVITY TO SUPPLY VOLTAGE」と題する米国特許出願第14/711,158号の利益を主張し、これは、参照によって全体が本明細書に明確に組み込まれる。
[0002]本開示は一般に、通信システムに関し、より具体的には、いくつかの例は、リング発振器の電圧源感度(voltage supply sensitivity)を制御するための装置及び方法に関する。
[0003]ワイヤレスデバイス(例えば、セルラ電話又はスマートフォン)は、ワイヤレス通信システムとの双方向通信のためのデータを送信及び受信し得る。ワイヤレスデバイスは、データ送信のための送信機と、データ受信のための受信機とを含み得る。データ送信の場合、送信機は、データで送信局部発振器(LO)信号を変調して、変調された無線周波数(RF)信号を取得し、この変調されたRF信号を増幅して、所望の出力電力レベルを有する出力RF信号を取得し、アンテナを介して基地局にこの出力RF信号を送信し得る。データ受信の場合、受信機は、アンテナを介して受信RF信号を取得し、この受信RF信号を受信LO信号でダウンコンバートし、ダウンコンバートされた信号を処理して、基地局によって送られたデータを回復し得る。
[0004]ワイヤレスデバイスは、1つ又は複数の所望の周波数において1つ又は複数の発振器信号を生成するために1つ又は複数の発振器を含み得る。発振器信号は、送信機のための送信LO信号と、受信機のための受信LO信号とを生成するために使用され得る。発振器は、ワイヤレスデバイスが通信するワイヤレス通信システムの要件を満たすように発振器信号を生成するのに必要とされ得る。
[0005]位相ロックドループ(PLL)で使用されるリング発振器は、不十分な電源電圧変動除去(poor power supply rejection)を有し得る。従って、PLLでのリング発振器の使用は、電源を調整(regulate)することで改善され得る。
[0006]更に、リング発振器は、電源検出のための電圧制御発振器(VCO)ベースの量子化器で使用され得る。リング発振器は、電源電圧を周波数へ変換し得、その後デジタル化される。従って、高いデジタル解像度を達成するために、電源電圧に対する感度が極めて高いVCOを実現することが望まれ得る。
[0007]本開示のある態様では、リング発振器段の電源感度(supply sensitivity)を制御するための方法及び装置が提供される。装置は、電源電圧に基づいてPMOSバイアスモジュールのための第1のバイアス信号を及び電源電圧に基づいてNMOSバイアスモジュールのための第2のバイアス信号を、電圧バイアスモジュールを介して、生成することと、第1のバイアス信号に基づいて、反転モジュールのトライオードPMOS縮退(triode PMOS degeneration)に、PMOSバイアスモジュールを介して、バイアスをかけることと、第2のバイアス信号に基づいて、反転モジュールのトライオードNMOS縮退に、NMOSバイアスモジュールを介して、バイアスをかけることと、反転モジュールを介して入力を受けることと、バイアスがかけられたトライオードNMOS縮退とバイアスがかけられたトライオードPMOS縮退とに基づいて、受けた入力の反転バージョンを、反転モジュールを介して、出力することとを行うように構成される。
[0008]別の態様では、リング発振器段の電源感度を制御するための方法は、電源電圧に基づいてPMOSバイアスモジュールのための第1のバイアス信号を及び電源電圧に基づいてNMOSバイアスモジュールのための第2のバイアス信号を、電圧バイアスモジュールを介して、生成することと、第1のバイアス信号に基づいて、反転モジュールのトライオードPMOS縮退に、PMOSバイアスモジュールを介して、バイアスをかけることと、第2のバイアス信号に基づいて、反転モジュールのトライオードNMOS縮退に、NMOSバイアスモジュールを介して、バイアスをかけることと、反転モジュールを介して入力を受けることと、バイアスがかけられたトライオードNMOS縮退とバイアスがかけられたトライオードPMOS縮退とに基づいて、受けた入力の反転バージョンを、反転モジュールを介して、出力することとを含む。
[0009]更なる態様では、リング発振器段の電源感度を制御するための装置は、入力を受け、受けた入力の反転バージョンを出力するための反転手段と、反転手段のトライオードPMOS縮退にバイアスをかけるためのPMOSバイアス手段と、反転手段のトライオードNMOS縮退にバイアスをかけるためのNMOSバイアス手段と、電源電圧に基づいてPMOSバイアス手段のための第1のバイアス信号を及び電源電圧に基づいてNMOSバイアス手段のための第2のバイアス信号を生成するための電圧バイアス手段とを含む。PMOSバイアス手段は、第1のバイアス信号に基づいて、反転手段のトライオードPMOS縮退にバイアスをかけるように構成される。NMOSバイアス手段は、第2のバイアス信号に基づいて、反転手段のトライオードNMOS縮退にバイアスをかけるように構成される。受けた入力の反転バージョンは、バイアスがかけられたトライオードNMOS縮退とバイアスがかけられたトライオードPMOS縮退とに基づいて、反転手段を介して出力される。
[0010]図1は、異なるワイヤレス通信システムと通信するワイヤレスデバイスを例示する。 [0011]図2は、ワイヤレスデバイスのブロック図である。 [0012]図3は、リング発振器の構造を例示する。 [0013]図4は、リング発振器の単一段のトランジスタレベルの概略図である。 [0014]図6は、電源電圧に対する感度が極めて高いリング発振器の単一段のモジュール図である。 [0015]図7は、図6の単一段のトランジスタレベルの概略図である。 [0016]図8は、リング発振器段の電源感度を制御するための方法のフローチャートである。
発明の詳細な説明
[0017]添付の図面に関連して以下に示される詳細な説明は、様々な構成の説明を意図したものであり、本明細書において説明される概念が実践され得る唯一の構成を表すことを意図したものではない。詳細な説明は、様々な概念の完全な理解を提供するために特定の詳細を含む。しかしながら、これらの概念がこれらの特定の詳細なしに実践され得ることは当業者には明らかであろう。そのような概念を曖昧にしないために、いくつかの事例では、周知の構造及び構成要素はブロック図の形式で示される。「例示的」という用語は、「実例、事例、又は例示として提供される」を意味するために本明細書で使用される。「例示的」として本明細書で説明される任意の設計は、必ずしも、他の設計よりも好ましい又は有利であると解釈されるべきではない。
[0018]電気通信システムのいくつかの態様が、これより、様々な装置及び方法に関連して提示されるであろう。これらの装置及び方法は、以下の詳細な説明で説明され、様々なブロック、モジュール、構成要素、回路、ステップ、プロセス、アルゴリズム、等(総称して「要素」と呼ばれる)によって添付の図面で例示される。これらの要素は、電子ハードウェア、コンピュータソフトウェア、又はそれらの任意の組み合わせを使用して実施され得る。そのような要素がハードウェアとして実施されるかソフトウェアとして実施されるかは、特定の用途及びシステム全体に課される設計制約に依存する。
[0019]例として、1つの要素、又は1つの要素の任意の部分、又は複数の要素の任意の組み合わせは、1つ又は複数のプロセッサを含む「処理システム」を用いて実施され得る。プロセッサの例には、マイクロプロセッサ、マイクロコントローラ、デジタルシグナルプロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、ステートマシン、ゲート論理、ディスクリートハードウェア回路、及び本開示全体を通して説明される様々な機能性を実行するように構成された他の好適なハードウェアが含まれる。処理システム内の1つ又は複数のプロセッサはソフトウェアを実行し得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれても、それ以外の名称で呼ばれても、命令、命令のセット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行ファイル、実行スレッド、プロシージャ、関数、等を意味すると広く解釈されるものとする。
[0020]従って、1つ又は複数の例示的な実施形態では、説明される機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの任意の組み合わせで実施され得る。ソフトウェアで実施される場合、これらの機能は、コンピュータ読取可能な媒体上の1つ又は複数の命令又はコードとして記憶又は符号化され得る。コンピュータ読取可能な媒体はコンピュータ記憶媒体を含む。記憶媒体は、コンピュータによりアクセスされることができる任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ読取可能な媒体は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、電子的に消去可能なプログラマブルROM(EEPROM(登録商標))、コンパクトディスク(CD)ROM(CD−ROM)若しくは他の光ディスク記憶装置、磁気ディスク記憶装置若しくは他の磁気記憶デバイス、又はデータ構造又は命令の形式で所望のプログラムコードを搬送又は記憶するために使用されることができ、かつコンピュータによってアクセスされることができる任意の他の媒体を備えることができる。本明細書で使用される場合、ディスク(disk)及びディスク(disc)は、CD、レーザーディスク(登録商標)、光ディスク、デジタル多用途ディスク(DVD)、及びフロッピー(登録商標)ディスクを含み、ここで、ディスク(disk)は、通常磁気的にデータを再生し、ディスク(disc)は、レーザーを用いて光学的にデータを再生する。上記の組み合わせもまた、コンピュータ読取可能な媒体の範囲内に含まれるべきである。
[0021]図1は、異なるワイヤレス通信システム120、122と通信するワイヤレスデバイス110を例示する図100である。ワイヤレスシステム120,122は各々、符号分割多元接続(CDMA)システム、モバイル通信のためのグローバルシステム(GSM(登録商標))システム、ロングタームエボリューション(LTE(登録商標))システム、ワイヤレスローカルエリアネットワーク(WLAN)システム、又は何らかの他のワイヤレスシステムであり得る。CDMAシステムは、広帯域CDMA(WCDMA(登録商標))、CDMA 1X若しくはcdma2000、時分割同期符号分割多元接続(TD−SCDMA)、又は何らかの他のバージョンのCDMAを実施し得る。TD−SCDMAは、ユニバーサル地上無線アクセス(UTRA)時分割複信(TDD)1.28Mcpsオプション又は低チップレート(LCR)とも呼ばれる。LTEは、周波数分割複信(FDD)及び時分割複信(TDD)の両方をサポートする。例えば、ワイヤレスシステム120は、GSMシステムであり得、ワイヤレスシステム122は、WCDMAシステムであり得る。別の例として、ワイヤレスシステム120は、LTEシステムであり得、ワイヤレスシステム122は、CDMAシステムであり得る。
[0022]簡潔さのために、図100は、1つの基地局130及び1つのシステムコントローラ140を含むワイヤレスシステム120と、1つの基地局132及び1つのシステムコントローラ142を含むワイヤレスシステム122とを示す。一般に、各ワイヤレスシステムは、任意の数の基地局と、任意のセットのネットワークエンティティを含み得る。各基地局は、その基地局のカバレッジ内のワイヤレスデバイスのための通信をサポートし得る。基地局は、ノードB、発展型ノードB(eNB)、アクセスポイント、トランシーバ基地局、無線基地局、無線トランシーバ、トランシーバ機能、基本サービスセット(BSS)、拡張サービスセット(ESS)、又は何らかの他の好適な専門用語でも呼ばれ得る。ワイヤレスデバイス110は、ユーザ機器(UE)、モバイルデバイス、リモートデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、局、モバイル局、加入者局、モバイル加入者局、端末、モバイル端末、リモート端末、ワイヤレス端末、アクセス端末、クライアント、モバイルクライアント、モバイルユニット、加入者にニット、ワイヤレスユニット、リモートユニット、ハンドセット、ユーザエージェント、又は何らかの他の好適な用語でも呼ばれ得る。ワイヤレスデバイス110は、セルラ電話、スマートフォン、タブレット、ワイヤレスモデム、携帯情報端末(PDA)、ハンドヘルドデバイス、ラップトップコンピュータ、スマートブック、ネットブック、コードレス電話、ワイヤレスローカルループ(WLL)局、又は何らかの他の同様に機能するデバイス、等であり得る。
[0023]ワイヤレスデバイス110は、ワイヤレスシステム120及び/又は122と通信する能力があり得る。ワイヤレスデバイス110はまた、ブロードキャスト局134のようなブロードキャスト局から信号を受信する能力があり得る。ワイヤレスデバイス110はまた、1つ又は複数の全地球的航法衛星システム(GNSS)における、衛星150のような衛星から信号を受信する能力があり得る。ワイヤレスデバイス110は、GSM、WCDMA、cdma2000、LTE、802.11、等のようなワイヤレス通信のための1つ又は複数の無線技術をサポートし得る。「無線技術」、「無線アクセス技術」、「エアインターフェース」、及び「規格」という用語は、交換可能に使用され得る。
[0024]ワイヤレスデバイス110は、ダウンリンク及びアップリンクを介してワイヤレスシステムにおいて基地局と通信し得る。ダウンリンク(すなわち、順方向リンク)は、基地局からワイヤレスデバイスへの通信リンクを指し、アップリンク(すなわち、逆方向リンク)は、ワイヤレスデバイスから基地局への通信リンクを指す。ワイヤレスシステムは、TDD及び/又はFDDを利用し得る。TDDの場合、ダウンリンク及びアップリンクは、同じ周波数を共有し、ダウンリンク送信及びアップリンク送信は、異なる時間期間において同じ周波数上で送られ得る。FDDの場合、ダウンリンク及びアップリンクは、別々の周波数が割り当てられ得る。ダウンリンク送信は、ある周波数上で送られ得、アップリンク送信は、別の周波数上で送られ得る。TDDをサポートするいくつかの例示的な無線技術には、GSM、LTE、及びTD−SDCMAが含まれる。FDDをサポートするいくつかの例示的な無線技術には、WCDMA、cdma2000、及びLTEが含まれる。ワイヤレスデバイス110及び/又は基地局130、132は、例示的なリング発振器160を含み得る。例示的なリング発振器160が以下に提供される。
[0025]図2は、ワイヤレスデバイス110のような例示的なワイヤレスデバイスのブロック図200である。ワイヤレスデバイスは、データプロセッサ/コントローラ210と、トランシーバ218と、アンテナ290とを含む。データプロセッサ/コントローラ210は、処理システムと呼ばれ得る。処理システムは、データプロセッサ/コントローラ210又はデータプロセッサ/コントローラ210及びメモリ216の両方を含み得る。トランシーバ218は、双方向通信をサポートする送信機220及び受信機250を含む。送信機220及び/又は受信機250は、スーパーヘテロダインアーキテクチャ又はダイレクト変換アーキテクチャで実施され得る。スーパーヘテロダインアーキテクチャでは、信号は、複数の段でRFとベースバンドとの間で、例えば、1つの段でRFから中間周波数(IF)に、その後、受信機のために別の段でIFからベースバンドに、周波数変換される。ゼロIFアーキテクチャとも呼ばれるダイレクトコンバージョンアーキテクチャでは、信号は、1つの段でRFとベースバンドとの間で周波数変換される。スーパーヘテロダイン及びダイレクト変換アーキテクチャは、異なる回路ブロックを使用し得る、及び/又は、異なる要件を有し得る。図2に例示される例示的な設計では、送信機220及び受信機250は、ダイレクト変換アーキテクチャで実施される。
[0026]送信経路では、データプロセッサ/コントローラ210は、送信されることとなるデータを処理(例えば、符号化及び変調)し、このデータをデジタル/アナログ変換器(DAC)230に供給し得る。DAC230は、デジタル入力信号をアナログ出力信号に変換する。アナログ出力信号は、送信(TX)ベースバンド(ローパス)フィルタ232に供給され、これは、このアナログ出力信号をフィルタ処理して、DAC230による先のデジタル/アナログ変換によって生じたイメージを取り除き得る。増幅器(amp)234は、TXベースバンドフィルタ232からの信号を増幅し、増幅されたベースバンド信号を供給し得る。アップコンバータ(ミキサ)236は、この増幅されたベースバンド信号と、TX LO信号発生器276からのTX LO信号とを受け得る。アップコンバータ236は、TX LO信号で、増幅されたベースバンド信号をアップコンバートし、アップコンバートされた信号を供給し得る。フィルタ238は、アップコンバートされた信号をフィルタ処理して、周波数アップコンバートによって生じたイメージを取り除き得る。電力増幅器(PA)240は、フィルタ238からのフィルタ処理済みRF信号を増幅して、所望の出力電力レベルを取得し、出力RF信号を供給する。出力RF信号は、デュプレクサ/スイッチプレクサ264を通してルーティングされ得る。
[0027]FDDの場合、送信機220及び受信機250は、デュプレクサ264に結合され得、これは、送信機220のためのTXフィルタと受信機250のための受信(RX)フィルタとを含み得る。TXフィルタは、送信帯域では信号成分を伝え、受信帯域では信号成分を減衰させるように出力RF信号をフィルタ処理し得る。TDDの場合、送信機220及び受信機250は、スイッチプレクサ264に結合され得る。スイッチプレクサ264は、アップリンク時間インターバル中、送信機220からの出力RF信号をアンテナ290に伝え得る。FDD及びTDDの両方とも、デュプレクサ/スイッチプレクサ264は、ワイヤレスチャネルを介した送信のために出力RF信号をアンテナ290に供給し得る。
[0028]受信経路では、アンテナ290は、基地局及び/又は他の送信機局によって送信された信号を受信することができ、受信RF信号を供給し得る。受信RF信号は、デュプレクサ/スイッチプレクサ264を通してルーティングされ得る。FDDの場合、デュプレクサ264内のRXフィルタは、受信帯域では信号成分を伝え、送信帯域では信号成分を減衰させるように受信RF信号をフィルタ処理し得る。TDDの場合、スイッチプレクサ264は、ダウンリンク時間インターバル中、アンテナ290からの受信RF信号を受信機250に伝え得る。FDD及びTDDの両方とも、デュプレクサ/スイッチプレクサ264は、受信RF信号を受信機250に供給する。
[0029]受信機250内では、受信RF信号が、低ノイズ増幅器(LNA)252によって増幅され、フィルタ254によってフィルタ処理されて、入力RF信号が取得され得る。ダウンコンバータ(ミキサ)256は、この入力RF信号と、RX LO信号発生器286からのRX LO信号とを受け得る。ダウンコンバータ256は、RX LO信号で、入力RF信号をダウンコンバートし、ダウンコンバートされた信号を供給し得る。ダウンコンバートされた信号は、増幅器258によって増幅され、RXベースバンド(ローパス)フィルタ260によって更にフィルタ処理されて、アナログ入力信号が取得され得る。ある態様では、例示的なベースバンドフィルタ160は、増幅器258及びRXベースバンドフィルタ260のうちの1つ又は複数によって実施され得る。アナログ入力信号は、アナログ/デジタル変換器(ADC)262に供給される。ADC262は、アナログ入力信号をデジタル出力信号に変換する。デジタル出力信号は、データプロセッサ/コントローラ210に供給される。
[0030]TX周波数シンセサイザ270は、TX位相ロックドループ(PLL)272とVCO274とを含み得る。VCO274は、所望の周波数でTX VCO信号を生成し得る。TX PLL272は、データプロセッサ/コントローラ210からタイミング情報を受け、VCO274のための制御信号を生成し得る。制御信号は、TX VCO信号のための所望の周波数を取得するために、VCO274の周波数及び/又は位相を調整し得る。TX周波数シンセサイザ270は、TX LO信号発生器276にTX VCO信号を供給する。TX LO信号発生器276は、TX周波数シンセサイザ270から受けたTX VCO信号に基づいて、TX LO信号を生成し得る。ある態様では、例示的なリング発振器160は、VCO274によって実施され得る。
[0031]RX周波数シンセサイザ280は、RX PLL282とVCO284とを含み得る。VCO284は、所望の周波数でRX VCO信号を生成し得る。RX PLL282は、データプロセッサ/コントローラ210からタイミング情報を受け、VCO284のための制御信号を生成し得る。制御信号は、RX VCO信号のための所望の周波数を取得するように、VCO284の周波数及び/又は位相を調整し得る。RX周波数シンセサイザ280は、RX LO信号発生器286にRX VCO信号を供給する。RX LO信号発生器は、RX周波数シンセサイザ280から受けたRX VCO信号に基づいてRX LO信号を生成し得る。ある態様では、例示的なリング発振器160は、VCO284によって実施され得る。
[0032]LO信号発生器276、286は各々、分周器、バッファ、等を含み得る。LO信号発生器276、286は、それらが、それぞれTX周波数シンセサイザ270及びRX周波数シンセサイザ280によって供給される周波数を分周する場合、分周器と呼ばれ得る。PLL272、282は各々、位相/周波数検出器、ループフィルタ、電荷ポンプ、分周器、等を含み得る。各VCO信号及び各LO信号は、特定の基本周波数を有する周期信号であり得る。LO発生器276、286からのTX LO信号及びRX LO信号は、TDDの場合は同じ周波数を又はFDDの場合は異なる周波数を有し得る。VCO274、284からのTX VCO信号及びRX VCO信号は、(例えば、TDDの場合)同じ周波数を又は(例えば、FDD又はTDDの場合)異なる周波数を有し得る。
[0033]送信機220及び受信機250における信号の調節は、増幅器、フィルタ、アップコンバータ、ダウンコンバータ、等のうちの1つ又は複数の段によって実行され得る。これら回路は、図2に示される構成とは違って配列され得る。更に、図2に示されない他の回路もまた、送信機220及び受信機250において信号を調節するために使用され得る。例えば、インピーダンス整合回路が、PA240の出力に、LNA252の入力に、アンテナ290とデュプレクサ/スイッチプレクサ264との間に、等に位置し得る。図2におけるいくつかの回路はまた、省略され得る。例えば、フィルタ238及び/又はフィルタ254が省略され得る。トランシーバ218の全体又は一部は、1つ又は複数のアナログ集積回路(IC)、RF IC(RFIC)、混合信号IC、等の上で実施され得る。例えば、送信機220におけるTXベースバンドフィルタ232からPA240は、受信機250におけるLNA252からRXベースバンドフィルタ260、PLL272、282、VCO274、284、及びLO信号発生器276、286は、RFIC上で実施され得る。PA240及び場合によっては他の回路はまた、別個のIC又は回路モジュール上で実施され得る。
[0034]データプロセッサ/コントローラ210は、ワイヤレスデバイスのための様々な機能を実行し得る。例えば、データプロセッサ/コントローラ210は、送信機220を介して送信され、受信機250を介して受信されているデータについて処理を実行し得る。データプロセッサ/コントローラ210は、送信機220及び受信機250内の様々な回路の動作を制御し得る。メモリ212及び/又はメモリ216は、データプロセッサ/コントローラ210のためのプログラムコード及びデータを記憶し得る。メモリは、データプロセッサ/コントローラ210に内蔵され得る(例えば、メモリ212)か、又はデータプロセッサ/コントローラ210に外付けされ得る(例えば、メモリ216)。メモリは、コンピュータ読取可能な媒体とも呼ばれ得る。発振器214は、特定の周波数でVCO信号を生成し得る。クロック発生器215は、発振器214からVCO信号を受け得、データプロセッサ/コントローラ210及び/又はトランシーバ218内の様々なモジュールのためのクロック信号を生成し得る。データプロセッサ/コントローラ210は、1つ又は複数の特定用途向け集積回路(ASIC)及び/又は他のIC上で実施され得る。
[0035]本開示は、リング発振器の電圧源感度を制御するための装置及び方法を提供する。
[0036]図3は、リング発振器300の構造を例示する。一般に、リング発振器は、「真」値と「偽」値とを表す2つの電圧レベル間で出力が発振する奇数のNOTゲートを含むデバイスである。(インバータ、遅延段、又は段とも呼ばれ得る)NOTゲートが、チェーン状に取り付けられ得、ここにおいて、最後のインバータの出力は、第1のインバータに返される。図3を参照すると、7段式リング発振器が示されている。しかしながら、本開示が任意の奇数の段を使用して実施され得ることが考慮されている。7段式リング発振器は、第1のインバータ302と、第2のインバータ304と、第3のインバータ306と、第4のインバータ308と、第5のインバータ310と、第6のインバータ312と、第7のインバータ314とを含む。第1のインバータ302の出力は、第2のインバータ304の入力に適用される。第2のインバータ304の出力は、第3のインバータ306の入力に適用される。第3のインバータ306の出力は、第4のインバータ308の入力に適用される。第4のインバータ308の出力は、第5のインバータ310の入力に適用される。第5のインバータ310の出力は、第6のインバータ312の入力に適用される。第6のインバータ312の出力は、第7のインバータ314の入力に適用される。第7のインバータ314の出力は、第1のインバータ302の入力に返される。7段式リング発振器のインバータの各々を通る破線の矢印は、それぞれのインバータが電源電圧vddの関数としてチューニングされ得ることを示す。
[0037]図4は、リング発振器の単一段のトランジスタレベルの概略図400である。例えば、単一段は、図3の第1のインバータ302、第2のインバータ304、第3のインバータ306、第4のインバータ308、第5のインバータ310、第6のインバータ312、又は第7のインバータ314のうちの1つに等しいだろう。単一段は、図4に示されるように、互いに結合された多数のPMOSトランジスタと多数のNMOSトランジスタとを含み得る。
[0038]図5は、電源電圧に対する感度が極めて高いリング発振器の単一段のトランジスタレベルの概略図500である。例として、単一段は、図3の第1のインバータ302、第2のインバータ304、第3のインバータ306、第4のインバータ308、第5のインバータ310、第6のインバータ312、又は第7のインバータ314のうちの1つに等しいだろう。
[0039]ある態様では、単一段は、一次NMOSトランジスタ504に結合された一次PMOSトランジスタ502を含み得る。一次PMOSトランジスタ502のゲート及び一次NMOSトランジスタ504のゲートは、単一段の入力に結合され得る。一次PMOSトランジスタ502のドレイン及び一次NMOSトランジスタ504のドレインは、単一段の出力に結合され得る。
[0040]一次PMOSトランジスタ502は、多数の二次PMOSトランジスタ、例えば、第1の二次PMOSトランジスタ512と、第2の二次PMOSトランジスタ514と、第3の二次PMOSトランジスタ516と、第4の二次PMOSトランジスタ518とに結合され得る。例えば、一次PMOSトランジスタ502のソースは、第1の二次PMOSトランジスタ512のドレイン、第2の二次PMOSトランジスタ514のドレイン、第3の二次PMOSトランジスタ516のドレイン、及び第4の二次PMOSトランジスタ518のドレインに結合され得る。更に、第1の二次PMOSトランジスタ512のソース、第2の二次PMOSトランジスタ514のソース、第3の二次PMOSトランジスタ516のソース、及び第4の二次PMOSトランジスタ518のソースは、それぞれのスイッチを介して電圧源(voltage source)vddに結合され得る。ある態様では、第1の二次PMOSトランジスタ512、第2の二次PMOSトランジスタ514、第3の二次PMOSトランジスタ516、及び第4の二次PMOSトランジスタ518の各々の抵抗は、バイアスモジュール608からバイアス信号(biasing signal)P(vdd)をそれぞれ受けることで、電源電圧(vdd)の関数としてチューニングされ得る。第1の二次PMOSトランジスタ512、第2の二次PMOSトランジスタ514、第3の二次PMOSトランジスタ516、及び第4の二次PMOSトランジスタ518の各々は、それぞれのゲートノードを介してバイアス信号P(vdd)を受け得る。
[0041]一次NMOSトランジスタ504は、多数の二次NMOSトランジスタ、例えば、第1の二次NMOSトランジスタ522と、第2の二次NMOSトランジスタ524と、第3の二次NMOSトランジスタ526と、第4の二次NMOSトランジスタ528とに結合され得る。例えば、一次NMOSトランジスタ504のソースは、第1の二次NMOSトランジスタ522のドレイン、第2の二次NMOSトランジスタ524のドレイン、第3の二次NMOSトランジスタ526のドレイン、及び第4の二次NMOSトランジスタ528のドレインに結合され得る。更に、第1の二次NMOSトランジスタ522のソース、第2の二次NMOSトランジスタ524のソース、第3の二次NMOSトランジスタ526のソース、及び第4の二次NMOSトランジスタ528のソースは、それぞれのスイッチを介して接地ノードに結合され得る。ある態様では、第1の二次NMOSトランジスタ522、第2の二次NMOSトランジスタ524、第3の二次NMOSトランジスタ526、及び第4の二次NMOSトランジスタ528の各々の抵抗は、バイアスモジュールからバイアス信号N(vdd)をそれぞれ受けることで、電源電圧(vdd)の関数としてチューニングされ得る。第1の二次NMOSトランジスタ522、第2の二次NMOSトランジスタ524、第3の二次NMOSトランジスタ526、及び第4の二次NMOSトランジスタ528の各々は、それぞれのゲートノードを介してバイアス信号N(vdd)を受け得る。
[0042]ある態様では、図5の電圧制御型トランジスタ(二次PMOSトランジスタ512、514、516、518、及び二次NMOSトランジスタ522、524、526、528)は、リング発振器の単一段についての縮退として使用され得、ここにおいて、電圧制御型トランジスタの各々の抵抗は、電源電圧(vdd)の強い関数である。電圧制御型トランジスタは、vddに対するリング発振器の感度を制御するためにvddの関数としてチューニングされ得る。故に、リング発振器は、電源電圧に対してより高い又はより低い感度にチューニングされることができる。リング発振器が電源電圧に対してより高い感度にチューニングされるケースでは、これは、電源変動(supply variation)をより容易に検出することができる。
[0043]図6は、電源電圧に対する感度が極めて高いリング発振器の単一段のモジュール図600である。例として、単一段は、図3の第1のインバータ302、第2のインバータ304、第3のインバータ306、第4のインバータ308、第5のインバータ310、第6のインバータ312、又は第7のインバータ314のうちの1つに等しいだろう。図7は、図6の単一段のトランジスタレベルの概略図700である。
[0044]図6及び7を参照すると、単一段は、反転モジュール602と、PMOSバイアスモジュール604と、NMOSバイアスモジュール606と、電圧バイアスモジュール608とを含む。ある態様では、電圧バイアスモジュールは、単一段のためのバイアス電圧を制御する。例えば、電圧バイアスモジュール608は、電源電圧(vdd)に基づいてPMOSバイアスモジュール604のためのバイアス信号を生成し、このバイアス信号をPMOSバイアスモジュール604に送る。バイアス信号を受けると、PMOSバイアスモジュール604は、反転モジュール602のトライオードPMOS縮退にバイアスをかけ得る。別の例では、電圧バイアスモジュール608は、電源電圧(vdd)に基づいてNMOSバイアスモジュール606のためのバイアス信号を生成し、このバイアス信号をNMOSバイアスモジュール606に送る。バイアス信号を受けると、NMOSバイアスモジュール606は、反転モジュール602のトライオードNMOS縮退にバイアスをかけ得る。次に、反転モジュール602は、バイアスがかけられたトライオードNMOS縮退とバイアスがかけられたトライオードPMOS縮退とに基づいて、受けた入力の反転バージョン(論理NOT)を出力するように動作し得る。
[0045]ある態様では、図6及び7に示されるような単一段を実施することで、アクティブな高帯域バイアスがけが達成され得、これにより、電源電圧のより速い偏移及び/又は電源過渡電流(supply transient)に対する高速抵抗変化が可能になる。従って、そのような単一段を実施するリング発振器は、増加した電源感度を有するであろう。例えば、電源感度は、前のリング発振器設計と比較して(over)1〜3倍増加され得る。
[0046]依然として図6及び7を参照すると、反転モジュール602は、一次NMOSトランジスタ504に結合された一次PMOSトランジスタ502を含み得る。一次PMOSトランジスタ502のゲート及び一次NMOSトランジスタ504のゲートは、単一段の入力に結合され得る。一次PMOSトランジスタ502のドレイン及び一次NMOSトランジスタ504のドレインは、単一段の出力に結合され得る。
[0047]一次PMOSトランジスタ502は、PMOSバイアスモジュール604に結合され得る。PMOSバイアスモジュール604は、多数の二次PMOSトランジスタ、例えば、第1の二次PMOSトランジスタ512と、第2の二次PMOSトランジスタ514と、第3の二次PMOSトランジスタ516と、第4の二次PMOSトランジスタ518とを含み得る。一次PMOSトランジスタ502のソースは、第1の二次PMOSトランジスタ512のドレイン、第2の二次PMOSトランジスタ514のドレイン、第3の二次PMOSトランジスタ516のドレイン、及び第4の二次PMOSトランジスタ518のドレインに結合され得る。更に、第1の二次PMOSトランジスタ512のソース、第2の二次PMOSトランジスタ514のソース、第3の二次PMOSトランジスタ516のソース、及び第4の二次PMOSトランジスタ518のソースは、それぞれのスイッチを介して電圧源vddに結合され得る。第1の二次PMOSトランジスタ512、第2の二次PMOSトランジスタ514、第3の二次PMOSトランジスタ516、及び第4の二次PMOSトランジスタ518の各々の抵抗は、電圧バイアスモジュール608からバイアス信号をそれぞれ受けることで、電源電圧(vdd)の関数としてチューニングされ得る。第1の二次PMOSトランジスタ512、第2の二次PMOSトランジスタ514、第3の二次PMOSトランジスタ516、及び第4の二次PMOSトランジスタ518の各々は、それぞれのゲートノードを介してバイアス信号を受け得る。
[0048]一次NMOSトランジスタ504は、NMOSバイアスモジュール606に結合され得る。NMOSバイアスモジュール606は、多数の二次NMOSトランジスタ、例えば、第1の二次NMOSトランジスタ522と、第2の二次NMOSトランジスタ524と、第3の二次NMOSトランジスタ526と、第4の二次NMOSトランジスタ528とを含み得る。一次NMOSトランジスタ504のソースは、第1の二次NMOSトランジスタ522のドレイン、第2の二次NMOSトランジスタ524のドレイン、第3の二次NMOSトランジスタ526のドレイン、及び第4の二次NMOSトランジスタ528のドレインに結合され得る。更に、第1の二次NMOSトランジスタ522のソース、第2の二次NMOSトランジスタ524のソース、第3の二次NMOSトランジスタ526のソース、及び第4の二次NMOSトランジスタ528のソースは、それぞれのスイッチを介して、接地ノードに結合され得る。ある態様では、第1の二次NMOSトランジスタ522、第2の二次NMOSトランジスタ524、第3の二次NMOSトランジスタ526、及び第4の二次NMOSトランジスタ528の各々の抵抗は、電圧バイアスモジュール608からバイアス信号をそれぞれ受けることで、電源電圧(vdd)の関数としてチューニングされ得る。第1の二次NMOSトランジスタ522、第2の二次NMOSトランジスタ524、第3の二次NMOSトランジスタ526、及び第4の二次NMOSトランジスタ528の各々は、それぞれのゲートノードを介してバイアス信号を受け得る。
[0049]電圧バイアスモジュール608は、第1のPMOSトランジスタ702と、第2のPMOSトランジスタ704と、NMOSトランジスタ706と、電流源Ibiasとを含み得る。第1のPMOSトランジスタ702のドレインは、NMOSトランジスタ706のドレインに結合される。第1のPMOSトランジスタ702のドレインは、第1の二次PMOSトランジスタ512のゲート、第2の二次PMOSトランジスタ514のゲート、第3の二次PMOSトランジスタ516のゲート、及び第4の二次PMOSトランジスタ518のゲートに更に結合される。第1のPMOSトランジスタ702のソースは、電源電圧(vdd)に結合される。第1のPMOSトランジスタ702のゲートは、第2のPMOSトランジスタ704のゲートに結合される。
[0050]第2のPMOSトランジスタ704のソースは、電源電圧(vdd)に結合される。第2のPMOSトランジスタ704のドレインは、電流源Ibiasの第1のノード及びNMOSトランジスタ706のゲートに結合される。第2のPMOSトランジスタ704のドレインは、第2のPMOSトランジスタ704のゲートに更に結合される。
[0051]NMOSトランジスタ706のドレインは、第1のPMOSトランジスタ702のドレインに結合される。NMOSトランジスタ706のドレインは、第1の二次PMOSトランジスタ512のゲート、第2の二次PMOSトランジスタ514のゲート、第3の二次PMOSトランジスタ516のゲート、及び第4の二次PMOSトランジスタ518のゲートに更に結合される。NMOSトランジスタ706のソースは、接地ノードに結合される。NMOSトランジスタ706のゲートは、電流源Ibiasの第1のノードに結合される。NMOSトランジスタ706のゲートは、第1の二次NMOSトランジスタ522のゲート、第2の二次NMOSトランジスタ524のゲート、第3の二次NMOSトランジスタ526のゲート、及び第4の二次NMOSトランジスタ528のゲートに更に結合される。
[0052]電流源Ibiasの第1のノードは、第2のPMOSトランジスタ704のドレイン及びNMOSトランジスタ706のゲートに結合される。電流源Ibiasの第2のノードは、接地ノードに結合される。
[0053]ある態様では、図6及び7に示されるような段を実施するリング発振器は、ドループ検出器システムで展開され得る。上述したように、段内で電圧制御型トランジスタを使用する本開示のリング発振器は、より良好な電源感度を達成する。電源感度は、前のリング発振器設計と比べて、20%の電力低減を伴って40%増加し得る。従って、従来のドループ検出器設計が17.1mVの分解能を有し得るのに対して、本開示のリング発振器を実施するドループ検出器システムの分解能は、11.9mVに低下し得る。
[0054]図8は、リング発振器段の電源感度を制御するための方法のフローチャートである。方法は、装置(例えば、リング発振器160又は図6及び7のリング発振器段)によって実行され得る。
[0055]ブロック802において、装置は、電源電圧に基づいて、PMOSバイアスモジュールのための第1のバイアス信号を、電圧バイアスモジュールを介して、生成する。装置は、電源電圧に基づいてNMOSバイアスモジュールのための第2のバイアス信号を、電圧バイアスモジュールを介して、更に生成する。
[0056]ブロック804において、装置は、第1のバイアス信号に基づいて、反転モジュールのトライオードPMOS縮退に、PMOSバイアスモジュールを介して、バイアスをかける。ブロック806において、装置は、第2のバイアス信号に基づいて、反転モジュールのトライオードNMOS縮退に、NMOSバイアスモジュールを介して、バイアスをかける。
[0057]ブロック808において、装置は、反転モジュールを介して入力を受ける。その後、装置は、バイアスがかけられたトライオードNMOS縮退とバイアスがかけられたトライオードPMOS縮退とに基づいて、受けた入力の反転バージョンを、反転モジュールを介して、出力する。
[0058]ある態様では、反転モジュールは、一次PMOSトランジスタと、一次PMOSトランジスタに結合された一次NMOSトランジスタとを含む。一次PMOSトランジスタのゲート及び一次NMOSトランジスタのゲートは、リング発振器段の入力に結合される。一次PMOSトランジスタのドレイン及び一次NMOSトランジスタのドレインは、リング発振器段の出力に結合される。
[0059]更なる態様では、PMOSバイアスモジュールは、第1の二次PMOSトランジスタと、第2の二次PMOSトランジスタと、第3の二次PMOSトランジスタと、第4の二次PMOSトランジスタとを含む。一次PMOSトランジスタのソースは、第1の二次PMOSトランジスタのドレイン、第2の二次PMOSトランジスタのドレイン、第3の二次PMOSトランジスタのドレイン、及び第4の二次PMOSトランジスタのドレインに結合される。第1の二次PMOSトランジスタのソース、第2の二次PMOSトランジスタのソース、第3の二次PMOSトランジスタのソース、及び第4の二次PMOSトランジスタのソースは、電源電圧に結合される。第1の二次PMOSトランジスタ、第2の二次PMOSトランジスタ、第3の二次PMOSトランジスタ、及び第4の二次PMOSトランジスタの各々の抵抗は、電圧バイアスモジュールから第1のバイアス信号をそれぞれ受けることで、電源電圧に基づいて制御される。第1の二次PMOSトランジスタ、第2の二次PMOSトランジスタ、第3の二次PMOSトランジスタ、及び第4の二次PMOSトランジスタの各々は、それぞれのゲートノードを介して第1のバイアス信号を受ける。
[0060]別の態様では、NMOSバイアスモジュールは、第1の二次NMOSトランジスタと、第2の二次NMOSトランジスタと、第3の二次NMOSトランジスタと、第4の二次NMOSトランジスタとを含む。一次NMOSトランジスタのソースは、第1の二次NMOSトランジスタのドレイン、第2の二次NMOSトランジスタのドレイン、第3の二次NMOSトランジスタのドレイン、及び第4の二次NMOSトランジスタのドレインに結合される。第1の二次NMOSトランジスタのソース、第2の二次NMOSトランジスタのソース、第3の二次NMOSトランジスタのソース、及び第4の二次NMOSトランジスタのソースは、接地ノードに結合される。第1の二次NMOSトランジスタ、第2の二次NMOSトランジスタ、第3の二次NMOSトランジスタ、及び第4の二次NMOSトランジスタ528の各々の抵抗は、電圧バイアスモジュールから第2のバイアス信号をそれぞれ受けることで、電源電圧に基づいて制御される。第1の二次NMOSトランジスタ、第2の二次NMOSトランジスタ、第3の二次NMOSトランジスタ、及び第4の二次NMOSトランジスタの各々は、それぞれのゲートノードを介して第2のバイアス信号を受ける。
[0061]ある態様では、電圧バイアスモジュールは、第1の三次PMOSトランジスタと、第2の三次PMOSトランジスタと、三次NMOSトランジスタと、電流源とを含む。第1の三次PMOSトランジスタのドレインは、三次NMOSトランジスタのドレインに結合され、第1の二次PMOSトランジスタのゲート、第2の二次PMOSトランジスタのゲート、第3の二次PMOSトランジスタのゲート、及び第4の二次PMOSトランジスタのゲートに結合される。第1の三次PMOSトランジスタのソースは、電源電圧に結合される。第1の三次PMOSトランジスタのゲートは、第2の三次PMOSトランジスタのゲートに結合される。
[0062]更なる態様では、第2の三次PMOSトランジスタのソースは、電源電圧に結合される。第2の三次PMOSトランジスタのドレインは、電流源の第1のノード及び三次NMOSトランジスタのゲートに結合され、第2の三次PMOSトランジスタのゲートに結合される。
[0063]別の態様では、三次NMOSトランジスタのドレインは、第1の三次PMOSトランジスタのドレインに結合され、第1の二次PMOSトランジスタのゲート、第2の二次PMOSトランジスタのゲート、第3の二次PMOSトランジスタのゲート、及び第4の二次PMOSトランジスタのゲートに結合される。三次NMOSトランジスタのソースは、接地ノードに結合される。三次NMOSトランジスタのゲートは、電流源の第1のノードに結合され、第1の二次NMOSトランジスタのゲート、第2の二次NMOSトランジスタのゲート、第3の二次NMOSトランジスタのゲート、及び第4の二次NMOSトランジスタのゲートに結合される。
[0064]ある態様では、電流源の第1のノードは、第2の三次PMOSトランジスタのドレイン及び三次NMOSトランジスタのゲートに結合される。電流源の第2のノードは、接地ノードに結合される。
[0065]図6及び7を再度参照して、装置(例えば、リング発振器160又は図6及び7のリング発振器段)は、反転モジュール602、PMOSバイアスモジュール604、NMOSバイアスモジュール606、電圧バイアスモジュール608、及びそれぞれのモジュールに対応する上述した回路素子のうちの1つ又は複数を含み得る。装置は、入力を受け、受けた入力の反転バージョンを出力するための反転手段を含む。装置は、反転手段のトライオードPMOS縮退にバイアスをかけるためのPMOSバイアス手段と、反転手段のトライオードNMOS縮退にバイアスをかけるためのNMOSバイアス手段とを更に含む。装置はまた、電源電圧に基づいてPMOSバイアス手段のための第1のバイアス信号を及び電源電圧に基づいてNMOSバイアス手段のための第2のバイアス信号を生成するための電圧バイアス手段を含む。PMOSバイアス手段は、第1のバイアス信号に基づいて、反転手段のトライオードPMOS縮退にバイアスをかけるように構成される。NMOSバイアス手段は、第2のバイアス信号に基づいて、反転手段のトライオードNMOS縮退にバイアスをかけるように構成される。受けた入力の反転バージョンは、バイアスがかけられたトライオードNMOS縮退とバイアスがかけられたトライオードPMOS縮退とに基づいて、反転手段を介して、出力される。前述の手段は、前述の手段によって記載の機能を実行するように構成された反転モジュール602、PMOSバイアスモジュール604、NMOSバイアスモジュール606、電圧バイアスモジュール608、それぞれのモジュールに対応する回路素子、データプロセッサ/コントローラ210、コンピュータ読取可能な媒体、すなわち、メモリ212、及び/又はコンピュータ読取可能な媒体、すなわち、メモリ216、のうちの1つ又は複数であり得る。
[0066]開示されたプロセスにおけるステップの特定の順序又は階層が例示的なアプローチの一例であることは理解されるべきである。設計の選好に基づいて、これらのプロセスにおけるステップの特定の順序又は階層が並べ替えられ得ることは理解される。更に、いくつかのステップは組み合されるか又は省略され得る。添付の方法の請求項は、様々なステップの要素を1つの例示的な順序で示し、提示された特定の順序又は階層に限定されることは意味されない。
[0067]先の説明は、当業者が本明細書で説明される様々な態様を実践することを可能にするために提供される。これらの態様に対する様々な修正は、当業者には容易に明らかとなり、本明細書において定義された包括的な原理は、他の態様に適用され得る。従って、特許請求の範囲は、本明細書に示された態様に限定されることが意図されたものではなく、特許請求の範囲における文言と一致する全範囲が付与されるべきものであり、ここにおいて、単数形の要素への参照は、別途明記されていない限り、「1つ及び1つのみ」を意味することを意図しておらず、むしろ「1つ又は複数」を意味する。別途明記されていない限り、「何らかの/いくつかの」という用語は、1つ又は複数を指す。当業者に知られているか又は後に知られることとなる、本開示全体にわたって説明された様々な態様の要素と構造的及び機能的に同等なものは全て、参照によって本明細書に明確に組み込まれ、特許請求の範囲によって包含されることが意図されている。更に、本明細書におけるどの開示も、そのような開示が特許請求の範囲に明示的に記載されているかどうかに関わらず、公衆に献呈されることを意図するものではない。いずれの請求項の要素も、その要素が「〜ための手段」という表現を使用して明記されていない限り、ミーンズプラスファンクションとして解釈されるべきではない。
以下に本願発明の当初の特許請求の範囲に記載された発明を付記する。
[C1]
リング発振器段の電源感度を制御するための装置であって、
受けた入力の反転バージョンを出力するように構成された反転モジュールと、
前記反転モジュールのトライオードPMOS縮退にバイアスをかけるように構成されたPMOSバイアスモジュールと、
前記反転モジュールのトライオードNMOS縮退にバイアスをかけるように構成されたNMOSバイアスモジュールと、
電源電圧に基づいて前記PMOSバイアスモジュールのための第1のバイアス信号を、及び前記電源電圧に基づいて前記NMOSバイアスモジュールのための第2のバイアス信号を生成するように構成された電圧バイアスモジュールと
を備え、
前記PMOSバイアスモジュールは、前記第1のバイアス信号に基づいて、前記反転モジュールの前記トライオードPMOS縮退にバイアスをかけ、
前記NMOSバイアスモジュールは、前記第2のバイアス信号に基づいて、前記反転モジュールの前記トライオードNMOS縮退にバイアスをかけ、
前記反転モジュールは、前記バイアスがかけられたトライオードNMOS縮退と前記バイアスがかけられたトライオードPMOS縮退とに基づいて、前記受けた入力の前記反転バージョンを出力する、
装置。
[C2]
前記反転モジュールは、
一次PMOSトランジスタと、
前記一次PMOSトランジスタに結合された一次NMOSトランジスタと
を備え、
前記一次PMOSトランジスタのゲート及び前記一次NMOSトランジスタのゲートは、前記リング発振器段の入力に結合され、
前記一次PMOSトランジスタのドレイン及び前記一次NMOSトランジスタのドレインは、前記リング発振器段の出力に結合される、
C1に記載の装置。
[C3]
前記PMOSバイアスモジュールは、第1の二次PMOSトランジスタと、第2の二次PMOSトランジスタと、第3の二次PMOSトランジスタと、第4の二次PMOSトランジスタとを備え、
前記一次PMOSトランジスタのソースは、前記第1の二次PMOSトランジスタのドレイン、前記第2の二次PMOSトランジスタのドレイン、前記第3の二次PMOSトランジスタのドレイン、及び前記第4の二次PMOSトランジスタのドレインに結合され、
前記第1の二次PMOSトランジスタのソース、前記第2の二次PMOSトランジスタのソース、前記第3の二次PMOSトランジスタのソース、及び前記第4の二次PMOSトランジスタのソースは、前記電源電圧に結合され、
前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々の抵抗は、前記電圧バイアスモジュールから前記第1のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々は、それぞれのゲートノードを介して前記第1のバイアス信号を受ける、
C2に記載の装置。
[C4]
前記NMOSバイアスモジュールは、第1の二次NMOSトランジスタと、第2の二次NMOSトランジスタと、第3の二次NMOSトランジスタと、第4の二次NMOSトランジスタとを備え、
前記一次NMOSトランジスタのソースは、前記第1の二次NMOSトランジスタのドレイン、前記第2の二次NMOSトランジスタのドレイン、前記第3の二次NMOSトランジスタのドレイン、及び前記第4の二次NMOSトランジスタのドレインに結合され、
前記第1の二次NMOSトランジスタのソース、前記第2の二次NMOSトランジスタのソース、前記第3の二次NMOSトランジスタのソース、及び前記第4の二次NMOSトランジスタのソースは、接地ノードに結合され、
前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタ528の各々の抵抗は、電圧バイアスモジュールから前記第2のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタの各々は、それぞれのゲートノードを介して前記第2のバイアス信号を受ける、
C3に記載の装置。
[C5]
前記電圧バイアスモジュールは、
第1の三次PMOSトランジスタと、第2の三次PMOSトランジスタと、三次NMOSトランジスタと、電流源と
を備え、
前記第1の三次PMOSトランジスタのドレインは、前記三次NMOSトランジスタのドレインに結合され、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合され、
前記第1の三次PMOSトランジスタのソースは、前記電源電圧に結合され、
前記第1の三次PMOSトランジスタのゲートは、前記第2の三次PMOSトランジスタのゲートに結合される、
C4に記載の装置。
[C6]
前記第2の三次PMOSトランジスタのソースは、前記電源電圧に結合され、
前記第2の三次PMOSトランジスタのドレインは、前記電流源の第1のノード及び前記三次NMOSトランジスタのゲートに結合され、前記第2の三次PMOSトランジスタの前記ゲートに結合される、
C5に記載の装置。
[C7]
前記三次NMOSトランジスタのドレインは、前記第1の三次PMOSトランジスタの前記ドレインに結合され、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合され、
前記三次NMOSトランジスタのソースは、前記接地ノードに結合され、
前記三次NMOSトランジスタのゲートは、前記電流源の前記第1のノードに結合され、前記第1の二次NMOSトランジスタの前記ゲート、前記第2の二次NMOSトランジスタの前記ゲート、前記第3の二次NMOSトランジスタの前記ゲート、及び前記第4の二次NMOSトランジスタの前記ゲートに結合される、
C6に記載の装置。
[C8]
前記電流源の前記第1のノードは、前記第2の三次PMOSトランジスタの前記ドレイン及び前記三次NMOSトランジスタの前記ゲートに結合され、
前記電流源の第2のノードは、前記接地ノードに結合される、
C7に記載の装置。
[C9]
リング発振器段の電源感度を制御するための方法であって、
電源電圧に基づいてPMOSバイアスモジュールのための第1のバイアス信号を、及び前記電源電圧に基づいてNMOSバイアスモジュールのための第2のバイアス信号を、電圧バイアスモジュールを介して、生成することと、
前記第1のバイアス信号に基づいて、前記反転モジュールのトライオードPMOS縮退に、前記PMOSバイアスモジュールを介して、バイアスをかけることと、
前記第2のバイアス信号に基づいて、前記反転モジュールのトライオードNMOS縮退に、前記NMOSバイアスモジュールを介して、バイアスをかけることと、
反転モジュールを介して入力を受けることと、
前記バイアスがかけられたトライオードNMOS縮退と前記バイアスがかけられたトライオードPMOS縮退とに基づいて、前記受けた入力の反転バージョンを、前記反転モジュールを介して、出力することと
を備える方法。
[C10]
前記反転モジュールは、
一次PMOSトランジスタと、
前記一次PMOSトランジスタに結合された一次NMOSトランジスタと
を備え、
前記一次PMOSトランジスタのゲート及び前記一次NMOSトランジスタのゲートは、前記リング発振器段の入力に結合され、
前記一次PMOSトランジスタのドレイン及び前記一次NMOSトランジスタのドレインは、前記リング発振器段の出力に結合される、
C9に記載の方法。
[C11]
前記PMOSバイアスモジュールは、第1の二次PMOSトランジスタと、第2の二次PMOSトランジスタと、第3の二次PMOSトランジスタと、第4の二次PMOSトランジスタとを備え、
前記一次PMOSトランジスタのソースは、前記第1の二次PMOSトランジスタのドレイン、前記第2の二次PMOSトランジスタのドレイン、前記第3の二次PMOSトランジスタのドレイン、及び前記第4の二次PMOSトランジスタのドレインに結合され、
前記第1の二次PMOSトランジスタのソース、前記第2の二次PMOSトランジスタのソース、前記第3の二次PMOSトランジスタのソース、及び前記第4の二次PMOSトランジスタのソースは、前記電源電圧に結合され、
前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々の抵抗は、前記電圧バイアスモジュールから前記第1のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々は、それぞれのゲートノードを介して前記第1のバイアス信号を受ける、
C10に記載の方法。
[C12]
前記NMOSバイアスモジュールは、第1の二次NMOSトランジスタと、第2の二次NMOSトランジスタと、第3の二次NMOSトランジスタと、第4の二次NMOSトランジスタとを備え、
前記一次NMOSトランジスタのソースは、前記第1の二次NMOSトランジスタのドレイン、前記第2の二次NMOSトランジスタのドレイン、前記第3の二次NMOSトランジスタのドレイン、及び前記第4の二次NMOSトランジスタのドレインに結合され、
前記第1の二次NMOSトランジスタのソース、前記第2の二次NMOSトランジスタのソース、前記第3の二次NMOSトランジスタのソース、及び前記第4の二次NMOSトランジスタのソースは、接地ノードに結合され、
前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタ528の各々の抵抗は、電圧バイアスモジュールから前記第2のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタの各々は、それぞれのゲートノードを介して前記第2のバイアス信号を受ける、
C11に記載の方法。
[C13]
前記電圧バイアスモジュールは、
第1の三次PMOSトランジスタと、第2の三次PMOSトランジスタと、三次NMOSトランジスタと、電流源とを備え、
前記第1の三次PMOSトランジスタのドレインは、前記三次NMOSトランジスタのドレインに結合され、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合され、
前記第1の三次PMOSトランジスタのソースは、前記電源電圧に結合され、
前記第1の三次PMOSトランジスタのゲートは、前記第2の三次PMOSトランジスタのゲートに結合される、
C12に記載の方法。
[C14]
前記第2の三次PMOSトランジスタのソースは、前記電源電圧に結合され、
前記第2の三次PMOSトランジスタのドレインは、前記電流源の第1のノード及び前記三次NMOSトランジスタのゲートに結合され、前記第2の三次PMOSトランジスタの前記ゲートに結合される、
C13に記載の方法。
[C15]
前記三次NMOSトランジスタのドレインは、前記第1の三次PMOSトランジスタの前記ドレインに結合され、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合され、
前記三次NMOSトランジスタのソースは、前記接地ノードに結合され、
前記三次NMOSトランジスタのゲートは、前記電流源の前記第1のノードに結合され、前記第1の二次NMOSトランジスタの前記ゲート、前記第2の二次NMOSトランジスタの前記ゲート、前記第3の二次NMOSトランジスタの前記ゲート、及び前記第4の二次NMOSトランジスタの前記ゲートに結合される、
C14に記載の方法。
[C16]
前記電流源の前記第1のノードは、前記第2の三次PMOSトランジスタの前記ドレイン及び前記三次NMOSトランジスタの前記ゲートに結合され、
前記電流源の第2のノードは、前記接地ノードに結合される、
C15に記載の方法。
[C17]
リング発振器段の電源感度を制御するための装置であって、
入力を受け、前記受けた入力の反転バージョンを出力するための反転手段と、
前記反転手段のトライオードPMOS縮退にバイアスをかけるためのPMOSバイアス手段と、
前記反転手段のトライオードNMOS縮退にバイアスをかけるためのNMOSバイアス手段と、
電源電圧に基づいて前記PMOSバイアス手段のための第1のバイアス信号を及び前記電源電圧に基づいて前記NMOSバイアス手段のための第2のバイアス信号を生成するための電圧バイアス手段と
を備え、
前記PMOSバイアス手段は、前記第1のバイアス信号に基づいて、前記反転手段の前記トライオードPMOS縮退にバイアスをかけるように構成され、
前記NMOSバイアス手段は、前記第2のバイアス信号に基づいて、前記反転手段の前記トライオードNMOS縮退にバイアスをかけるように構成され、
前記受けた入力の前記反転バージョンは、前記バイアスがかけられたトライオードNMOS縮退と前記バイアスがかけられたトライオードPMOS縮退とに基づいて、前記反転手段を介して、出力される、
装置。
[C18]
前記反転手段は、
一次PMOSトランジスタと、
前記一次PMOSトランジスタに結合された一次NMOSトランジスタと
を備え、
前記一次PMOSトランジスタのゲート及び前記一次NMOSトランジスタのゲートは、前記リング発振器段の入力に結合され、
前記一次PMOSトランジスタのドレイン及び前記一次NMOSトランジスタのドレインは、前記リング発振器段の出力に結合される、
C17に記載の装置。
[C19]
前記PMOSバイアス手段は、第1の二次PMOSトランジスタと、第2の二次PMOSトランジスタと、第3の二次PMOSトランジスタと、第4の二次PMOSトランジスタとを備え、
前記一次PMOSトランジスタのソースは、前記第1の二次PMOSトランジスタのドレイン、前記第2の二次PMOSトランジスタのドレイン、前記第3の二次PMOSトランジスタのドレイン、及び前記第4の二次PMOSトランジスタのドレインに結合され、
前記第1の二次PMOSトランジスタのソース、前記第2の二次PMOSトランジスタのソース、前記第3の二次PMOSトランジスタのソース、及び前記第4の二次PMOSトランジスタのソースは、前記電源電圧に結合され、
前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々の抵抗は、前記電圧バイアスモジュールから前記第1のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々は、それぞれのゲートノードを介して前記第1のバイアス信号を受ける、
C18に記載の装置。
[C20]
前記NMOSバイアス手段は、第1の二次NMOSトランジスタと、第2の二次NMOSトランジスタと、第3の二次NMOSトランジスタと、第4の二次NMOSトランジスタとを備え、
前記一次NMOSトランジスタのソースは、前記第1の二次NMOSトランジスタのドレイン、前記第2の二次NMOSトランジスタのドレイン、前記第3の二次NMOSトランジスタのドレイン、及び前記第4の二次NMOSトランジスタのドレインに結合され、
前記第1の二次NMOSトランジスタのソース、前記第2の二次NMOSトランジスタのソース、前記第3の二次NMOSトランジスタのソース、及び前記第4の二次NMOSトランジスタのソースは、接地ノードに結合され、
前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタ528の各々の抵抗は、電圧バイアスモジュールから前記第2のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタの各々は、それぞれのゲートノードを介して前記第2のバイアス信号を受ける、
C19に記載の装置。
[C21]
前記電圧バイアス手段は、
第1の三次PMOSトランジスタと、第2の三次PMOSトランジスタと、三次NMOSトランジスタと、電流源とを備え、
前記第1の三次PMOSトランジスタのドレインは、前記三次NMOSトランジスタのドレインに結合され、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合され、
前記第1の三次PMOSトランジスタのソースは、前記電源電圧に結合され、
前記第1の三次PMOSトランジスタのゲートは、前記第2の三次PMOSトランジスタのゲートに結合される、
C20に記載の装置。
[C22]
前記第2の三次PMOSトランジスタのソースは、前記電源電圧に結合され、
前記第2の三次PMOSトランジスタのドレインは、前記電流源の第1のノード及び前記三次NMOSトランジスタのゲートに結合され、前記第2の三次PMOSトランジスタの前記ゲートに結合される、
C21に記載の装置。
[C23]
前記三次NMOSトランジスタのドレインは、前記第1の三次PMOSトランジスタの前記ドレインに結合され、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合され、
前記三次NMOSトランジスタのソースは、前記接地ノードに結合され、
前記三次NMOSトランジスタのゲートは、前記電流源の前記第1のノードに結合され、前記第1の二次NMOSトランジスタの前記ゲート、前記第2の二次NMOSトランジスタの前記ゲート、前記第3の二次NMOSトランジスタの前記ゲート、及び前記第4の二次NMOSトランジスタの前記ゲートに結合される、
C22に記載の装置。
[C24]
前記電流源の前記第1のノードは、前記第2の三次PMOSトランジスタの前記ドレイン及び前記三次NMOSトランジスタの前記ゲートに結合され、
前記電流源の第2のノードは、前記接地ノードに結合される、
C23に記載の装置。

Claims (26)

  1. リング発振器段の電源感度を制御するための装置であって、
    受けた入力の反転バージョンを出力するように構成された反転モジュールと、
    前記反転モジュールに結合され、第1のバイアス信号に基づいてチューニング可能な抵抗を有する少なくとも1つの要素を備えるPMOSバイアスモジュールと、
    前記反転モジュールに結合され、第2のバイアス信号に基づいてチューニング可能な抵抗を有する少なくとも1つの要素を備えるNMOSバイアスモジュールと、
    電源電圧に基づいて前記PMOSバイアスモジュールのための前記第1のバイアス信号を、及び前記電源電圧に基づいて前記NMOSバイアスモジュールのための前記第2のバイアス信号を生成するように構成された電圧バイアスモジュールと
    を備え、前記電圧バイアスモジュールは、第1のPMOSトランジスタと、NMOSトランジスタと、第2のPMOSトランジスタと、電流源とを備え、前記第1のPMOSトランジスタのドレインは、前記NMOSトランジスタのドレインに、及び前記PMOSバイアスモジュールに結合され、前記NMOSトランジスタのゲートは、前記NMOSバイアスモジュールに結合され、前記第1のPMOSトランジスタのゲートは、前記第2のPMOSトランジスタのゲートに結合され、
    前記第1のPMOSトランジスタのソースは、前記電源電圧に結合され、
    前記第2のPMOSトランジスタのソースは、前記電源電圧に結合され、
    前記第2のPMOSトランジスタのドレインは、前記電流源の第1のノード及び前記NMOSトランジスタの前記ゲートに結合され、及び前記第2のPMOSトランジスタの前記ゲートに結合され、
    前記PMOSバイアスモジュールは、前記第1のバイアス信号に基づいて、前記反転モジュールにバイアスをかけ、
    前記NMOSバイアスモジュールは、前記第2のバイアス信号に基づいて、前記反転モジュールにバイアスをかけ、
    前記反転モジュールは、前記NMOSバイアスモジュールバイアスと前記PMOSバイアスモジュールバイアスとに基づいて、前記受けた入力の前記反転バージョンを出力する、
    装置。
  2. 前記反転モジュールは、
    一次PMOSトランジスタと、
    前記一次PMOSトランジスタに結合された一次NMOSトランジスタと
    を備え、
    前記一次PMOSトランジスタのゲート及び前記一次NMOSトランジスタのゲートは、前記リング発振器段の入力に結合され、
    前記一次PMOSトランジスタのドレイン及び前記一次NMOSトランジスタのドレインは、前記リング発振器段の出力に結合される、
    請求項1に記載の装置。
  3. 前記PMOSバイアスモジュールは、第1の二次PMOSトランジスタと、第2の二次PMOSトランジスタと、第3の二次PMOSトランジスタと、第4の二次PMOSトランジスタとを備え、
    前記一次PMOSトランジスタのソースは、前記第1の二次PMOSトランジスタのドレイン、前記第2の二次PMOSトランジスタのドレイン、前記第3の二次PMOSトランジスタのドレイン、及び前記第4の二次PMOSトランジスタのドレインに結合され、
    前記第1の二次PMOSトランジスタのソース、前記第2の二次PMOSトランジスタのソース、前記第3の二次PMOSトランジスタのソース、及び前記第4の二次PMOSトランジスタのソースは、前記電源電圧に結合され、
    前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々の抵抗は、前記電圧バイアスモジュールから前記第1のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
    前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々は、それぞれのゲートノードを介して前記第1のバイアス信号を受ける、
    請求項2に記載の装置。
  4. 前記NMOSバイアスモジュールは、第1の二次NMOSトランジスタと、第2の二次NMOSトランジスタと、第3の二次NMOSトランジスタと、第4の二次NMOSトランジスタとを備え、
    前記一次NMOSトランジスタのソースは、前記第1の二次NMOSトランジスタのドレイン、前記第2の二次NMOSトランジスタのドレイン、前記第3の二次NMOSトランジスタのドレイン、及び前記第4の二次NMOSトランジスタのドレインに結合され、
    前記第1の二次NMOSトランジスタのソース、前記第2の二次NMOSトランジスタのソース、前記第3の二次NMOSトランジスタのソース、及び前記第4の二次NMOSトランジスタのソースは、接地ノードに結合され、
    前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタの各々の抵抗は、電圧バイアスモジュールから前記第2のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
    前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタの各々は、それぞれのゲートノードを介して前記第2のバイアス信号を受ける、
    請求項3に記載の装置。
  5. 記第1のPMOSトランジスタの前記ドレインは、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合される、
    請求項4に記載の装置。
  6. 記NMOSトランジスタの前記ドレインは、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合され、
    記NMOSトランジスタのソースは、前記接地ノードに結合され、
    記NMOSトランジスタの前記ゲートは、前記第1の二次NMOSトランジスタの前記ゲート、前記第2の二次NMOSトランジスタの前記ゲート、前記第3の二次NMOSトランジスタの前記ゲート、及び前記第4の二次NMOSトランジスタの前記ゲートに結合される、
    請求項に記載の装置。
  7. 記電流源の第2のノードは、前記接地ノードに結合される、
    請求項に記載の装置。
  8. 前記電源感度は、前記PMOSバイアスモジュールの前記少なくとも1つの要素の前記チューニングされた抵抗と、前記NMOSバイアスモジュールの前記少なくとも1つの要素の前記チューニングされた抵抗とに少なくとも部分的に基づく、請求項1に記載の装置。
  9. 前記PMOSバイアスモジュールの前記少なくとも1つの要素及び前記NMOSバイアスモジュールの前記少なくとも1つの要素は、前記反転モジュールに縮退を提供する、請求項1に記載の装置。
  10. 前記PMOSバイアスモジュール及び前記NMOSバイアスモジュールは各々、チューニング可能な抵抗を有する複数の要素を備え、前記複数の要素の各々は、スイッチと直列にトランジスタを備える、請求項1に記載の装置。
  11. 前記電流源の第2のノードは、前記NMOSトランジスタのソースに結合される、請求項1に記載の装置。
  12. 前記第1のNMOSトランジスタの前記ソースは、前記PMOSバイアスモジュール中の1つ以上のスイッチに更に結合され、前記NMOSトランジスタの前記ソースは、前記NMOSバイアスモジュール中の1つ以上のスイッチに更に結合される、請求項11に記載の装置。
  13. リング発振器段の電源感度を制御するための方法であって、
    電源電圧に基づいてPMOSバイアスモジュールのための第1のバイアス信号を、及び前記電源電圧に基づいてNMOSバイアスモジュールのための第2のバイアス信号を、電圧バイアスモジュールを介して、生成することと、前記第1のバイアス信号は、前記電圧バイアスモジュール中のNMOSトランジスタのドレイン及び第1のPMOSトランジスタのドレインが結合される先のノードから供給され、前記第2のバイアス信号は、前記NMOSトランジスタのゲートに結合されたノードから供給され、前記第1のPMOSトランジスタの前記ドレインは、前記第1のPMOSトランジスタのゲートに接続されておらず、
    前記電圧バイアスモジュールは、第2のPMOSトランジスタ及び電流源を更に備え、前記第1のPMOSトランジスタのソースは、前記電源電圧に結合され、前記第1のPMOSトランジスタの前記ゲートは、前記第2のPMOSトランジスタのゲートに結合され、
    前記第2のPMOSトランジスタのソースは、前記電源電圧に結合され、
    前記第2のPMOSトランジスタのドレインは、前記電流源の第1のノード及び前記NMOSトランジスタの前記ゲートに結合され、前記第2のPMOSトランジスタの前記ゲートに結合される、
    前記第1のバイアス信号に基づいて、前記PMOSバイアスモジュールの少なくとも1つの要素の抵抗をチューニングすることと、
    前記第2のバイアス信号に基づいて、前記NMOSバイアスモジュールの少なくとも1つの要素の抵抗をチューニングすることと、
    前記PMOSバイアスモジュールの前記少なくとも1つの要素の前記チューニングされた抵抗に基づいて、反転モジュールのPMOS縮退に、前記PMOSバイアスモジュールを介して、バイアスをかけることと、
    前記NMOSバイアスモジュールの前記少なくとも1つの要素の前記チューニングされた抵抗に基づいて、前記反転モジュールのNMOS縮退に、前記NMOSバイアスモジュールを介して、バイアスをかけることと、
    前記反転モジュールを介して入力を受けることと、
    記NMOS縮退と前記PMOS縮退とに基づいて、前記受けた入力の反転バージョンを、前記反転モジュールを介して、出力することと
    を備える方法。
  14. 前記反転モジュールは、
    一次PMOSトランジスタと、
    前記一次PMOSトランジスタに結合された一次NMOSトランジスタと
    を備え、
    前記一次PMOSトランジスタのゲート及び前記一次NMOSトランジスタのゲートは、前記リング発振器段の入力に結合され、
    前記一次PMOSトランジスタのドレイン及び前記一次NMOSトランジスタのドレインは、前記リング発振器段の出力に結合される、
    請求項13に記載の方法。
  15. 前記PMOSバイアスモジュールは、第1の二次PMOSトランジスタと、第2の二次PMOSトランジスタと、第3の二次PMOSトランジスタと、第4の二次PMOSトランジスタとを備え、
    前記一次PMOSトランジスタのソースは、前記第1の二次PMOSトランジスタのドレイン、前記第2の二次PMOSトランジスタのドレイン、前記第3の二次PMOSトランジスタのドレイン、及び前記第4の二次PMOSトランジスタのドレインに結合され、
    前記第1の二次PMOSトランジスタのソース、前記第2の二次PMOSトランジスタのソース、前記第3の二次PMOSトランジスタのソース、及び前記第4の二次PMOSトランジスタのソースは、前記電源電圧に結合され、
    前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々の抵抗は、前記電圧バイアスモジュールから前記第1のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
    前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々は、それぞれのゲートノードを介して前記第1のバイアス信号を受ける、
    請求項14に記載の方法。
  16. 前記NMOSバイアスモジュールは、第1の二次NMOSトランジスタと、第2の二次NMOSトランジスタと、第3の二次NMOSトランジスタと、第4の二次NMOSトランジスタとを備え、
    前記一次NMOSトランジスタのソースは、前記第1の二次NMOSトランジスタのドレイン、前記第2の二次NMOSトランジスタのドレイン、前記第3の二次NMOSトランジスタのドレイン、及び前記第4の二次NMOSトランジスタのドレインに結合され、
    前記第1の二次NMOSトランジスタのソース、前記第2の二次NMOSトランジスタのソース、前記第3の二次NMOSトランジスタのソース、及び前記第4の二次NMOSトランジスタのソースは、接地ノードに結合され、
    前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタの各々の抵抗は、電圧バイアスモジュールから前記第2のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
    前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタの各々は、それぞれのゲートノードを介して前記第2のバイアス信号を受ける、
    請求項15に記載の方法。
  17. 記第1のPMOSトランジスタの前記ドレインは、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合される、
    請求項16に記載の方法。
  18. 記NMOSトランジスタの前記ドレインは、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合され、
    記NMOSトランジスタのソースは、前記接地ノードに結合され、
    記NMOSトランジスタの前記ゲートは、前記第1の二次NMOSトランジスタの前記ゲート、前記第2の二次NMOSトランジスタの前記ゲート、前記第3の二次NMOSトランジスタの前記ゲート、及び前記第4の二次NMOSトランジスタの前記ゲートに結合される、
    請求項17に記載の方法。
  19. 記電流源の第2のノードは、前記接地ノードに結合される、
    請求項18に記載の方法。
  20. リング発振器段の電源感度を制御するための装置であって、
    入力を受け、前記受けた入力の反転バージョンを出力するための反転手段と、
    前記反転手段のPMOS縮退にバイアスをかけるためのPMOSバイアス手段と、前記PMOSバイアス手段は、第1のバイアス信号に基づいて、前記PMOSバイアス手段の抵抗をチューニングするための手段を備える、
    前記反転手段のNMOS縮退にバイアスをかけるためのNMOSバイアス手段と、前記NMOSバイアス手段は、第2のバイアス信号に基づいて、前記NMOSバイアス手段の抵抗をチューニングするための手段を備える、
    電源電圧に基づいて前記PMOSバイアス手段のための前記第1のバイアス信号を及び前記電源電圧に基づいて前記NMOSバイアス手段のための前記第2のバイアス信号を生成するための電圧バイアス手段と
    を備え、前記電圧バイアス手段は、第1のPMOSトランジスタと、NMOSトランジスタと、第2のPMOSトランジスタと、電流源を備える電流を供給するための手段を備え、前記第1のPMOSトランジスタのドレインは、前記NMOSトランジスタのドレインに、及び前記PMOSバイアス手段に結合され、前記NMOSトランジスタのゲートは、前記NMOSバイアス手段に結合され、前記NMOSトランジスタのソースは、前記電流を供給するための手段に結合され、
    前記第1のPMOSトランジスタのソースは、前記電源電圧に結合され、前記第1のPMOSトランジスタの前記ゲートは、前記第2のPMOSトランジスタのゲートに結合され、
    前記第2のPMOSトランジスタのソースは、前記電源電圧に結合され、
    前記第2のPMOSトランジスタのドレインは、前記電流源の第1のノード及び前記NMOSトランジスタの前記ゲートに結合され、前記第2のPMOSトランジスタの前記ゲートに結合され、
    記受けた入力の前記反転バージョンは、前記バイアスがかけられたNMOS縮退と前記バイアスがかけられたPMOS縮退とに基づいて、前記反転手段を介して、出力される、
    装置。
  21. 前記反転手段は、
    一次PMOSトランジスタと、
    前記一次PMOSトランジスタに結合された一次NMOSトランジスタと
    を備え、
    前記一次PMOSトランジスタのゲート及び前記一次NMOSトランジスタのゲートは、前記リング発振器段の入力に結合され、
    前記一次PMOSトランジスタのドレイン及び前記一次NMOSトランジスタのドレインは、前記リング発振器段の出力に結合される、
    請求項20に記載の装置。
  22. 前記PMOSバイアス手段は、第1の二次PMOSトランジスタと、第2の二次PMOSトランジスタと、第3の二次PMOSトランジスタと、第4の二次PMOSトランジスタとを備え、
    前記一次PMOSトランジスタのソースは、前記第1の二次PMOSトランジスタのドレイン、前記第2の二次PMOSトランジスタのドレイン、前記第3の二次PMOSトランジスタのドレイン、及び前記第4の二次PMOSトランジスタのドレインに結合され、
    前記第1の二次PMOSトランジスタのソース、前記第2の二次PMOSトランジスタのソース、前記第3の二次PMOSトランジスタのソース、及び前記第4の二次PMOSトランジスタのソースは、前記電源電圧に結合され、
    前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々の抵抗は、前記電圧バイアスモジュールから前記第1のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
    前記第1の二次PMOSトランジスタ、前記第2の二次PMOSトランジスタ、前記第3の二次PMOSトランジスタ、及び前記第4の二次PMOSトランジスタの各々は、それぞれのゲートノードを介して前記第1のバイアス信号を受ける、
    請求項21に記載の装置。
  23. 前記NMOSバイアス手段は、第1の二次NMOSトランジスタと、第2の二次NMOSトランジスタと、第3の二次NMOSトランジスタと、第4の二次NMOSトランジスタとを備え、
    前記一次NMOSトランジスタのソースは、前記第1の二次NMOSトランジスタのドレイン、前記第2の二次NMOSトランジスタのドレイン、前記第3の二次NMOSトランジスタのドレイン、及び前記第4の二次NMOSトランジスタのドレインに結合され、
    前記第1の二次NMOSトランジスタのソース、前記第2の二次NMOSトランジスタのソース、前記第3の二次NMOSトランジスタのソース、及び前記第4の二次NMOSトランジスタのソースは、接地ノードに結合され、
    前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタの各々の抵抗は、電圧バイアスモジュールから前記第2のバイアス信号をそれぞれ受けることで、前記電源電圧に基づいて制御され、
    前記第1の二次NMOSトランジスタ、前記第2の二次NMOSトランジスタ、前記第3の二次NMOSトランジスタ、及び前記第4の二次NMOSトランジスタの各々は、それぞれのゲートノードを介して前記第2のバイアス信号を受ける、
    請求項22に記載の装置。
  24. 記第1のPMOSトランジスタの前記ドレインは、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合される、
    請求項23に記載の装置。
  25. 記NMOSトランジスタの前記ドレインは、前記第1の二次PMOSトランジスタの前記ゲート、前記第2の二次PMOSトランジスタの前記ゲート、前記第3の二次PMOSトランジスタの前記ゲート、及び前記第4の二次PMOSトランジスタの前記ゲートに結合され、
    記NMOSトランジスタのソースは、前記接地ノードに結合され、
    記NMOSトランジスタのゲートは、前記第1の二次NMOSトランジスタの前記ゲート、前記第2の二次NMOSトランジスタの前記ゲート、前記第3の二次NMOSトランジスタの前記ゲート、及び前記第4の二次NMOSトランジスタの前記ゲートに結合される、
    請求項21に記載の装置。
  26. 記電流源の第2のノードは、前記接地ノードに結合される、
    請求項25に記載の装置。
JP2017559126A 2015-05-13 2016-04-15 電源電圧に対する感度が制御されるリング発振器アーキテクチャ Active JP6328862B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/711,158 2015-05-13
US14/711,158 US9692396B2 (en) 2015-05-13 2015-05-13 Ring oscillator architecture with controlled sensitivity to supply voltage
PCT/US2016/027925 WO2016182690A1 (en) 2015-05-13 2016-04-15 Ring oscillator architecture with controlled sensitivity to supply voltage

Publications (2)

Publication Number Publication Date
JP6328862B1 true JP6328862B1 (ja) 2018-05-23
JP2018515999A JP2018515999A (ja) 2018-06-14

Family

ID=55861227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559126A Active JP6328862B1 (ja) 2015-05-13 2016-04-15 電源電圧に対する感度が制御されるリング発振器アーキテクチャ

Country Status (6)

Country Link
US (1) US9692396B2 (ja)
EP (1) EP3295564A1 (ja)
JP (1) JP6328862B1 (ja)
KR (1) KR101877915B1 (ja)
CN (1) CN107580755B (ja)
WO (1) WO2016182690A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10455392B2 (en) * 2017-09-27 2019-10-22 Apple Inc. Adaptive matching with antenna detuning detection
US10627883B2 (en) 2018-02-28 2020-04-21 Advanced Micro Devices, Inc. Onboard monitoring of voltage levels and droop events
US10659012B1 (en) 2018-11-08 2020-05-19 Nxp B.V. Oscillator and method for operating an oscillator
US11454856B2 (en) * 2020-01-18 2022-09-27 Cisco Technology, Inc. Optical driver with active boost
US11705897B2 (en) * 2021-10-06 2023-07-18 Qualcomm Incorporated Delay line with process-voltage-temperature robustness, linearity, and leakage current compensation
US20230195191A1 (en) * 2021-12-22 2023-06-22 Advanced Micro Devices, Inc. Fast droop detection circuit
CN117767923A (zh) * 2022-09-16 2024-03-26 长鑫存储技术有限公司 延时电路与半导体器件

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324712A (ja) 1986-07-17 1988-02-02 Toshiba Corp Mos型半導体回路
US4849717A (en) * 1987-05-19 1989-07-18 Gazelle Microcircuits, Inc. Oscillator circuit
JP3026474B2 (ja) * 1993-04-07 2000-03-27 株式会社東芝 半導体集積回路
JP3263213B2 (ja) * 1993-12-14 2002-03-04 株式会社東芝 半導体集積回路
US5973524A (en) * 1998-03-25 1999-10-26 Silsym, Inc. Obtaining accurate on-chip time-constants and conductances
CA2260626C (en) 1999-01-29 2001-04-24 Pmc-Sierra Ltd. High speed wide tuning range multi-phase output ring oscillator
JP2002223149A (ja) * 2001-01-29 2002-08-09 Hitachi Ltd 半導体集積回路
JP4794067B2 (ja) 2001-05-24 2011-10-12 ルネサスエレクトロニクス株式会社 内部クロック発生回路
US6803831B2 (en) * 2002-05-20 2004-10-12 Nec Eletronics Corporation Current starved inverter ring oscillator having an in-phase signal transmitter with a sub-threshold current control unit
JP2004048690A (ja) * 2002-05-20 2004-02-12 Nec Micro Systems Ltd リング発振器
KR100685640B1 (ko) * 2004-03-17 2007-02-22 주식회사 하이닉스반도체 리프레쉬 오실레이터
JP2006217172A (ja) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd 遅延回路及びそれを用いたリングオシレータ
FR2882871A1 (fr) 2005-03-01 2006-09-08 Atmel Corp Oscillateur commande en tension a multiphase realignee et boucle a phase asservie associee
US7391274B2 (en) 2005-03-30 2008-06-24 Etron Technology, Inc Low voltage operating ring oscillator with almost constant delay time
DE602007011612D1 (de) 2006-06-20 2011-02-10 Nxp Bv Halbleiterbauelement mit teststruktur und testverfahren für ein halbleiterbauelement
JP2008017203A (ja) * 2006-07-06 2008-01-24 Renesas Technology Corp 半導体集積回路装置
TWI481195B (zh) * 2006-10-31 2015-04-11 半導體能源研究所股份有限公司 振盪器電路及包含該振盪器電路的半導體裝置
JP5346459B2 (ja) * 2006-10-31 2013-11-20 株式会社半導体エネルギー研究所 発振回路およびそれを備えた半導体装置
JP4947703B2 (ja) * 2006-11-14 2012-06-06 オンセミコンダクター・トレーディング・リミテッド チャージポンプ回路
JP4884942B2 (ja) * 2006-11-29 2012-02-29 オンセミコンダクター・トレーディング・リミテッド 発振回路
US7948330B2 (en) 2009-03-19 2011-05-24 Qualcomm Incorporated Current controlled oscillator with regulated symmetric loads
US7973612B2 (en) 2009-04-26 2011-07-05 Qualcomm Incorporated Supply-regulated phase-locked loop (PLL) and method of using
US8294525B2 (en) * 2010-06-18 2012-10-23 International Business Machines Corporation Technique for linearizing the voltage-to-frequency response of a VCO
KR101276730B1 (ko) 2011-10-06 2013-06-20 연세대학교 산학협력단 발진기 및 이를 이용한 위상 고정 루프

Also Published As

Publication number Publication date
CN107580755B (zh) 2021-02-12
WO2016182690A1 (en) 2016-11-17
KR101877915B1 (ko) 2018-07-12
CN107580755A (zh) 2018-01-12
US9692396B2 (en) 2017-06-27
JP2018515999A (ja) 2018-06-14
KR20170128621A (ko) 2017-11-22
US20160336924A1 (en) 2016-11-17
EP3295564A1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
JP6328862B1 (ja) 電源電圧に対する感度が制御されるリング発振器アーキテクチャ
JP6337081B2 (ja) 局部発振器生成のためのプログラマブル分周器
US11726513B2 (en) On-chip dual-supply multi-mode CMOS regulators
WO2016130255A1 (en) A method to pre-charge crystal oscillators for fast start-up
US8988158B2 (en) Hybrid voltage controlled oscillator
US20190028092A1 (en) Feed-forward phase noise/spur cancellation
CN107005230B (zh) 用于从单端晶体振荡器生成四倍参考时钟的装置和方法
US20160099729A1 (en) Apparatus and method for quadrupling frequency of reference clock
US9608569B2 (en) Linearizing scheme for baseband filter with active feedback
US20150349712A1 (en) Reconfigurable varactor bank for a voltage-controlled oscillator
US9024692B2 (en) Voltage controlled oscillator band-select fast searching using predictive searching
US20150349782A1 (en) Reconfigurable fractional divider
EP3127238A1 (en) Em coupling shielding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171110

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180418

R150 Certificate of patent or registration of utility model

Ref document number: 6328862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250