JP6316626B2 - 土木材料及びその製造方法 - Google Patents

土木材料及びその製造方法 Download PDF

Info

Publication number
JP6316626B2
JP6316626B2 JP2014053003A JP2014053003A JP6316626B2 JP 6316626 B2 JP6316626 B2 JP 6316626B2 JP 2014053003 A JP2014053003 A JP 2014053003A JP 2014053003 A JP2014053003 A JP 2014053003A JP 6316626 B2 JP6316626 B2 JP 6316626B2
Authority
JP
Japan
Prior art keywords
slag
steelmaking
mass
sandy
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014053003A
Other languages
English (en)
Other versions
JP2015175175A (ja
Inventor
賢一 片山
賢一 片山
小林 憲治
憲治 小林
伸介 湊
伸介 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2014053003A priority Critical patent/JP6316626B2/ja
Publication of JP2015175175A publication Critical patent/JP2015175175A/ja
Application granted granted Critical
Publication of JP6316626B2 publication Critical patent/JP6316626B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

この発明は、路盤材料及び舗装材料として使用可能であり且つ製鋼スラグを用いた土木材料及びその製造方法に関する。
鉄鋼の製造工程で発生する鉄鋼スラグは、従来は廃棄処理されていたが、近年では土木分野での再資源化が図られている。例えば、特許文献1には、粒径が5〜40mmである高炉徐冷スラグ又は製鋼スラグ50〜90質量%と、粒径が10mm以下である高炉水砕スラグ50〜10質量%と、炭質物1〜10質量%とを含有する透水性路盤材料が記載されている。また、特許文献2には、水膨張比1.5%超6.0%以下であり且つ粒径が40mm以下の製鋼スラグと、全量に対する含有量を5質量%以上35質量%以下とした高炉水砕スラグとを混合してなる簡易舗装材料が記載されている。
なお、高炉徐冷スラグ及び高炉水砕スラグは、高炉での銑鉄の製造工程で副生し、製鋼スラグは、普通鋼や特殊鋼等の製鋼工程やステンレス鋼等の製造工程で副生する。
特許第4292953号公報 特開2012−52408号公報
特許文献1の透水性路盤材料では、高炉徐冷スラグ又は製鋼スラグにおける離間して存在する粒子同士の間に高炉水砕スラグが存在する。そして、この透水性路盤材料は、水と反応して硬化する潜在水硬性を有する高炉徐冷スラグ又は製鋼スラグと高炉水砕スラグとを主成分とすることによって、支持力を得ている。しかしながら、高炉徐冷スラグ及び高炉水砕スラグは、水との反応時の発熱速度が低く、それにより硬化速度も低いため、特許文献1の透水性路盤材料は、所要の強度の発現に長い時間を要する。路盤の施工後の強度発現までの時間が長くなると、その上に舗装を施工して道路として開放するまでに要する時間が長くなるため、特許文献1の透水性路盤材料は、施工条件、施工場所等を限定し、その用途が狭くなるという問題を有している。
また、特許文献2の簡易舗装材料では、製鋼スラグの水膨張比が1.5%を超えている。日本工業規格「道路用鉄鋼スラグ」(JIS A 5015)では、その附属書2に規定される水浸膨張試験方法による水膨張比が1.5%以下の鉄鋼スラグを、道路用鉄鋼スラグとして用いることができるということを規定している。このため、特許文献2の簡易舗装材料は、その用途を限定してしまうという問題を有している。また、特許文献2の簡易舗装材料は、簡易舗装材料全量に対して5質量%以上35質量%以下の含有量で高炉水砕スラグを含んでいるため、所要の強度の発現に長い時間を要するという問題も有している。
この発明はこのような問題点を解決するためになされたものであり、路盤材料及び舗装材料として利用可能にすると共に用途の拡大を図る製鋼スラグを用いた土木材料及びその製造方法を提供することを目的とする。
上記の課題を解決するために、この発明に係る土木材料は、製鋼工程で生成される製鋼スラグを用いた土木材料であって、製鋼スラグから生成され、粒径450μm以下の割合が95質量%以上を占める粉状スラグと、製鋼スラグから生成され、粒径が0〜5mmの範囲内にある砂状スラグと、粒径が40mm以下の塊状骨材とを混合して生成され、粉状スラグ、砂状スラグ及び塊状骨材がそれぞれ、8〜21質量%、30〜60質量%及び28〜56質量%の配合割合で混合され、砂状スラグは、0〜5mmの粒径と、5.0×10−3〜2.0×10−2cm/sの透水係数と、1.9〜2.1kg/リットルの単位容積質量と、1.5〜3.2%の吸水率と、10〜20%の0〜120μm径の気孔含有率とを有する。
また、この発明に係る土木材料は、製鋼工程で生成される製鋼スラグを用いた土木材料であって、製鋼スラグから生成され、粒径450μm以下の割合が95質量%以上を占める粉状スラグと、製鋼スラグから生成され、粒径が0〜5mmの範囲内にある砂状スラグと、粒径が40mm以下の塊状骨材とを混合して生成され、粉状スラグ、砂状スラグ及び塊状骨材がそれぞれ、8〜21質量%、30〜60質量%及び28〜56質量%の配合割合で混合され、透水係数が1.0×10−5〜1.0×10−3cm/sであり、修正CBR値が80〜200%であり、水膨張比が0.3%以下であってもよい。
砂状スラグは、多孔質性の結晶スラグであってよい
状骨材は、粉状の製鋼スラグを造粒した造粒スラグから形成されたものであってよい。
上記土木材料の製造方法は、製鋼スラグに対して冷却、破砕、分級及び脱水処理を順次行って粉状スラグを生成する粉状スラグ生成ステップと、製鋼スラグに対して徐冷、破砕及び分級を順次行って砂状スラグを生成する砂状スラグ生成ステップと、粉状スラグ、砂状スラグ及び塊状骨材を上記配合割合で混合する混合ステップとを含む。
上記方法は、混合ステップの前に、粉状の製鋼スラグを造粒して粒度調整し塊状骨材を生成するステップを含んでよい。
この発明に係る土木材料及びその製造方法によれば、製鋼スラグを用いた土木材料の用途を拡大することが可能になる。
粉状スラグ及び砂状スラグを製造する各工程を分類して示す図である。 粉状スラグ及び砂状スラグを用いて本実施の形態に係る路盤舗装材を製造する各工程を分類して示す図である。 耐雨性の試験状態を示す概略図である。
以下、この発明の実施の形態における土木材料100の製造方法について添付図面に基づいて説明する。
なお、この発明の実施の形態ではステンレス鋼を溶製する際に発生する製鋼スラグを用いた土木材料を例にして説明する。
図1及び図2をあわせて参照すると、土木材料100を製造する工程は、大別すると、原料となる製鋼スラグ10が生成されるステンレス鋼の製鋼工程1、製鋼スラグ10を冷却する冷却工程2、冷却後の製鋼スラグ10から微粉状の粉状スラグ11及び砂粒状の砂状スラグ12を分級するスラグ選鉱処理工程3、粉状スラグ11の一部を造粒して塊状スラグ14を生成する造粒工程4、並びに、粉状スラグ11、砂状スラグ12及び塊状スラグ14を混合して路盤舗装材である土木材料100を生成する混合工程5によって構成されている。なお、路盤舗装材は、舗装材としても路盤材としても利用可能な材料である。ここで、塊状スラグ14は、塊状骨材を構成している。
図1を参照すると、製鋼工程1では、ステンレス鋼を溶製する際に製鋼スラグ10が発生するが、この発生した製鋼スラグ10がスラグ鍋に収集される。なお、製鋼スラグ10は、電気炉で原料を溶解してステンレス鋼の溶銑を生成する溶解工程で生成される溶製スラグと、生成された溶銑から含有硫黄を除去する脱硫処理工程で生成される脱硫スラグと、脱硫処理後の溶銑に対して転炉及び真空脱ガス処理装置で含有炭素を除去する精錬工程で生成される精錬スラグとによって構成されている。そして、脱硫処理の前及び脱硫処理の後に、溶製スラグ及び脱硫スラグが製鋼スラグ10としてステンレス鋼の溶銑から除去され、さらに、転炉及び真空ガス処理装置で生成した精錬スラグが製鋼スラグ10として収集される。製鋼スラグ10は、原料内の不純物やステンレス鋼の製鋼過程での生成物によって構成されており、その中にステンレス鋼を構成する鉄、クロム、ニッケル等からなる有用金属である地金15も含んでいる。
なお、本実施の形態では、溶銑の脱硫処理方法として、機械駆動される攪拌翼で溶銑を攪拌しつつ脱硫剤を添加して溶銑に含有される硫黄をスラグ化して除去するKR法が用いられる。KR法では、攪拌されることによって溶銑と脱硫剤との脱硫反応が促進されるため、脱硫剤にはCaO(生石灰、酸化カルシウム)を主成分とするものが用いられる。このため、本実施の形態で使用される脱硫剤は、過去に脱硫反応を促進するために用いられたCaF2(蛍石、フッ化カルシウム)を含んでいない。
そして、本実施の形態で得られる製鋼スラグ10において、例えば、塩基度(CaO/SiO:SiO含有量に対するCaO含有量の質量比)が0.8〜1.6となっており、F(フッ素)が0.4質量%未満、CaOが30〜65質量%、SiOが20〜50質量%、Alが5〜10質量%で含有されている。
塩基度が0.8〜1.6であることによって、ステンレス鋼の溶銑の脱硫処理に与える悪影響が抑えられる。塩基度は、溶銑の脱硫反応に大きな影響を及ぼす。製鋼スラグ10において、塩基度が0.8未満となっている場合、脱硫処理時に製鋼スラグ10に含まれるCaOと溶銑に含まれるS(硫黄)との間で十分な脱硫反応が得られていないことになり、1.6を超えている場合、脱硫処理時に製鋼スラグ10の流動性が低く、溶銑と製鋼スラグ10との接触界面が減少して脱硫反応が促進されていないことになる。ここでいう脱硫反応とは、溶解工程で生成される製鋼スラグと、脱硫処理工程で生成される脱硫スラグと、さらに、転炉及び真空脱ガス処理装置で生成する精錬スラグの全てのスラグでの脱硫反応である。また、本実施の形態では、脱硫処理方法を機械攪拌式のKR法とし、スラグの流動性を向上させるために用いられてきた蛍石(CaF)が使用されないため、塩基度を調節して製鋼スラグ10の流動性を確保する必要がある。
蛍石等のF含有剤を用いないことによっても、スクラップや鉱石等のF含有原料の混入等により若干のフッ素含有は避けられないが、目標のフッ素含有率を0.4質量%未満とすることによって、製鋼スラグ10から生成される路盤舗装材100が、土壌環境基準に規定される水に対するフッ素の溶出量の基準を満足する。上述したように、本実施の形態では、脱硫処理に蛍石を使用しないため、製鋼スラグ10の組成におけるFの含有率が低く抑えられ、路盤舗装材100は土壌環境基準を満たすことができる。
CaOの含有率が30〜65質量%であることによって、効果的なステンレス鋼の溶銑の脱硫処理が可能になる。CaOは、脱硫材の主成分であり且つ脱硫反応に必須の成分である。このため、製鋼スラグ10におけるCaOの含有率が30質量%以上であることによって、溶銑を十分に脱硫処理することができる。一方、製鋼スラグ10内のSiOの含有量に対してCaOの含有量が過剰になると、塩基度が高くなり過ぎてスラグの流動性が悪化し、製鋼スラグ10による脱硫反応が促進されなくなる。このため、製鋼スラグ10におけるCaOの含有率が65質量%以下であることによって、スラグの流動性悪化による脱硫反応の低下を抑えることができる。
SiOの含有率が20〜50質量%であることによって、効果的なステンレス鋼の溶銑の脱硫処理が可能になる。SiOは、ステンレス鋼の原料から発生し、また還元剤による脱酸反応生成物として発生する。製鋼スラグ10において、SiOの含有率が20質量%未満となっていると、脱硫処理時の塩基度が高くなり過ぎていて脱硫反応が促進されてないことになる。一方、SiOの含有率が50質量%を超えていると、脱硫処理時の塩基度が低くなり過ぎていて十分な脱硫反応が得られてないことになる。このため、製鋼スラグ10におけるSiOの含有率が20〜50質量%であることによって、脱硫反応を効果的に促進することができる。
Alの含有率が5〜10質量%であることによって、製鋼スラグ10の流動性を確保することができる。Alは、製鋼に使用する各鍋の耐火煉瓦やステンレス鋼の原料から混入する。製鋼スラグ10におけるAlの含有量が低過ぎても高過ぎても、スラグの融点が上昇し、スラグの流動性が低下する。
そして、製鋼スラグ10では、原料の配合比と、スラグ及びステンレス鋼の間の元素分配比とについての経験則に基づき、溶製する鋼種ごとにスラグ発生源の原料の種類と配合比とを調節することによって、塩基度及び組成を上述のように調節することができる。
図1の製鋼工程1で発生し収集された製鋼スラグ10は、スラグ鍋に入れられた状態で冷却工程2に移され、冷却固化される。この際、製鋼スラグ10は、スラグ鍋に入れられた状態で、大気中での自然冷却による空冷と、スラグ鍋に散水して冷却する散水冷却とを組み合わせた冷却によって、24時間以上かけて徐冷される。製鋼スラグ10は、徐冷されることによって、結晶質で多数の気孔を含む岩石状のスラグとなる。
上記冷却過程において、製鋼スラグ10は、スラグ鍋へ投入されて凝固を始めた後の約1100℃から、結晶構造の変化、つまり相変態がほぼ終了する約700℃に温度が低下するまでの間、すなわち製鋼スラグ10の温度が約700℃以上である間、1.0℃/分以下の速度で降温するように徐冷される。なお、次に実施される破砕処理での十分な破砕が可能であるように製鋼スラグ10を十分に固化させるためには、外気温に応じて24〜30時間にわたって或いはそれよりも長時間にわたって製鋼スラグ10を冷却するのが、好ましい。
一方、製鋼スラグ10の温度が約700℃以上の時に、例えば冷却水量を増加させる、又は製鋼スラグ10に直接散水する等をして1.0℃/分を超える速度で製鋼スラグ10を降温させると、固化後に内部の密度が低く脆いスラグが得られることになる。
また、製鋼スラグ10の替わりに高炉スラグを用いた場合、例えば水砕急冷後の高炉スラグは、気孔をほとんど含まないガラス質のスラグを形成する。
上述のように製鋼スラグ10を徐冷することによって、製鋼スラグ10が固化する際、製鋼スラグ10に含まれ且つ水和反応を起こすことが可能なフリーのCaOやMgO又はこれらの化合物等の軟質な部分と、密度が高く硬質な鉱物相(シリカ[SiO]、アルミナ[Al]等から形成される)とが、互いに分離した異なる層を形成する。実際にはこれらのCaOやMgO、SiO、Alの2種またはそれ以上に複雑に固溶した鉱物相が大部分であるが、上述の冷却速度での冷却により軟質なものと硬質な鉱物とが形成される。このため、固化後の製鋼スラグ10が後述する破砕処理を受けると、鉱物相の間の軟質な部分が細かく砕けることによって硬質な鉱物相の多くが互いに分離して塊状になり、さらにこの塊状の鉱物相が破砕されると砂粒状になる。そして、製鋼スラグ10では、破砕によって粉化するのが軟質な部分によって主に構成されるため、粉化する量が少ない。
冷却工程2において固化してその温度が十分に低下した製鋼スラグ10は、スラグ鍋から出鍋されて、スラグ選鉱処理工程3を構成するジョークラッシャー破砕処理31及びロッドミル破砕処理32による破砕を順次受ける。
ジョークラッシャー破砕処理31では、製鋼スラグ10は、気中にある状態で、ジョークラッシャーにおける固定歯と固定歯に対して接近及び離脱するように可動な可動歯との間に挟まれて押圧されることによって圧縮破砕される。製鋼スラグ10は、この処理によって、大まかに乾式破砕される。このとき、製鋼スラグ10では、硬質な鉱物相の間にあるCaO等の軟質な部分の層が崩壊することによって、鉱物相が多数の塊状に分離する。
ジョークラッシャー破砕処理31の後のロッドミル破砕処理32では、製鋼スラグ10は、内部に水を含むロッドミル内に投入されて水中につけられた状態とされ、ロッドミルが回転されることによって、さらに細かく湿式破砕される。この湿式破砕の過程では、製鋼スラグ10に含まれる軟質なCaO等は、水和反応してさらに脆くなり、微小粉状に粉砕されて水中に懸濁する。また、製鋼スラグ10に含まれる塊状の硬質な鉱物相は、ロッドミル内で角張った形状の粒に破砕され、破砕時に鉱物相から発生する粉状体が水中懸濁する。なお、角張った形状の粒によって形成される砂は、表面が滑らかな粒によって形成される砂よりも締め固め性に貢献する。
上記の2つの破砕処理を受ける過程では、製鋼スラグ10に含まれる地金15が、鉱物相やCaO等の微粉などの成分によって構成されるスラグから分離される。そして、製鋼スラグ10が冷却工程2で十分に固化していることによって、破砕処理時における地金15とスラグとの分離が容易になる。
破砕処理を完了した製鋼スラグ10は、スラグ選鉱処理工程3を構成する比重選鉱処理33を受ける。比重選鉱処理33では、製鋼スラグ10は、処理水中に投入され、比重選別機によって鉱物の比重の差異を利用した選別が行われる。製鋼スラグ10において、高比重であるとして選別されたものは、続いて磁力選鉱処理34を受け、低比重であるとして選別されたものは、続いて篩い分級処理35を受ける。ここで、磁力選鉱処理34及び篩い分級処理35はスラグ選鉱処理工程3を構成する。
磁力選鉱処理34では、地金15を含んだ高比重の製鋼スラグ10に対して、磁選機によって地金15が分離・回収される。
また、篩い分級処理35では、比重選別機から取り出されて処理水中に含まれた状態の低比重の製鋼スラグ10が、振動篩い機の振動するスクリーン(篩い)上に供給され、そのうちのスクリーンの目開きの大きさ(本実施の形態では5mm)以下のものが選別される。なお、スクリーンを通過しなかった粒径5mmを超える製鋼スラグ10は、これが含まれている処理水と共に、再びロッドミル破砕処理32に戻され、湿式破砕処理を受ける。
スクリーンを通過した粒径5mm以下の製鋼スラグ10は、その砂粒状粒子及び微小粉状粒子並びに処理水が混在したサンドスライム状態であり、エーキンス分級処理36を受けて、粒状分が分離される。つまり、処理水に含まれた状態の製鋼スラグ10は、処理水と共にスパイラル型分級機であるエーキンス分級機に送られて分級を受けることによって、特定の粒径(0.15mm程度)以上の粒状分が水中に懸濁する粉状分から分離され、粗粒の砂状スラグ12として選別される。これにより、この砂状スラグ12は、粒径0.15mm以上5mm以下の粒子で構成される。
砂状スラグ12が除去された後の製鋼スラグ10は、その微小粉状粒子及び処理水が混在したスライム状態であり、シックナー・脱水処理37を受けて、微小粉状粒子が処理水から分離される。この処理では、処理水に含まれた状態の製鋼スラグ10が、処理水と共にシックナーに送られて分級を受け、微小粉状粒子で構成される製鋼スラグ10がスライムから分離される。さらに、水分を含んだ状態で分離された製鋼スラグ10が脱水処理を受けてケーキ状の粉状スラグ11として回収される。ここで、エーキンス分級処理36及びシックナー・脱水処理37はスラグ選鉱処理工程3を構成する。
そして、上述のエーキンス分級処理36によって得られた砂状スラグ12は、多孔性の結晶質であり、水分の存在下で時間が経過すると水と反応して硬化する水硬性を有する。さらに、砂状スラグ12は、粒径範囲0〜5mm、微粒分量3.5%以下、粗粒率3.5%以下、透水係数5.0×10−3〜2.0×10−2cm/s(cm/秒)、単位容積質量1.9〜2.1kg/L(リットル)、吸水率1.5〜3.2%を満たす特性を有する。さらに、多孔質性の砂状スラグ12は、0〜120μm径の気孔の容積含有率(気孔率)が10〜20%となっている。また、砂状スラグ12は、Fの水に対する溶出量が0.8mg/L未満の特性を有する。なお、Fの水に対する溶出量0.8mg/L未満という範囲は、土壌環境基準を満たすものである。
微粒分量は、JIS A 1103に規定される微粒分量試験方法により求めることができ、粗粒率は、JIS A 1102に規定される骨材の篩い分け試験方法(粒度分布試験方法)により求めることができる。気孔率は、乾燥処理した砂状スラグ12に対して、株式会社島津製作所製のマイクロメリテック オートポアIII9400等の水銀ポロシメータを用いた0.005〜120μmの細孔径測定範囲での水銀圧入法を実施することによって、測定することができる。なお、水銀ポロシメータは、砂状スラグの気孔への水銀の注入圧力と気孔径の関係に基づいて、注入圧力を段階的に上昇させながら各圧力段階での水銀の浸入量を測定することによって気孔径の分布を求めるものである。
なお、砂状スラグ12は、0〜120μm径の気孔の気孔率を10〜20%することによって、強度及び透水性を確保することができる。砂状スラグ12は、含有する気孔の径が大きくなれば脆くなり、路盤材料又は舗装材として使用される場合に所要の強度をもたらすことができない。また、砂状スラグ12は、10%未満の気孔率を有する場合、透水性を確保することができず、20%超の気孔率を有する場合、強度を確保することができない。ちなみに、ステンレス鋼のスラグから砂状スラグ12を形成する場合、上述したように徐冷及び破砕することによって、上記の特性を有する砂状スラグ12を効率的に生成することができる。
また、脱水処理後に得られた粉状スラグ11は、CaOやSiOを多く含み、水分の存在下で時間が経過すると水と反応して硬化する水硬性を有する。さらに、粉状スラグ11は、粒径範囲が0〜0.7mm、粒径450μm以下の割合が95質量%以上、比表面積が1700ブレーン以上となる特性を有する。
図2を参照すると、得られた粉状スラグ11の一部は、造粒工程4を構成する造粒処理41を受ける。造粒処理41において、粉状スラグ11は、規格品のセメント16及び石炭灰17と共にアイリッヒミキサー、回転筒型ミキサー等の造粒装置に投入され、水の添加を受けつつ混合される。これによって、粉状スラグ11は、セメント16及び石炭灰17と共に凝集して硬化し、造粒スラグ13を形成する。この混合過程では、粉状スラグ11+セメント16+石炭灰17の総質量100%の中で、粉状スラグ11が60〜85質量%の含有率で含まれ、セメント16が5〜20質量%の含有率で含まれ、石炭灰17が10〜35質量%の含有率で含まれている。さらに、水は、粉状スラグ11+セメント16+石炭灰17の総質量100%に対して、15〜25質量%の外数としての割合で加えられる。
粉状スラグ11、セメント16及び石炭灰17の配合は、造粒スラグ13を形成する固化反応の終了時に未反応のCaOが残留しないように決定される。これは、CaOが水和反応して膨張することから、未反応のCaOは、造粒スラグ13を膨張崩壊させる危険性を生む、つまり崩壊性を生むためである。
そこで、粉状スラグ11の含有率を60〜85質量%としている。粉状スラグ11の含有率が85質量%を超えると、セメント16及び石炭灰17の配合量が減り、粉状スラグ11に含まれる過剰のCaOが残留し、崩壊性を生じる可能性がある。なお、石炭灰は、CaOとの反応性を有するSiOを多く含む。一方、粉状スラグ11の含有率が60質量%未満となると、セメント16及び石炭灰17の配合量が多くなり、コストを上昇させる。
さらに、セメント16の含有率を5〜20質量%としている。セメント16の含有率が5質量%未満となると、造粒スラグ13が所要の強度を得ることができない。一方、セメント16の含有率が20質量%を超えるとなると、コストが上昇するほか、場合によっては石炭灰17の配合割合が低くなり崩壊性を悪化させることがある。さらに、セメントは六価クロムを含むため、造粒スラグ13における六価クロムの含有量が大きくなり、土壌環境基準を満たさなくなることがある。
さらにまた、石炭灰17の含有率を10〜35質量%としている。石炭灰17の配合目的は、粉状スラグ11の成分のCaOとポゾラン反応させるSiO及びAlの供給源として用いることである。このため、粉状スラグ11のCaO含有量とSiO及びAlの供給量とをバランスさせるために石炭灰17の配合割合が決められる。石炭灰の種類によってSiO及びAlの含有率が異なるため、一般的な焼却灰から特殊な加圧流動床の燃焼灰までの成分割合を考慮すると、石炭灰17の含有率は10〜35質量%となる。石炭灰17の含有率が10質量%未満となると、いくら粉状スラグ11の割合を減らし且つセメント16の割合を増加させても、造粒スラグ13の崩壊を防止できなくなる。一方、石炭灰17の含有率が35質量%を超えると、造粒性が悪化する。これは、石炭灰が、その粒子形状、比重等の物理的特性のため、スラグに比べて非常に悪い造粒性を有しているからである。
また、水の添加率を15〜25質量%としている。水は、粉状スラグ11、セメント16及び石炭灰17の3原料の配合による強度を発現させる上で必要なものであるが、造粒時の粒度コントロールに非常に大きい影響を与える。水の添加率が15質量%未満となると、セメント16の固化反応が不十分となり、粉状スラグ11を粒状に成長させることができなくなる。水の添加率が25質量%を超えると、水分過多となり、粉状スラグ11が粘土状又は餅状の巨大な塊となるだけで、造粒が不可能になる。ここで言う水の添加率とはもともとスラグが含む水も含めた量をいう。
図2を再び参照すると、造粒装置内で形成された造粒スラグ13は、造粒装置から出されると、その固化反応が終了して所要の強度が発現までの期間である所定の養生期間にわたって、大気中にて養生42される。なお、造粒スラグ13は、製鋼スラグから形成されているため、高い固化速度を有している。
所定の養生期間経過後の造粒スラグ13は、篩い分級処理43を受ける。篩い分級処理43では、造粒スラグ13は、振動篩い機の振動する篩い上に供給され、そのうちの篩いの目開きの大きさ(本実施の形態では40mm)以下のものが選別されて、塊状スラグ14として次の混合工程5を構成する混合処理に移される。なお、篩いを通過しなかった粒径40mmを超える造粒スラグ13は、破砕処理44に移され、乾式ミル等による乾式破砕処理を受ける。破砕処理44を受けた造粒スラグ13は、再び篩い分級処理43を受け、粒径40mm以下ものは塊状スラグ14として混合処理に移され、粒径40mmを超えるものは再び破砕処理44に移される。
上述の造粒処理41、養生42、篩い分級処理43及び破砕処理44からなる一連の造粒工程4を経ることによって、粒径40mm以下の塊状スラグ14が形成される。
混合工程5の混合処理では、塊状スラグ14を28〜56質量%、粉状スラグ11を8〜21質量%、砂状スラグ12を30〜60質量%とする配合割合で、塊状スラグ14、粉状スラグ11及び砂状スラグ12がパドルミキサー等の攪拌装置に投入されて混合される。あるいはパワーショベルやホイルローダー等の重機で混合してもよい。その結果、路盤材料としても舗装材料としても使用可能な路盤舗装材100が生成される。生成した路盤舗装材100は、保管ヤードに貯蔵され、需要に応じて出荷される(貯留・出荷6)。
そして、生成された路盤舗装材100は、透水係数1.0×10−5〜1.0×10−3cm/s、水浸膨張比0.3%以下の特性を有する。さらに、路盤舗装材100は、路盤材料や盛土材料の締め固め性の品質基準を示す指標である修正CBR値が80〜200%の範囲内となり、良好な締め固め性を有する。なお、(社)日本道路協会出典の「舗装施工便覧」では、下層路盤材に求められる修正CBR値が30%以上、上層路盤材に求められる修正CBR値が80%以上とされている。さらに、求められる水浸膨張比は、下層路盤材及び上層路盤材では1.5%以下となっている。
(実施例)
以下、本実施の形態の製造方法を用いて製造した路盤舗装材100の実施例と、本実施の形態の製造方法と異なる製造方法を用いて製造した路盤舗装材の比較例とを比較検証する。なお、比較例の路盤舗装材は、本実施の形態で上述した粉状スラグ、砂状スラグ及び塊状スラグの配合割合の範囲から外れた配合割合で生成されたものである。
また、実施例の路盤舗装材及び比較例の路盤舗装材を構成する粉状スラグ、砂状スラグ及び塊状スラグは、下記の表1に示す2つの異なる組成を有する製鋼スラグA及びBを用いて生成された。
Figure 0006316626
そして、下記の表2に、13の実施例と10の比較例について、粉状スラグ、砂状スラグ及び塊状スラグの配合割合、並びに、それぞれの特性(透水係数、修正CBR、水膨張比及び耐雨性)が示されている。なお、実施例1〜10及び12並びに比較例1〜9では、粉状スラグを造粒して得られる粒径40mm以下の造粒スラグが塊状スラグとして用いられ、実施例11及び13では、粉状スラグを造粒して得られる粒径40mm超の造粒スラグを破砕したものが塊状スラグとして用いられている。
透水係数は、定水位透水試験及び変水位透水試験を適宜選択した室内透水試験によって測定した。
修正CBR値は、室内試験によって測定した。具体的には、JIS A 1210の突固めによる土の締固め試験方法により求めた最適含水比の±1%の含水比に調整した供試体を作成し、この供試体を用いてJIS A 1211のCBR試験方法に従って求めた締固め曲線及びCBR−乾燥密度関係図に基づき、最大乾燥密度の95%の締固め度に対応する修正CBR値を求めた。
水膨張比は、「道路用鉄鋼スラグ」(JIS A 5015)の附属書2に規定される鉄鋼スラグの水浸膨張試験方法により測定した。
耐雨性は、次のように試験した。図3に示すように、実施例及び比較例の路盤舗装材をそれぞれ、仕上厚さが15cmとなるように、試験区域の路床上に敷き均した後に転圧機械(10tタイヤローラ)を用いて所定の締め固め度が得られるまで転圧した。転圧完了後のさらに1時間後に、締め固められた路盤舗装材の表面上に、1m×1mの正方形を囲繞する形状の堰枠を配置し、堰堤の内側に20リットルの水を投入して溜めた。水を投入してから3時間経過後に、堰枠内の水の残留状態を目視で確認した。塊状の水が見られない、つまり水はけが良好な場合、良と判定し、塊状の水が若干残っているが表面の路盤舗装材が泥化していない場合、可と判定し、塊状の水が残り表面の路盤舗装材が泥化している場合、不可と判定した。この耐雨性は、路盤材としての締め固めた後における降雨時の表面安定性、及び舗装材としての適正をあらわす。
Figure 0006316626
表2に示されるように、実施例1〜13では、透水係数が1.0×10−5〜1.0×10−3cm/sの範囲内に収まっている。さらに、互いに配合割合が同一にある実施例11及び12について、塊状スラグとして粉状スラグを造粒して得られる粒径40mm以下の造粒スラグを用いた実施例12において、塊状スラグとして粉状スラグを造粒して得られる粒径40mm超の造粒スラグを破砕したものを用いた実施例11よりも、透水係数が大きくなっている。一方、砂状スラグの配合割合が実施例よりも低い比較例1〜6では、透水係数が1.0×10−5cm/sを下回っており、砂状スラグの配合割合が実施例よりも高い比較例7〜10では、透水係数が1.0×10−3cm/sを上回っている。比較例では、砂状スラグの配合割合が、路盤舗装材の透水係数に大きく影響を与えている。
また、実施例1〜13では、修正CBR値が80〜200%の範囲内に収まっている。一方、比較例2及び4では、修正CBR値が80〜200%の範囲内に収まり、比較例1、3及び5〜8では、修正CBR値が80%を下回る。また、実質的に砂である比較例9及び10の路盤舗装材では、修正CBRの測定ができなかった。
また、実施例1〜13では、水浸膨張比が0.3%以下(社内基準の目標値:0.3%以下)であり、比較例1〜10では、水浸膨張比が0.3%を上回っている。ここで日本工業規格「道路用鉄鋼スラグ」(JIS A 5015)では、その附属書2に規定される水浸膨張試験方法による水膨張比は1.5%以下と規定されているが、経験上必ずしも1.5%以下で品質が十分とは言えないため、社内規格としてさらに厳しい0.3%以下とした。
また、耐雨性は、実施例1〜13及び比較例8〜10では良好であり、比較例1〜6では不可であり、比較例7では可である。比較例7〜10では、路盤舗装材は砂に近い性状を有するため、水はけが良い。そして、実施例1〜13の路盤舗装材は、締め固め後の水はけがよく、降雨等による表面性状の変化も生じないため、その後の施工性を良好にするだけでなく、敷き均し・転圧のみの施工によって、そのまま道路の表層として機能することができる、つまり舗装として機能することができる。また、水はけが良く透水性が高い実施例1〜13の路盤舗装材を締め固めて形成した層では、散水、降雨等による水が内部にまで十分に浸透するため、路盤舗装材が浸透水と水和反応を起こして硬化し、この層の強度を増大させる。
上述の結果より、砂状スラグを30〜60質量%、塊状スラグを28〜56質量%、粉状スラグを8〜21質量%とする配合割合で形成された実施例の路盤舗装材は、路盤材として使用可能であるだけでなく、舗装材として使用可能である。
このように、この発明の実施の形態に係る土木材料は、ステンレス鋼の製鋼工程1で生成される製鋼スラグ10を用いた土木材料である。この土木材料である路盤舗装材100は、製鋼スラグ10から生成され且つ粒径450μm以下の割合が95質量%以上を占める粉状スラグ11と、製鋼スラグ10から生成され且つ粒径が0〜5mmの範囲内にある砂状スラグ12と、粒径が40mm以下の塊状骨材である塊状スラグ14とを混合して生成される。このとき、粉状スラグ11、砂状スラグ12及び塊状スラグ14がそれぞれ、8〜21質量%、30〜60質量%及び28〜56質量%の配合割合で混合される。
上述のような配合割合で粉状スラグ11、砂状スラグ12及び塊状スラグ14を混合して生成した路盤舗装材100は、透水性及び良好な締め固め性を有する。このため、敷設、締め固め後の路盤舗装材100による地盤は、水はけが良いため、その上での車両の通行及びさらなる施工を降雨の影響を受けることなく可能にする。それ故、路盤舗装材100は、路盤材としても舗装材としても使用可能であり、その用途を拡大することができる。そして、このような路盤舗装材100は、路盤と舗装とを一体構造として施工することも可能にする。さらに、透水性を有する路盤舗装材100は、雨天時及び梅雨時期における水分過多の状態で出荷されても、敷設、転圧の施工を可能にし、その仕上がりも良好である。つまり、路盤舗装材100は、広範な施工条件での施工を可能にし、その用途を拡大する。
また、締め固めされて固化した後、雨水等の水が路盤舗装材100の表面に降りかかると路盤舗装材100層内に浸透し、それにより、スラグ由来のアルカリ成分が浸透水と共に路盤舗装材100層から流れ出て路盤舗装材100層の下の土壌に中和、吸着等される。このため、降雨時、路盤舗装材100層から周囲に流れ出る雨水は、中性近傍の性状を有するようになり、環境に与える影響が小さい。一方で透水性の悪い舗装材であれば表面に残ったままの高アルカリ水が何らかの理由で表層を流れて舗装材下の土壌に吸着されることなく敷地外へ流出した際には環境問題を引き起こす場合があり危険であるので、天候によっては舗装工事が制限されることになるが、路盤舗装材100は降雨時の出荷も可能となる。さらに、路盤舗装材100層の土壌は、吸着したアルカリ成分を含むため、この土壌からの雑草等の植物の生育を抑えることができる。このため、路盤舗装材100による層は、維持管理、手入れ等のコストを低減することができる。
また、少なくとも粉状スラグ11及び砂状スラグ12が製鋼スラグ10から生成されることによって、路盤舗装材100は、水和反応による固化する速度を、高炉スラグ等を使用する場合よりも向上させることができる。
また、上記路盤舗装材100において、砂状スラグ12は、多孔質性の結晶スラグである。これによって、砂状スラグ12の粒子自体の水の透過性が向上するため、路盤舗装材100の透水性の向上が可能になる。
さらに、砂状スラグ12が、0〜5mmの粒径と、5.0×10−3〜2.0×10−2cm/sの透水係数と、1.9〜2.1kg/リットルの単位容積質量と、1.5〜3.2%の吸水率と、10〜20%の0〜120μm径の気孔含有率とを有することによって、上記路盤舗装材100は、1.0×10−5〜1.0×10−3cm/sの透水係数と、80〜200%の修正CBR値と、0.3%以下の水膨張比とを有することできる。従って、路盤舗装材100は、路盤材及び舗装材として良好な特性を有することができる。
また、上記路盤舗装材100において、塊状スラグ14は、粉状スラグ11等の粉状の製鋼スラグ10を造粒した造粒スラグから形成される。これにより、製鋼スラグ10のさらなる有効利用を図ることができる。
また、実施の形態の路盤舗装材100では、その粉状のスラグとしてステンレス鋼の製鋼スラグ10から生成した粉状スラグ11を使用していたが、粉状のスラグとして鋳鉄の製造工程で副生する高炉スラグ、普通鋼や他の特殊鋼の製鋼工程で副生する製鋼スラグ等の他の鉄鋼スラグから生成したものを使用してもよい。粉状のスラグでは、粒径450μm以下の割合が95質量%以上を占めればよい。
また、実施の形態の路盤舗装材100では、その砂状のスラグとしてステンレス鋼の製鋼スラグ10から生成した砂状スラグ12を使用していたが、砂状のスラグとして普通鋼や他の特殊鋼の製鋼スラグから生成したものを使用してもよい。砂状のスラグは、0〜5mmの粒径、5.0×10−3〜2.0×10−2cm/sの透水係数、1.9〜2.1kg/リットルの単位容積質量、1.5〜3.2%の吸水率、及び10〜20%の0〜120μm径の気孔含有率を有すればよい。
また、実施の形態の路盤舗装材100では、塊状骨材として、粒径450μm以下の割合が95質量%以上を占める粉状スラグ11を造粒した塊状スラグ14を使用していたが、塊状スラグ14を構成する粉状のスラグの粒度は、粒径450μm以下の割合が95質量%以上を占めることに限定されない。また、塊状骨材として、ステンレス鋼の製鋼スラグ10を用いたものに限定されるものでなく、高炉スラグ、普通鋼や他の特殊鋼の製鋼スラグ等の他の鉄鋼スラグを用いたものであってもよい。或いは、塊状骨材は、天然石などのスラグ以外の材料の砕石又は造粒物であってもよい。
1 製鋼工程、2 冷却工程、3 スラグ選鉱処理工程、4 造粒工程、5 混合工程、10 製鋼スラグ、11 粉状スラグ、12 砂状スラグ、13 造粒スラグ、14 塊状スラグ(塊状骨材)、100 路盤舗装材(土木材料)。

Claims (6)

  1. 製鋼工程で生成される製鋼スラグを用いた土木材料であって、
    前記製鋼スラグから生成され、粒径450μm以下の割合が95質量%以上を占める粉状スラグと、
    前記製鋼スラグから生成され、粒径が0〜5mmの範囲内にある砂状スラグと、
    粒径が40mm以下の塊状骨材と
    を混合して生成され、
    前記粉状スラグ、前記砂状スラグ及び前記塊状骨材がそれぞれ、8〜21質量%、30〜60質量%及び28〜56質量%の配合割合で混合され
    前記砂状スラグは、
    0〜5mmの粒径と、
    5.0×10−3〜2.0×10−2cm/sの透水係数と、
    1.9〜2.1kg/リットルの単位容積質量と、
    1.5〜3.2%の吸水率と、
    10〜20%の0〜120μm径の気孔含有率とを有する土木材料。
  2. 製鋼工程で生成される製鋼スラグを用いた土木材料であって、
    前記製鋼スラグから生成され、粒径450μm以下の割合が95質量%以上を占める粉状スラグと、
    前記製鋼スラグから生成され、粒径が0〜5mmの範囲内にある砂状スラグと、
    粒径が40mm以下の塊状骨材と
    を混合して生成され、
    前記粉状スラグ、前記砂状スラグ及び前記塊状骨材がそれぞれ、8〜21質量%、30〜60質量%及び28〜56質量%の配合割合で混合され
    透水係数が1.0×10−5〜1.0×10−3cm/sであり、
    修正CBR値が80〜200%であり、
    水膨張比が0.3%以下である土木材料。
  3. 前記砂状スラグは、多孔質性の結晶スラグである請求項1または2に記載の土木材料。
  4. 前記塊状骨材は、粉状の前記製鋼スラグを造粒した造粒スラグから形成されたものである請求項1〜3のいずれか一項に記載の土木材料。
  5. 請求項1〜4のいずれか一項に記載の土木材料の製造方法において、
    前記製鋼スラグに対して冷却、破砕、分級及び脱水処理を順次行って前記粉状スラグを生成する粉状スラグ生成ステップと、
    前記製鋼スラグに対して徐冷、破砕及び分級を順次行って前記砂状スラグを生成する砂状スラグ生成ステップと、
    前記粉状スラグ、前記砂状スラグ及び前記塊状骨材を前記配合割合で混合する混合ステップと
    を含む方法。
  6. 前記混合ステップの前に、粉状の前記製鋼スラグを造粒して粒度調整し前記塊状骨材を生成するステップを含む請求項に記載の方法。
JP2014053003A 2014-03-17 2014-03-17 土木材料及びその製造方法 Active JP6316626B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053003A JP6316626B2 (ja) 2014-03-17 2014-03-17 土木材料及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053003A JP6316626B2 (ja) 2014-03-17 2014-03-17 土木材料及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015175175A JP2015175175A (ja) 2015-10-05
JP6316626B2 true JP6316626B2 (ja) 2018-04-25

Family

ID=54254621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053003A Active JP6316626B2 (ja) 2014-03-17 2014-03-17 土木材料及びその製造方法

Country Status (1)

Country Link
JP (1) JP6316626B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803584B2 (ja) * 2016-07-21 2020-12-23 中国電力株式会社 石炭灰造粒物の製造方法及び水底改良方法
JP6720937B2 (ja) * 2017-08-03 2020-07-08 Jfeスチール株式会社 製鋼スラグ路盤材の製造方法
JP6766832B2 (ja) * 2018-02-10 2020-10-14 Jfeスチール株式会社 製鋼スラグ路盤材の製造方法
JP6766831B2 (ja) * 2018-02-10 2020-10-14 Jfeスチール株式会社 製鋼スラグ路盤材の製造方法
CN108570909B (zh) * 2018-05-15 2020-03-13 西南交通大学 一种粉细砂路基的填筑压实方法
CN112390559B (zh) * 2020-12-03 2021-09-28 宁夏吉元君泰新材料科技有限公司 一种利用锰硅合金热熔渣制备砂石骨料的方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934302A (ja) * 1982-08-20 1984-02-24 大同特殊鋼株式会社 路盤材および路盤工法
JPH06102561B2 (ja) * 1991-05-24 1994-12-14 合同製鐵株式会社 水硬性複合路盤材
JPH06305787A (ja) * 1993-04-21 1994-11-01 Denki Kagaku Kogyo Kk 製鋼スラグを利用した路盤材
US6387175B1 (en) * 2000-10-05 2002-05-14 Bethlehem Steel Corporation Roadway base intermediate, roadway base, and methods of manufacture
JP4204922B2 (ja) * 2003-07-25 2009-01-07 日新製鋼株式会社 路盤材およびその製造方法
JP2005154245A (ja) * 2003-11-27 2005-06-16 Iwata:Kk 高強度多孔質積みブロック
JP5068624B2 (ja) * 2007-10-19 2012-11-07 Jfeスチール株式会社 低置換サンドコンパクションパイル用材料の製造方法

Also Published As

Publication number Publication date
JP2015175175A (ja) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6316626B2 (ja) 土木材料及びその製造方法
CN101687700B (zh) 从炉渣材料开始制备用于柏油或混凝土的填料的方法
JP5765125B2 (ja) 簡易舗装材料及び簡易舗装方法
JP2016056089A (ja) 転圧コンクリート舗装材
JP5158026B2 (ja) 透水構造材
WO2014167874A1 (ja) 水和固化体の製造方法及び水和固化体
JP5975603B2 (ja) 高強度ポーラスコンクリート組成物および高強度ポーラスコンクリート硬化体
JP2006255609A (ja) 焼結物の製造方法及び焼結物
JP5081426B2 (ja) 石炭灰を原料とする粒状固化体の製造方法及びその装置
CN105174823A (zh) 一种沥青混凝土的填料及沥青混凝土
JP6181953B2 (ja) 砂代替材及びその製造方法
JP5668634B2 (ja) 膨張管理された鉄鋼スラグ水和固化体製人工石材およびその製造方法
JP5812623B2 (ja) 高強度ポーラスコンクリート組成物および高強度ポーラスコンクリート硬化体
JP2004155636A (ja) 鉱滓またはフライアッシュを主材料とする建築又は構築材料。
JP6642506B2 (ja) 固化体の製造方法
JP7114385B2 (ja) カルシア改質土の製造方法
JP2007008733A (ja) 保水性および透水性が調節可能な水分保水調節コンクリート製品
JP4204922B2 (ja) 路盤材およびその製造方法
JP6292257B2 (ja) 脱硫スラグを用いた水和固化体
JP2008280224A (ja) 製鋼スラグ固化体の製造方法、及び製鋼スラグ固化体
TWI740176B (zh) 水泥改質劑之製造方法及含有該水泥改質劑之機能性水泥材料
JP6442346B2 (ja) 固化材及び固化材の製造方法
JP2005139829A (ja) 透水性路盤材料、その製造方法及び透水性鋪装
JP6719987B2 (ja) セメント混和材、セメント組成物及びセメント硬化体
KR20160075958A (ko) 투수블럭 및 투수블럭의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180328

R150 Certificate of patent or registration of utility model

Ref document number: 6316626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250