JP6315078B2 - インピーダンス測定装置及びインピーダンス測定装置の制御方法 - Google Patents

インピーダンス測定装置及びインピーダンス測定装置の制御方法 Download PDF

Info

Publication number
JP6315078B2
JP6315078B2 JP2016503990A JP2016503990A JP6315078B2 JP 6315078 B2 JP6315078 B2 JP 6315078B2 JP 2016503990 A JP2016503990 A JP 2016503990A JP 2016503990 A JP2016503990 A JP 2016503990A JP 6315078 B2 JP6315078 B2 JP 6315078B2
Authority
JP
Japan
Prior art keywords
unit
phase
impedance
power supply
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016503990A
Other languages
English (en)
Other versions
JPWO2015125506A1 (ja
Inventor
青木 哲也
哲也 青木
酒井 政信
政信 酒井
充彦 松本
充彦 松本
英高 西村
英高 西村
雅士 佐藤
雅士 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2015125506A1 publication Critical patent/JPWO2015125506A1/ja
Application granted granted Critical
Publication of JP6315078B2 publication Critical patent/JP6315078B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/14Measuring resistance by measuring current or voltage obtained from a reference source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04649Other electric variables, e.g. resistance or impedance of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Fuel Cell (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

この発明は、積層電池のインピーダンスを測定するインピーダンス測定装置及びインピーダンス測定装置の制御方法に関する。
WO2012077450には、積層電池から負荷に電力を供給した状態で、燃料電池の内部抵抗を測定する装置が提案されている。
この測定装置は、積層電池に接続された負荷側に電流が漏れ出ないように、積層電池の正極端子及び負極端子に同一の交流電流を出力する。そして、積層電池の正極端子の電位から、正極端子と負極端子との間に位置する中途点端子の電位を引いた正極側の電位差と、負極端子の電位から上記中途点端子の電位を引いた負極側の電位差とが一致するように、夫々の電極端子に出力される交流電流の振幅を調整する。そして調整された交流電流と電位差とに基づいて積層電池の内部抵抗が測定される。
積層電池の中には、燃料電池のように内部に静電容量成分を有しているものがある。燃料電池の静電容量成分は、燃料電池システムの運転状態によって変動する場合がある。このような場合には、正極側の静電容量と負極側の静電容量との差が大きくなり、正極側の電位差を示す検出信号と負極側の電位差を示す検出信号との間には位相差が生じる。
正極側及び負極側の検出信号間に位相ズレが生じた状態では、測定装置から燃料電池へ出力される交流電流の一部が負荷の方へ漏れ出してしまい、インピーダンスの測定精度が悪くなるという問題がある。
本発明は、このような問題点に着目してなされたものであり、積層電池の静電容量成分に起因するインピーダンスの測定精度が低下するのを抑制するインピーダンス測定装置を提供することを目的とする。
本発明によるインピーダンス測定装置のひとつの態様は、複数の電池セルが積層された積層電池の正極端子に対して積層電池のインピーダンスを測定するための所定周波数の交流電流を出力する第1電源部と、積層電池の負極端子に対して所定周波数の交流電流を出力する第2電源部と、を含む。そして正極端子と積層電池の中途点端子との間の交流電位差を検出する第1検出部と、負極端子と中途点端子との間の交流電位差を検出する第2検出部と、を含む。さらに第1検出部により検出される交流電位差と、第2検出部により検出される交流電位差とが一致するように、第1電源部及び第2電源部のうちの少なくとも一方から出力される交流電流の振幅を調整する調整部と、調整部により調整された交流電流と交流電位差とに基づいて、積層電池のインピーダンスを演算する演算部とを含む。このインピーダンス測定装置は、正極端子に生じる交流電位と負極端子に生じる交流電位との位相差に基づいて、第1電源部及び第2電源部から出力される交流電流の位相差を修正する修正部を含むことを特徴とする。
図1Aは、本発明の第1実施形態におけるインピーダンス測定装置により測定される積層電池の一例を示す外観斜視図である。 図1Bは、積層電池に積層される発電セルの構造を示す分解図である。 図2は、インピーダンス測定装置の基本構成を示す図である。 図3は、直流遮断部と電位差検出部とを示す図である。 図4は、積層電池の正極及び負極に交流電流を出力する電源部を示す図である。 図5は、正極及び負極の交流電流を調整する交流調整部の詳細と位相差検出部とを示す図である。 図6は、交流調整部に設けられる正極側検波回路の詳細を示す図である。 図7は、正極側及び負極側の交流電位差の位相差を示す図である。 図8は、位相差が生じたときに負荷の方に漏れ出す交流電流を示す図である。 図9は、積層電池のインピーダンスを演算する演算部の詳細を示す図である。 図10は、位相差に対する許容値を決定する手法の一例を示す図である。 図11は、交流調整部による等電位制御の方法を示すフローチャートである。 図12は、等電位制御を実行しているときのタイムチャートである。 図13は、位相差が生じていないときの正極及び負極の電位を示す図である。 図14は、位相差に基づいてインピーダンス測定装置の測定状態が不良であることを検知する検知方法を示すフローチャートである。 図15は、本発明の第2実施形態における位相差検出部を示す図である。 図16Aは、正極及び負極の電源部に対する電流指令値が相反する方向に変化したことを判断する手法を示す図である。 図16Bは、正極側電流指令値及び負極側電流指令値の各時間変化率の絶対差分と測定状態との関係を示す図である。 図17は、正極及び負極の電流指令値の差分に基づいて測定状態を診断する診断方法を示すフローチャートである。 図18は、本発明の第3実施形態における位相差検出部を示す図である。 図19は、位相差検出部の詳細を示す図である。 図20は、本発明の第4実施形態における位相差検出部を示す図である。 図21は、本発明の第6実施形態における位相修正部を示す図である。 図22は、位相可変電源部を備えるインピーダンス測定装置を示す図である。 図23は、正極側交流電流の位相を遅らせる方向に修正したときの図である。 図24は、本発明の第7実施形態におけるインピーダンス測定装置を示す図である。 図25は、本発明の第8実施形態における測定誤差を修正する手法を説明するための図である。 図26は、内部抵抗を補正する補正処理方法を示すフローチャートである。 図27は、本発明の第9実施形態における演算部の構成を示す図である。 図28は、正極側及び負極側の交流電位差の位相差の一例を示す図である。 図29Aは、正極側及び負極側のインピーダンスの位相の一例を示す図である。 図29Bは、正極側及び負極側のインピーダンスの位相の一例を示す図である。 図29Cは、正極側及び負極側のインピーダンスの位相の一例を示す図である。 図30は、位相の修正に起因する誤差の補正を説明するための図である。 図31は、位相の修正に起因する誤差の補正方法を示すフローチャートである。 図32は、修正量と補正後のインピーダンスとの関係の一例を示す図である。 図33は、本発明の第10実施形態における演算部の構成を示す図である。 図34は、位相の調整に起因する誤差の他の補正方法を示すフローチャートである。 図35は、交流電流の周波数とインピーダンスとの関係を説明するための図である。 図36は、本発明の第11実施形態における演算部の構成を示す図である。 図37は、本発明の第12実施形態におけるインピーダンス測定装置を示す図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。
(第1実施形態)
図1Aは、本発明の第1実施形態におけるインピーダンス測定装置により測定される積層電池の一例を示す外観斜視図である。図1Aでは、積層電池の一例として、複数の電池セルが積層された燃料電池スタック1が示されている。
図1Aに示されるように、燃料電池スタック1は、複数の発電セル10と、集電プレート20と、絶縁プレート30と、エンドプレート40と、4本のテンションロッド50とを備える。
発電セル10は、いわゆる電池セルのことであり、燃料電池スタック1に積層された燃料電池のうちのひとつを指す。発電セル10は、例えば1ボルト(V)程度の起電圧を生じる。発電セル10の詳細な構成については図1Bを参照して後述する。
集電プレート20は、積層された発電セル10の外側にそれぞれ配置される。集電プレート20は、ガス不透過性の導電性部材、例えば緻密質カーボンで形成される。集電プレート20は、正極端子211及び負極端子212を備える。また正極端子211と負極端子212との中間には中途点端子213が設けられる。中途点端子213は、正極端子211から負極端子212へ積層された発電セル10のうち中間に位置する電池セル10に接続されている。なお、中途点端子213は、正極端子211と負極端子212との中点から外れた位置であってもよい。燃料電池スタック1の負極端子212から、発電セル10で生じた電子e-が取り出される。
絶縁プレート30は、集電プレート20の外側にそれぞれ配置される。絶縁プレート30は、絶縁性の部材、例えばゴムなどで形成される。
エンドプレート40は、絶縁プレート30の外側にそれぞれ配置される。エンドプレート40は、剛性のある金属材料、例えば鋼などで形成される。
一方のエンドプレート40(図1Aでは、左手前のエンドプレート40)には、アノード供給口41aと、アノード排出口41bと、カソード供給口42aと、カソード排出口42bと、冷却水供給口43aと、冷却水排出口43bとが設けられている。本実施形態では、アノード排出口41b、冷却水排出口43b及びカソード供給口42aは図中右側に設けられている。またカソード排出口42b、冷却水供給口43a及びアノード供給口41aは図中左側に設けられている。
テンションロッド50は、エンドプレート40の四隅付近にそれぞれ配置される。燃料電池スタック1は内部に貫通した孔(不図示)が形成されている。この貫通孔にテンションロッド50が挿通される。テンションロッド50は、剛性のある金属材料、例えば鋼などで形成される。テンションロッド50は、発電セル10同士の電気短絡を防止するため、表面には絶縁処理されている。このテンションロッド50にナット(奥にあるため図示されない)が螺合する。テンションロッド50とナットとが燃料電池スタック1を積層方向に締め付ける。
アノード供給口41aにアノードガスとしての水素を供給する方法としては、例えば水素ガスを水素貯蔵装置から直接供給する方法、又は水素を含有する燃料を改質して改質した水素含有ガスを供給する方法などがある。なお、水素貯蔵装置としては、高圧ガスタンク、液化水素タンク、水素吸蔵合金タンクなどがある。水素を含有する燃料としては、天然ガス、メタノール、ガソリンなどがある。また、カソード供給口42aに供給するカソードガスとしては、一般的に空気が利用される。
図1Bは、燃料電池スタック1に積層された発電セルの構造を示す分解図である。
図1Bに示されるように、発電セル10は、膜電極接合体(Membrane Electrode Assembly;MEA)11の両面に、アノードセパレーター(アノードバイポーラープレート)12a及びカソードセパレーター(カソードバイポーラープレート)12bが配置される構造である。
MEA11は、イオン交換膜からなる電解質膜111の両面に電極触媒層112が形成される。この電極触媒層112の上にガス拡散層(Gas Diffusion Layer;GDL)113が形成される。
電極触媒層112は、例えば白金が担持されたカーボンブラック粒子で形成される。
GDL113は、十分なガス拡散性及び導電性を有する部材、例えばカーボン繊維で形成される。
アノード供給口41aから供給されたアノードガスは、このGDL113aを流れてアノード電極触媒層112(112a)と反応し、アノード排出口41bから排出される。
カソード供給口42aから供給されたカソードガスは、このGDL113bを流れてカソード電極触媒層112(112b)と反応し、カソード排出口42bから排出される。
アノードセパレーター12aは、GDL113a及びシール14aを介してMEA11の片面(図1Bの裏面)に重ねられる。カソードセパレーター12bは、GDL113b及びシール14bを介してMEA11の片面(図1Bの表面)に重ねられる。シール14(14a,14b)は、例えばシリコーンゴム、エチレンプロピレンゴム(ethylene propylene diene monomer;EPDM)、フッ素ゴムなどのゴム状弾性材である。アノードセパレーター12a及びカソードセパレーター12bは、例えばステンレスなどの金属製のセパレーター基体がプレス成型されて、一方の面に反応ガス流路が形成され、その反対面に反応ガス流路と交互に並ぶように冷却水流路が形成される。図1Bに示すようにアノードセパレーター12a及びカソードセパレーター12bが重ねられて、冷却水流路が形成される。
MEA11、アノードセパレーター12a及びカソードセパレーター12bには、それぞれ孔41a,41b,42a,42b,43a,43bが形成されており、これらが重ねられて、アノード供給口41a、アノード排出口41b、カソード供給口42a、カソード排出口42b、冷却水供給口43a及び冷却水排出口43bが形成される。
図2は、本実施形態におけるインピーダンス測定装置5の基本構成を示す図である。
インピーダンス測定装置5は、例えば車両に搭載された燃料電池スタック1の内部インピーダンスを測定する。燃料電池スタック1は、車両に搭載された負荷3と接続されている。負荷3は、電動モータや、燃料電池スタック1の発電のために使用される補機などである。コントロールユニット(C/U)6は、インピーダンス測定装置5で測定された測定結果に基づいて、負荷3の作動状態、及び、燃料電池スタック1の発電状態や湿潤状態などの運転状態を制御する。
インピーダンス測定装置5は、正極側直流遮断部511と、負極側直流遮断部512と、中途点直流遮断部513と、正極側電位差検出部521と、負極側電位差検出部522と、正極側電源部531と、負極側電源部532と、交流調整部540と、演算部550とを含む。
正極側直流遮断部511、負極側直流遮断部512、中途点直流遮断部513、正極側電位差検出部521、及び、負極側電位差検出部522の詳細については、図3を参照して説明する。
正極側直流遮断部511は、燃料電池スタック1の正極端子211に接続される。負極側直流遮断部512は、燃料電池スタック1の負極端子212に接続される。中途点直流遮断部513は、燃料電池スタック1の中途点端子213に接続される。直流遮断部511〜513は、直流信号を遮断するが交流信号を流す。直流遮断部511〜513は、例えばコンデンサーやトランスである。なお、波線で示している中途点直流遮断部513は、設けなくてもよい。
正極側電位差検出部521は、正極端子211に生じる交流電位Vaと、中途点端子213に生じる交流電位Vcとの電位差(以下、「交流電位差V1」という。)を検出する。正極側電位差検出部521は、交流電位差V1に応じて信号レベルが変化する検出信号を演算部550に出力する。
負極側電位差検出部522は、負極端子212に生じる交流電位Vbと、中途点端子213に生じる交流電位Vcとの電位差(以下「交流電位差V2」と称する。)を検出する。負極側電位差検出部522は、交流電位差V2に応じて信号レベルが変化する検出信号を演算部550に出力する。正極側電位差検出部521及び負極側電位差検出部522は、例えば差動アンプ(計装アンプ)により実現される。
正極側電源部531及び負極側電源部532の詳細については、図4を参照して説明する。
正極側電源部531は、基準周波数fbの交流電流を出力する第1電源部である。正極側電源部531は、例えばオペアンプ(OPアンプ)などの電圧電流変換回路によって実現される。この電圧電流変換回路によって、入力電圧Viに比例した電流Ioが出力される。なおIo=Vi/Rsであり、Rsは電流センシング抵抗である。この電圧電流変換回路は、入力電圧Viに応じて出力電流Ioを調整可能な可変交流電流源である。
電圧電流変換回路を正極側電源部531として使用することにより、出力電流Ioを実測しなくても、入力電圧Vi÷比例定数Rsで出力電流Ioを演算できるので、入力電圧Viを検出すれば出力電流Ioを求めることができる。また、電圧電流変換回路の出力が電流なので、電流経路にコンデンサーのような位相角が生じる素子が介在しても、積層セル群を流れる交流電流と正極側電源部531の出力電流とは同位相になる。さらには入力電圧Viとも同位相になる。したがって次段の抵抗算出において交流電流の位相ズレを考慮する必要がなく回路が簡素である。さらに、電流経路中のコンデンサーのインピーダンスがばらついても、交流電流の位相変化の影響を受けない。このようなことから、正極側電源部531として図4に示すような回路を用いることが好適である。負極側電源部532についても同様の構成である。すなわち負極側電源部532は、基準周波数fbの交流電流を出力する第2電源部である。
交流調整部540の詳細については、図5を参照して説明する。
交流調整部540は、正極側の交流電位Vaと負極側の交流電位Vbとが一致するように、正極側電源部531及び負極側電源部532のうち少なくとも一方から出力される交流電流の振幅を調整する。
本実施形態では交流調整部540は、正極側の交流電位差V1と負極側の交流電位差V2とが共に所定の値となるように、正極側電源部531から出力される交流電流の振幅と、負極側電源部532から出力される交流電流の振幅との両方を増減させる。交流調整部540は、例えばPI(Proportional Integral)制御回路によって実現される。
また交流調整部540は、正極側電源部531及び負極側電源部532に対する指令信号を、正極側電源部531及び負極側電源部532から出力される交流電流I1及びI2として演算部550にそれぞれ出力する。
交流調整部540は、正極側検波回路5411と、正極側減算器5421と、正極側積分回路5431と、正極側乗算器5441と、負極側検波回路5412と、負極側減算器5422と、負極側積分回路5432と、負極側乗算器5442と、を含む。
さらに交流調整部540は、基準電源545及び交流信号源546を備える。基準電源545は、ゼロ(0)Vを基準に定められた電位差(以下、「基準電圧Vs」という。)を出力する。基準電圧Vsは、正極側の交流電位差V1と正極側の交流電位差V2とを一致させるために予め定められた値である。交流信号源546は、基準周波数fbの交流信号を発振させる発振源である。基準周波数fbは、燃料電池スタック1の内部インピーダンスを測定するのに適した所定の周波数に設定される。
正極側検波回路5411は、直流遮断部511と正極側電源部531との間を接続した信号線に生じる交流電位Vaから、不要信号を除去すると共に、交流電位Vaを交流電位Vaの振幅に比例した直流信号に変換する。例えば、正極側検波回路5411は、直流信号として、交流電位差V1の平均値又は実効値を出力する。
本実施形態では、正極側検波回路5411は同期検波回路により実現される。正極側検波回路5411は、正極側電源部531の出力端子に生じる交流電位Vaから、交流電位差V1の実軸成分V1r及び虚軸成分V1xを抽出する。そして正極側検波回路5411は、交流電位差V1の実軸成分V1rを正極側減算器5421に出力する。実軸成分V1rは、交流電位差V1の平均値や実効値に相当する値であり、交流電流I1に対して交流電位差V1の位相が遅れるほど、実軸成分V1rの値は小さくなる。正極側検波回路5411の詳細については図6を参照して後述する。
正極側減算器5421は、正極側検波回路5411から出力される交流電位差V1の実軸成分V1rから基準電圧Vsを減算することにより、基準電圧Vsから実軸成分V1rのズレ幅を示す差分信号を算出する。例えば、基準電圧Vsからのズレ幅が大きくなるほど、差分信号の信号レベルは大きくなる。
正極側積分回路5431は、正極側減算器5421から出力された差分信号を積分することにより、差分信号を平均化又は感度調節する。そして正極側積分回路5431は、積分された差分信号を、正極側電流指令値I1cとして正極側乗算器5451に出力する。
正極側乗算器5441は、交流信号源546から出力される基準周波数fbの交流信号に正極側電流指令値I1cを乗算することにより、交流電位差V1を基準電圧Vsに収束させる交流電流I1の指令信号を出力する。正極側乗算器5441によって、正極側電流指令値I1cが大きくなるほど、指令信号の振幅は大きくなる。正極側乗算器5451は、その交流電流I1の指令信号を正極側電源部531に出力する。交流電流I1の指令信号として正極側電源部531に入力される交流電圧信号Viは、正極側電源部531によって交流電流信号Ioに変換されて燃料電池スタック1の正極端子211へ出力される。
なお、負極側検波回路5412、負極側減算器5422、負極側積分回路5432及び負極側乗算器5442は、それぞれ、正極側検波回路5411、正極側減算器5421、正極側積分回路5431及び正極側乗算器5441と基本的に同じ構成である。
図6は、正極側検波回路5411の構成の一例を示す図である。
正極側検波回路5411は、同相成分抽出部710及び直交成分抽出部720を備える。
同相成分抽出部710は、正極側電源部531から出力される交流電流I1と同じ周波数成分を検出するための同相信号Sin(0)を、正極側電源部531からの交流電位Vaに乗算することにより、交流電位差V1の実軸成分V1rを抽出する。
同相信号Sin(0)は、基準周波数fbの交流信号であって、正極側電源部531から出力される交流電流と位相が同じ交流信号である。同相信号Sin(0)は、例えば交流信号源546から同相成分抽出部710に入力される。
同相成分抽出部710は、同相乗算部711及び同相低域フィルタ712を備える。
同相乗算部711は、正極側の交流電位Vaに同相信号Sin(0)を乗算する。これにより、同相乗算部711からは、交流電位Vaの波形と、同相信号Sin(0)の波形との一致度合いに応じた同相交流信号が出力される。例えば、交流電位Vaと同相信号Sin(0)の位相が完全に一致している場合には、全波整流波形の同相交流信号が出力される。また交流電位Vaと同相信号Sin(0)との波形の一致度合いが大きいほど、実軸成分V1rは大きくなる。
同相低域フィルタ712は、同相交流信号の直流成分を、実軸成分V1rとして検出する。本実施形態では、同相低域フィルタ712は、同相交流信号の交流成分、すなわち高周波領域成分を除去して同相交流信号の直流成分を通過させるローパスフィルタ(LPF)により実現される。同相低域フィルタ712によって平滑化された同相交流信号は、正極側減算器5421及び位相差検出部561に入力される。
このように同相成分抽出部710は、正極側電源部531の出力電流I1と同じ位相である同相信号Sin(0)を交流電位Vaに乗算することにより交流電位差Vaを整流する。これにより、交流電位Vaから、実軸成分V1rとして正極側電源部531の出力電流I1と周波数が同じで位相が同じ交流信号のみを抽出できる。このため、交流電位Vaがノイズに埋もれていても、確実に実軸成分V1rを検出することができる。
直交成分抽出部720は、交流電位Vaと交流電位Vbとの位相差を検出するために設けられている。
直交成分抽出部720は、正極側電源部531の出力電流I1と同じ周波数で位相が直交する成分を検出するための直交信号Sin(90)を、交流電位Vaに乗算することにより、交流電位差V1の虚軸成分V1xを抽出する。
直交信号Sin(90)は、基準周波数fbの交流信号であって、正極側電源部531の出力電流に対して位相が90度だけ進み、かつ、同相信号Sin(0)と振幅が同じ交流信号である。直交信号Sin(90)は、例えば交流信号源546の位相を90度回転させて直交成分抽出部720に入力される。
直交成分抽出部720は、直交乗算部721及び直交低域フィルタ722を備える。
直交乗算部721は、交流電位Vaに直交信号Sin(90)を乗算する。これにより、直交乗算部721からは、交流電位Vaの波形と直交信号Sin(90)の波形との一致度合いに応じた直交交流信号が出力される。
直交低域フィルタ722は、直交交流信号の直流成分を、虚軸成分V1xとして検出する。本実施形態では、直交低域フィルタ722は、直交交流信号の交流成分、すなわち高周波領域成分を除去して直交交流信号の直流成分を通過させるローパスフィルタにより実現される。直交低域フィルタ722によって平滑化された直交交流信号は、検出信号の虚軸成分V1xとして位相差検出部561に入力される。
このように直交成分抽出部720は、直交信号Sin(90)を交流電位Vaに乗算して整流する。これにより、交流電位Vaから、虚軸成分V1xとして正極側電源部531の出力電流と同じ周波数で位相が90度進んでいる交流信号のみを抽出することができる。このため、交流電位Vaがノイズに埋もれていても、虚軸成分V1xを確実に検出することができる。
以上のように、正極側検波回路5411は、交流電位Vaに基づいて交流電位差V1の実軸成分V1r及び虚軸成分V1xを検出する。そして正極側検波回路5411は、正極側電源部531から出力される交流電流の振幅をフィードバックするために実軸成分V1rを正極側減算器5421に出力する。また正極側検波回路5411は、燃料電池スタック1の正極端子211及び負極端子212に生じる交流電位の位相差を検出するために位相差検出部561へ交流電位差V1の虚軸成分V1xを出力する。
なお、本実施形態では交流電位差V1の実軸成分V1rを正極側減算器5421に出力する例について説明したが、交流電位Vaから交流電位差V1のベクトル値V1pを求めて正極側減算器5421に出力するようにしてもよい。具体的には、次式のとおり、実軸成分V1rの二乗値と虚軸成分V1xの二乗値との和の平方根を演算してベクトル値Vp1が求められる。
Figure 0006315078
また、本実施形態では正極側電源部531の出力端子に生じる交流電位Vaから、交流電位差V1の実軸成分V1r及び虚軸成分V1xを抽出する例について説明した。しかし、交流電位Vaの代わりに正極側電位差検出部521の出力信号から、交流電位差V1の実軸成分V1r及び虚軸成分V1xを抽出してもよい。例えば、正極側電位差検出部521から出力される交流電位差V1を示す検出信号に対して同相信号Sin(0)を乗算することにより、交流電位差V1の実軸成分V1rを検出することができる。
上述のとおり、交流調整部540は、交流電位Vaから抽出した交流電位差V1の実軸成分V1rが基準電圧Vsとなるように、正極側電源部531から出力される交流電流の振幅を調整する。同様に交流調整部540は、交流電位Vbから抽出した交流電位差V2の実軸成分V2rが基準電圧Vsとなるように、負極側電源部532から出力される交流電流の振幅を調整する。
このため、交流電位Va及び交流電位Vbが互いに同じレベルに制御されるので、正極端子211に重畳される交流電位の振幅と、負極端子212に重畳される交流電位の振幅とが互いに等しくなる。これにより、インピーダンス測定装置5から燃料電池スタック1を介して負荷3に交流電流が漏れ出るのを防ぐことができる。なお、以下では、交流電位Vaと交流電位Vbとが等電位となるようなに、正極側電源部531及び負極側電源部532を制御することを「等電位制御」という。
しかしながら、発電セル10は、等価的に抵抗成分の他に静電容量(キャパシタンス)成分を有しているので、燃料電池スタック1の内部で合成される静電容量成分によって、等電位制御が正しく機能しなくなる場合がある。以下に等電位制御が正しく機能しなくなる場合について説明する。
燃料電池スタック1の等価回路は、図2に示したように、正極側の内部抵抗R1及び負極側の内部抵抗R2と、正極側の静電容量C1及び負極側の静電容量C2とが並列に接続された回路として表すことができる。そして、この静電容量C1と静電容量C2は、燃料電池スタック1の運転状態や負荷3の運転状態などによって、大きく変化することを発明者は知見した。
例えば、燃料電池スタック1の発電中に負荷3から要求される電力が急峻に増加し、燃料電池スタック1から取り出す出力電流が増大するときには、燃料電池スタック1内のアノードガス及びカソードガスのガス濃度が上昇する。これに伴い静電容量C1と静電容量C2が変化して、交流電位差V1を示す検出信号と交流電位差V2を示す検出信号との間の位相差Φが大きくなる。
図7は、交流電位差V1及びV2を示す検出信号間の位相ズレを説明するための図である。
図7には、交流電位差V1を表わすベクトル611と、交流電位差V2を表わすベクトル612と、ベクトル611からベクトル612を引いた電位差Veを表わす差分ベクトル613とが示されている。また、一点破線によって検出信号の振幅が示されている。
なお、横軸が、交流電流I1及びI2を基準とした交流電位差V1及びV2の実軸成分を示し、縦軸が、交流電位差V1及びV2の虚軸成分を示している。
図7では、ベクトル611及びベクトル612の大きさが基準電圧Vsに調整されており、燃料電池スタック1又は負荷3の運転状態によって、静電容量C2のリアクタンスが静電容量C1よりも小さくなったときのベクトル611及びベクトル612が示されている。
ベクトル611は、静電容量C1によって、交流電流I1に対し位相角θ1だけ遅れている。ベクトル611の実軸成分V1rは、交流電流I1と内部抵抗R1とを乗算した値である。虚軸成分V1xは、交流電流I1と容量リアクタンスX1cとを乗算した値である。なお、容量リアクタンスX1cは、交流電流I1の角速度ωと静電容量C1とを乗算した値の逆数である。
ベクトル612は、静電容量C2によって、交流電流I2に対し位相角θ2だけ遅れている。ベクトル612の実軸成分V2rは、交流電流I2と内部抵抗R2とを乗算した値である。虚軸成分V2xは、交流電流I2と容量リアクタンスX2cとを乗算した値である。なお、容量リアクタンスX1cは、交流電流I2の角速度ωと静電容量C2とを乗算した値の逆数である。
ここでベクトル611の位相角θ1がベクトル612の位相角θ2よりも小さくなる場合について説明する。
燃料電池スタック1では、図1に示したようにアノード排出口41bは正極端子211側に設けられている。例えば、アノード排出口41bから窒素などの不純物ガスを排出するためのパージ弁が設けられた燃料電池システムでは、アノード排出口41bの付近、すなわち正極端子211側に不純物ガスが蓄積されやすい。このため、正極端子211から中途点端子213まで積層された発電セル群の水素濃度は、中途点端子213から負極端子212まで積層された発電セル群の水素濃度よりも低くなることがある。
このような状況では、燃料電池スタック1内の水素濃度が低くなるほど、交流電流に対する発電セル10が有する静電容量成分は小さくなるので、静電容量C1が静電容量C2よりも小さくなる。その結果、図7に示したようにベクトル611の位相角θ1がベクトル612の位相角θ2よりも小さくなり、交流電位差V1を示す検出信号と交流電位差V2を示す検出信号との間には位相差Φが生じる。
図8は、交流電位差V1及びV2を示す検出信号間に位相差Φが生じたときの負荷3に漏れ出す交流電流を示す観念図である。
図8(a)は、図7に示したベクトル611の交流電位差V1、及びベクトル612の交流電位差V2の波形を示す図である。図8(b)は、差分ベクトル613の交流電位差Veの波形を示す図である。図8(a)及び図8(b)では、縦軸が共に振幅を示し、横軸は互いに共通の時間軸である。
図8(a)に示すように、交流電位差V1と交流電位差V2との間には、ベクトル611の位相角θ1とベクトル612の位相角θ2との位相差Φが生じている。このような場合には、図8(b)に示すように、燃料電池スタック1の正極端子211と負極端子212との間には、交流電位差Veが生じる。
交流電位差Veによって、正極側電源部531及び負極側電源部532から燃料電池スタック1へ出力される交流電流I1又はI2の一部が、燃料電池スタック1を流れずに負荷3の方に漏れ出す。ここでは、負極側電源部532から出力される交流電流I2の一部が燃料電池スタック1の負極端子212から負荷3の方に漏れ出す。
負荷3に交流電流I2の一部が漏れ出すと、例えば内部抵抗R2を演算するために用いられる電流指令値I2と、抵抗成分R2に実際に流れる電流の実際値とに誤差が生じるので、算出される内部抵抗R2の誤差が大きくなってしまう。位相差Φが大きくなるほど、負荷3に漏れ出す電流量も多くなるため、内部抵抗R2の測定精度が低下する。
このため、燃料電池スタック1の運転状態によって静電容量C1又は静電容量C2が変動して、交流電位差V1及びV2の検出信号間に位相差Φが生じた状態では、内部抵抗R1及びR2の測定結果に含まれる誤差が許容範囲を超えてしまうことがある。
このような測定状態であっても、正極側検波回路5411及び負極側検波回路5412から出力される検出信号の信号レベルは、いずれも等電位制御によって一定の値を示すことになる。そのため、インピーダンス測定装置5の測定状態が不良であることが検知されずに、インピーダンスの測定が行われてしまう。
そこで本発明の実施形態では、燃料電池スタック1の静電容量成分に起因する正極端子211及び負極端子212の双方に供給される交流電位の位相差を検出し、その位相差に基づいて、インピーダンスを測定している測定状態が不良か否かを診断する。
第1実施形態では、図5に示した位相差検出部561及び判定回路562により実現される。
位相差検出部561は、燃料電池スタック1の正極端子211に生じる交流電位と負極端子212に生じる交流電位との間の位相差を検出する回路である。位相差検出部561は、正極側検波回路5411から出力される交流電位差V1の検出信号と、負極側検波回路5412から出力される交流電位差V2の検出信号とに基づいて、交流電位差V1と交流電位差V2との間の位相差を算出する。
具体的には、位相差検出部561は、次式に従って、正極側検波回路5411から出力される交流電位差V1の実軸成分V1r及び虚軸成分V1xを用いて、交流電位差V1の位相角θ1を演算する。
Figure 0006315078
さらに位相差検出部561は、次式に従って、負極側検波回路5412から出力される交流電位差V2の実軸成分V2r及び虚軸成分V2xを用いて、交流電位差V2の位相角θ2を演算する。
Figure 0006315078
そして位相差検出部561は、次式のとおり、交流電位差V1の位相角θ1から交流電位差V2の位相角θ2を減算した値を、正極端子211に生じる交流電位と負極端子に生じる交流電位との間の位相差Φとして算出して、判定回路562に出力する。
Figure 0006315078
判定回路562は、位相差検出部561から出力される位相差Φと、予め定められた許容値Th1とを比較して、内部抵抗R1及びR2を測定している測定状態が不良であるか否かを診断する。
位相差Φの許容値Th1は、測定誤差を許容できる範囲内の上限値、すなわち閾値であり、実験データ等によって設定される。なお、許容値Th1の決定手法については図10を参照して後述する。
本実施形態では、判定回路562は、位相差Φが許容値Th1よりも大きい場合、又は、位相差Φが許容値Th1と等しい場合には、位相差Φが原因で等電位制御が不良であと判断し、測定状態が不良である旨を示すH(High)レベルの判定信号を生成する。
一方、判定回路562は、位相差Φが許容値Th1よりも小さい場合には、測定状態が不良でない旨を示すL(Low)レベルの判定信号を生成する。そして判定回路562は、生成した判定信号を、コントローラーユニット6又は演算部550に出力する。
演算部550の詳細については、図9を参照して説明する。
演算部550には、正極側電位差検出部521及び負極側電位差検出部522から出力される交流電位差V1及びV2を示す検出信号と、正極側電源部531及び負極側電源部532に対する交流電流I1及びI2の指令信号とが入力される。すなわち、演算部550は、交流電流I1及びI2の検出値と、交流電位差V1及びV2の検出値とを取得する。
演算部550は、交流電位差V1及びV2と、交流電流I1及びI2とに基づいて、燃料電池スタック1の内部インピーダンスを演算する。
例えば、演算部550は、正極側電位差検出部521からの検出信号に基づいて交流電位差V1の実軸成分及び虚軸成分を演算するとともに、負極側電位差検出部522からの検出信号に基づいて交流電位差V2の実軸成分及び虚軸成分を演算する。
本実施形態では、演算部550は、交流電位差V1の実軸成分を交流電流I1により除算することによって内部抵抗R1を算出し、交流電位差V2の実軸成分を交流電流I2により除算することによって内部抵抗R2を算出する。なお、演算部550は、交流電位差V1及びV2の虚軸成分を用いて静電容量C1及びC2を算出してもよい。
なお、演算部550は、正極側電位差検出部521及び負極側電位差検出部522からの検出信号に基づいて交流電位差V1及びV2の平均値又は実効値を求め、交流調整部540からの指令信号に基づいて交流電流I1及びI2の平均値又は実効値を求めるようにしてもよい。そして演算部550は、交流電位差V1の平均値又は実効値を、交流電流I1の平均値又は実効値により除算して内部抵抗R1を算出し、交流電位差V2の平均値又は実効値を、交流電流I2の平均値又は実効値により除算して内部抵抗R1を算出する。
演算部550は、AD(Analog Digital)変換器551及びマイコンチップ552を備える。
AD変換器551は、アナログ信号である交流電流の指令信号(I1,I2)及び交流電位差の検出信号(V1,V2)をデジタル数値信号に変換し、マイコンチップ552に転送する。
マイコンチップ552は、内部抵抗Rn及び燃料電池スタック1全体の内部抵抗Rを算出するプログラムを予め記憶している。マイコンチップ552は、所定の微小時間間隔で順次演算し、又は、コントローラーユニット6の要求に応じて演算結果を出力する。なお内部抵抗Rn及び燃料電池スタック1全体の内部抵抗Rは、次式で演算される。
Figure 0006315078
演算部550は、アナログ演算ICを用いたアナログ演算回路で実現してもよい。アナログ演算回路によれば、時間的に連続した抵抗値の変化をコントローラーユニット6に出力することができる。
コントローラーユニット6は、インピーダンスの測定結果として演算部550から出力される内部抵抗Rを取得すると共に、測定状態の判定結果として判定回路562から出力される判定信号を取得する。判定信号は、例えば演算部550を介してコントローラーユニット6に入力される。
コントローラーユニット6は、内部抵抗Rの測定結果に応じて、燃料電池スタック1の運転状態を制御する。例えばコントローラーユニット6は、内部抵抗Rが高い場合には、燃料電池スタック1の電解質膜が乾いた状態であると判断し、燃料電池スタック1に供給されるカソードガスの流量を減らす。これにより、燃料電池スタック1から持ち出される水分量を減少させることができる。
本実施形態では、コントローラーユニット6は、静電容量C1と静電容量C2とのバランスが崩れ、交流電位差V1及びV2の位相差Φが大きくなって判定信号がHレベルになると、測定状態が不良であると判定して内部抵抗Rの測定結果を破棄する。
そしてコントローラーユニット6は、判定信号がLレベルからHレベルに切り替わる前に演算部550で演算された内部抵抗Rを測定結果として設定し、判定信号がLレベルに戻るまで測定結果を固定する。
具体的には、コントローラーユニット6は、所定のサンプリング周期で内部抵抗Rを取得するたびに、その抵抗値を不図示のメモリに時系列に記録し、特定の期間だけメモリに保持する。そしてコントローラーユニット6は、判定信号がLレベルからHレベルに切り替わった時点でメモリに保持された複数の抵抗値に基づいて、測定結果として用いられる固定値を算出する。固定値としては、例えば、メモリに保持された複数の抵抗値を平均した平均値や、複数の抵抗値のうち最後にメモリに記録された最新の値などが用いられる。
なお、ここではインピーダンス測定装置5の測定状態が不良であると判定した場合には内部抵抗Rの測定結果を破棄する例について説明したが、破棄せずに測定不良を示す符号や位相差検出部561で検出された位相差Φなどを測定結果に付した測定データを生成するようにしてもよい。コントローラーユニット6には、燃料電池スタック1のカソードガス供給流量や、アノードガス供給流量、冷却水温度などを制御するための制御ブロックが複数存在し、仮に制御ブロックごとに要求される内部抵抗Rの測定精度が異なる場合には、測定データに付された符号に応じて測定結果の取り扱いを変えることが可能となる。
また、本実施形態では、交流調整部540に判定回路562を設ける例について説明したが、これに限られるものではない。
例えば、位相差検出部561によって検出される位相差Φをコントローラーユニット6に直接入力し、コントローラーユニット6が、インピーダンス測定装置5の測定状態が不良か否かを診断するようにしてもよい。あるいは、位相差Φを演算部550に入力し、演算部550が、測定状態の診断を行い、測定不良と判定された場合に演算結果を破棄して測定不良と判定される前の測定結果をコントローラーユニット6に出力するようにしてもよい。
さらに、本実施形態では、位相差検出部561において交流電位差V1と交流電位差V2の位相差Φを演算する例について説明したが、演算部550において位相差Φを求めても良い。
具体的には、正極側検波回路5411から出力される実軸成分V1r及び虚軸成分V1xと、負極側検波回路5412から出力される実軸成分V2r及び虚軸成分V2xを演算部550に入力し、演算部550において式(2)〜式(4)を計算させて位相差Φを求める。
また、本実施形態では、測定状態が不良か否かを検知するのに、交流電位差V1と交流電位差V2との位相差Φを用いる例について説明したが、正極側の虚軸成分V1xと負極側の虚軸成分V2xとの差分ΔVxを用いても良い。
交流電位差V1と交流電位差V2との位相差Φは、次式に示すとおり、正極側の虚軸成分V1xから負極側の虚軸成分V2xを減算した差分ΔVxに対して比例関係がある。例えば、検出信号の位相差Φが大きくなるほど、虚軸成分の差分ΔVxが大きくなる。
Figure 0006315078
したがって、式(6)の関係を利用することにより、虚軸成分の差分ΔVxが所定の許容値を超えた場合には、測定状態が不良であると判定することが可能となる。なお許容値は、インピーダンスの測定誤差を許容できる範囲内の上限値であり、実験データ等からシステム設計に応じて設定される。
次に交流電位Vaと交流電位Vbとの間の位相差Φについての許容値Th1を設定する設定手法について説明する。
図10は、判定回路562で用いる位相差Φについての許容値を設定する設定手法の一例を説明するための図である。
図10では、位相差Φの大きさに応じて振幅値が変化する漏れ電流IL(Φ)とインピーダンスの測定誤差Eとの関係が線形性を有していることを想定している。このような場合には、インピーダンス測定装置5の回路構成をモデル化して伝達関数Gを求める。
伝達関数Gの回路モデルとしては、正極側及び負極側の交流電流I1及びI2が燃料電池スタック1に入力される。そして燃料電池スタック1からインピーダンス測定装置5には、交流電位差V1及びV2と、交流電流I1及びI2と、交流電流I1又はI2の一部が燃料電池スタック1の一方の電極端子から負荷3に漏れ出し他方の電極端子へ流れる漏れ電流IL(Φ)と、が入力される。これにより、インピーダンス測定装置5からは、漏れ電流IL(Φ)に応じた測定誤差E(Φ)が内部抵抗Rに加算され、その加算値が測定結果として出力される。
この伝達関数Gの入力は、基準電圧Vsに調整したときの正極側及び負極側の交流電位差V1及びV2、交流電流I1から漏れ電流ILを減算した正極側の交流電流(I1−IL)並びに、交流電流I2に漏れ電流ILを加算した負極側の交流電流(I2+IL)である。これらの入力に対して伝達関数Gの出力は、内部抵抗R(Vs,I1,I2)に測定誤差E(Φ)を加算した値となる。
このような伝達関数Gの逆数G-1に対し、測定結果の用途に応じて定められた測定誤差の許容値E(Φ)を逆伝達関数G-1に代入することにより、漏れ電流IL(Φ)が算出され、この算出値は、測定状態が不良か否かを判定するための判定値として用いられる。この判定値によって位相差Φの許容値Th1が定められる。
なお、ここでは伝達関数Gを求めて許容値Th1を設定する例について説明したが、これに限られるものではない。例えば、位相差検出部561により検出される位相差Φと、インピーダンス測定装置5による測定誤差E(Φ)との関係を予め実験などにより求め、その結果から、許容される測定誤差E(Φ)に対応する位相差Φを許容値Th1として設定するようにしてもよい。
また、本実施形態では許容値Th1を予め定められた値に固定する例について説明したが、燃料電池スタック1の使用時間が長くなるに連れて燃料電池スタック1を構成する物質の特性が劣化するので、このような劣化要因を考慮して許容値Th1を適宜変更するようにしてもよい。
例えば、燃料電池スタック1が使用された時間の積算値と位相差Φの許容値との関係を示すデータテーブルや関数式などをインピーダンス測定装置5に予め記憶しておき、そのデータテーブルなどを用いてインピーダンス測定装置5の起動時などに許容値Th1を変更する。また燃料電池スタック1の使用積算時間の他に、インピーダンス測定装置5に設けられた正極側電源部531及び負極側電源部532の交流電流の発振精度の低下などに起因する変動要素を考慮して許容値Th1を設定又は補正してもよい。
これにより、インピーダンスの測定状態が不良であるか否かを判定するのに用いられる許容値を適切に設定することができる。このため、測定状態が不良であるか否かを適切に診断することができ、測定結果に対する信頼性を高めることができる。
図11は、交流調整部540で行われる制御をコントローラーによって実現するときの制御方法の一例を示すフローチャートである。
ステップS1においてコントローラーは、正極交流電位Vaが所定値よりも大きいか否かを判定する。コントローラーは、判定結果が否であればステップS2へ処理を移行し、判定結果が肯であればステップS3へ処理を移行する。
ステップS2においてコントローラーは、正極交流電位Vaが所定値よりも小さいか否かを判定する。コントローラーは、判定結果が否であればステップS4へ処理を移行し、判定結果が肯であればステップS5へ処理を移行する。
ステップS3においてコントローラーは、正極側電源部531の出力を下げる。すなわち、コントローラーは、交流電流I1の振幅を小さくする。これによって正極交流電位Vaが下がる。
ステップS4においてコントローラーは、正極側電源部531の出力を維持する。これによって正極交流電位Vaが維持される。
ステップS5においてコントローラーは、正極側電源部531の出力を上げる。これによって正極交流電位Vaが上がる。
ステップS6においてコントローラーは、負極の交流電位Vbが所定値よりも大きいか否かを判定する。コントローラーは、判定結果が否であればステップS7へ処理を移行し、判定結果が肯であればステップS8へ処理を移行する。
ステップS7においてコントローラーは、負極の交流電位Vbが所定値よりも小さいか否かを判定する。コントローラーは、判定結果が否であればステップS9へ処理を移行し、判定結果が肯であればステップS10へ処理を移行する。
ステップS8においてコントローラーは、負極側電源部532の出力を下げる。これによって負極交流電位Vbが下がる。
ステップS9においてコントローラーは、負極側電源部532の出力を維持する。これによって負極交流電位Vbが維持される。
ステップS10においてコントローラーは、負極側電源部532の出力を上げる。これによって負極交流電位Vbが上がる。
ステップS11においてコントローラーは、交流電位Va及び交流電位Vbが所定値であるか否かを判定する。コントローラーは、判定結果が肯であればステップS12へ処理を移行し、判定結果が否であれば処理を抜ける。
ステップS12においてコントローラーは、上述の式(5−1)及び式(5−2)に基づいて内部抵抗値を演算する。
図12は、インピーダンス測定装置5の制御をコントローラーが実行したときのタイムチャートである。なおフローチャートとの対応が判りやすくなるようにステップ番号を併記する。
図12の初期は、正極側の内部抵抗値R1が、負極側の内部抵抗値R2よりも高い状態である(図12(A))。このような状態でコントローラーが制御を開始する。
時刻t0では、正極交流電位Vaも負極交流電位Vbも制御レベルに達していない(図12(C))。この状態では、コントローラーは、ステップS1→S2→S5→S6→S7→S10→S11を繰り返す。これによって正極側の交流電流I1及び負極側の交流電流I2が増大する(図12(B))。
時刻t1で正極の交流電位Vaが制御レベルに達したら(図12(C))、コントローラーは、ステップS1→S2→S4→S6→S7→S10→S11を繰り返す。これによって正極側交流電流I1が維持されるとともに、負極側の交流電流I2は増大する(図12(B))。
時刻t2で負極交流電位Vbも制御レベルに達して正極の交流電位Vaと同レベルになったら(図12(C))、コントローラーは、ステップS1→S2→S4→S6→S7→S9→S11→S12を処理する。これによって正極側の交流電流I1及び負極側の交流電流I2が維持される。そして式(1−1)に基づいて、正極側の内部抵抗値R1及び負極側の内部抵抗値R2が演算される。そして正極側の内部抵抗値R1と負極側の内部抵抗値R2とが足し合わされて全体の内部抵抗Rが求められる。
時刻t3以降は燃料電池スタックの湿潤状態が変化するなどして負極側の内部抵抗値R2が上昇している(図12(A))。この場合には、コントローラーは、ステップS1→S2→S4→S6→S8→S11→S12を繰り返す。このように処理することで負極側の内部抵抗値R2が上昇に合わせて負極側の交流電流I2を下げるので、負極の交流電位Vbは正極の交流電位Vaと同レベルに維持される。したがってこの状態でも内部抵抗Rが演算される。
時刻t4以降は負極側の内部抵抗値R2が正極側の内部抵抗値R1に一致するようになる(図12(A))。この場合には、コントローラーは、ステップS1→S2→S4→S6→S7→S9→S11→S12を繰り返す。このように処理することで正極側の交流電位Vaと負極側の交流電位Vbとが同レベルに維持され(図12(C))、内部抵抗Rが演算される。
次にインピーダンス測定装置5の等電位制御によって測定状態が良好のときの作用効果を説明する。
図13は、インピーダンス測定装置5の測定状態が良好である場合において、燃料電池スタック1の正極端子211に生じる正極電位、及び、負極端子212に生じる負極電位の状態を例示する図である。
燃料電池スタック1の出力中は、正極端子211及び負極端子212の間に電位差V3が生じる。インピーダンス測定装置5が起動(ON)する前は、正極電位及び負極電位は一定であり、負荷3に直流電圧が供給される。その後インピーダンス測定装置5が起動し、正極側電源部531及び負極側電源部532から交流電流I1及びI2が出力されると、正極電位に交流電位Vaが重畳され、負極電位に交流電位Vbが重畳される。
そして交流調整部540による指令に応じて正極側電源部531及び負極側電源部532は、交流電流I1及びI2の振幅を調整して出力する。
正極側電源部531から出力された交流電流I1は、正極側直流遮断部511を介して、燃料電池スタック1の正極端子211に出力され、中途点端子213及び中途点直流遮断部513を介して正極側電位差検出部521に流れる。このとき、正極端子211と中途点端子213との間には、内部抵抗R1と静電容量C1とで定まるインピーダンス、及び交流電流I1によって交流電位差V1(V1=Va−Vc)が生じる。この交流電位差V1は、正極側電位差検出部521で検出される。
一方、負極側電源部532から出力された交流電流I2は、負極側直流遮断部512を介して燃料電池スタック1の負極端子212に出力され、中途点端子213及び中途点直流遮断部513を介して負極側電位差検出部522に流れる。このとき、負極端子212と中途点端子213との間には、内部抵抗R2と静電容量C2とで定まるインピーダンス、及び交流電流I2によって交流電位差V2(V2=Vb−Vc)が生じる。この交流電位差V2は、負極側電位差検出部522で検出される。
交流調整部540は、燃料電池スタック1の正極側の交流電位差V1と、負極側の交流電位差V2との差(V1−V2)、すなわち交流電位Vaと交流電位Vbとの差(Va−Vb)が常に小さくなるように、正極側電源部531及び負極側電源部532を調節する。
このため、正極電位の交流成分Vaの振幅と負極電位の交流成分Vbの振幅とが同じになるように調整されるので、交流電位Vaと交流電位Vbとの間に位相差Φが生じていない状態では、電位差V3は変動せずに一定となる。
そして演算部550は、正極側電位差検出部521及び負極側電位差検出部522から出力される交流電位差V1及びV2と、正極側電源部531及び負極側電源部532から出力される交流電流I1及びI2とを用いてオームの法則を適用する。これにより、演算部550において、燃料電池スタック1の正極側の内部抵抗R1及び負極側の内部抵抗R2が算出される。
ここでは、正極端子211及び負極端子212の交流電位が同じになるので、正極端子211及び負極端子212に走行用モータなどの負荷装置3が接続されていても、負荷装置3に交流電流が漏洩してしまうことを抑制できる。
これにより、内部抵抗の測定対象である燃料電池スタック1に流れる交流電流値I1及びI2と、正極側電源部531及び負極側電源部532から出力される交流電流値とが略一致する。このため、正極側電源部531及び負極側電源部532から出力される交流電流値によって燃料電池スタック1の内部抵抗値R1及び内部抵抗値R2を正確に求めることができる。さらに負荷装置3の状態によらず、稼働中の燃料電池スタック1の内部抵抗値R1及び内部抵抗値R2に基づいて燃料電池スタック1全体の内部抵抗値Rを正確に測定することができる。また、正極側電源部531及び負極側電源部532を使用するので、燃料電池スタック1が停止中であっても内部抵抗Rを測定できるのである。
図14は、インピーダンス測定装置5の測定状態が不良か否かを検知する不良検知方法の処理手順例を示すフローチャートである。
ステップS101において正極側検波回路5411は、正極側の交流電位差V1を実軸成分V1r及び虚軸成分V1xに分解し、実軸成分V1r及び虚軸成分V1xを位相差検出部561に出力する。
ステップS102において位相差検出部561は、式(2)に従って、交流電位差V1の実軸成分V1r及び虚軸成分V1xに基づいて、交流電流I1に対する交流電位差V1の位相角θ1を演算する。
ステップS103において負極側検波回路5412は、負極側の交流電位差V2を実軸成分V2r及び虚軸成分V2xに分解し、実軸成分V1r及び虚軸成分V1cを位相差検出部561に出力する。
ステップS104において位相差検出部561は、式(3)に従って、交流電位差V2の実軸成分V2r及び虚軸成分V2xに基づいて、交流電流I2に対する交流電位差V2の位相角θ2を演算する。
ステップS105において位相差検出部561は、式(4)に従って、交流電位差V1の位相角θ1から交流電位差V2の位相角θ2を減算した値を、交流電位差V1と交流電位差V2との間の位相差Φとして、判定回路562に出力する。
ステップS106において判定回路562は、位相差Φが許容値Th1よりも小さいか否かを判断する。そして判定回路562は、位相差Φが許容値Th1よりも小さい場合には、内部抵抗Rの測定状態が良好であると判定する。一方、位相差Φが許容値Th1以上である場合には、判定回路562は、測定状態が不良であると判定する。判定回路562は、その判定した結果を演算部550に出力する。
ステップS107において内部抵抗Rの測定状態が良好であると判定された場合には、演算部550は、図11に示したステップS12で演算された抵抗値を測定結果として、コントローラーユニット6に出力する。なお、演算部550は、ステップS12で演算された抵抗値と判定結果と位相差Φとが示された測定データを生成して出力してもよい。
一方、ステップS108において内部抵抗Rの測定状態が不良であると判定された場合には、演算部550は、測定不良に伴う測定結果処理を実行する。
測定結果処理において、演算部550は、ステップS12で演算された抵抗値を破棄し、測定不良と判定される前の抵抗値を測定結果として、コントローラーユニット6に例えば所定時間だけ出力する。あるいは演算部550は、ステップS12で演算された抵抗値と判定結果とが示された測定データを生成して出力してもよい。
ステップS107又はS108で処理が終了すると、位相差Φに基づく不良検知方法の一連の処理手順が終了する。
本発明の第1実施形態によれば、積層電池の一例である燃料電池スタック1のインピーダンスを測定する。このインピーダンス測定装置5は、燃料電池スタック1の正極端子211に対して所定の基準周波数fbの交流電流を出力する正極側電源部531と、燃料電池スタック1の負極端子212に対して基準周波数fbの交流電流を出力する負極側電源部532とを備える。さらに正極端子211と中途点端子213との間の交流電位差V1を検出する正極側電位差検出部521と、負極端子212と中途点端子213との間の交流電位差V2を検出する負極側電位差検出部522とを備える。そして交流電位差V1と交流電位差V2とが一致するように、正極側電源部531及び負極側電源部532のうち少なくとも一方から出力される交流電流の振幅を調整する交流調整部540と、調整された交流電流と交流電位差とに基づいてインピーダンスを演算する演算部550を備える。
さらにインピーダンス測定装置5は、正極端子211に生じる交流電位と、負極端子212に生じる交流電位との間の位相差Φ、又は、位相差Φと相関関係のあるパラメータを求める位相差検出部561を備える。そして位相差Φ又は位相差Φに関するパラメータに基づいて、測定状態が不良であるか否かを診断する診断処理、測定結果を破棄するキャンセル処理、及び測定結果を信頼性の高い所定の値に固定するホールド処理のうちいずれかの処理を実行する。
このように、正極端子211に生じる交流電位と負極端子212に生じる交流電位との間の位相差Φを検出することにより、測定状態の診断処理や、測定結果のキャンセル処理、ホールド処理が実行されるので、測定結果についての信頼性を確保できる。したがって、積層電池の静電容量成分のバラツキに起因してインピーダンス測定装置5の測定精度が低下したときの測定結果に対する信頼性の維持向上を図ることができる。
例えば、燃料電池スタック1の運転状態によっては基準周波数fbの交流信号に対する燃料電池スタック1の静電容量成分が変化し、正極側の静電容量C1と負極側の静電容量C2との差が大きくなる場合がある。このような場合には、燃料電池スタック1の正極端子211に生じる交流電位と、負極端子212に生じる交流電位との間の位相差Φが大きくなり、燃料電池スタック1に接続された負荷3へ漏れ出す交流電流が多くなる。
その結果、正極側電源部531の出力電流I1と内部抵抗R1に流れる実際の電流との間の誤差、及び、負極側電源部532の出力電流I2と内部抵抗R2に流れる実際の電流との間の誤差が共に大きくなるので、内部抵抗Rの測定精度が低下してしまう。
また、インピーダンス測定装置5によって測定された内部抵抗Rは、燃料電池システムにおいて、例えば燃料電池スタック1の湿潤度を制御するために使用される。このため、内部抵抗Rの測定精度が低下した状態、すなわちインピーダンス測定装置5の測定状態が不良である状態で測定された内部抵抗Rでは、燃料電池スタック1の湿潤度を適切に制御することが困難となる。
この対策として本実施形態では、インピーダンス測定装置5が、位相差Φ、又は位相差Φに関するパラメータを検出して、静電容量C1と静電容量C2とのバラツキが原因でインピーダンスの測定精度が低下していることを検知する。
例えば、インピーダンス測定装置5は、位相差Φに基づいて測定状態が不良であると判断した場合には、測定結果に併せて、測定状態が不良である旨の診断結果を出力する。これにより、測定結果を使用するシステムにおいて、測定結果の用途や、システムから要求される測定精度などが異なる場合に、測定状態の診断結果に応じて、内部抵抗Rを使用するか否かを判断することが可能となる。
あるいは、インピーダンス測定装置5は、測定状態が不良であると判定した場合には、測定結果を破棄してもよい。これにより、測定精度が低く信頼性の低い測定結果が出力されることがないので、信頼性の高い測定結果だけを確実にコントローラーユニット6などへ出力することができる。
さらに測定状態が不良であるときであっても、不良と判定される前に測定された過去の測定結果を出力するようにしてもよい。これにより、インピーダンス測定装置5の測定状態にかかわらず、その測定結果を利用して制御を継続しなければならないシステムに対して、測定状態が良好であったときの測定結果、すなわち測定精度の高い測定結果を出力することが可能となる。
通常、燃料電池スタック1では、内部抵抗Rは主に発電セル10の湿り度合いによって変化するのに対して、静電容量C1又はC2は燃料電池スタック1内のガス状態や負荷3の作動状態などによって変化する。このため、内部抵抗Rの変化と静電容量Cの変化とは相関性が低いといえる。
したがって、静電容量C1又はC2の変動に伴い位相差Φが大きくなって測定状態が不良と判定されるような状況でも、抵抗成分Rは一定の値を示す可能性が高い。このため、位相差Φに基づいて測定状態が不良であると判定された場合には、不良と判定される前の内部抵抗値を測定結果として出力することにより、出力結果に対する信頼性を向上させることが可能となる。
このように第1実施形態によれば、積層電池の静電容量成分に起因するインピーダンス測定装置5における測定精度の低下に対して測定結果についての信頼性の維持向上を図ることができる。
また本実施形態では、位相差検出部561は、正極側検波回路5411から出力される交流電位差V1を示す検出信号と、負極側検波回路5412から出力される交流電位差V2を示す検出信号とに基づいて、位相差Φを演算する。
そして、インピーダンス測定装置5は、位相差Φが所定の閾値Th1以上である場合には、測定状態が不良であると判定し、位相差Φが閾値Th1よりも小さい場合には、測定状態が良好であると判定する。閾値Th1は、システムから要求される測定精度の許容範囲などによって設定される。
このため、インピーダンス測定装置5は、交流電位差V1と交流電位差V2との間に位相差Φが生じても、測定誤差の許容範囲内では測定状態が良好であると判定し、位相差Φが許容範囲を超えた場合にのみ測定不良であると判定する。これにより、測定結果を使用するシステムの要求に応じて、簡単かつ適切に測定状態を診断することができる。
なお、本実施形態では交流電位差V1及びV2の各検出信号として、正極側検波回路5411及び負極側検波回路5412から出力される検出信号を用いる例について説明した。しかし、正極側検波回路5411及び負極側検波回路5412から出力される検出信号の代わりに、正極側電位差検出部521及び負極側電位差検出部522から出力される検出信号を用いて位相差Φを求めるようにしてもよい。
(第2実施形態)
図15は、本発明の第2実施形態における交流調整部540及び位相差検出部571の構成を示す図である。
第2実施形態では、図5に示した位相差検出部561及び判定回路562に代えて位相差検出部571及び判定回路572を備えている。なお、位相差検出部571及び判定回路572以外の構成は、図5に示した交流調整部540と同じ構成であるため、ここでの説明を省略する。
位相差検出部571には、正極側積分回路5431から出力される正極側電流指令値I1cと、負極側積分回路5432から出力される負極側電流指令値I2cとが、入力される。
位相差検出部571は、正極側電流指令値I1cの時間変化量ΔI1cと、負極側電流指令値I2cの時間変化量ΔI2cとの差分を算出する。時間変化量ΔI1c及びΔI2cは、時間変化率のことであり、正極側電流指令値I1c及び負極側電流指令値I2cが同一時間内に増加又は減少した量を示す。
一般的に、燃料電池スタック1の内部抵抗Rが変化するときは、正極側電流指令値I1cと負極側電流指令値I2cの差分がほぼ一定の状態で、正極側電流指令値I1c及び負極側電流指令値I2cが互いに同じ方向に変化する。例えば、内部抵抗Rが低下するときには、正極側電流指令値I1cと負極側電流指令値I2cが共に増加し、内部抵抗Rが上昇するときは、正極側電流指令値I1cと負極側電流指令値I2cが共に減少する。
これに対し、燃料電池スタック1の正極端子211と負極端子212との間の出力電圧が急激に変動したときは、正極側電流指令値Ic1及び負極側電流指令値I2cが相反する方向に変化しやすい。このように変化する理由は、燃料電池スタック1の出力電圧の変動によって正極側電源部531に電圧変動が伝わり、交流電位Vaの位相角などが変わってしまうからである。その結果、位相差Φが大きくなって負荷3に漏れ出す電流量が大きくなる。
そこで位相差検出部571は、位相差Φに関連するパラメータとして、時間変化量ΔI1cから時間変化量ΔI2cを減算した差分の絶対値を用いて、正極側電流指令値Ic1及び負極側電流指令値I2cが相反する方向に変化したか否かを判断する。
図16Aは、正極側電流指令値Ic1及び負極側電流指令値I2cが相反する方向に変化したか否かを判断する判断手法を示す図である。図16Bは、正極側電流指令値I1c及び負極側電流指令値I2cの絶対差分と測定状態との関係を示す図である。
図16Aでは、位相差検出部571は、所定の判定周期(S秒)ごとに、正極側電流指令値I1c及び負極側電流指令値I2cを共に取得し、その正極側電流指令値I1c及び負極側電流指令値I2cを共にメモリ5711に記録する。これと共に位相差検出部571は、前回記録した正極側電流指令値I1c及び負極側電流指令値I2cをメモリ5711から読み出す。
時刻nにおいて、位相差検出部571は、正極側電流指令値I1c(n)を取得し、時刻nからS秒前に取得した前回の正極側電流指令値I1c(n−s)をメモリ5711から読み出す。なお、ここでは電流指令値の取得時刻が括弧により示される。
そして位相差検出部571は、次式のとおり、今回取得した正極側電流指令値I1c(n)から、前回取得した正極側電流指令値I1c(n−s)を減算することにより、正極側電流指令値I1cの時間変化量ΔI1cを算出する。
Figure 0006315078
ここでは、正極側電流指令値I1cは減少しているため、時間変化量ΔI1cは負(マイナス)の値となる。
また位相差検出部571は、時刻nにおいて負極側電流指令値I2c(n)を取得し、前回取得した負極側電流指令値I2c(n−s)をメモリ5711から読み出す。そして位相差検出部571は、次式のとおり、今回取得した負極側電流指令値I2c(n)から、前回取得した負極側電流指令値I2c(n−s)を減算することにとり、負極側電流指令値I2cの時間変化量ΔI2cを算出する。
Figure 0006315078
ここでは、負極側電流指令値I2cは増加しているため、時間変化量ΔI2cは正(プラス)の値となる。
次に位相差検出部571は、次式のとおり、正極側電流指令値I1cの時間変化量ΔI1cから、負極側電流指令値I2cの時間変化量ΔI2cを減算し、その減算した値の絶対値を算出する。
時刻nでは、時間変化量ΔI1cは負の値であり、時間変化量ΔI2cは正の値であるので、時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値は最も大きな値となる。このように、正極側電流指令値Ic1及び負極側電流指令値I2cが相反する方向に変化したときには、正極側電流指令値I1cの時間変化量ΔI1cと負極側電流指令値I2cの時間変化量ΔI2cとの差分の絶対値(絶対差分)が大きくなる。
このため、図16Bに示すように、時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値(|ΔI1c−ΔI2c|)が、予め定められた許容値Th2よりも大きくなるときには、測定状態が不良であると判定される。
したがって本実施形態では、判定回路572は、次式のとおり、正極側電流指令値I1cの時間変化量ΔI1cと負極側電流指令値I2cの時間変化量ΔI2cとの差分の絶対値が許容値Th2よりも大きいか否かを判断する。
Figure 0006315078
そして図16Aに示すように時刻nにおいて、判定回路572は、時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値が許容値Th2よりも大きいと判断し、インピーダンスの測定状態が不良であると判定する。
このような状況では、燃料電池スタック1に供給される交流電流I1及びI2の一部が負荷3に漏れている状態において等電位制御が平衡状態となるため、時刻n以降についても測定状態が不良であるとの判定結果がインピーダンス測定装置5から出力される。
なお、本実施形態では時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値を用いて測定状態を判定する例について説明したが、判定回路572は、時間変化量ΔI1cと時間変化量ΔI2cとの差分のまま、測定状態を判定するようにしてもよい。この場合には、正(プラス)及び負(マイナス)の許容値が共に判定回路572に設定され、判定回路572は、正の許容値から負の許容値までの許容範囲を超えるときには、測定状態が不良であると判定する。
図17は、正極側電流指令値I1cの時間変化量ΔI1cと負極側電流指令値I2cの時間変化量ΔI2cとの差分に基づいて測定状態を診断する診断方法の処理手順を示すフローチャートである。この演算方法は、所定の判定周期S秒ごとに実行される。
ステップS201において位相差検出部571は、判定周期のS秒が経過するまで待機する。
ステップS202において位相差検出部571は、時刻nの正極側電流指令値I1c(n)及び負極側電流指令値I2c(n)を共に取得する。
ステップS203において位相差検出部571は、今回取得した正極側電流指令値I1c(n)及び負極側電流指令値I2c(n)を共にメモリ5711に記録し、メモリ5711から、S秒前に取得した前回の正極側電流指令値I1c(n−s)及び負極側電流指令値I2c(n−s)を読み出す。
ステップS204において位相差検出部571は、式(7)に従って、今回取得した正極側電流指令値I1c(n)から、前回取得した正極側電流指令値I1c(n−s)を減算して、正極側電流指令値I1cの時間変化量ΔI1cを算出する。
ステップS205において位相差検出部571は、式(8)に従って、今回取得した負極側電流指令値I2c(n)から、前回取得した負極側電流指令値I2c(n−s)を減算して、負極側電流指令値I2cの時間変化量ΔI2cを算出する。
そしてステップS206において位相差検出部571は、時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値を位相差Φに関するパラメータとして設定し、判定回路572に出力する。
ステップS207において判定回路572は、式(9)に従って、時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値が許容値Th2を超えているか否かを判断する。
ステップS208において判定回路572は、時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値が許容値Th2以下である場合には、測定状態が良好であると判定する。この後、例えば図13で示したステップS107の処理と同様に、演算部550は、演算した抵抗値をコントローラーユニット6に出力する。
ステップS209において判定回路572は、時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値が許容値Th2よりも大きい場合には、測定状態が不良であると判定する。そして図13で示したステップS107の処理と同様に、演算部550は、演算された抵抗値をコントローラーユニット6に出力する。この後、例えば図13で示したステップS108の処理と同様に、演算部550は測定結果処理を実行する。
ステップS208又はS209の処理が終了すると、時間変化量ΔI1cと時間変化量ΔI2cとの差分に基づく診断方法の一連の処理手順が終了する。
本発明の第2実施形態によれば、交流調整部540は、正極側検波回路5411によって交流電位差V1の実軸成分V1rを抽出して正極側電源部531に対する正極側電流指令値I1cを算出する。これと共に交流調整部540は、負極側検波回路5412によって交流電位差V2の実軸成分V2rを抽出して負極側電源部532に対する負極側電流指令値I2cを算出する。
そして判定回路572は、正極側電流指令値I1c及び負極側電流指令値I2cのうち、一方の値が減少した時に他方の値が増加した場合には、インピーダンス測定装置5の測定状態が不良であると判定する。
これにより、燃料電池スタック1の出力電圧が過渡的に変化したことが原因で、位相角Φが大きくなってインピーダンス測定装置5が測定不良となったことを検知できる。
燃料電池スタック1の出力電力が過渡的に変化する状況としては、例えば、燃料電池スタック1の起動処理が完了した後、燃料電池スタック1と負荷3との間に接続された遮断器を、遮断状態から接続状態に切り替えたときが該当する。このような状況では、燃料電池スタック1から負荷3へ流れる電流量が過渡的に大きく変化するので、燃料電池スタック1で消費されるアノードガス及びカソードガスの消費量が過渡的に増大してガス濃度が変化すると共に、燃料電池スタック1の出力電圧が変動する。その結果、正極側電源部531から供給される交流電流の位相がシフトしやすくなり、正極側の静電容量C1と負極側の静電容量C2とのバランスが崩れて、交流電流I1又はI2の一部が負荷3へ漏れてしまう。
あるいは、燃料電池スタック1から負荷3に発電電流が供給されている状態で、車両を急に加速するためアクセル操作量を大きくしたときにも、燃料電池スタック1から負荷3に供給される発電電流の変化量が過渡的に大きくなる。このような状況でも、燃料電池スタック1内でガス濃度が変化すると共に燃料電池スタック1の出力電圧が急激に変動する。
特に、アノードガスを循環させずに燃料電池スタック1内に溜めて発電するような燃料電池システムでは、燃料電池スタック1内のアノードガス流路は上流側に比べて下流側に不純物が滞留する。そのため、燃料電池スタック1から出力される発電電流の過渡的な変化によって、燃料電池スタック1の正極側と負極側とでガス濃度のバラツキが大きくなり、正極側の静電容量C1と負極側の静電容量C2とのバランスが大きく崩れてしまう。
このように燃料電池スタック1の出力電圧が過渡的に変化したときには、正極側電流指令値I1cと負極側電流指令値I2cとが相反する方向に変化する。この特性を本実施形態では利用して、位相差Φが大きくなることが検出される。これにより、インピーダンス測定装置5は、測定状態が不良であることを検知することができる。
本実施形態では、位相差検出部571は、位相差Φに関するパラメータとして、正極側電流指令値I1cの時間変化量ΔI1cから、負極側電流指令値I2cの時間変化量ΔI2cを減算した差分を算出する。判定回路572は、その差分が所定の許容範囲を超えた場合、あるいは、時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値が許容値Th2を超えた場合には、測定不良であると判定する。時間変化量ΔI1cと時間変化量ΔI2cとの差分の絶対値を用いることにより、1個の許容値を設定するだけで測定状態の判定を行えるので、判定回路572を簡易な構成にすることができる。
正極側電流指令値I1cは、交流電位差V1の位相角θ1の変化に応じて変わり、負極側電流指令値I2cは、交流電位差V2の位相角θ2の変化に応じて変わる。このため、静電容量C1及び静電容量C2のいずれかの大きさが変わると、正極側電流指令値I1cと負極側電流指令値I2cの差分が変化する。ただし、正極側電流指令値I1cと負極側電流指令値I2cの差分は、燃料電池スタック1の内部抵抗Rの変化によっても変化する。このため、より正確に診断するには、内部抵抗Rの変化と位相差Φの変化とを切り分ける必要がある。
負荷3側の状態が変化することによって位相差Φが変化するときは、正極側電流指令値I1cと負極側電流指令値I2cとが一時的に反対方向に変化する。これに対して、内部抵抗Rの大きさが変化するときは、正極側電流指令値I1cと負極側電流指令値I2cとが共に緩やかに同一方向に変化する。したがって、単位時間あたりの時間変化量ΔI1c及びΔI2cの差分を算出することにより、正極側電流指令値I1cと負極側電流指令値I2cとに基づいて位相差Φの変動を精度よく検出することができるようになる。
なお、本実施形態では位相差検出部571が極側電流指令値I1c及び負極側電流指令値I2cの時間変化量をそれぞれ演算してこれらの差分の絶対値を算出する例について説明した。しかし、正極側電流指令値I1c及び負極側電流指令値I2cを演算部550に入力し、演算部550において時間変化量の差分の絶対値を求めるようにしてもよい。
(第3実施形態)
図18は、本発明の第3実施形態における交流調整部540及び位相差検出部581の構成を示す図である。
第3実施形態では、図5に示した位相差検出部561及び判定回路562に代えて位相差検出部581及び判定回路582を備えている。なお、位相差検出部581及び判定回路582以外の構成は、図5に示した交流調整部540と同じ構成であるため、同一符号を付してここでの説明を省略する。
位相差検出部581には、正極側電源部531の出力端子と負極側電源部532の出力端子とがそれぞれ接続される。そして正極側電源部531の出力端子に生じる交流電位Vaと負極側電源部532の出力端子に生じる交流電位Vbとが位相差検出部581に入力される。
位相差検出部581は、交流電位Vaと交流電位Vbとの電位差(Va−Vb)の交流成分を検出する。すなわち、位相差検出部581は、燃料電池スタック1の正極端子211と負極端子212との間の電位差V3の交流成分を検出する。
通常、燃料電池スタック1の正極端子211に生じる交流電位と負極端子212に生じる交流電位との間の位相差Φは、正極側電源部531の出力端子に生じる交流電位Vaと負極側電源部532の出力端子に生じる交流電位Vbとの間の位相差と等しくなるように設計される。このため、交流電位Vaと交流電位Vbとの間に位相差が生じていない状態では、燃料電池スタック1の出力電圧である電位差V3を示す検出信号は、等電位制御によって一定の値を示す。これに対して、交流電位Vaと交流電位Vbとの間に位相差Φが生じている状態では、電位差V3を示す検出信号には交流成分が含まれることになる。
位相差Φが大きくなるほど、交流電位Vaと交流電位Vbとの電位差(Va−Vb)の交流成分の振幅が大きくなるため、電位差(Va−Vb)は、位相差Φと相関関係のあるパラメータとして利用することができる。
このため、位相差検出部581は、交流電位Vaと交流電位Vbとの電位差(Va−Vb)の交流成分を、位相差Φに関するパラメータとして検出する。
図19は、位相差検出部581の詳細構成を示す回路図である。
位相差検出部581は、差動アンプ5811と、乗算部5812と、低域通過フィルタ5813と、を備える。
差動アンプ5811は、交流電位Vaから交流電位Vbを減算した電位差(Va−Vb)を検出し、電位差V3を示す検出信号として乗算部5812に出力する。差動アンプ5811は、図3に示した正極側電位差検出部521及び負極側電位差検出部522と同じ構成である。
乗算部5812は、差動アンプ5811から出力される検出信号に同相信号Sin(0)を乗算する。これにより、乗算部5812からは、検出信号から不要信号を除去して電位差V3に含まれる交流成分を示す信号が出力される。
なお、同相信号Sin(0)は、正極側電源部531及び負極側電源部532から出力される基準周波数fbの交流電流に対して位相が同じである交流信号である。同相信号Sin(0)は、例えば交流信号源546から乗算部5812に入力される。
低域通過フィルタ5813は、乗算部5812から出力される信号を平滑化して出力信号の直流成分を通過させるLPFである。低域通過フィルタ5813によって、出力信号の振幅成分が検出される。このため、低域通過フィルタ5813で平滑化された直流信号は、電位差V3に含まれる交流成分の振幅値として、判定回路582に入力される。
このように位相差検出部581は、燃料電池スタック1の正極端子211と負極端子212との間の電位差V3に含まれる交流成分の振幅値を検出し、位相差Φに関するパラメータとして判定回路582に出力する。
判定回路582は、電位差V3に含まれる交流成分の振幅値が、予め定められた許容値Th3を超えた場合には、測定状態が不良であると判定し、Hレベルの判定信号を出力する。なお電位差V3の交流成分に関する許容値Th3は、例えば、位相差Φの許容値Th1と同じように実験データ等により設定される。
本発明の第3実施形態によれば、正極側直流遮断部511と正極側電源部531との間を接続した信号線と、負極側直流遮断部512と負極側電源部532との間を接続した信号線と、が共に位相差検出部581に対して接続される。
位相差検出部581は、燃料電池スタック1の正極端子211に生じる交流電位と負極端子212に生じる交流電位との電位差V3として、交流電位Vaと交流電位Vbとの電位差(Va−Vb)を検出する。そしてインピーダンス測定装置5は、電位差(Va−Vb)に含まれる交流成分を、位相差Φに関するパラメータとして算出し、その交流成分が所定の閾値を超えた場合に、測定状態が不良であると判定する。
このように正極側電源部531の出力端子に生じる交流電位Vaから、負極側電源部532の出力端子に生じる交流電位Vbを減算した電位差(Va−Vb)が、燃料電池スタック1の正極端子211と負極端子212との間の交流電位差Veとして検出される。
これにより、第1実施形態及び第2実施形態に比べて、燃料電池スタック1の正極端子211に生じる交流電位と、負極端子212に生じる交流電位との電位差V3に生じる交流成分をより直接的に検出することができる。このため、燃料電池スタック1の正極端子211に生じる交流電位と、負極端子212に生じる交流電位との間の位相差Φを精度よく求めることができる。したがって、位相差Φに起因する測定状態の不良をより確実に判定することができる。
また、電位差V3に生じる交流成分をより直接的に検出することができるので、燃料電池スタック1の内部状態の変化や負荷3の作動状態の変化などの影響を受け難くなり、判定精度を向上させることができる。
さらに本実施形態では、第1実施形態のように正極側と負極側の両方に対して直交乗算部721及び直交低域フィルタ722を設ける必要がないので、セル電圧測定装置5に用いられる乗算器やLPFなどの数を削減することができる。
(第4実施形態)
図20は、本発明の第4実施形態における位相差検出部591の構成を示す図である。
第4実施形態では、図5に示した位相差検出部561及び判定回路562に代えて、電流センサ590、位相差検出部591及び判定回路592を備えている。なお、他の構成は、図5に示した交流調整部540と同一の構成であるため、同一符号を付してここでの説明を省略する。
電流センサ590は、燃料電池スタック1と負荷3との間に接続される。本実施形態では電流センサ590は、燃料電池スタック1の正極端子211と負荷3の正極端子との間に接続されている。
電流センサ590は、燃料電池スタック1から負荷3へ漏れ出す漏れ電流ILを検出する。例えば、電流センサ590は、燃料電池スタック1から負荷3に流れる電流から、交流成分を抽出して、抽出された交流成分の振幅値を、漏れ電流ILとして検出する。電流センサ590は、その検出された漏れ電流ILを位相差検出部591に出力する。
交流電位Vaと交流電位Vbとの位相差Φが大きくなるほど、燃料電池スタック1から負荷3へ流れる交流電流の振幅値、すなわち漏れ電流ILは大きくなる。このため、漏れ電流ILは、位相差Φと関連するパラメータとして利用することができる。
位相差検出部591は、漏れ電流ILに応じて、位相差Φに関連する検出信号を判定回路592に出力する。本実施形態では漏れ電流ILが大きくなるほど、位相差検出部591は、検出信号の信号レベルを高くする。
判定回路592は、位相差検出部591から出力される検出信号、予め定められた許容値Th4よりも大きい場合には、測定状態が不良であると判定し、Hレベルの判定信号を出力する。なお許容値Th4は、位相差Φの許容値Th1と同じように実験データ等により設定される。
本発明の第4実施形態によれば、燃料電池スタック1と負荷3との間に接続された電流センサ590によって検出される交流の漏れ電流ILを、正極端子211及び負極端子212に生じる交流電位同士の位相差Φと相関関係のあるパラメータとして利用する。そしてインピーダンス測定装置5は、電流センサ590によって検出される漏れ電流ILが、所定の閾値を超えた場合に測定状態が不良であると判定する。
このため、位相差Φが原因で正極側電源部531及び負極側電源部532によって燃料電池スタック1に入力される交流電流が負荷3に漏れ出した場合に、その漏れ電流ILをより確実に検出することができる。したがって、漏れ電流ILの大きさに基づいてインピーダンスの測定誤差を正確に推定できるので、測定不良の検知をより精度良く行うことができる。このため、測定結果に対する信頼性の維持向上を図ることができる。
(第5実施形態)
本発明の第5実施形態におけるインピーダンス測定装置について説明する。なお、本実施形態のインピーダンス測定装置については、図5に示したインピーダンス測定装置5と構成が基本的に同じであり、図5と同一符号を付して説明する。
本実施形態では、位相差Φに基づいて測定状態が不良か否かを検知する不良検知処理を実行する期間を限定する。これにより、無用な診断処理を削減することができるので、インピーダンス測定装置5の演算負荷を軽減することができる。
具体的にはインピーダンス測定装置5は、コントローラーユニット6から送信される指令に従って、測定状態の診断処理を実行する。
コントローラーユニット6は、燃料電池スタック1にアノードガス及びカソードガスを供給して燃料電池スタック1を発電させる燃料電池システムの運転状態を制御する。具体的には、コントローラーユニット6は、燃料電池スタック1に対して負荷3から要求される電力や、燃料電池スタック1の発電状態などを管理し、燃料電池スタック1に供給されるアノードガス及びカソードガスの供給量などを制御する。
インピーダンス測定装置5は、燃料電池スタック1の静電容量C1及びC2が変動しやすい所定の診断条件が成立したときに、測定状態の診断処理を実行する。
上述の診断条件としては、燃料電池スタック1を起動するときに行われる起動処理や、燃料電池スタック1の停止処理中に行われるパージ処理、車両がアイドルストップ状態から復帰するときに行われる再起動処理などの開始時が望ましい。このような処理が実行されている間は、静電容量C1と静電容量C2との差が大きくなりやすい。なお、停止処理中に行われるパージ処理とは、燃料電池スタック1内に存在するアノードガスの圧力が所定の値まで低下するまで、アノードガス排出通路に設けられたパージ弁を開弁する処理のことである。
上述の処理を開始する場合には、コントローラーユニット6は、インピーダンス測定装置5に対して診断実行指令を送信する。そしてインピーダンス測定装置5は、診断実行指令を受信すると、診断条件が成立したと判断し、測定状態の診断処理を実行する。
また、内部抵抗Rの測定値がシステム予測値を超過して燃料電池システムが異常状態と判定された後、異常状態が回避されて通常の処理に復帰しても、復帰直後は、内部抵抗Rの測定状態が未だに良好状態に回復していない可能性もある。
そのため、燃料電池スタック1の異常状態を回復させる回復処理を診断条件に追加するようにしてもよい。この場合、コントローラーユニット6は、回復処理を開始する際にインピーダンス測定装置5に診断実行指令を送信する。なお、回復処理としては、例えば、フラッディングが発生した場合にカソードガスの供給量やバージ量などを増加させる処理が挙げられる。
また、交流電位差V1又はV2の検出信号レベルや、交流電流I1又はI2の検出信号レベル、内部抵抗Rの測定値などの平均変化率が極端に大きくなり、所定の閾値を超えた時についても、診断処理を実行するようにしてもよい。このような時には位相差Φが大きくなっている可能性があるからである。
その他の診断条件としては、内部抵抗Rの測定結果に対して高い信頼性が要求される処理が実行される時などが考えられる。
なお、本実施形態では診断処理を実行する期間を特定の処理が行われているときだけに限定する例について説明したが、診断条件が成立していないときは判定周期Sを長くして診断処理を行い、診断条件が成立したときに判定周期Sを短くするようにしてもよい。これにより、測定結果に対する信頼性の低下を抑制しつつ、インピーダンス測定装置5の処理負荷を軽減することができる。
次に、交流電位差V1と交流電位差V2との間で位相差Φが生じた場合において、インピーダンス測定装置5によって測定される内部抵抗Rの測定精度が低下するのを抑制する手法について説明する。
(第6実施形態)
図21は、本発明の第6実施形態における交流調整部540の詳細を示す図である。交流調整部540は、図5に示した判定回路562に代えて位相修正部600を備えている。
位相修正部600は、位相差検出部561から出力される位相差Φに基づいて、正極側電源部531から出力される交流電流I1と、負極側電源部532から出力される交流電流I2との間の位相差(位相ズレ)を修正する。
位相修正部600は、位相差検出部561から出力される位相差Φが小さくなるように、交流電流I1の位相、又は交流電流I2の位相をシフトさせるシフト量を、位相ズレの修正に必要な修正量Mとして算出する。
図22は、本実施形態におけるインピーダンス測定装置5の構成を示す図である。
ここでは、図2に示した正極側電源部531に代えて、位相可変電源部5311が設けられている。
位相可変電源部5311は、基準周波数fbの交流電流I1を出力し、かつ、交流電流I1の位相を変更可能な交流源である。
位相可変電源部5311は、正極側電源部531と同様に交流調整部540から出力される指令信号に応じて、基準周波数fbの交流電流I1を出力する。さらに位相可変電源部5311は、位相修正部600から出力される修正量Mに応じて、交流電流I1の位相をシフトさせる。
位相可変電源部5311は、例えば、図4に示した電圧電流変換回路に加えて、公知の移相回路を備えることにより実現される。この移相回路としては、オールパスフィルタを構成する状態変数型フィルタなどが用いられる。本実施形態では移相回路は、電圧電流変換回路の入力端子と、正極側乗算器5441の出力端子との間に接続される。
このような移相回路においては、フィルタの中心周波数を変化させることにより、電圧電流変換回路へ出力する交流電流I1の位相がシフトする。そのため、位相修正部600に電圧制御型発振回路(VCO:Voltage-controlled oscillator)等が設けられ、電圧制御型発振器回路によって修正量Mが周波数に変換され、その周波数がフィルタの中心周波数として移相回路に入力される。
図23は、位相修正部600から出力される修正量Mに応じて、位相可変電源部5311から出力される交流電流Iの位相をシフトさせる方向を説明するための図である。この例では、修正量Mがゼロのときには、交流電位I1と交流電流I2の位相が一致している。
本実施形態では、交流電位差V2に対して交流電位差V1の位相が進む方向にシフトするほど、位相修正部600から出力される修正量Mがゼロよりも大きな正(プラス)の値になる。
したがって、図23に示すように、修正量Mがゼロよりも大きくなるほど、位相可変電源部5311から出力される交流電流I1の位相は、交流電流I2に対して遅れる方向に移行される。
一方、交流電位差V1に対して交流電位差V2の位相が進む方向にシフトするほど、修正量Mがゼロよりも小さな負(マイナス)の値になるので、位相可変電源部5311から出力される交流電流I1の位相は、進む方向にシフトされる。
なお、本実施形態では正極側電源部531に代えて位相可変電源部5311を設ける例について説明したが、負極側電源部532を位相可変電源部5311に代え、位相差Φが小さくなるように交流電流I2の位相をシフトさせるようにしてもよい。
このような場合には、位相差Φを小さくするために、交流電流I2の位相を、交流電流I1の位相をシフトさせたときとは反対の方向にシフトさせる必要があることから、位相修正部600には、例えば位相差Φの符号を反転させる反転回路が設けられる。例えば、位相差Φがゼロよりも大きくなるほど、修正量Mがゼロよりも小さくなるので、位相可変電源部5311から出力される交流電流I2の位相は、交流電流I1に対して進む方向にシフトする。
本発明の第6実施形態によれば、位相修正部600によって、交流電位差V1と交流電位差V2との間の位相差Φに基づいて、交流電流I1の位相、又は交流電流I2の位相が修正される。これにより、位相差Φが小さくなるので、内部抵抗R1の演算に用いられる交流電流I1と、内部抵抗R1に実際に流れる実電流との誤差と、内部抵抗R2の演算に用いられる交流電流I2と、内部抵抗R2に実際に流れる実電流との誤差とが小さくなる。このため、交流電流I1及び交流電流I2に基づいて算出される内部抵抗Rの測定精度の低下を抑制することができる。
したがって、燃料電池スタック1の内部インピーダンスを測定するインピーダンス測定装置5において、燃料電池スタック1内の静電容量成分のバラツキに起因する測定精度の低下を抑制することができる。
また本実施形態では、位相修正部600は、交流電位差V1と交流電位差V2との間の位相差Φが小さくなるように、位相可変電源部5311に設けたれた移相回路から出力される交流電流I1の位相をシフトさせる。
これにより、燃料電池スタック1の内部状態や負荷3の状態が変化したことに伴い、静電容量C1と静電容量C2とのバランスが崩れたときであっても、交流電位差V2に対して交流電位差V1の位相を近づけることができる。このため、静電容量C1と静電容量C2との差が大きくなっても、位相差Φが拡大するのを抑えることができるので、内部抵抗Rの測定精度の低下を抑制することができる。
なお、本実施形態では正極側電源部531と交流信号源546との間に移相回路を設ける例について説明したが、正極側電源部531と燃料電池スタック1の正極端子211との間に位相回路を設けるようにしてもよい。
なお、本実施形態では交流電流I1の位相をシフトさせる手法として、位相可変電源部5311を用いる例について説明したが、これに限られるものではない。そこで他の例として、位相可変電源部5311を用いずに交流電流I1の位相をシフトさせる手法について図24を参照して説明する。
(第7実施形態)
図24は、本発明の第7実施形態における位相修正部600の構成例を示す図である。
ここでは、図5に示した正極側乗算器5441に基準周波数fbの交流信号を出力する交流信号源546に代えて、位相可変交流信号源5461が設けられている。
位相可変交流信号源5461は、基準周波数fbの交流信号を出力し、かつ、交流信号の位相を変更可能な交流源である。
位相修正部600は、PI制御によって交流電流I1の位相を修正するために積分回路601を備えている。
積分回路601は、位相差検出部561から出力される位相差Φを積分し、積分された値を修正量Mとして位相可変交流信号源5461に出力する。積分回路601によって、位相差検出部561から出力される検出信号に含まれるノイズ成分が抑制されるので、交流電流I1の位相を的確にシフトさせることが可能となる。
例えば、積分回路601から出力される修正量Mがゼロよりも大きくなるほど、位相可変交流信号源5461から出力される交流信号の位相が遅れる方向にシフトする。これに伴い、正極側電源部531から出力される交流電流I1の位相についても遅れる方向にシフトする。
一方、修正量Mがゼロよりも小さくなるほど、位相可変交流信号源5461から出力される交流信号の位相が進む方向にシフトするので、正極側電源部531から出力される交流電流I1の位相も同様に進む方向にシフトする。
このように、位相可変交流信号源5461を設けて基準周波数fbの交流信号の位相をシフトさせることにより、交流電位差V1と交流電位差V2との間の位相差Φが小さくなるように、交流電流I1の位相をシフトさせることができる。
なお、本実施形態では正極側電源部531の交流信号源546の代わりに位相可変交流信号源5461を設けたが、負極側電源部532の交流信号源546の代わりに位相可変交流信号源5461を設けるようにしてもよい。
このような場合には、第6実施形態で述べたように、位相差Φの符号を反転させる反転回路が位相修正部600に設けられる。例えば、位相差Φがゼロよりも大きくなるほど、修正量Mがゼロよりも小さくなるので、位相可変電源部5311から出力される交流電流I2の位相が進む方向にシフトする。
本発明の第7実施形態によれば、交流信号源546の代わりに位相可変交流信号源5461が用いられ、積分回路601から出力される修正量Mによって、位相可変交流信号源5461から出力される交流信号の位相が修正される。これにより、交流電位差V2に対して交流電位差V1の位相が近づき、位相差Φが小さくなるので、燃料電池スタック1から負荷3に漏れ出る漏れ電流ILを減らすことができる。したがって、燃料電池スタック1の内部抵抗Rについての測定精度を向上させることができる。
また、位相可変交流信号源5461を用いることにより、正極側電源部531に移相回路を設けて移相調整機能を付加した場合に比べて、回路構成の簡素化が図られ、かつ、安価に交流電流I1の位相を変更することができる。すなわち、コストの増加を抑制しつつ、回路構成を簡素化することができる。
(第8実施形態)
なお、第6実施形態及び第7実施形態では交流電流I1又は交流電流I2の位相を修正する例について説明したが、インピーダンス測定装置5で測定される測定結果の誤差(ズレ)を修正するようにしてもよい。以下に、図5で示した演算部550で演算された内部抵抗Rを補正する例について説明する。
図25は、交流電位差V1と交流電位差V2との間の位相差Φに起因する交流電流I1及び交流電流I2の誤差を修正する手法を説明するための図である。
図25には、燃料電池スタック1の等価回路、及び、負荷3のインピーダンスZLに流れる交流電流I1及び交流電流I2の経路が示されている。ここでは、図7に示したように、交流電位差V2よりも交流電位差V1の位相が位相差Φだけ進んでいる状態を想定している。
燃料電池スタック1の正極端子211に生じる交流電位と、負極端子212に生じる交流電位との交流電位差Veの振幅は、次式により表わすことができる。
Figure 0006315078
なお、基準電圧Vsは、図5で述べた通り、交流電位差V1及び交流電位差V2の振幅を一致させるために予め定められた値である。
式(10)に示したとおり、交流電位差Veの振幅は、交流電位差V1及び交流電位差V2の振幅、すなわち基準電圧Vsに比例し、0度から90度までの範囲内において位相差Φに応じて大きくなる。
交流電位差V1と交流電位差V2との間の位相差Φによって、負極側電源部532から燃料電池スタック1の負極端子212に出力される交流電流I2の一部が、負荷3の方に漏れ出す。この漏れ電流ILは、次式で表わすことができる。
Figure 0006315078
なお、負荷3のインピーダンスZLは、予め実験等で求められた値であり、例えば図5に示した位相修正部600に記録されている。
漏れ電流ILは、燃料電池スタック1の負極端子212から負荷3を経由して正極端子211に流れる。正極端子211では、漏れ電流ILが交流電流I1に合流し、交流電流I1に漏れ電流ILが加えられた電流(I1+IL)が、内部抵抗R1を通って中途点端子213に出力される。
一方、負極端子212では、交流電流I2から漏れ電流ILが差し引かれた電流(I2−IL)が内部抵抗R2を通って中途点端子213に出力される。
このため、漏れ電流ILによって生じる内部抵抗R1及びR2の測定誤差は、次式のとおり、演算部550で演算される内部抵抗R1及びR2の測定値R1m及びR2mと、内部抵抗R1及びR2の実際値R1r及びR2rとの比によって表わすことができる。
Figure 0006315078
つまり、交流電流I1及びI2の検出値に対する漏れ電流ILの比が、内部抵抗R1及びR2の測定誤差となる。そして、検出信号に示される交流電位差V1及びV2と、交流電流I1及びI2とに基づいて求めた測定値R1m及びR2mに対して、次式の補正処理を施すことにより、漏れ電流ILによる測定誤差を修正することができる。
Figure 0006315078
式(13)に示された補正処理は、例えば、図21に示した位相修正部600において実行される。
図26は、本実施形態における位相差Φに伴う測定誤差を修正する修正方法の一例を示すフローチャートである。この例では、位相修正部600によって内部抵抗R1及びR2の補正処理が実行される。
まず、ステップS301において位相修正部600は、位相差検出部561から出力される位相差Φを取得する。
ステップS302において位相修正部600は、式(10)に従って、位相差検出部561から取得した位相差Φと、予め定められた基準電位Vsとに基づいて、交流電位差Veの振幅値を演算する。
ステップS303において位相修正部600は、式(11)に従って、交流電位差Veと、負荷3のインピーダンスZLとに基づいて、負荷3に漏れ出る漏れ電流ILを演算する。
ステップS304において位相修正部600は、内部抵抗R1及びR2を補正する補正処理を実行する。
具体的には、位相修正部600は、式(13−1)に従って、漏れ電流ILと、演算部550で演算された内部抵抗値R1mとに基づいて、内部抵抗値R1mを実際値R1rに補正する。位相修正部600は、式(13−2)に従って、漏れ電流ILと、演算部550で演算された内部抵抗値R2mとに基づいて、内部抵抗値R2mを実際値R2rに補正する。
そして位相修正部600は、補正後の内部抵抗R1及び内部抵抗R2を演算部550に出力して、位相差Φに伴う測定誤差を修正する修正方法についての一連の処理が終了する。この後、図11に示したステップS12で燃料電池スタック1全体の内部抵抗Rが演算される。
このようにインピーダンス測定装置5では、交流電位差V1と交流電位差V2との間の位相差Φに起因する内部抵抗Rの測定誤差が修正される。
本発明の第8実施形態によれば、位相修正部600によって、交流電位差V1と交流電位差V2との間の位相差Φに基づいて漏れ電流ILが演算され、漏れ電流ILに基づいて、位相差Φに伴う交流電流I1及び交流電流I2の誤差である位相ズレが修正される。
すなわち、位相修正部600は、位相差Φに基づいて演算される漏れ電流ILに応じて、正極側電源部531から出力される交流電流I1の検出値、及び、負極側電源部532から出力される交流電流I2の検出値を補正して交流電流I1と交流電流I2との位相差を修正する。これにより、インピーダンス測定装置5によって測定された内部抵抗Rの測定誤差を修正することができる。したがって、インピーダンス測定装置5において燃料電池スタック1の静電容量成分に起因するインピーダンスの測定精度が低下するのを抑制できる。
このため、燃料電池スタック1のインピーダンスが変化したときや、静電容量C1と静電容量C2のバランスが崩れたときなどに交流電位差V1と交流電位差V2との間の位相差Φが大きくなっても、演算処理によって内部抵抗Rの測定誤差を修正できる。したがって、第7実施形態に比べて、インピーダンス測定装置5を簡素な回路構成にすることができる。
以上の本発明の第6実施形態から第8実施形態によれば、位相修正部600によって、燃料電池スタック1の正極端子211に生じる交流電位と、負極端子212に生じる交流電位との間の位相差Φが検出される。そして位相差Φに基づいて、正極側電源部531及び負極側電源部532のうちの少なくとも一方から出力される交流電流の位相差が修正される。これにより、インピーダンス測定装置5から負荷3への漏れ電流に起因するインピーダンスの測定精度が低下することを抑制できる。
なお、第6実施形態及び第7実施形態では、位相差Φに基づいて正極側電源部531又は負極側電源部532から出力される交流信号I2を補正して交流信号I1又はI2の位相を修正する例について説明したが、これに限られるものではない。例えば、位相修正部600は、式(11)のとおり、位相差Φに基づいて漏れ電流ILを演算し、漏れ電流ILに応じて交流電流I1及び交流電流I2を補正して交流電流I1と交流電流I2との間の位相差を修正するようにしてもよい。この場合には、漏れ電流ILごとに、交流信号I1及びI2の位相についてのシフト量が対応付けられたマップが位相修正部600に予め設定されている。
(第9実施形態)
第6実施形態及び第7実施形態においては、交流調整部540の位相修正部600が交流電流I1またはI2の位相を修正する例について説明した。しかしながら、位相修正部600により交流電流I1またはI2の位相が修正されることに伴い、位相修正部600により修正される位相量に応じた誤差が、インピーダンスの演算結果に含まれてしまう。特に、交流電流I1及びI2の周波数が低くなるほど、後述する理由により、インピーダンスの演算結果に含まれる誤差が大きくなる。そこで本発明の第9実施形態においては、インピーダンスの演算結果に対して、交流電流I1またはI2の位相が修正されたことに起因する誤差を補正する例について説明する。
本実施形態のインピーダンス測定装置は、第6実施形態又は第7実施形態のインピーダンス測定装置5と同様の構成を有する。これらの同様の構成については同じ符号を付し、説明を省略する。
本実施形態では、位相修正部600は、交流電流I1と交流電流I2とのうち、交流電流I2の位相の修正量Mを算出する。後述するように、交流電流I2の位相が修正されることに起因して、算出部5521により算出された負極側のインピーダンスZ2の位相角には、修正量Mに相当するずれが生じてしまう。そのため、例えば、第7実施形態に示したような位相可変交流信号源5461に相当する構成が、交流信号源547に代えて負極側に設けられている。そして、位相修正部600は、算出した修正量Mを、負極側に設けられた位相可変電源部に出力するとともに、算出した修正量MをインピーダンスZ2の位相角を補正するために用いられる修正量Δξとして演算部550に出力する。
図27は、演算部550の詳細な構成を示す図である。演算部550には、上述のように、位相修正部600から修正量Δξが入力される。また、図22に示したように、演算部550には、正極側電位差検出部521から交流電位差V1が入力され、負極側電位差検出部522から交流電位差V2が入力され、交流調整部540から交流電流I1及びI2が入力される。
演算部550は、図9に示した演算部550と同様に、AD変換器551と、マイコンチップ552とを有する。また、マイコンチップ552は、算出部5521と、補正部5522とを有する。
算出部5521は、AD変換器551から出力された交流電位差V1及び交流電流I1を用いて、正極側のインピーダンスZ1を算出する。そして、算出部5521は、算出した正極側のインピーダンスZ1を出力する。
また、算出部5521は、AD変換器551から出力された交流電位差V2及び交流電流I2を用いて、負極側のインピーダンスZ2を算出する。そして、算出部5521は、算出した負極側のインピーダンスZ2を出力する。
補正部5522は、位相修正部600から修正量Δξを受け付ける。補正部5522は、インピーダンスZ2に対して、交流電流I2の位相が修正されたことに起因する誤差を、修正量Δξに応じて補正する。そして、補正部5522は、補正後のインピーダンスZ2をインピーダンスZ2Cとして出力する。また、補正部5522は、算出部5521から出力されたインピーダンスZ1を補正することなく出力する。
ここで、補正部5522がインピーダンスZ2を補正する方法について、具体的に説明する。まず、正極側のインピーダンスZ1と負極側のインピーダンスZ2との位相差について説明する。
図28は、正極側の交流電位差V1と負極側の交流電位差V2との位相差φの一例を示す図である。横軸は、交流電流I1及びI2の位相角を基準とした交流電位差V1及びV2の実軸成分を示し、縦軸は、交流電位差V1及びV2の虚軸成分を示している。ここでは、位相修正部600は、交流電流I2の位相を修正していない。
交流電位差V1の位相は、交流電流I1の位相に対して位相角θ1だけ遅れている。また、交流電位差V2の位相は、交流電流I2の位相に対して位相角θ1よりも大きい位相角θ2だけ遅れている。そのため、交流電位差V1と交流電位差V2との間には、位相差φが生じている。
上述のように、交流電位差V1と交流電位差V2との間に位相差φが生じていると、負荷3に電流が漏れ出てしまう。このような電流の漏れを低減するために、位相修正部600は、交流電位差V1と交流電位差V2との位相が等しくなるように、交流電流I2の位相を修正する。
さらに、交流調整部540は、交流電位差V1の振幅と交流電位差V2の振幅とが等しくなるように、交流電流I1及び交流電流I2の振幅を調整する。このように、交流電位差V1と交流電位差V2との大きさ及び位相が等しくなるように、交流電流I1及びI2が等電位制御される。
次に、位相修正部600により交流電流I2の位相が修正されることに起因して、インピーダンスZ1の位相角とインピーダンスZ2の位相角との間にずれが生じることについて説明する。
図29A、図29B、および、図29Cの各図は、算出部5521により算出されたインピーダンスZ1及びインピーダンスZ2の位相角の一例を示す図である。各図においては、インピーダンスZ1及びZ2の実軸に対する位相角が示されており、位相角の遅れが大きくなるほど正(プラス)方向に大きく示されている。
図29Aには、燃料電池スタック1に静電容量成分がなく内部抵抗だけがある場合の、インピーダンスZ1及びZ2の位相角が示されている。
一般に、インピーダンス測定装置5は、出荷時などに、測定回路の個体差等の影響を受けないように理想的な状態に調整されている。また、内部抵抗はインピーダンスの位相角に影響を与えない。そのため、インピーダンスZ1及びZ2の位相角は、進みも遅れもせずゼロである。
図29Bには、位相修正部600によって交流電流I2の位相が修正されていない場合の、インピーダンスZ1及びZ2の位相角が示されている。
一般に、燃料電池スタック1の静電容量成分が大きくなるほど、インピーダンスの位相角の遅れが大きくなる。ここでは、燃料電池スタック1の負極側の静電容量成分は、正極側の静電容量成分よりも大きい。そのため、インピーダンスZ2の位相角θ2は、インピーダンスZ1の位相角θ1よりも大きい。したがって、インピーダンスZ1の位相角θ1とインピーダンスZ2の位相角θ2との間には、位相差φが生じてしまう。
図29Cには、位相修正部600によって交流電流I2の位相が修正されている場合の、インピーダンスZ1及びZ2の位相角が示されている。
位相修正部600は、位相差φがゼロになるように、交流電流I2の位相を修正量Δξだけ進める。これに伴い、交流電位差V2の位相は、交流電流I2の位相が進められた分だけ、すなわち、修正量Δξだけ能動的に進む。ここで、インピーダンスZ2は、交流電位差V2を交流電流I2の振幅により除算することにより算出される。そのため、インピーダンスZ2の位相角は、交流電流I2の位相が修正されると、交流電位差V2の位相が進んだ分だけ、すなわち、修正量Δξだけ進む。
また、交流電流I2の位相が修正されると、負荷3への漏れ電流が減少する。そのため、交流電位差V1の位相は、変化量Δψだけ受動的に遅れる。ここで、インピーダンスZ1は、交流電位差V1を交流電流I1の振幅により除算することにより算出される。そのため、インピーダンスZ1の位相角は、負荷3への漏れ電流が減少すると、交流電位差V1の位相が遅れた分だけ、すなわち、変化量Δψだけ遅れる。
このように、インピーダンスZ1の位相角とインピーダンスZ2の位相角との位相差φがゼロになるように、交流電流I2の位相が修正される。ここで、交流電流I2の位相が修正されると、負荷3への漏れ電流が減少し、交流電位差V1の位相が変化量Δψだけ受動的に遅れる。
なお、ここでは漏れ電流が減少した場合には、交流電位差V1の位相が変化量Δψだけ遅れる例について説明した。しかしながら、燃料電池スタック1の容量成分や、負荷3などの大きさによっては、負荷3への漏れ電流が減少すると、交流電位差V1の位相が進むこともある。
このように、交流電流I2の位相が修正量Δξだけ修正されると、インピーダンスZ2の位相角は修正量Δξだけ進む。そして、交流電流I2の位相が修正されると漏れ電流が低減するため、インピーダンスZ1の位相角は、変化量Δψだけ遅れる。したがって、インピーダンスZ1及びZ2の位相角は、ともに位相角ξに修正される。このように、インピーダンスZ1の位相角の受動的な変化量Δψが考慮されるため、交流電流I2の位相を修正前の位相差φではなく修正量Δξだけ進めることにより、位相差φがゼロになる。
次に、補正部5522によるインピーダンスZ2の補正方法について説明する。
図30は、インピーダンスZ2に対して、交流電流I2の位相が修正されたことに起因する誤差を補正する方法を説明するための図である。図30においては、算出部5521により算出されたインピーダンスZ2と、補正部5522により誤差を補正した後のインピーダンスZ2Cとが示されている。なお、横軸は、インピーダンスZ2及びZ2Cの実軸成分を示し、縦軸は、インピーダンスZ2及びZ2Cの虚軸成分を示している。
上述のように、交流電流I2の位相が修正されたときには、インピーダンスZ2の位相角が修正量Δξだけ進んでしまい、インピーダンスZ2に誤差が含まれる。これに対して、補正部5522は、インピーダンスZ2の位相角を修正量Δξだけ遅らせることにより、交流電流I2の位相の修正に起因する誤差を補正する。
ここで、補正前のインピーダンスZ2と補正後のインピーダンスZ2Cとは、以下の関係が成り立つ。
Figure 0006315078
このように、補正部5522は、式(14−1)及び式(14−2)を用いて、インピーダンスZ2を補正することにより、補正後のインピーダンスZ2Cを算出する。
ここで、本実施形態のインピーダンス測定装置5の動作について説明する。
図31は、交流電流I2の位相が修正されたことに起因するインピーダンスZ2の誤差を補正する処理を示すフローチャートである。なお、この処理が開始されるときには、位相修正部600による位相の修正は行われていない。
ステップS401において、交流調整部540は、交流電位差V1の実軸成分V1r及び虚軸成分V1xと、交流電位差V1の位相角θ1と、交流電位差V2の実軸成分V2r及び虚軸成分V2xと、交流電位差V2の位相角θ2とを測定する。例えば、交流調整部540は、図14に示されたステップS101〜S104と同様の処理を行う。
次に、ステップS402において、交流調整部540は、交流電位差V2の位相角θ2から交流電位差V1の位相角θ1を減算することにより、位相差φを算出する。なお、この処理は、図14に示されたステップS105と同様の処理である。
次に、ステップS403において、交流調整部540は、位相差φが所定の範囲内にあるか否か判定する。ここで、負荷3への漏れ電流を発生させないためには、位相差φがゼロであることが望ましい。そのため、例えば、交流調整部540は、位相差φが−1度(degree)以上であり、かつ、+1度未満であるような所定の範囲内にあるか否か判定する。
交流調整部540が、位相差φが所定の範囲を超えると判定した場合には(ステップS403:No)、位相修正部600は、位相差φがゼロになるように、交流電流I2の位相をシフトさせる(ステップS404)。そして、インピーダンス測定装置5は、ステップS401の処理に戻る。
交流調整部540が、位相差φが所定の範囲内にあると判定した場合には(ステップS403:Yes)、ステップS405の処理へと進む。
ステップS405においては、位相修正部600は、位相差φが所定の範囲内にあるときの、位相修正部600が交流電流I2の位相をシフトさせた位相角を、修正量Δξとして決定する。位相修正部600は、決定した修正量Δξを演算部550に出力する。なお、ステップS404の処理が行われなかった場合には、位相修正部600は、修正量Δξにゼロを設定する。
そして、算出部5521は、交流電位差V1と交流電流I1とから、インピーダンスZ1の実軸成分Z1rおよび虚軸成分Z1xを求める。また、算出部5521は、交流電位差V2と交流電流I2とから、インピーダンスZ2の実軸成分Z2rおよび虚軸成分Z2xを求める。
例えば、算出部5521は、図6に示した正極側検波回路5411と同様に、同相成分抽出部710及び直交成分抽出部720を有し、これらの構成を用いて、交流電位差V1の実軸成分V1r及び虚軸成分V1xを求める。そして、算出部5521は、実軸成分V1rを交流電流I1の振幅で除算することにより、インピーダンスZ1の実軸成分Z1rを算出する。また、算出部5521は、虚軸成分V1xを、交流電流I1の振幅で除算することにより、インピーダンスZ1の虚軸成分Z1xを算出する。
同様に、算出部5521は、負極側検波回路5412と同様の構成を有し、これらの構成を用いて、インピーダンスZ2の実軸成分Z2r及び虚軸成分Z2xを求める。
次に、ステップS406において、補正部5522は、インピーダンスZ2の実軸成分Z2r及び虚軸成分Z2xと、修正量Δξとを用いて、式(14−1)及び式(14−2)に基づいて、補正後の実軸成分Z2Cr及び虚軸成分Z2Cxを算出する。このようにして、補正部5522は、補正後のインピーダンスZ2Cを算出する。
なお、補正部5522は、式(14−1)及び式(14−2)中の三角関数の計算部分について、予め設定されたマップを用いて計算するようにしてもよい。例えば、補正部5522には、角度θと、角度θのときの正弦関数(sinθ)及び余弦関数(cosθ)とを対応付けたマップである三角関数表が記憶される。
そして、補正部5522は、記憶している三角関数表を用いて、sinΔξ及びcosΔξを求める。補正部5522は、これらのsinΔξ及びcosΔξと、インピーダンスZ2の実軸成分Z2r及び虚軸成分Z2xとを用いて、式(14−1)及び式(14−2)のうちの以下の計算を行うことにより、補正後の実軸成分Z2Cr及び虚軸成分Z2Cxを算出する。
Figure 0006315078
また、補正部5522は、予め、以下の値を計算しておく。
Figure 0006315078
補正部5522は、計算した補正前の位相角ξと、位相修正部600により修正された修正量Δξとを加算することにより、補正後の位相角(ξ+Δξ)を算出する。補正部5522は、記憶している三角関数表を用いて、sin(ξ+Δξ)及びcos(ξ+Δξ)を求める。そして、補正部5522は、これらのsin(ξ+Δξ)及びcos(ξ+Δξ)と、補正前のインピーダンスZ2の大きさ|Z2|とを用いて、式(14−1)及び式(14−2)のうちの以下の計算を行うことにより、補正後の実軸成分Z2Cr及び虚軸成分Z2Cxを算出する。
Figure 0006315078
次に、ステップS407において、補正部5522は、インピーダンスZ2Cをコントローラーユニット6に出力する。さらに、補正部5522は、インピーダンスZ1をコントローラーユニット6に出力する。
ステップS407の処理を終えると、インピーダンス測定装置5は、インピーダンス測定に関する処理を終える。
ここで、補正部5522による補正に用いられる修正量Δξと、補正部5522による補正後のインピーダンスZ2の実軸成分Z2r及び虚軸成分Z2xとの関係について説明する。
図32は、補正部5522による補正に用いられる修正量Δξと、補正部5522によって補正された後のインピーダンスZ2Cとの関係の一例を示す図である。ここでは、インピーダンスZ2の実軸成分Z2r及び虚軸成分Z2xは、ともに1.5Ωである。したがって、インピーダンスZ2の位相角は、45度である。
まず、修正量Δξと補正後の実軸成分Z2rとの関係について説明する。修正量Δξが−90度から−45度までの範囲においては、修正量Δξが小さくなるほど、補正後の実軸成分Z2rは大きくなる。修正量Δξが−45度から+90度までの範囲においては、修正量Δξが大きくなるほど、補正後の実軸成分Z2rは小さくなる。
次に、修正量Δξと補正後の虚軸成分Z2xとの関係について説明する。修正量でΔξが−90度から+45度までの範囲においては、修正量Δξが大きくなるほど、補正後の虚軸成分Z2xは大きくなる。修正量Δξが+45度から+90度までの範囲においては、修正量Δξが大きくなるほど、補正後の虚軸成分Z2xは小さくなる。
このように、修正量Δξが大きくなるときには、補正後のインピーダンスZ2の実軸成分Z2r及び虚軸成分Z2xは、大きくなることもあれば、小さくなることもある。しかしながら、修正量Δξが−45度から+45度までの範囲においては、修正量Δξが大きくなるほど、補正後の実軸成分Z2xは小さくなり、補正後の虚軸成分Z2xは大きくなる。
一般に、燃料電池スタック1の正極側と負極側の状態は大きく異ならない。そのため、インピーダンスZ1の位相角とインピーダンスZ2の位相角とは概ね同じであり、修正量Δξが0度近傍の値、すなわち、−45度から+45度までの範囲にある値になることが多い。そのため、多くの場合、修正量Δξが大きくなるほど、補正後の実軸成分Z2xは小さくなり、補正後の虚軸成分Z2xは大きくなる。
なお、本実施形態においては、位相修正部600が交流電流I2の位相を修正する例を用いて説明したが、これに限らない。位相修正部600は交流電流I1の位相を修正してもよい。このような場合には、補正部5522は、正極側のインピーダンスZ1の誤差を補正する。
また、本実施形態においては、位相修正部600は、インピーダンスZ2の実軸成分Z2r及び虚軸成分Z2xの両方を補正したがこれに限らない。位相修正部600は、実軸成分Z2rまたは虚軸成分Z2xのいずれか一方を補正してもよい。
例えば、コントローラーユニット6は、燃料電池スタック1の運転状態の制御に、インピーダンスZ2の虚軸成分Z2xを用いずに、実軸成分Z2rのみを用いることがある。このようなときには、補正部5522は、実軸成分Z2rだけを補正し、虚軸成分Z2xを補正する。
本発明の第9実施形態によれば、補正部5522は、位相修正部600による交流電流I2の修正量Δξに応じて、算出部5521により算出された負極側のインピーダンスZ2の実軸成分Z2r及び虚軸成分Z2xを補正する。
ここで、交流電位差V1の位相と交流電位差V2の位相との間に位相差φが生じてしまうと、負荷3への漏れ電流が発生し、インピーダンス測定装置5は、インピーダンスZ1及びZ2を正確に測定できない。そのため、位相修正部600によって交流電流I2の位相が修正量Δξだけ修正されることにより、位相差φがゼロになり、漏れ電流が低減する
しかしながら、交流電流I2の位相が修正量Δξだけ修正されると、インピーダンスZ2の位相角が修正量Δξだけずれてしまい誤差が生じる。これに対して、本実施形態においては、補正部5522がインピーダンスZ2の位相角を修正量Δξだけ補正することにより、交流電流I2の位相が修正されることに起因する誤差が補正される。
このように、交流電流I2の位相が修正されることにより負荷3への漏れ電流が発生しておらず、さらに、交流電流I2の位相が修正されることに起因するインピーダンスZ2の誤差が補正されている。そのため、補正部5522により誤差が補正されたインピーダンスZ2Cは、より正確な値となる。したがって、コントローラーユニット6は、より正確なインピーダンスZ2Cを用いることにより、燃料電池スタック1の運転状態を適切に制御することができる。
また、補正部5522は、インピーダンスZ2の位相角を、交流電流I2がシフトされた位相の大きさである修正量Δξだけ、交流電流I2がシフトされた方向とは逆方向に補正する。このようにして、補正部5522は、インピーダンスZ2に含まれる誤差を適切に補正するため、インピーダンスZ2Cはより正確な値となる。このようにして、コントローラーユニット6は、より正確なインピーダンスZ2Cを用いることにより、燃料電池スタック1の運転状態を適切に制御することができる。
また、補正部5522は、算出部5521が算出するインピーダンスZ2の実軸成分Z2rおよび虚軸成分Z2xの少なくとも一方について補正する。このように、必要に応じて、補正部5522による実軸成分Z2r又は虚軸成分Z2xのいずれか一方の補正処理を省略することにより、インピーダンス測定装置5の処理負荷を軽減することができる。
(第10実施形態)
第9実施形態では、補正部5522が算出部5521により算出されたインピーダンスZ2を常に補正する例について説明した。第10実施形態では、必要に応じて補正部5522がインピーダンスZ2を補正する例について説明する。
図33は、本実施形態の演算部550の構成を示す図である。本実施形態の演算部550では、図27に示したマイコンチップ552が、さらに、判定部5523を有する。なお、以下では、図27に示した演算部550と同じ構成については、同じ符号を付し、説明を省略する。
判定部5523は、位相修正部600から位相角の修正量Δξを受け付ける。
上述のように、位相修正部600により交流電流I2の位相が修正量Δξだけ修正されると、インピーダンスZ2の位相角は修正量Δξだけずれる。そのため、位相修正部600による交流電流I2の位相の修正量Δξが小さければ、インピーダンスZ2に含まれる誤差は小さくなる。
このように、交流電流I2の位相が修正されることに起因するインピーダンスZ2の誤差が小さい場合には、補正部5522による補正を行わなくても、インピーダンスZ2は概ね正確な値となる。そのため、補正部5522によってインピーダンスZ2を補正する必要性が低い。したがって、判定部5523は、交流電流I2の位相が修正される修正量Δξに基づいて、補正部5522による補正が必要であるか否かを判定する。
補正部5522は、判定部5523により補正が必要であると判定された場合には、インピーダンスZ2を補正する。そして、補正部5522は、補正後のインピーダンスZ2Cをコントロールユニット6に出力する。一方、補正部5522は、判定部5523により補正が必要ないと判定された場合には、インピーダンスZ2を補正することなくコントロールユニット6に出力する。
図34は、本実施形態のインピーダンス測定装置5の動作を示すフローチャートである。ここでは、図31に示した一連の処理に加えて、さらにステップS501の処理が行われる。また、判定部5523は、修正量Δξに基づいて補正部5522による補正が必要であるか否かを判定するために、所定の閾値として、例えば、−5度以上から+5度までの範囲を、あらかじめ記憶している。
ステップS501において、判定部5523は、修正量Δξに基づいて補正部5522による補正が必要であるか否かを判定する。
判定部5523は、修正量Δξが所定の範囲を超える場合には、補正が必要であると判定する(ステップS501:Yes)。そして、判定部5523は、補正が必要である旨を示す判定結果を補正部5522に出力する。補正部5522は、補正が必要である旨を示す判定結果を受け付けると、S406の処理に進み、インピーダンスZ2を補正する。
判定部5523は、修正量Δξが所定の範囲内にある場合には、補正が必要でないと判定する(ステップS501:No)。そして、判定部5523は、補正が必要でない旨を示す判定結果を補正部5522に出力する。補正部5522は、補正が必要でない旨を示す判定結果を受け付けると、ステップS407へ進む。
なお、本実施形態においては、判定部5523は、修正量Δξを用いて補正が必要であるか否かを判定したがこれに限らない。判定部5523は、例えば、インピーダンス測定装置5から出力される交流電流I1及びI2の周波数を用いて補正が必要か否かを判定してもよい。
ここで、インピーダンスの測定に用いられる交流電流I1及びI2の周波数と、補正部5522による補正の必要性との関係について説明する。
図35は、燃料電池スタック1のインピーダンスの測定に用いられる交流電流の周波数と、インピーダンスの測定結果との関係の一例を示す図である。一般に、このような図は、ナイキスト線図と称される。
図35においては、交流電流の周波数を変化させたときの燃料電池スタック1のインピーダンスの特性が示されている。図35に示すように、交流電流の周波数が高くなるほど、インピーダンスの位相角が進む。また、交流電流の周波数が低くなるほど、インピーダンスの位相角が遅れる。
インピーダンスZHは、周波数が概ね1KHzよりも高い周波数の交流電流を用いたときの測定結果である。なお、このような高周波の交流電流を用いた測定は、HFR(High Frequency Resistance)測定と称される。
インピーダンスZLは、周波数がHFR測定にて用いられた交流電流の周波数よりも低い周波数の交流電流を用いたときの測定結果である。なお、このような、HFR測定にて用いられた低周波数の交流電流を用いて測定されたインピーダンスを、LFI(Low Frequency Impedance)と呼ぶことにする。
図35に示したように、インピーダンスZHは、実軸近傍にあるため、位相角の遅れが発生しにくい。したがって、インピーダンスZ1及びZ2の位相角の遅れが小さくなり、インピーダンスZ1とインピーダンスZ2との間で位相差φが小さくなりやすい。位相差φが小さい場合には、位相差φがゼロになるように交流電流I2の位相が修正されるため、交流電流I2の位相の修正量Δξは小さくなる。
そして、修正量Δξが小さくなるほど、インピーダンスZ2に含まれる位相修正部600による位相の修正に起因する誤差が小さくなる。そのため、インピーダンスZ2は、補正部5522により補正されなくても、概ね正確な値となる。したがって、HFR測定においては、補正部5522による補正の必要性は低い。
一方、インピーダンスZLは、実軸から離れているため、位相角の遅れが発生しやすい。したがって、インピーダンスZ1及びZ2の位相角の遅れが大きくなり、位相差φが大きくなりやすい。位相差φが大きい場合には、交流電流I2の位相の修正量Δξは大きくなる。
そして、修正量Δξが大きくなるほど、インピーダンスZ2に含まれる、位相修正部600による位相の修正に起因する誤差が大きくなる。したがって、LFI測定においては、補正部5522による補正の必要性は高い。
そのため、判定部5523は、補正が必要であるか否かを判定するために、基準周波数として、例えば1KHzを記憶している。ステップS501において、判定部5523は、交流電流I1及びI2の周波数と基準周波数とを比較し、交流電流I1及びI2の周波数が基準周波数よりも小さい場合には、補正が必要であると判定する(ステップS501:Yes)。一方、判定部5523は、交流電流I1及びI2の周波数が、基準周波数以上である場合には、補正が必要でないと判定する(ステップS501:No)。
このように、本発明の第10実施形態によれば、判定部5523は、補正が必要か否かを判定する。そして、補正部5522は、判定部5523により補正の必要がないと判定された場合には、補正部5522による補正処理を省略することができる。したがって、インピーダンス測定装置5の処理負荷を軽減することができる。
また、交流電流I2の位相が修正される修正量Δξが小さければ、インピーダンスZ2の位相角に生じる交流電流I2の位相の修正に起因する誤差が小さくなる。したがって、インピーダンスZ2は概ね正確な値となる。そのため、判定部5523は、補正部5522による補正が必要ないと判定する。このように、必要に応じて補正部5522による補正処理を省略することができるため、インピーダンス測定装置5の処理負荷を軽減することができる。
また、燃料電池スタック1のインピーダンスを測定する交流電流I1及びI2の周波数が高くなると、図35のナイキスト線図に示されるように、インピーダンスZ1及びZ2は、実軸近傍にあり、位相角が小さくなる。したがって、インピーダンスZ1とインピーダンスZ2との位相差φが小さくなりやすい。位相差φがゼロになるように交流電流I2の位相が修正されるため、位相差φが小さい時には、交流電流I2の位相の修正量Δξは小さくなる。このように交流電流I2の位相の修正量Δξが小さければ、インピーダンスZ2に含まれる、交流電流I2の位相の修正に起因する誤差が小さくなる。
したがって、インピーダンスZ2は概ね正確な値となるため、判定部5523は、補正部5522による補正が必要ないと判定する。補正部5522は、判定部5523により補正が必要ないと判定された場合には、補正を行わない。このように、必要に応じて補正部5522による補正処理を省略することができるため、インピーダンス測定装置5の処理負荷を軽減することができる。
(第11実施形態)
第10実施形態では、判定部5523は、補正部5522による補正が必要か否かを判定する例について説明した。第11実施形態においては、判定部5523が、補正部5522による補正が必要か否かを判定する他の方法について説明する。
図36は、本実施形態の演算部550の構成を示す図である。演算部550においては、図33に示した判定部5523は、算出部5521からインピーダンスZ1及びZ2を受け付ける。なお、以下では、図33に示した演算部550と同じ構成については、同じ符号を付し、説明を省略する。
算出部5521は、算出したインピーダンスZ1及びZ2を、補正部5522に出力する。算出部5521は、算出したインピーダンスZ1及びZ2を、さらに、判定部5523に出力する。
判定部5523は、インピーダンスZ1及びZ2を用いて、燃料電池スタック1の状態が正常か否かを判定する。
ここで、燃料電池スタック1の状態が正常である場合には、インピーダンスZ2の測定結果に誤差が生じにくくいため、補正部5522による補正の処理は必要ない。一方、燃料電池スタック1の状態が正常でない場合には、インピーダンスZ2の測定結果に誤差が生じやすいため、補正部5522による補正の処理が必要である。
そのため、補正部5522は、判定部5523により燃料電池スタック1の状態が正常と判定された場合には、インピーダンスZ2を補正しない。一方、補正部5522は、判定部5523により燃料電池スタック1の状態が正常でないと判定された場合には、インピーダンスZ2を補正する。
ここで、本実施形態のインピーダンス測定装置5による動作について詳細に説明する。インピーダンス測定装置5は、図34に示した動作と同様の処理を行う。以下では、ステップS501の処理を中心に説明する。
一般に、燃料電池スタック1の状態が正常であれば、算出部5521により算出されるインピーダンスZ2の実軸成分Z2rは所定の範囲内の値となる。そのため、判定部5523は、燃料電池スタック1の状態が正常であるか否かを判定するために、例えば、1Ω以上であり、かつ、2Ω未満である範囲を、所定の実軸範囲として記憶している。
ステップS501において、判定部5523は、補正部5522による補正が必要か否かを判定するために、インピーダンスZ2の実軸成分Z2rが、所定の実軸範囲内にあるか否かを判定する。
判定部5523は、実軸成分Z2rが所定の実軸範囲内にある場合には、燃料電池スタック1の状態が正常であり、補正部5522による補正の必要がないと判定する(ステップS501:No)。
一方、判定部5523は、実軸成分Z2rが所定の実軸範囲を超える場合には、燃料電池スタック1の状態が正常でなく、補正部5522による補正の必要があると判定する(ステップS501:Yes)。
なお、本実施形態においては、判定部5523は、インピーダンスZ2の実軸成分Z2rを用いて、燃料電池スタック1の状態が正常か否かを判定したが、これに限らない。判定部5523は、インピーダンスZ2の虚軸成分Z2xを用いて、燃料電池スタック1の状態が正常か否かを判定してもよい。
また、判定部5523は、正極側のインピーダンスZ1を用いて、燃料電池スタック1の状態が正常か否かを判定してもよい。また、判定部5523は、インピーダンスZ1及びZ2の両方を用いて、燃料電池スタック1の状態が正常か否かを判定してもよい。
このように、本発明の第11実施形態によれば、判定部5523は、燃料電池スタック1の状態が正常であるか否かを判定する。ここで、燃料電池スタック1の状態が正常である場合には、インピーダンスZ2の測定結果に誤差が生じにくくいため、補正部5522による補正の必要性は低い。一方、燃料電池スタック1の状態が正常でない場合には、インピーダンスZ2の測定結果に誤差が生じやすいため、補正部5522による補正の必要性が高い。
そのため、補正部5522は、判定部5523により燃料電池スタック1の状態が正常であると判断された場合には、インピーダンスZ2を補正しない。このように、必要に応じて補正部5522による補正処理を省略することができるため、インピーダンス測定装置5の処理負荷を軽減することができる。
また、判定部5523は、算出されたインピーダンスZ2が所定の範囲内にあるか否かを判定し、その判定結果に応じて燃料電池スタック1の状態が正常であるか否かを判定する。そして、補正部5522は、判定部によりインピーダンスZ2が所定の範囲内にあると判定された場合には、インピーダンスZ2を補正しない。このように、必要に応じて補正部5522による補正処理を省略することができるため、インピーダンス測定装置5の処理負荷を軽減することができる。
(第12実施形態)
第10実施形態及び第11実施形態では、判定部5523は、補正部5522による補正が必要か否かを判定する例について説明した。第12実施形態においては、判定部5523が、補正部5522による補正が必要か否かを判定するさらに他の方法について説明する。
図37は、本実施形態のインピーダンス測定装置5の構成を示す図である。本実施形態のインピーダンス測定装置5は、図22に示したインピーダンス測定装置5が、さらに、収集部800を有する。なお、図22に示したインピーダンス測定装置5と同じ構成については、同じ符号を付し、説明を省略する。
収集部800は、燃料電池スタック1による発電状況に応じて変化する発電情報を収集する。例えば、収集部800は、燃料電池スタック1に供給される冷却水の温度や、燃料電池スタック1に供給されるガス圧力や、燃料電池スタック1の出力電圧などを、発電情報として収集する。収集部800は、収集した発電情報を、判定部5523に出力する。
判定部5523は、燃料電池スタック1の状態が正常か否かを判断するために、発電情報についての所定の基準を記憶している。判定部5523は、収集部800により収集された発電情報が所定の基準を満たすか否かを判定する。
ここで、収集部800により収集された発電情報が所定の基準を満たす場合には、燃料電池スタック1の状態が正常であり、インピーダンスZ2は正確な値であることが多い。そのため、補正部5522による補正の必要性は低い。
一方、収集部800により収集された発電情報が所定の基準を満たさない場合には、燃料電池スタック1の状態が正常でなく、インピーダンスZ2は正常でない値であることが多い。そのため、補正部5522による補正の必要性は高い。
したがって、補正部5522は、収集部800により収集された発電情報が所定の基準を満たす場合には、インピーダンスZ2を補正しない。一方、補正部5522は、収集部800により収集された発電情報が所定の基準を満たさない場合には、インピーダンスZ2を補正する。
ここで、本実施形態のインピーダンス測定装置5による動作について詳細に説明する。インピーダンス測定装置5は、図34に示した処理と同様の処理を行う。以下では、ステップS501の処理を中心に説明する。
ステップS501において、判定部5523は、補正部5522による補正が必要か否かを判定するために、収集部800により収集された発電情報が所定の基準を満たすか否かを判定する。そして、判定部5523は、判定結果を補正部5522に出力する。
判定部5523は、収集部800により収集された発電情報が所定の基準を満たす場合には、燃料電池スタック1の状態が正常であると判定する(ステップS501:No)。
一方、判定部5523は、収集部800により収集された発電情報が所定の基準を満たさない場合には、燃料電池スタック1の状態が正常でないと判定する(ステップS501:Yes)。
例えば、燃料電池スタック1の状態が正常であれば、燃料電池スタック1の温度は摂氏90度程度である。そこで、燃料電池スタック1の異常な状態を特定するために、収集部800により燃料電池スタック1の温度が測定される。一方、判定部5523は、例えば、摂氏50度以上であり、かつ、摂氏95度未満である範囲を、所定の温度範囲として、あらかじめ記憶している。
判定部5523は、収集部800により測定された燃料電池スタック1の温度が所定の温度範囲を超える場合には、燃料電池スタック1の状態が正常でなく、補正部5522による補正の必要があると判定する(ステップS501:Yes)。
一方、判定部5523は、収集部800により測定された燃料電池スタック1の温度が所定の温度範囲内にある場合には、燃料電池スタック1の状態が正常であり、補正部5522による補正の必要がないと判定する(ステップS501:No)。
また、燃料電池スタック1の状態が正常であれば、燃料電池スタック1に供給されるガス圧力は、110KPa〜250KPa程度である。そこで、燃料電池スタック1の異常な状態を特定するために、収集部800により燃料電池スタック1に供給されるガス圧力が測定される。一方、判定部5523は、所定の圧力範囲として、例えば、100KPa以上であり、かつ、270KPa未満である範囲を、所定の圧力範囲として記憶している。
判定部5523は、収集部800により測定されたガス圧力が所定の圧力範囲を超える場合には、燃料電池スタック1の状態が正常でなく、補正部5522による補正の必要があると判定する(ステップS501:Yes)。
一方、判定部5523は、収集部800により測定されたガス圧力が所定のガス圧力範囲内にある場合には、燃料電池スタック1の状態が正常であり、補正部5522による補正の必要がないと判定する(ステップS501:No)。
なお、本実施形態においては、判定部5523は、マイコンチップ552内に設けられたが、これに限らない。例えば、判定部5523は、収集部800内に設けられてもよい。
また、本実施形態においては、判定部5523が、収集部800により収集された発電情報が所定の基準を満たすか判定し、その判定結果に応じて補正部5522による補正が必要であるか否かを判定したが、これに限らない。判定部5523は、収集部800により収集された発電情報が所定の基準を満たすかを判定し、その判定結果に応じて補正部5522による補正が必要であるか否かを判定しなくてもよい。
このような場合には、補正部5522は、判定部5523が収集部800により収集された発電情報が所定の基準を満たさないと判定した場合には、インピーダンスZ2を補正する。一方、補正部5522は、判定部5523が収集部800により収集された発電情報が所定の基準を満たすと判定した場合には、インピーダンスZ2を補正しない。
このように、本発明の第12実施形態によれば、判定部5523は、収集部800によって収集された燃料電池スタック1の発電状況に応じて変化する発電情報を収集し、収集した発電情報を用いて、燃料電池スタック1の状態が正常か否かを判断する。
ここで、第11実施形態においては、判定部5523は、位相修正部600による位相の修正量Δξを用いて、燃料電池スタック1の状態が正常か否か判断した。ここで、例えば、燃料電池スタック1の正極側及び負極側の状態が同じように変化して異常な状態になってしまった場合には、インピーダンスZ1の位相角θ1とインピーダンスZ2の位相角θ2との間に位相差φが生じず、位相修正部600により位相の修正が行われないことがある。このような場合には、位相修正部600による位相の修正量Δξがゼロのままであり、判定部5523は、燃料電池スタック1の状態が正常であるか否かの判断を誤ってしまう。
一方、本実施形態においては、燃料電池スタック1の状態が変化すると、収集部800により収集される発電情報が変化する。したがって、上述のような燃料電池スタック1の正極側及び負極側の状態が同じように変化して異常な状態になってしまった場合でも、燃料電池スタック1全体の状態が変化しているため、収集部800により収集される発電情報が変化する。このように、判定部5523は、燃料電池スタック1の発電状況に応じて変化する発電情報を用いることにより、燃料電池スタック1の状態が正常であるか否かをより正確に判断することができる。
このように、判定部5523は、補正部5522による補正が必要か否かの判定を適切に行うことができる。そのため、補正部5522によるインピーダンスZ2の補正処理が適切なタイミングで省略されることにより、インピーダンス測定装置5の処理負荷を適切に低減できる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
例えば、上記実施形態では、インピーダンス測定装置5により燃料電池スタック1の内部インピーダンスを測定する例について説明したが、測定対象は、複数の電池セルが積層された積層電池であればよく、例えば積層型のリチウムバッテリーであってもよい。リチウムバッテリーであっても、電池セルの個体差によって正極側の静電容量C1と負極側の静電容量C2とに差が生じて位相差Φが生じる場合がある。このような場合にも、上記実施形態と同じように本願発明の効果を得ることができる。
なお、上記実施形態は、適宜組み合わせ可能である。
本国際出願は,2014年2月19日に日本国特許庁を受理官庁として出願された国際出願PCT/JP2014/053912に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (17)

  1. 複数の電池セルが積層された積層電池と、
    前記積層電池の正極端子に対し、前記積層電池のインピーダンスを測定するための所定周波数の交流電流を出力する第1電源部と、
    前記積層電池の負極端子に対し、前記所定周波数の交流電流を出力する第2電源部と、
    前記正極端子と前記積層電池の中途点端子との間の交流電位差を検出する第1検出部と、
    前記負極端子と前記中途点端子との間の交流電位差を検出する第2検出部と、
    前記第1検出部により検出される交流電位差と、前記第2検出部により検出される交流電位差とが一致するように、前記第1電源部及び前記第2電源部のうちの少なくとも一方から出力される交流電流の振幅を調整する調整部と、
    前記調整部により調整された交流電流と交流電位差とに基づいて、前記積層電池のインピーダンスを演算する演算部と、
    前記正極端子に生じる交流電位と前記負極端子に生じる交流電位との間の位相差に基づいて、前記演算部により演算されるインピーダンスの出力を判断又は補正する処理部と、
    を含むインピーダンス測定装置。
  2. 複数の電池セルが積層された積層電池と、
    前記積層電池の正極端子に対し、前記積層電池のインピーダンスを測定するための所定周波数の交流電流を出力する第1電源部と、
    前記積層電池の負極端子に対し、前記所定周波数の交流電流を出力する第2電源部と、
    前記正極端子と前記積層電池の中途点端子との間の交流電位差を検出する第1検出部と、
    前記負極端子と前記中途点端子との間の交流電位差を検出する第2検出部と、
    前記第1検出部により検出される交流電位差と、前記第2検出部により検出される交流電位差とが一致するように、前記第1電源部及び前記第2電源部のうちの少なくとも一方から出力される交流電流の振幅を調整する調整部と、
    前記調整部により調整された交流電流と交流電位差とに基づいて、前記積層電池のインピーダンスを演算する演算部と、
    前記正極端子に生じる交流電位と前記負極端子に生じる交流電位との間の位相差に基づいて、交流電流の誤差を抑制するように前記第1電源部又は前記第2電源部の出力を示す交流電流値又は当該出力の位相を変更する処理部と、
    を含むインピーダンス測定装置。
  3. 請求項2に記載のインピーダンス測定装置であって、
    前記処理部は、前記位相差に基づいて、前記第1電源部から出力される交流電流の位相、又は、前記第2電源部から出力される交流電流の位相を修正する、
    インピーダンス測定装置。
  4. 請求項3に記載のインピーダンス測定装置であって、
    前記第1電源部及び前記第2電源部のうちの一方は、前記交流電流の位相を変化させる移相回路を含み、
    前記処理部は、前記位相差が小さくなるように前記移相回路から出力される電流の位相を制御する、
    インピーダンス測定装置。
  5. 請求項2に記載のインピーダンス測定装置であって、
    前記処理部は、前記位相差に基づいて演算される漏れ電流に応じて、前記第1電源部から出力される交流電流値、及び、前記第2電源部から出力される交流電流値を補正する、
    インピーダンス測定装置。
  6. 請求項2から4のいずれか1項に記載のインピーダンス測定装置であって、
    前記処理部により修正される位相量に応じて、前記演算部により算出されるインピーダンスを補正する補正部をさらに含む、
    インピーダンス測定装置。
  7. 請求項6に記載のインピーダンス測定装置であって、
    前記処理部により修正される位相量が大きいほど、前記補正部は、前記演算部により算出されるインピーダンスの位相角を大きく変化させる、
    インピーダンス測定装置。
  8. 請求項6または7に記載のインピーダンス測定装置であって、
    前記補正部は、前記処理部によって位相が修正される方向とは逆方向に、前記演算部により算出されるインピーダンスの位相角を変化させる、
    インピーダンス測定装置。
  9. 請求項6から8のいずれか1項に記載のインピーダンス測定装置であって、
    前記補正部は、前記演算部により算出されたインピーダンスの実部および虚部のうちの少なくとも一方を補正する、
    インピーダンス測定装置。
  10. 請求項6から9のいずれか1項に記載のインピーダンス測定装置であって、
    前記補正部による補正が必要か否かを判定する判定部を含み、
    前記補正部は、前記判定部により補正が必要と判定された場合には、前記演算部により算出されるインピーダンスを補正する、
    インピーダンス測定装置。
  11. 請求項10に記載のインピーダンス測定装置であって、
    前記判定部は、前記処理部により修正される位相角が所定の範囲を超える場合には、前記補正部による補正が必要と判定する、
    インピーダンス測定装置。
  12. 請求項10に記載のインピーダンス測定装置であって、
    前記判定部は、前記積層電池のインピーダンスの測定に用いる交流電流の周波数が所定の閾値よりも小さい場合には、前記補正部による補正が必要と判定する、
    インピーダンス測定装置。
  13. 請求項10に記載のインピーダンス測定装置であって、
    前記判定部は、さらに、前記積層電池の状態が正常か否かを判定し、
    前記補正部は、前記判定部により前記積層電池の状態が正常でないと判定された場合には、前記演算部により算出されるインピーダンスを補正する、
    インピーダンス測定装置。
  14. 請求項13に記載のインピーダンス測定装置であって、
    前記判定部は、前記演算部により算出されたインピーダンスの値が所定の範囲内にあるか否かを判定し、前記インピーダンスの値が前記所定の範囲を超える場合には、前記積層電池の状態が正常でないと判断する、
    インピーダンス測定装置。
  15. 請求項10に記載のインピーダンス測定装置であって、
    前記積層電池による発電状況に応じて変化する発電情報を収集する収集部をさらに含み、
    前記判定部は、さらに、前記収集部によって収集された前記発電情報が所定の基準を満たすか否かを判定し、
    前記補正部は、前記判定部により前記発電情報が所定の基準を満たさないと判定された場合には、前記演算部により算出されるインピーダンスを補正する、
    ことを特徴とするインピーダンス測定装置。
  16. 複数の電池セルが積層された積層電池と、前記積層電池の正極端子に対し、前記積層電池のインピーダンスを測定するための所定周波数の交流電流を出力する第1電源部と、前記積層電池の負極端子に対し、前記所定周波数の交流電流を出力する第2電源部と、を備えるインピーダンス測定装置の制御方法であって、
    前記正極端子と前記積層電池の中途点端子との間の交流電位差を検出する第1検出工程と、
    前記負極端子と前記中途点端子との間の交流電位差を検出する第2検出工程と、
    前記第1検出工程により検出される交流電位差と、前記第2検出工程により検出される交流電位差とが一致するように、前記第1電源部及び前記第2電源部のうちの少なくとも一方から出力される交流電流の振幅を調整する調整工程と、
    前記調整工程により調整された交流電流と交流電位差とに基づいて、前記積層電池のインピーダンスを演算する演算工程と、
    前記正極端子に生じる交流電位と前記負極端子に生じる交流電位との間の位相差に基づいて、前記演算工程により演算されるインピーダンスの出力を判断又は補正する処理工程と、
    を含むインピーダンス測定装置の制御方法。
  17. 複数の電池セルが積層された積層電池と、前記積層電池の正極端子に対し、前記積層電池のインピーダンスを測定するための所定周波数の交流電流を出力する第1電源部と、前記積層電池の負極端子に対し、前記所定周波数の交流電流を出力する第2電源部と、を備えるインピーダンス測定装置の制御方法であって、
    前記正極端子と前記積層電池の中途点端子との間の交流電位差を検出する第1検出工程と、
    前記負極端子と前記中途点端子との間の交流電位差を検出する第2検出工程と、
    前記第1検出工程により検出される交流電位差と、前記第2検出工程により検出される交流電位差とが一致するように、前記第1電源部及び前記第2電源部のうちの少なくとも一方から出力される交流電流の振幅を調整する調整工程と、
    前記調整工程により調整された交流電流と交流電位差とに基づいて、前記積層電池のインピーダンスを演算する演算工程と、
    前記正極端子に生じる交流電位と前記負極端子に生じる交流電位との間の位相差に基づいて、交流電流の誤差を抑制するように前記第1電源部又は前記第2電源部の出力を示す交流電流値又は当該出力の位相を変更する処理工程と、
    を含むインピーダンス測定装置の制御方法。
JP2016503990A 2014-02-19 2015-01-07 インピーダンス測定装置及びインピーダンス測定装置の制御方法 Active JP6315078B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014053912 2014-02-19
JPPCT/JP2014/053912 2014-02-19
PCT/JP2015/050273 WO2015125506A1 (ja) 2014-02-19 2015-01-07 インピーダンス測定装置及びインピーダンス測定装置の制御方法

Publications (2)

Publication Number Publication Date
JPWO2015125506A1 JPWO2015125506A1 (ja) 2017-03-30
JP6315078B2 true JP6315078B2 (ja) 2018-04-25

Family

ID=53878022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016503990A Active JP6315078B2 (ja) 2014-02-19 2015-01-07 インピーダンス測定装置及びインピーダンス測定装置の制御方法

Country Status (6)

Country Link
US (1) US9791518B2 (ja)
EP (1) EP3109655B1 (ja)
JP (1) JP6315078B2 (ja)
CN (1) CN105992956B (ja)
CA (1) CA2940181C (ja)
WO (1) WO2015125506A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571649B (zh) * 2015-10-09 2019-06-28 华为技术有限公司 一种均衡电流调节方法及相关装置
DE102017209742A1 (de) * 2017-06-09 2018-12-13 Robert Bosch Gmbh Gesteuerte Lastvorrichtung und Herstellungsverfahren für eine gesteuerte Lastvorrichtung
CN108008194A (zh) * 2017-08-17 2018-05-08 哈尔滨理工大学 一种基于巴申定律气压可调的固体绝缘材料高场强电阻率测试系统及其测试方法
JP7074591B2 (ja) * 2018-07-02 2022-05-24 株式会社Soken 燃料電池システム、および燃料電池の湿潤状態の推定方法
US11199425B2 (en) 2018-09-27 2021-12-14 Apple Inc. Dynamic current control of a transmitter for magnetic proximity sensing
US11422207B2 (en) 2018-09-27 2022-08-23 Apple Inc. Configurable AC/DC sensor readout architecture
CN109346745B (zh) * 2018-09-28 2020-08-28 北京机械设备研究所 一种基于阻抗判断燃料电池内部水状态的方法及系统
WO2020261799A1 (ja) * 2019-06-27 2020-12-30 ヌヴォトンテクノロジージャパン株式会社 電池管理回路、電池管理システムおよび電池管理ネットワーク
WO2021040900A1 (en) * 2019-08-23 2021-03-04 Stafl Systems, LLC Location-determinant fault monitoring for battery management system
IT201900015144A1 (it) * 2019-08-28 2021-02-28 St Microelectronics Srl Procedimento per monitorare carichi elettrici, circuito, amplificatore e sistema audio corrispondenti
DE102019129449A1 (de) * 2019-10-31 2021-05-06 Bayerische Motoren Werke Aktiengesellschaft Phasenbestimmung
US20230008384A1 (en) * 2021-07-08 2023-01-12 Guangzhou Automobile Group Co., Ltd. Method for detecting state of battery installed in vehicle, and vehicle-mounted battery-monitoring device
US11927662B2 (en) * 2022-05-12 2024-03-12 Borgwarner Inc. Determination of diagnostic plausibility of phase current measurements
CN116106629B (zh) * 2023-04-06 2023-07-28 上海安其威微电子科技有限公司 一种电源阻抗的频响测试方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586940B2 (en) * 2000-03-13 2003-07-01 Nippon Telegraph And Telephone Corporation Capacity estimation method, degradation estimation method and degradation estimation apparatus for lithium-ion cells, and lithium-ion batteries
JP2003121513A (ja) * 2001-10-09 2003-04-23 Furukawa Battery Co Ltd:The 蓄電池内部抵抗測定方法
JP2004311343A (ja) * 2003-04-10 2004-11-04 Mitsubishi Heavy Ind Ltd 非水電解質電池の性能検査手段およびその性能検査方法、非水電解液の注液装置ならびに非水電解質電池の製造方法
JP4915658B2 (ja) * 2003-12-04 2012-04-11 パワートロン エンジニアリング カンパニー リミテッド 蓄電池セルの端子電圧及び内部インピーダンス測定回路
US6922058B2 (en) * 2003-12-19 2005-07-26 Btech, Inc. Method for determining the internal impedance of a battery cell in a string of serially connected battery cells
US7259572B2 (en) * 2004-06-14 2007-08-21 Powerprecise Solutions, Inc. Method and apparatus for detecting impedance
KR100812760B1 (ko) * 2005-12-08 2008-03-12 김득수 축전지 내부 임피던스 유효성분 측정연산 장치 및 그 방법
KR101096053B1 (ko) * 2007-11-29 2011-12-19 주식회사 와튼 축전지 등가회로의 요소별 내부 저항 또는 등가 캐패시터값 연산 방법, 및 이의 구현회로
CN201156079Y (zh) * 2007-12-27 2008-11-26 武汉理工大学 一种燃料电池堆单片电池内阻与电压在线测试装置
WO2009092067A2 (en) * 2008-01-18 2009-07-23 Neurosystec Corporation Valveless impedance pump drug delivery systems
JP2010139260A (ja) * 2008-12-09 2010-06-24 Hitachi Ltd 二次電池の余寿命推定システムおよび余寿命推定方法
JP2010243481A (ja) * 2009-03-18 2010-10-28 National Institute Of Advanced Industrial Science & Technology 二次電池の温度に関する状態を判定する方法、判定装置および判定プログラム
JP4862937B2 (ja) * 2009-12-08 2012-01-25 トヨタ自動車株式会社 蓄電装置の内部抵抗推定装置、蓄電装置の劣化判定装置、および電源システム
JP5448914B2 (ja) 2010-02-22 2014-03-19 三菱重工業株式会社 二次電池モジュールの診断装置
JP4947173B2 (ja) * 2010-03-16 2012-06-06 横河電機株式会社 交流インピーダンス測定装置
JP5392166B2 (ja) 2010-04-02 2014-01-22 トヨタ自動車株式会社 燃料電池システム
WO2011140123A1 (en) * 2010-05-03 2011-11-10 Battelle Energy Alliance, Llc In-situ real-time energy storage device impedance identification
GB201014384D0 (en) * 2010-08-27 2010-10-13 Imp Innovations Ltd Battery monitoring in electric vehicles, hybrid electric vehicles and other applications
MY173025A (en) * 2010-12-10 2019-12-19 Nissan Motor Internal resistance measurement device and method for stacked battery
US9128165B2 (en) * 2011-05-04 2015-09-08 Datang Nxp Semiconductors Co., Ltd. Battery cell impedance measurement method and apparatus
US8648602B2 (en) * 2011-06-01 2014-02-11 Nxp B.V. Battery impedance detection system, apparatus and method
JP5537521B2 (ja) * 2011-09-20 2014-07-02 株式会社日立製作所 リチウムイオン二次電池制御システムおよび組電池制御システム
US9322884B2 (en) * 2012-01-06 2016-04-26 Industrial Technology Research Institute Impedance analyzing device
EP2908149B1 (en) * 2012-10-09 2017-04-26 Nissan Motor Co., Ltd. Device for measuring impedance of laminated battery
EP2975418B1 (en) * 2013-03-12 2016-12-21 Nissan Motor Co., Ltd. Impedance measuring device and control method for impedance measuring device
US9519031B2 (en) * 2013-12-16 2016-12-13 Battelle Energy Alliance, Llc Circuits and methods for impedance determination using active measurement cancelation
CA2939987C (en) * 2014-02-19 2017-11-21 Nissan Motor Co., Ltd. Impedance measuring device and control method for impedance measuring device

Also Published As

Publication number Publication date
EP3109655A1 (en) 2016-12-28
CN105992956A (zh) 2016-10-05
EP3109655B1 (en) 2018-04-18
US20170045588A1 (en) 2017-02-16
US9791518B2 (en) 2017-10-17
JPWO2015125506A1 (ja) 2017-03-30
CN105992956B (zh) 2018-11-06
WO2015125506A1 (ja) 2015-08-27
CA2940181C (en) 2017-10-24
EP3109655A4 (en) 2017-03-08
CA2940181A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP6315078B2 (ja) インピーダンス測定装置及びインピーダンス測定装置の制御方法
JP6508190B2 (ja) インピーダンス測定装置及びインピーダンス測定装置の制御方法
JP6075442B2 (ja) インピーダンス測定装置及びインピーダンス測定装置の制御方法
JP6344465B2 (ja) インピーダンス測定装置及びインピーダンス測定方法
WO2017061036A1 (ja) インピーダンス測定装置及びその処理方法
JP6350678B2 (ja) 燃料電池の状態検出装置及び方法
JP6319457B2 (ja) 燃料電池の状態推定装置、状態推定方法、及び燃料電池システム
JP6620510B2 (ja) 燃料電池の水素濃度推定方法及び水素濃度推定装置
WO2016092618A1 (ja) インピーダンス測定装置及びインピーダンス測定方法
JP6507507B2 (ja) 燃料電池の内部状態推定装置
JPWO2016006116A1 (ja) 燃料電池のインピーダンス測定装置および燃料電池のインピーダンス測定方法
JP6686715B2 (ja) インピーダンス測定装置、診断装置、及びインピーダンス測定装置の測定方法
JP6318883B2 (ja) インピーダンス測定装置
JP6413402B2 (ja) インピーダンス測定装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R151 Written notification of patent or utility model registration

Ref document number: 6315078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151