JP6305201B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP6305201B2
JP6305201B2 JP2014102481A JP2014102481A JP6305201B2 JP 6305201 B2 JP6305201 B2 JP 6305201B2 JP 2014102481 A JP2014102481 A JP 2014102481A JP 2014102481 A JP2014102481 A JP 2014102481A JP 6305201 B2 JP6305201 B2 JP 6305201B2
Authority
JP
Japan
Prior art keywords
light
current
emitting element
light emitting
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014102481A
Other languages
English (en)
Other versions
JP2015217588A (ja
Inventor
本山 肇
肇 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014102481A priority Critical patent/JP6305201B2/ja
Priority to PCT/JP2015/063438 priority patent/WO2015174360A1/ja
Publication of JP2015217588A publication Critical patent/JP2015217588A/ja
Priority to US15/351,231 priority patent/US10126675B2/en
Application granted granted Critical
Publication of JP6305201B2 publication Critical patent/JP6305201B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04072Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • G03G2215/0122Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt
    • G03G2215/0125Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted
    • G03G2215/0129Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted horizontal medium transport path at the secondary transfer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/04Arrangements for exposing and producing an image
    • G03G2215/0402Exposure devices
    • G03G2215/0404Laser

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Printer (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Semiconductor Lasers (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

本発明は、電子写真方式の画像形成装置のバイアス電流制御に関する。
近年、レーザ走査光学系を露光装置として用いた画像形成装置の生産性や解像度を向上させるために、露光装置の光源として面発光レーザ(以下、VCSELとする)が用いられている。VCSELはマルチビーム化が容易である一方、光量波形の立ち上がりの遅延時間が大きいという特徴がある。また、図12(c)に示すように、光量波形の立ち上がりの遅延時間は、低温時は大きく、高温時は小さくなる。光量波形の立ち上がりの遅延時間は感光ドラム上の潜像の形成に影響するため、記録紙上に形成される画像の画質にも影響を及ぼす。このため、ビーム数を大きくしてスイッチング周波数を小さくし、光量波形の立ち上がりの遅延の影響を相対的に小さくすることが考えられる。しかし、ビーム数を大きくすると各ビームを駆動する駆動回路の規模が拡大し、コストアップを招くおそれがある。このため、光量波形の立ち上がり速度を補正する方法が提案されている(例えば、特許文献1参照)。
一方、レーザ光を消灯しているときにも閾値電流値以下の電流をバイアス電流としてレーザダイオードに印加し、定常的に電力を供給することによってレーザチップの点灯、消灯の差による温度変動を少なくし、立ち上がり速度を補正する方法もある。バイアス電流を印加する方法では、レーザの閾値電流値が温度によって変動するため、最適なバイアス電流を印加するために閾値電流値を検知するバイアスオートパワーコントロール(以下、バイアスAPC)を行う方法が提案されている。
特許第4123791号公報
しかし、VCSELの光量波形の立ち上がりの遅延時間は、周囲温度、点灯光量、点灯履歴及び素子ばらつき等により変化する。従って、光量波形の立ち上がりの遅延時間を補正するための電流値を、一定の電流値とすると最適な補正を行うことができず、最適な潜像を形成できないおそれがある。このため、光量波形の立ち上がりの遅延時間を精度よく補正しようとすると、補正回路が複雑になる傾向がある。補正回路が複雑化することで演算結果の誤差が増大し、補正回路の誤差が出力に影響する現象も発生している。
一方、閾値電流値を検出するバイアスAPC時は潜像を形成するわけでないため、立ち上がり時間を補正する必要がない。バイアスAPC時には、検出精度を向上させることが重要であり、検出精度が低下すると、閾値電流値の算出に誤差を生じることとなる。ここで、図12(d)は、閾値電流値Ithを算出する際の補正回路の誤差の影響を説明する図である。バイアス電流を設定するための閾値電流値はIthとなるべきであるが、補正回路の誤差Offsetの影響で、閾値電流値Ithとは異なるIth’という値が算出されてしまう。このため、適切なバイアス電流を設定することができないおそれがある。
本発明は、このような状況のもとでなされたもので、バイアス電流値の設定精度の低下を抑制することを目的とする。
上述した課題を解決するために、本発明は、以下の構成を備える。
(1)画像形成装置であって、光ビームを出射する発光素子を備える光源と、前記光源から出射された光ビームが感光体上を走査するように当該光ビームを偏向する偏向手段と、前記発光素子から出射された光ビームを受光する受光素子と、前記発光素子に電流を供給する電流供給手段であって、少なくとも前記光ビームが前記感光体上を走査する期間において、画像データに関わらず前記発光素子にバイアス電流を供給し、前記画像データに基づいて前記発光素子に前記バイアス電流に重畳させるスイッチング電流を供給する電流供給手段と、前記発光素子から出射される光ビームの光量を補正するために前記電流供給手段から前記発光素子に供給される電流の値を補正する補正手段と、電流が供給されることによって前記発光素子から出射された光ビームを受光した前記受光素子の受光結果に基づき前記電流供給手段が前記発光素子に供給する前記バイアス電流の値を制御するバイアス電流制御手段と、少なくとも前記光ビームが前記感光体上を走査する期間の前記スイッチング電流が供給される際に前記補正手段によって前記電流供給手段から前記発光素子に供給される電流の値が前記補正手段によって補正され、前記バイアス電流の値を制御するべく前記受光素子に前記光ビームを入射させるために前記電流供給手段から前記発光素子に供給される電流の値が前記補正手段によって補正されないように、前記発光素子に供給する電流に対する前記補正手段の作用状態を切り換える切り換え手段と、を備えることを特徴とする画像形成装置。
本発明によれば、バイアス電流値の設定精度の低下を抑制することができる。
実施例の画像形成装置の構成を示す図 実施例の半導体レーザ走査光学系の構成を示す図 実施例の露光装置のシーケンスを示す図、バイアスAPCを説明する図、補正動作を説明する図 実施例のレーザ駆動回路を説明する図 実施例のLD1、LD2のレーザ駆動回路を説明する図 実施例の1走査周期内における各種モードを実行する際のタイミングチャート 実施例のL_APCモードを実行する際のレーザ駆動回路を示す図 実施例のM_APCモードを実行する際のレーザ駆動回路を示す図 実施例のH_APCモードを実行する際のレーザ駆動回路を示す図 実施例のOFFモードを実行する際のレーザ駆動回路を示す図 実施例のVIDEOモードを実行する際のレーザ駆動回路を示す図 従来例の各波形を説明する図、補正回路の誤差を説明する図
後述する実施例との比較のために、補正回路による電流値の制御が、バイアス電流値を設定するための自動光量制御(以下、バイアスAPC)を実行する際に及ぼす影響について、詳細に説明する。
[補正回路の説明]
画像形成装置の露光装置の光源は、高速応答性が要求される。レーザ光源の1画素あたりのスイッチング周波数をFとした場合、その関係は以下の式で表される。なお、スイッチング周波数とは、レーザ光源を点灯(オン)又は消灯(オフ)させる動作(スイッチング動作)の周波数である。
F=4×π×Fθ×(DPI/25.4)×PS/(N×M) …式(B)
Fθ :Fθレンズの係数
PS :レーザ光の走査方向と略垂直方向の感光体表面の移動速度(プロセススピード)
DPI:解像度
N :ポリゴンミラーの面数
M :ビーム数
式(B)からわかるように、レーザ光源のスイッチング周波数Fは、プロセススピードPS及び解像度DPIの二乗に比例する。即ち、画像形成装置の生産性や解像度を向上することによって、レーザ光源のスイッチング周波数Fは、より高い周波数となる。
一方、レーザ光源のスイッチング時の立ち上がり、立ち下がりの時間は、静電潜像の形成に影響する。ここで、レーザ光源が点灯していない状態から所定の光量(例えば、目標光量の90%等)となるまでを光量の立ち上がりといい、所定の光量から点灯していない状態となるまでを光量の立ち下がりという。画像データに基づく露光を行う場合には、レーザ光源のスイッチング時の立ち上がり時間が長くなると静電潜像の細りが生じ、立ち下がり時間が長くなると静電潜像の太りが発生する。この立ち上がり時間、立ち下がり時間は、レーザ光源のスイッチング周波数Fが高い周波数となることによって、画質への影響が大きくなる。
特に、レーザ光源として用いられる垂直共振器型面発光レーザの特徴として、駆動電流の供給後、駆動電流の波形に対するレーザ光源から出射されるレーザ光の光量波形が遅延して立ち上がることがあげられる。なお、垂直共振器型面発光レーザ(Vertical CavitySurface Emitting LASER)を、以下、VCSELという。図12(a)はビデオ信号(PWM信号)の入力波形を示し、図12(b)はレーザ光源に流れる電流の波形(電流波形)を示し、図12(c)はPWM信号の入力の立ち上がりに対するレーザ光の光量波形を示す。横軸はいずれも時間である。PWM信号に基づいて発光点に駆動電流が供給されると、供給された駆動電流に応じて発光点が発光し、光量波形も立ち上がる。しかしながら、VCSELなどの一部のレーザ光源は、目標光量以下のある程度の光量まで急峻に光波形が立ち上がった後は、目標光量となるまで徐々に光量波形が立ち上がる特性を有している(図12(c))。
このような課題に対して、駆動電流に加えて補正電流を供給することによって光量波形の立ち上がりを補正する構成が考えられる。即ち、レーザ光源への駆動電流の供給開始に同期してアシスト電流としての補正電流を供給する補正回路を備える画像形成装置が考えられる。
一方、レーザを消灯しているときにも閾値電流値以下の電流をバイアス電流として印加し、定常的に電力を供給することにより、レーザチップの点灯、消灯の差による温度変動を少なくし、立ち上がり速度を補正する方法がある。ここで、閾値電流値とは、自然発光状態(自然放出状態ともいう)と誘導放出状態とを分ける参照電流値である。閾値電流値以下の電流が供給されている状態において、微小光量のレーザ光を出射する自然放出状態となる。電子写真方式の画像形成装置は、自然放出状態におけるレーザから出射されたレーザ光によって感光ドラム上の電位が変化しないように設計されている。一方、閾値電流値より大きな値の電流が供給されると、自然放出状態より電流の増加量に対する光量の増加量が大きい誘導放出状態となる。電子写真方式の画像形成装置は、誘導放出状態においてレーザから出射されたレーザ光によって感光ドラム表面を露光する。
しかしながら、バイアス電流を規定するための自動光量制御(バイアスAPC)を実行する際に補正電流をレーザ光源に供給するとバイアス電流の値の設定精度の低下を招くという課題が生じる。図12(d)は横軸に発光点に流れる駆動電流を示し、縦軸に発光点から出射される光量を示す。まず、発光点の光量が第一の光量であるPo_Mとなるように自動光量制御(APC)を行い、そのときに検知回路によって発光点に流れる電流値Iop_Mを検知する。このとき、補正回路から発光点に対して補正電流が供給されると、検知回路は補正電流の値を含む電流値Iop_M’を検知する。次に、発光点の光量が第二の光量であるPo_LとなるようにAPCを行い、そのときに検知回路によって発光点に流れる電流値Iop_Lを検知する。しかし、補正回路から発光点に対して補正電流が供給されると、検知回路は補正電流を含む電流値Iop_L’を検知する。このため、検知回路により検知された電流値Iop_M’と電流値Iop_L’とから算出される閾値電流値は、破線で示す直線とX軸との交点であるIth’となってしまう。このように、バイアスAPCを実行しているときに補正回路が発光点に対して補正電流を供給することによって、本来得るべき実線で示す直線とX軸との交点である閾値電流値Ithとは異なった値(Ith’)が算出されてしまっていた。バイアス電流Ibiasの値は閾値電流値Ithに基づいて設定されるため、閾値電流値Ithの設定精度の低下はバイアス電流Ibiasの設定精度の低下につながる。
[画像形成装置]
図1は、本実施例のカラー画像を得る画像形成装置の構成を示す図である。図1を用いて画像形成の基本的な説明を行う。カラー画像形成装置は、2つのカセット給紙部1、2と、1つの手差し給紙部3を有している。記録媒体である転写紙Sは、カセット給紙部1、2、手差し給紙部3(以下、単に各給紙部1、2、3という)から、選択的に給紙される。転写紙Sは、各給紙部1、2、3のカセット4、5又はトレイ6上に積載されており、ピックアップローラ7によって最上位の転写紙から順に搬送路に向けて繰り出される。ピックアップローラ7によって繰り出された転写紙Sは、搬送手段としてのフィードローラ8Aと、分離手段としてのリタ−ドローラ8Bからなる分離ローラ対8によって、最上位の転写紙のみ分離される。その後、転写紙Sは、回転停止しているレジストローラ対12へ送られる。この場合、レジストローラ対12までの距離が長いカセット4、5から給送された転写紙Sは、複数の搬送ローラ対9、10、11に中継されてレジストローラ対12へ送られる。レジストローラ対12へ送られた転写紙Sは、転写紙先端がレジストローラ対12のニップ部に突き当たって所定のループを形成すると、一旦移動が停止される。このループの形成により転写紙Sの斜行状態が矯正される。
レジストローラ対12の、転写紙Sの搬送方向の下流側(以下、単に下流側という)には、中間転写体である長尺の中間転写ベルト13が備えられている。中間転写ベルト13は、駆動ローラ13a、二次転写対向ローラ13b、及びテンションローラ13cに張設され、断面視にて略三角形状に設定されている。中間転写ベルト13は、図中時計回り方向に回転する。中間転写ベルト13の水平部上面には、異なる色のカラートナー像を形成、担持する複数の感光体である感光ドラム14、15、16、17が、中間転写ベルト13の回転方向に沿って順次配置されている。なお、中間転写ベルト13の回転方向において最上流の感光ドラム14は、マゼンタ色(M)のトナー像を担持する。次の感光ドラム15は、シアン色(C)のトナー像を担持する。次の感光ドラム16は、イエロー色(Y)のトナー像を担持する。そして、中間転写ベルト13の回転方向において最下流の感光ドラム17は、ブラック色(B)のトナー像を担持する。
まず、中間転写ベルト13の最上流の感光ドラム14上(感光体上)にマゼンタ成分の画像に基づくレーザ光(光ビームでもある)LMの露光が開始され、感光ドラム14上に静電潜像を形成する。感光ドラム14上に形成された静電潜像は、現像器23から供給されるマゼンタ色のトナーによって可視化される。次に、感光ドラム14上へのレーザ光LMの露光開始から所定時間が経過した後、感光ドラム15上にシアン成分の画像に基づくレーザ光LCの露光が開始され、感光ドラム15上に静電潜像を形成する。感光ドラム15上に形成された静電潜像は、現像器24から供給されるシアン色のトナーによって可視化される。次に、感光ドラム15上へのレーザ光LCの露光開始から所定時間が経過した後、感光ドラム16上にイエロー成分の画像に基づくレーザ光LYの露光が開始され、感光ドラム16上に静電潜像を形成する。感光ドラム16上に形成された静電潜像は、現像器25から供給されるイエロー色のトナーによって可視化される。次に、感光ドラム16上へのレーザ光LYの露光開始から所定時間が経過した後、感光ドラム17上にブラック成分の画像に基づくレーザ光LBの露光が開始され、感光ドラム17上に静電潜像を形成する。感光ドラム17上に形成された静電潜像は、現像器26から供給されるブラック色のトナーによって可視化される。なお、各感光ドラム14〜17の周りには、各感光ドラム14〜17を均一に帯電させるための一次帯電器27、28、29、30が設置される。また、トナー像が転写された後の感光ドラム14〜17上に付着しているトナーを除去するためのクリーナ31、32、33、34なども設置されている。
中間転写ベルト13が時計回り方向に回転する過程で、中間転写ベルト13が感光ドラム14と転写帯電器90との間の転写部を通過することにより、中間転写ベルト13上にマゼンタ色のトナー像が転写される。次に、中間転写ベルト13が感光ドラム15と転写帯電器91との間の転写部を通過することにより、中間転写ベルト13上にシアン色のトナー像が転写される。次に、中間転写ベルト13が感光ドラム16と転写帯電器92との間の転写部を通過することにより、中間転写ベルト13上にイエロー色のトナー像が転写される。最後に、中間転写ベルト13が感光ドラム17と転写帯電器93との間の転写部を通過することにより、中間転写ベルト13上にブラックの色のトナー像が転写される。感光ドラム14〜17上から中間転写ベルト13への各色のトナー像の転写はタイミングをとって行われ、中間転写ベルト13上にマゼンタ色、シアン色、イエロー色、ブラック色のトナー像が重なって転写される。
一方、転写紙Sはレジストローラ対12へ送られて斜行状態が矯正される。レジストローラ対12は、中間転写ベルト13上のトナー像と転写紙先端との位置を合わせるタイミングをとって回転を開始する。次に、転写紙Sは、レジストローラ対12によって中間転写ベルト13上の二次転写ローラ40と二次転写対向ローラ13bとの当接部である転写部T2に送られ、シート面上にトナー像が転写される。転写部T2を通過した転写紙Sは、定着手段である定着装置35へ送られる。そして、転写紙Sが定着装置35内の定着ローラ35Aと加圧ローラ35Bとによって形成されるニップ部を通過する過程で、定着ローラ35Aにより加熱され、加圧ローラ35Bにより加圧されてトナー像がシート面に定着される。定着装置35を通過した定着処理済みの転写紙Sは、搬送ローラ対36によって排出ローラ対37へ送られ、更に機外の排出トレイ38上へ排出される。なお、図1のカラー画像形成装置は一例であり、例えばモノクロの画像形成装置であってもよく、本実施例の構成には限定されない。
また、カラー画像形成装置は、感光ドラム14〜17にレーザ光を照射する光走査装置である露光装置22(一点鎖線部)を、各感光ドラム14〜17に対応して備えている。露光装置22では、近年のプリンタ、複写機の高速化、高画質化のためにレーザ光源に用いる半導体レーザのビーム数を複数にする構成となっている。これにより、回転多面鏡による一度の走査で複数のラインの露光を行うことができる。特に、端面発光レーザに代わって面発光レーザ(VCSEL)が実用化されてきており、マルチビーム化は容易となってきている。
[露光装置]
マルチビームの半導体レーザを画像形成装置に用いた例を以下に説明する。図2は図1で4台用いられている露光装置22中の1台(シアン色に相当)の構成を模式的に示す図である。電子写真方式の画像形成装置は、図2に示すように、入力された画像データに対応する潜像を感光ドラム15上に形成するように、感光ドラム15に対してレーザ光を照射する露光ユニットを備える。本実施例における露光ユニットは、レーザ光を出射する16個の発光点(発光素子)LD1〜LD16を備える、即ち発光点を複数備えるモノリシックなレーザ光源1001を備える。レーザ光源1001から出射された複数のレーザ光は、コリメータレンズ1013を介して平行レーザ光となり、ビームスプリッタ1010に入射する。ビームスプリッタ1010は、レーザ光源1001から出射される光ビームの光路に関してレーザ光源1001と回転多面鏡1012との間に設けられている。本実施例のビームスプリッタ1010は、ビームスプリッタ1010に入射するレーザ光の光量を100%としたときに、その約1%の光量のレーザ光が反射し、約99%のレーザ光が透過するものとする。ビームスプリッタ1010によって反射されたレーザ光は、受光素子(光電変換素子)であるフォトダイオード1002(以下、PD1002)に入射する。PD1002は、受光結果である入射したレーザ光の光量に応じた値の検出電流を出力する。
ビームスプリッタ1010を透過した99%のレーザ光L1は、モータ1003によって回転駆動されている偏向手段である回転多面鏡1012の反射面に入射する。そして、回転多面鏡1012は、反射面に入射したレーザ光L1が感光ドラム15上を走査するようにレーザ光L1を反射する。回転多面鏡1012により反射されたレーザ光L1は、Fθレンズ1014を通過し、感光ドラム15上を主走査方向(図中、矢印方向)に等速で走査する。レーザ光L1によって走査されることによって、感光ドラム15上に静電潜像1016が形成される。回転多面鏡1012によって反射されたレーザ光L1は、ビームディテクター1017(以下、BD1017)に入射する。BD1017は、レーザ光L1を受光したことに応じてBD信号を出力する。
BD1017から出力されたBD信号は、コントローラ1027に入力される。コントローラ1027は、BD1017から入力されたBD信号に基づいて、PWM信号生成回路1032に対して書き出し位置信号を送信する。PWM信号生成回路1032には、多値の画像データ(濃度データ)が入力されている。PWM信号生成回路1032は、多値の画像データをLD1〜LD16それぞれに対応する2値の画像データ(ビットデータ)に変換する。そして、PWM信号生成回路1032は、クロック信号に同期してビットデータを出力することによってレーザドライバ1029に入力するPWM信号を出力する。PWM信号生成回路1032は、BD信号を基準にクロック信号に同期した主走査方向1画素目のデータの出力タイミングを制御する。
コントローラ1027は、レーザドライバ1029に備えられる後述する各種スイッチをオン/オフ制御するための制御信号としてのスイッチ制御信号をレーザドライバ1029に出力する。
濃度センサ1021は、静電潜像を現像した後の感光ドラム15の表面の画像の濃度を検知するためのセンサであり、検知結果を、コントローラ1027へ出力する。コントローラ1027は、濃度センサ1021から入力された画像の濃度に関する情報に基づいて、後述するレーザドライバ1029に備えられるAPC回路に対して制御信号としてのゲイン制御信号を出力する。コントローラ1027は、画像データに基づいて出射するレーザ光の光量が目標光量となるように制御するために、ゲイン制御信号を出力している。なお、実施形態における発光点の数は、16個に限られるものではなく、N個(Nは自然数)の発光点であれば良い。
[露光装置の動作]
ここで、レーザドライバ1029の構成について説明する。なお、説明を平易にするために、LDの数を減らし、LDの数を2つとした構成を例に実施例の説明を進める。図3(i)、図3(ii)は図2で示した露光装置22の1走査の動作シーケンスを示す図である。ここで、図3(i)はBD1017から出力されるBD信号の波形を、図3(ii)は露光装置22の動作モードを示し、横軸はいずれも時間を示す。露光装置22の動作モードには、APCモード、OFFモード、VIDEOモードがある。そして、APCモードは、第3の光量制御モードであるL_APCモードと第2の光量制御モードであるM_APCモード、第1の光量制御モードであるH_APCモードを含む。即ち、露光装置22の動作モードは、OFFモード、VIDEOモード、そして、APCモードとしてL_APCモード、M_APCモード、H_APCモードの5種類のモードがある。これらのモードのうち、M_APCモード、L_APCモードは、それぞれ異なる光量でAPCを行い、それぞれの光量となっているときの電流値をサンプリングすることにより、閾値電流値を決定するモードである。即ち、M_APCモードとL_APCモードは、バイアス電流Ibiasの値を決定するためのバイアスAPCを実行するモードである。また、H_APCモードは感光ドラム上を露光するための光量を目標光量に制御するためのAPCモードである。OFFモードは、発光点を非点灯の状態にさせるとともに各APCモードでサンプリングした電流値を保持するモードである。VIDEOモードは、レーザが入力されるPWM信号に基づいて感光ドラム15の露光を行うモードである。
次に各モードの動作の説明を行う。図4は図2で示したレーザドライバ1029の回路を示した図で、発光点が16個ある場合のレーザドライバ1029の回路を示した図である。また、図5は、発光点の数を2つとした構成の回路を示した図である。LD1の駆動部はドライバDriver1(以下、ドライバをDriverとする)である。LD2の駆動部はDriver2である。本実施例において、Driver1およびDriver2は、1つのIC(Integrated Circuit)を構成している。
コントローラ1027は、Driver1またはDriver2の制御モードを切り換える制御信号としてのCONTROL信号を、BD信号を基準とする各種タイミングでレーザドライバ1029のOR回路101、OR回路102に出力する。例えば、図5に示すレーザドライバ1029の場合、コントローラ1027は、制御モードを切り換えるためにCONTROL信号として表1に示すCONTROL1、CONTROL2をそれぞれOR回路101、OR回路102に出力する。CONTROL1、CONTROL2は、表1に示すdata0、data1、data2によって生成される。
Figure 0006305201
表1に示すように、LD1のAPC_Hモード、APC_Mモード、APC_Lモードにおいて、コントローラ1027は、HighのCONTROL1を出力し、LowのCONTROL2を出力する。OR回路101、OR回路102にはLowのPWM信号が入力されている。そのため、後述するSW13−1がオンとなり、LD1に関してAPC_Hモード、APC_Mモード、APC_Lモードが実行される状態となる。一方、LD2のAPC_Hモード、APC_Mモード、APC_Lモードにおいてコントローラ1027は、LowのCONTROL1を出力し、HighのCONTROL2を出力する。OR回路101、OR回路102にはLowのPWM信号が入力されている。そのため、後述するSW13−2がオンとなり、LD2に関してAPC_Hモード、APC_Mモード、APC_Lモードが実行される状態となる。
PD1002は、入射された光量に応じた値の電流を出力する光電変換素子である。PD1002は、エラーアンプAMP10(以下、エラーアンプをAMPとする)の負入力端子に接続されている。AMP10の負入力端子には、PD1002から出力される電流の値と抵抗R1の抵抗値とに基づく電圧Vpdが印加される。
一方、AMP10の正入力端子には、スイッチSW1(以下、スイッチをSWとする)、SW2、SW3が接続され、SW1には基準電圧Vref1が、SW2には基準電圧Vref2が、SW3には基準電圧Vref3が、それぞれ接続されている。
コントローラ1027は、Driver1またはDriver2のいずれか一方を第1の光量制御モードに移行させる制御信号をレーザドライバ1029に送信する。Driver1またはDriver2のいずれか一方の第1の光量制御モードにおいて、SW1はオンとなり、SW2およびSW3はオフとなる。SW1がオンとなり、SW2およびSW3がオフとなることによって、AMP10の正入力端子にはVref1が印加される。AMP10は、負入力端子の電圧Vpdと正入力端子の電圧Vref1とを比較する。即ち、Vref1は、Driver1、Driver2のいずれか一方の第1の光量制御モードにおいてAMP10がVpdと比較するための基準電圧である。
コントローラ1027は、Driver1またはDriver2のいずれか一方を第2の光量制御モードに移行させる制御信号をレーザドライバ1029に送信する。Driver1またはDriver2のいずれか一方の第2の光量制御モードにおいて、SW2はオンとなり、SW1およびSW3はオフとなる。SW2がオンとなり、SW1およびSW3がオフとなることによって、AMP10の正入力端子にはVref2が印加される。AMP10は、負入力端子の電圧Vpdと正入力端子の電圧Vref2とを比較する。即ち、Vref2は、Driver1、Driver2のいずれか一方の第2の光量制御モードにおいてAMP10がVpdと比較するための基準電圧である。
コントローラ1027は、Driver1またはDriver2のいずれか一方を第3の光量制御モードに移行させる制御信号をレーザドライバ1029に送信する。Driver1またはDriver2のいずれか一方の第3の光量制御モードにおいて、SW3はオンとなり、SW1およびSW2はオフとなる。SW3がオンとなり、SW1およびSW2がオフとなることによって、AMP10の正入力端子にはVref3が印加される。AMP10は、負入力端子の電圧Vpdと正入力端子の電圧Vref3とを比較する。即ち、Vref3は、Driver1、Driver2のいずれか一方の第3の光量制御モードにおいてAMP10がVpdと比較するための基準電圧である。
Vref1、Vref2、およびVref3は、それぞれ第1の光量制御モード、第2の光量制御モード、第3の光量制御モードにおいてPD1002に入射する光量の目標光量に対応する電圧である。設計時にビームスプリッタ1010が1%の光量を分離することが判っている。従って、PD1002に入射するレーザビームの光量を目標光量に制御することは、レーザ光源1001から出射するレーザビームの光量を目標光量に制御することに相当する。なお、基準電圧については、Vref1(第1の目標光量に対応する電圧)≧Vref2(第2の目標光量に対応する電圧)>Vref3(第3の目標光量に対応する電圧)という関係が成り立つ。AMP10の出力は、Driver1、およびDriver2に入力される。
次に、Driver1、およびDriver2の内部構成について説明する。Driver1、Driver2はそれぞれ同様の構成であるため、Driver1を代表して説明する。Driver1に入力されたAMP10の出力は、SW4−1、SW5−1、SW6−1の一端に入力され、SW4−1、SW5−1、SW6−1の他端はコンデンサC1−1、C2−1、C3−1にそれぞれ接続されている。SW4−1、SW5−1、SW6−1及びコンデンサC1−1、C2−1、C3−1は、それぞれサンプルホールド回路を構成している。コンデンサC1−1、C2−1、C3−1は、コントローラ1027からの制御信号に基づいてそれぞれSW4−1、SW5−1、SW6−1がオンしたときにAMP10の出力電圧をサンプリングする。そして、SW4−1、SW5−1、SW6−1がオフしたときはAMP10の出力電圧を保持する動作を行う。
コンデンサC1−1、C2−1、C3−1によって保持された電圧は、それぞれSW7−1、SW8−1、SW9−1を介してスイッチング電流制御手段であるAPC回路100−1に出力される。APC回路100−1は、感光ドラム15を露光するレーザ光の光量を制御するべく、サンプルホールド回路から入力された電圧を基準に出力電圧を制御する。例えば、APC回路100−1は、コントローラ1027から送信されるゲイン制御信号に基づいてコンデンサC1−1から入力される電圧をゲイン調整し、出力する。
APC回路100−1の出力電圧は、SW10−1及びアシスト回路101−1に入力される。補正手段であるアシスト回路101−1は、レーザ光源1001の光量波形の立ち上がりの遅延を補正するための回路であり、アシスト回路101−1の出力電圧はSW11−1を介して電流供給手段である定電流源CC1−1に入力される。SW10−1、SW11−1は、アシスト回路101−1の作用状態を切り換える切り換え手段として機能する。
アシスト回路101−1は、例えば微分回路(不図示)を備える。アシスト回路101−1には、OR回路101からPWM信号に基づくHighまたはLowの信号が入力される。アシスト回路101−1にHighの信号が入力されることによって、微分回路が動作する。即ち、LD1に図3(c)に示す電流波形の立ち上がり(Iswの供給開始)に同期してIoffsetが供給されるように、微分回路は、APC回路100−1の出力電圧を補正する。この微分回路は時定数を有しており、APC回路100−1から微分回路に入力された電圧は時定数に基づいて時間経過に応じて減衰する。時定数は、光量波形の立ち上がり方に応じて、予め設定されている。また、時定数は、光量波形の立ち上がり方に応じて、動的に変化させるようにしても良い。このように、アシスト回路101−1が作用することによってIswの供給開始に同期してIoffsetをIswに重畳させることができる。
SW10−1、SW11−1は、APC回路100−1又はアシスト回路101−1からの出力を選択し、いずれかの出力を定電流源CC1−1に入力する。なお、本実施例では、SW10−1とSW11−1をそれぞれ独立して構成している。しかし、後述するように、SW10−1とSW11−1は両方がオンとなることがない、言い換えれば一方がオン状態であれば他方はオフ状態となっている。このため、例えば、SW10−1、SW11−1を一つのスイッチ、即ち、定電流源CC1−1側の接点を共通接点としたスイッチとして構成してもよい。
定電流源CC1−1は入力された信号に応じた電流を生成し、生成された電流は、電界効果トランジスタ(FET)で構成されたSW13−1を介してLD1に供給される。SW11−1がオンしてアシスト回路101−1が定電流源CC1−1に接続されている場合に、定電流源CC1−1から供給される電流は、Isw+Ioffset(後述する図3(c))となる。ここで、第一の電流値である電流値Isw(後述する図3(c))はAPC回路100−1によるものであり、電流値Ioffsetはアシスト回路101−1による補正のための電流値(アシスト電流値)である。また、コンデンサC2−1、C3−1で保持された電圧は、スイッチを介さずに直接バイアス回路102−1にも供給される。バイアス電流制御手段であるバイアス回路102−1の出力は、SW12−1を介して電流供給手段である定電流源CC2−1に入力される。定電流源CC2−1は入力された信号に応じた電流を生成し、生成された電流は、LD1に供給される。なお、定電流源CC2−1から供給される電流が第二の電流値であるバイアス電流Ibias(後述する図3(c))である。定電流源CC1−1及びCC2−1には、電源電圧Vccが供給される。
上記、SW1〜SW3、SW4−1〜SW12−1は、コントローラ1027によりオン/オフ制御される。SW13−1は、論理和回路(OR回路101)からの出力によって制御される。OR回路101には、コントローラ1027から出力されたCONTROL1信号とPWM信号生成回路1032からのPWM信号が入力される。OR回路101の出力は、アシスト回路101−1とSW13−1に出力される。コントローラ1027は、L_APCモード、M_APCモード及びH_APCモードでは、CONTROL1信号をハイレベルにしてSW13−1をオン状態にする。一方、コントローラ1027は、OFFモード、VIDEOモードではCONTROL1信号をローレベルにし、VIDEOモードではPWM信号に応じてSW13−1がオン又はオフされるようにする(表1参照)。なお、定電流源CC1−1、CC2−1、アシスト回路101−1、バイアス回路102−1、およびSW10−1、SW11−1は、複数の発光素子それぞれに対して個別に備えられている。
(APCモード)
続いて、1走査周期内における各種モードについて図6のタイミングチャートを用いて説明する。1走査周期において、LD1の第1の光量制御モードにおけるLD1から出射されるレーザ光がBD1017に入射することによってBD信号が生成される。BD信号のパルスBDnから次のパルスBDn+1までを1走査周期とする。1走査周期において、レーザドライバ1029は図6に示す制御モードのように遷移する。図6の「ON」と記載された期間において、各スイッチはオンとなり、「ON」以外の期間において、各スイッチはオフとなる。
(L_APCモード)
図7に示すように、LD1のL_APCモードにおいて、コントローラ1027は、SW3をオンに制御する。また、コントローラ1027は、Driver1のSW6−1、SW9−1、SW10−1及びSW13−1をオンに制御し、SW4−1、SW5−1、SW7−1およびSW8−1をオフに制御する。SW4−1、SW5−1をオフに制御することによって、Driver1のコンデンサC1−1を含むサンプルホールド回路およびコンデンサC2−1を含むサンプルホールド回路はAMP10からの出力をサンプルしない。
LD1のL_APCモードにおいて、コントローラ1027は、Driver2のSW4−2、SW5−2、SW6−2をオフに制御する。このようにSW4−2、SW5−2、SW6−2がオフになるため、Driver2のサンプルホールド回路は、AMP10からの出力をサンプルしない。
SW3がオンとなっているため、AMP10は、負入力端子に入力された電圧Vpdと正入力端子に入力された基準電圧Vref3と比較する。AMP10は、比較結果に応じてコンデンサC3−1の電圧を制御する。SW9−1がオンとなりSW7−1、SW8−1がオフとなっているため、APC回路100−1には、コンデンサC3−1の電圧が入力される。なお、SW12−1はオフとなっているため、バイアス回路102−1の出力は定電流源CC2−1には出力されない。即ち、L_APCモードでLD1に流れる電流には、バイアス電流Ibiasは含まれない。
APC回路100−1の出力は、SW10−1とアシスト回路101−1に出力される。SW10−1がオンとなっているため、APC回路100−1の出力は定電流源CC1−1に出力される。なお、SW11−1がオフとなっているため、アシスト回路101−1の出力は、定電流源CC1−1には出力されない。即ち、L_APCモードでLD1に流れる電流には、立ち上がり補正のためのアシスト電流値は含まれない。そして、SW13−1がオンとなっているため、定電流源CC1−1は入力に応じた電流を、SW13−1を介してLD1に供給し、LD1を駆動する。LD1から出射されたレーザ光は、図2のビームスプリッタ1010を介して、PD1002で検出される。このとき、上述した動作は負帰還回路を構成しているため、LD1により出射されるレーザ光の光量は、基準電圧Vref3に対応する光量に制御される。
LD2のL_APCモードにおいて、Driver1とDriver2の動作は上記LD1のL_APCモードの動作と逆になる。LD2のL_APCモードにおけるDriver2の動作は、LD1のL_APCモードにおけるDriver1の動作と同様であるため説明を省略する。
(M_APCモード)
図8に示すように、LD1のM_APCモードにおいて、コントローラ1027は、SW2をオンに制御する。また、コントローラ1027は、Driver1のSW5−1、SW8−1、SW10−1及びSW13−1をオンに制御し、SW4−1、SW6−1、SW7−1およびSW9−1をオフに制御する。SW4−1、SW6−1をオフに制御することによって、Driver1のコンデンサC1−1を含むサンプルホールド回路およびコンデンサC3−1を含むサンプルホールド回路はAMP10からの出力をサンプルしない。
LD1のM_APCモードにおいて、コントローラ1027は、Driver2のSW4−2、SW5−2、SW6−2をオフに制御する。このようにSW4−2、SW5−2、SW6−2がオフになるため、Driver2のサンプルホールド回路はAMP10からの出力をサンプルしない。
SW2がオンとなっているため、AMP10は、負入力端子に入力された電圧Vpdと正入力端子に入力された基準電圧Vref2とを比較する。AMP10は、比較結果に応じてコンデンサC2−1の電圧を制御する。SW8−1がオンとなりSW7−1、SW9−1がオフとなっているため、APC回路100−1には、コンデンサC2−1の電圧が入力される。なお、SW12−1はオフとなっているため、バイアス回路102−1の出力は定電流源CC2−1には出力されない。即ち、M_APCモードでLD1に流れる電流には、バイアス電流Ibiasは含まれない。
APC回路100−1の出力は、SW10−1とアシスト回路101−1に出力される。SW10−1がオンとなっているため、APC回路100−1の出力は定電流源CC1−1に出力される。なお、SW11−1がオフとなっているため、アシスト回路101−1の出力は、定電流源CC1−1には出力されない。即ち、M_APCモードでLD1に流れる電流には、立ち上がり補正のためのアシスト電流値は含まれない。そして、SW13−1がオンとなっているため、定電流源CC1−1は入力に応じた電流を、SW13−1を介してLD1に供給し、LD1を駆動する。LD1から出射されたレーザ光は、図2のビームスプリッタ1010を介して、PD1002で検出される。このとき、上述した動作は負帰還回路を構成しているため、LD1により出射されたレーザ光の光量は、基準電圧Vref2で決定される光量に制御される。
LD2のM_APCモードにおいて、Driver1とDriver2の動作は上記LD1のM_APCモードの動作と逆になる。LD2のM_APCモードにおけるDriver2の動作は、LD1のM_APCモードにおけるDriver1の動作と同様であるため説明を省略する。
(H_APCモード)
図9に示すように、LD1のH_APCモードにおいて、コントローラ1027は、SW1をオンに制御する。また、コントローラ1027は、SW4−1、SW7−1、SW11−1、SW12−1及びSW13−1をオンに制御し、SW5−1、SW6−1、SW8−1およびSW9−1をオフに制御する。
SW5−1、SW6−1をオフに制御することによって、Driver1のコンデンサC2−1を含むサンプルホールド回路およびコンデンサC3−1を含むサンプルホールド回路はAMP10からの出力をサンプルしない。即ち、上記コンデンサC3−1は、L_APCモードにおけるAMP10の出力をホールドしており、コンデンサC2−1は、M_APCモードにおけるAMP10の出力をホールドしている。コンデンサC2−1、C3−1の電圧は、バイアス回路102−1に出力される。バイアス回路102−1は、コンデンサC2−1、C3−1から入力された電圧に基づいてバイアス電流Ibias(後述する図3(c))に相当する電圧を出力する。
ここで、バイアス回路102−1がバイアス電流Ibiasを設定する動作を、図3(b)を用いて説明する。図3(b)は横軸がLD1に流れる電流、縦軸がLD1の光量を示すグラフであり、レーザ光源1001のI−L特性を示している。L_APCモードのときのLD1の光量を第一の光量であるPo_L、LD1に流れる電流を第三の電流値であるIop_Lとする。また、M_APCモードのときのLD1の光量を第二の光量であるPo_M、LD1に流れる電流を第四の電流値であるIop_Mとする。このとき、閾値電流値Ithは、
(Po_M×Iop_L−Po_L×Iop_M)/(Po_M−Po_L)
で表される。
一方、M_APCモードのときのLD1の光量Po_Mは、基準電圧Vref2で決定され、L_APCモードのときのLD1の光量Po_Lは基準電圧Vref3で決定される。また、コンデンサC2−1、C3−1の電圧によりLD1に流れる電流(駆動電流でもある)Iop_M、Iop_Lは決定される。このため、閾値電流Ithの式は、次のように表される。
(Vref2×C3−1−Vref3×C2−1)/(Vref2−Vref3)
以上の式を用いた演算により、バイアス回路102−1は閾値電流値Ithを決定し、決定した閾値電流値Ithに基づいて、定電流源CC2−1によりバイアス電流IbiasをLD1に供給する。
一方、SW1がオンとなっているため、AMP10は、負入力端子に入力された電圧Vpdと、正入力端子に入力された基準電圧Vref1とを比較する。AMP10は、比較結果に応じてコンデンサC1−1の電圧を制御する。SW7−1がオンとなっているため、APC回路100−1には、コンデンサC1−1の電圧が入力される。
APC回路100−1の出力は、アシスト回路101−1に入力される。SW11−1がオンとなっているため、アシスト回路101−1の出力は定電流源CC1−1に出力される。即ち、H_APCモードでLD1に流れる電流には、バイアス電流Ibiasだけでなく、光量波形の立ち上がりの遅延時間を補正するための補正値であるアシスト電流値も含まれている。SW13−1はオンとなっているため、定電流源CC1−1は入力に応じた電流を、SW13−1を介してLD1に供給し、LD1を駆動する。LD1から出射されたレーザ光は、図2のビームスプリッタ1010を介して、PD1002で検出される。このとき、上述した動作は負帰還回路を構成しているため、LD1により出射されたレーザ光の光量は、基準電圧Vref1で決定される光量に制御される。なお、図3(b)には、基準電圧Vref1で決定される光量をP1として図示している。
LD2のH_APCモードにおいて、Driver1とDriver2の動作は上記LD1のH_APCモードの動作と逆になる。LD2のH_APCモードにおけるDriver2の動作は、LD1のH_APCモードにおけるDriver1の動作と同様であるため説明を省略する。
(OFFモード)
図10に示すように、OFFモードにおいて、コントローラ1027は、SW12−1をオンに制御し、他のスイッチをオフに制御する。SW4−1、SW5−1、SW6−1がオフであるため、コンデンサC1−1、C2−1、C3−1の電圧は保持される。また、SW13−1がオフであるため、定電流源CC1−1の出力はLD1に供給されない。SW12−1がオンであるため、バイアス回路102−1で決定された閾値電流値Ithに基づき定電流源CC2−1からバイアス電流IbiasがLD1に供給される。このため、LD1にはバイアス電流Ibiasのみが供給され、LD1は微小発光した状態となる。なお、バイアス回路102−1には、コンデンサC2−1、C3−1が保持している電圧が供給されている。なお、OFFモードにおけるDriver2の動作は、Driver1と同様であるため、説明を省略する。
(VIDEOモード)
図11に示すように、VIDEOモードにおいて、コントローラ1027は、SW7−1、SW11−1、SW12−1をオンに制御する。一方、VIDEOモードにおいて、コントローラ1027は、SW4−1、SW5−1、SW6−1、SW8−1、SW9−1、SW10−1をオフに制御する。
VIDEOモードにおいて、SW4−1、SW5−1、SW6−1がオフになることによって、サンプルホールド回路は、AMP10からの出力をサンプリングしない。即ち、コンデンサC3−1は、L_APCモードにおけるAMP10の出力をホールドしている。コンデンサC2−1は、M_APCモードにおけるAMP10の出力をホールドしている。コンデンサC1−1は、H_APCモードにおけるAMP10の出力をホールドしている。そのため、VIDEOモードにおいて、コンデンサC1−1、コンデンサC2−1、コンデンサC3−1の電圧は、自然放電以外の要因で変動することはない。
SW7−1がオンになり、SW8−1およびSW9−1がオフになることによって、APC回路100−1には、コンデンサC1−1の電圧が入力される。これによってAPC回路100−1は、コンデンサC1−1の電圧に応じて動作する。VIDEOモードにおいて、SW11−1がオンであり、SW10−1がオフであるため、APC回路100−1の出力は、アシスト回路101−1を介して定電流源CC1−1に入力される。定電流源CC1−1は、アシスト回路101−1からの入力信号に応じた値のスイッチング電流Iswを出力する。
SW13−1はOR回路101を介してPWM信号により制御される。VIDEOモードにおいて、LD1の光量波形の立ち上がり時間の遅延が補正される動作を、図3(c)を用いて説明する。ここで、図3(c)(i)はPWM信号の波形を示し、図3(c)(ii)はLD1に供給される電流の波形(以下、電流波形という)を示す。また、図3(c)(iii)はLD1から出射される光の光量波形を示す。横軸はいずれも時間を示す。なお、PWM信号がハイレベルのときにSW13−1はオンし、PWM信号がローレベルのときにSW13−1はオフする。
まず、入力されたPWM信号がローレベルでSW13−1がオフとなっている場合、OFFモードと同様に、SW12−1はオンであるため、定電流源CC2−1の出力がLD1に供給される。このため、図3(c)(ii)に示すように、LD1には、バイアス電流Ibiasが供給される。
一方、PWM信号がハイレベルとなってSW13−1がオンした場合には、次のような動作となる。SW7−1はオンとなっているため、コンデンサC1−1に保持された電圧がAPC回路100−1に出力される。また、APC回路100−1の出力はアシスト回路101−1に入力される。アシスト回路101−1には、OR回路101を介してPWM信号も入力される。このため、アシスト回路101−1は、コンデンサC1−1で決定される電流値より大きな電流値となるように、SW11−1を介して定電流源CC1−1に制御信号を供給する。これにより、図3(c)(ii)に示すように、LD1は、定電流源CC1−1からSW13−1を介して供給された大きな電流によって、電流波形の立ち上がりが大きくなる。そして、図3(c)(iii)に示すように、LD1の光量波形の立ち上がり時間は、遅延が補正される。
光量波形が立ち上がった後は、LD1の光量が基準電圧Vref1で決定される光量となるように、アシスト回路101−1によって定電流源CC1−1の出力が制御される。このとき、アシスト回路101−1の出力にはアシスト回路101−1で付加されたオフセット電圧が重畳され、定電流源CC1−1の出力にもオフセット電流Ioffsetが重畳される。即ち、図3(c)(ii)の電流波形の実線は、Ibias+Isw+Ioffsetとなっている。しかし、H_APCモード時もアシスト回路101−1の出力よりAPCを行っていたため、このオフセット電流Ioffsetを含めて基準電圧Vref1で決定される光量(P1)となるように、コンデンサC1−1の電圧が保持されている。このため、LD1は、PWM信号により基準電圧Vref1で決定される光量で駆動されることとなる。なお、VIDEOモードにおけるDriver2の動作は、Driver1と同様であるため、説明を省略する。
以上、本実施例によれば、アシスト電流の影響を受けずにバイアス電流Ibiasの値の設定精度の低下を抑制することができる。
100−1 APC回路
101−1 アシスト回路
102−1 バイアス回路
1001 レーザ光源
1002 フォトダイオード
CC1−1、CC2−1 定電流源
SW10−1、SW11−1 スイッチ

Claims (14)

  1. 画像形成装置であって、
    光ビームを出射する発光素子を備える光源と、
    前記光源から出射された光ビームが感光体上を走査するように当該光ビームを偏向する偏向手段と、
    前記発光素子から出射された光ビームを受光する受光素子と、
    前記発光素子に電流を供給する電流供給手段であって、少なくとも前記光ビームが前記感光体上を走査する期間において、画像データに関わらず前記発光素子にバイアス電流を供給し、前記画像データに基づいて前記発光素子に前記バイアス電流に重畳させるスイッチング電流を供給する電流供給手段と、
    前記発光素子から出射される光ビームの光量を補正するために前記電流供給手段から前記発光素子に供給される電流の値を補正する補正手段と、
    電流が供給されることによって前記発光素子から出射された光ビームを受光した前記受光素子の受光結果に基づき前記電流供給手段が前記発光素子に供給する前記バイアス電流の値を制御するバイアス電流制御手段と、
    少なくとも前記光ビームが前記感光体上を走査する期間の前記スイッチング電流が供給される際に前記補正手段によって前記電流供給手段から前記発光素子に供給される電流の値が前記補正手段によって補正され、前記バイアス電流の値を制御するべく前記受光素子に前記光ビームを入射させるために前記電流供給手段から前記発光素子に供給される電流の値が前記補正手段によって補正されないように、前記発光素子に供給する電流に対する前記補正手段の作用状態を切り換える切り換え手段と、
    を備えることを特徴とする画像形成装置。
  2. 電流が供給されることによって前記発光素子から出射された光ビームを受光した前記受光素子の受光結果に基づき前記電流供給手段が前記発光素子に供給する前記スイッチング電流の値を制御するスイッチング電流制御手段を備え、
    前記電流供給手段は、前記受光素子に入射する光ビームの光量が第1の目標光量、前記第1の目標光量よりも低い第2の目標光量、前記第2の目標光量よりも低い第3の目標光量になるように前記発光素子に電流を供給し、
    前記スイッチング電流制御手段は、前記受光素子に入射する光ビームの光量が前記第1の目標光量になるように前記電流供給手段から前記発光素子に供給される電流の値に基づいて前記スイッチング電流の値を制御し、
    前記バイアス電流制御手段は、前記受光素子に入射する光ビームの光量が前記第2の目標光量になるように前記電流供給手段から前記発光素子に供給される電流の値と前記第3の目標光量になるように前記電流供給手段から前記発光素子に供給される電流の値とに基づいて前記バイアス電流の値を制御することを特徴とする請求項1に記載の画像形成装置。
  3. 前記切り換え手段は、前記受光素子に入射する光ビームの光量が前記第2の目標光量および前記第3の目標光量になるように前記電流供給手段が前記発光素子に電流を供給する場合、前記補正手段を当該電流に作用させないことを特徴とする請求項2に記載の画像形成装置。
  4. 前記切り換え手段は、前記受光素子に入射する光ビームの光量が前記第1の目標光量になるように前記電流供給手段が前記発光素子に電流を供給する場合に、前記補正手段によって当該電流の値を補正することを特徴とする請求項3に記載の画像形成装置。
  5. 前記補正手段は、前記発光素子から出射される光ビームの光量波形の立ち上がりを補正するために前記発光素子に供給する電流に作用することを特徴とする請求項1乃至4のいずれか1項に記載の画像形成装置。
  6. 前記光源から出射される光ビームの光路に関して前記光源と前記偏向手段との間に設けられ、前記光源から出射された光ビームを前記偏向手段に向かう光ビームと前記受光素子に向かう光ビームとに分離するビームスプリッタを備え、
    前記受光素子は、前記ビームスプリッタにより分離された光ビームを受光することを特徴とする請求項1乃至5いずれか1項に記載の画像形成装置。
  7. 前記光源は、前記発光素子を複数備える面発光レーザであり、
    前記電流供給手段、前記補正手段、前記バイアス電流制御手段、および前記切り換え手段は、前記複数の発光素子それぞれに対して個別に備えられていることを特徴とする請求項1乃至6のいずれか1項に記載の画像形成装置。
  8. 電流が供給されることによって前記発光素子から出射された光ビームを受光した前記受光素子の受光結果に基づき前記電流供給手段が前記発光素子に供給する前記スイッチング電流の値を制御するスイッチング電流制御手段と、
    前記受光素子に入射する光ビームの光量が第1の目標光量になるように前記電流供給手段が前記発光素子に電流を供給する第1の光量制御と、前記受光素子に入射する光ビームの光量が前記第1の目標光量よりも低い第2の目標光量になるように前記電流供給手段が前記発光素子に電流を供給する第2の光量制御と、前記受光素子に入射する光ビームの光量が前記第2の目標光量よりも低い第3の目標光量になるように前記電流供給手段が前記発光素子に電流を供給する第3の光量制御と、をそれぞれ異なるタイミングで実行するコントローラと、
    を備え、
    前記スイッチング電流制御手段は、前記第1の光量制御において前記受光素子に入射する光ビームの光量が前記第1の目標光量になるように前記電流供給手段から前記発光素子に供給される電流の値に基づいて前記スイッチング電流の値を制御し、
    前記バイアス電流制御手段は、前記第2の光量制御において前記受光素子に入射する光ビームの光量が前記第2の目標光量になるように前記電流供給手段から前記発光素子に供給される電流の値と前記第3の光量制御において前記第3の目標光量になるように前記電流供給手段から前記発光素子に供給される電流の値とに基づいて前記バイアス電流の値を制御することを特徴とする請求項1に記載の画像形成装置。
  9. 前記切り換え手段は、前記第2の光量制御および前記第3の光量制御において前記電流供給手段から前記発光素子に供給される電流の値が前記補正手段によって補正されないように、前記コントローラからの制御信号に基づいて制御されることを特徴とする請求項8に記載の画像形成装置。
  10. 前記切り換え手段は、前記第1の光量制御において前記電流供給手段から前記発光素子に供給される電流の値が前記補正手段によって補正されるように、前記コントローラからの制御信号に基づいて制御されることを特徴とする請求項9に記載の画像形成装置。
  11. 前記光源から出射される光ビームの光路に関して前記光源と前記偏向手段との間に設けられ、前記光源から出射された光ビームを前記偏向手段に向かう光ビームと前記受光素子に向かう光ビームとに分離するビームスプリッタを備え、
    前記受光素子は、前記ビームスプリッタにより分離された光ビームを受光することを特徴とする請求項8乃至10のいずれか1項に記載の画像形成装置。
  12. 前記光源は、前記発光素子を複数備える面発光レーザであり、
    前記電流供給手段、前記補正手段、前記バイアス電流制御手段、および前記切り換え手段は、前記複数の発光素子それぞれに対して個別に備えられていることを特徴とする請求項8乃至11のいずれか1項に記載の画像形成装置。
  13. 前記コントローラは、前記複数の発光素子それぞれの前記第1の光量制御、前記第2の光量制御、および前記第3の光量制御をそれぞれ異なるタイミングで実行することを特徴とする請求項8乃至12のいずれか1項に記載の画像形成装置。
  14. 前記感光体と、
    前記感光体上に形成された静電潜像をトナーによって現像する現像手段と、
    前記現像手段により現像されたトナー像を記録媒体に転写する転写手段と、
    を備えることを特徴とする請求項1乃至13のいずれか1項に記載の画像形成装置。
JP2014102481A 2014-05-16 2014-05-16 画像形成装置 Active JP6305201B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014102481A JP6305201B2 (ja) 2014-05-16 2014-05-16 画像形成装置
PCT/JP2015/063438 WO2015174360A1 (ja) 2014-05-16 2015-05-11 画像形成装置
US15/351,231 US10126675B2 (en) 2014-05-16 2016-11-14 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014102481A JP6305201B2 (ja) 2014-05-16 2014-05-16 画像形成装置

Publications (2)

Publication Number Publication Date
JP2015217588A JP2015217588A (ja) 2015-12-07
JP6305201B2 true JP6305201B2 (ja) 2018-04-04

Family

ID=54479899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014102481A Active JP6305201B2 (ja) 2014-05-16 2014-05-16 画像形成装置

Country Status (3)

Country Link
US (1) US10126675B2 (ja)
JP (1) JP6305201B2 (ja)
WO (1) WO2015174360A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612856B2 (ja) 1987-03-03 1997-05-21 株式会社リコー 半導体レーザ出力制御装置
JP3707073B2 (ja) * 2001-07-27 2005-10-19 リコープリンティングシステムズ株式会社 光量制御方法
JP2003191524A (ja) * 2001-12-27 2003-07-09 Canon Inc レーザ駆動回路、画像形成装置およびレーザ駆動方法
JP5435895B2 (ja) * 2007-06-29 2014-03-05 キヤノン株式会社 画像形成装置及び制御方法
JP5864863B2 (ja) * 2010-03-09 2016-02-17 キヤノン株式会社 画像形成装置
JP2011198877A (ja) * 2010-03-18 2011-10-06 Ricoh Co Ltd 半導体レーザ駆動装置、該半導体レーザ駆動装置を具備する光走査装置および画像形成装置
JP2013164263A (ja) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp 受光装置及び距離測定装置及び形状測定装置

Also Published As

Publication number Publication date
US10126675B2 (en) 2018-11-13
WO2015174360A1 (ja) 2015-11-19
US20170082940A1 (en) 2017-03-23
JP2015217588A (ja) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6381283B2 (ja) 画像形成装置
US20110228802A1 (en) Semiconductor laser driving unit, optical scanner having semiconductor laser driving unit, and image forming apparatus
US20170052473A1 (en) Image forming apparatus
JP2011066089A (ja) 半導体レーザ制御装置及び画像形成装置
US9341977B2 (en) Light emission apparatus, optical scanning apparatus having light emission apparatus, and image forming apparatus
JP5791282B2 (ja) 画像形成装置
JP6317610B2 (ja) 画像形成装置
JP5709547B2 (ja) 画像形成装置
US9482984B2 (en) Image forming apparatus for supplying and/or controlling correction current(s) to a laser
US9568853B2 (en) Image forming apparatus including a plurality of driver IC configured to drive a plurality of light-emitting points
JP6305201B2 (ja) 画像形成装置
US8907999B2 (en) Electrophotographic image forming apparatus
US9268253B2 (en) Image forming apparatus with light amount control
US9250562B2 (en) Image forming apparatus
US9425584B2 (en) Laser drive device that drives laser diode, method of controlling the same, and storage medium
JP5717402B2 (ja) 画像形成装置
JP2016132235A (ja) 画像書込装置、画像書込方法及び画像形成装置
JP6602123B2 (ja) 画像形成装置
JP5943691B2 (ja) 発光装置、該発光装置を備える光走査装置、及び画像形成装置
JP5968049B2 (ja) 画像形成装置
JP2008227129A (ja) 半導体レーザ制御装置および光走査装置および画像形成装置
JP2017039281A (ja) 画像形成装置
JP2013025232A (ja) 画像形成装置及びその制御方法
JP2016198898A (ja) 光書込装置と画像形成装置及び光源ユニットの異常検知方法
JP2005199623A (ja) 画像形成装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180306

R151 Written notification of patent or utility model registration

Ref document number: 6305201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151