以下、図面を参照して、本発明の実施形態に係る流体圧制御装置について説明する。ここでは、フォークリフトに搭載される流体圧制御装置について説明するが、本発明はフォークリフト以外の装置にも適用可能である。
<第1実施形態>
まず、図1から図3を参照して、本発明の第1実施形態に係る流体圧制御装置100について説明する。
流体圧制御装置100は、フォークを昇降させるリフトシリンダ10、マストの傾斜角を変化させるチルトシリンダ20、及び他の付属装置を動かす付属装置用アクチュエータ30,40の作動を制御する。他の付属装置としては、フォークの間隔を調節するフォークポジショナーが挙げられる。
リフトシリンダ10、チルトシリンダ20及び付属装置用アクチュエータ30,40にはそれぞれ圧力上限値が設定されており、圧力上限値よりも高い圧力をこれらのシリンダ10,20,30,40に作用させないことが望まれる。リフトシリンダ10は、フォーク及び荷物を持ち上げることから、チルトシリンダ20及び付属装置用アクチュエータ30,40の圧力上限値よりも高い圧力上限値を有する。本明細書の説明において、リフトシリンダ10を高圧アクチュエータとも称し、チルトシリンダ20及び付属装置用アクチュエータ30,40を低圧アクチュエータとも称する。
図1から図3に示すように、流体圧制御装置100は、供給路3と、供給路3に設けられた第1制御弁16と、供給路3に設けられた複数の第2制御弁26,36,46と、を備える。供給路3は、加圧部としてのポンプ1から吐出された作動油(作動流体)をリフトシリンダ10、チルトシリンダ20及び付属装置用アクチュエータ30,40に導く。第1制御弁16は、リフトシリンダ10の作動を制御する。複数の第2制御弁26,36,46はチルトシリンダ20及び付属装置用アクチュエータ30,40の作動をそれぞれ制御する。
また、流体圧制御装置100は、供給路3における第1及び第2制御弁16,26,36,46の上流側に連通するバイパス路4を備える。バイパス路4は、第1及び第2制御弁16,26,36,46の全てが中立位置にある場合に、ポンプ1から吐出された作動油を第1及び第2制御弁16,26,36,46及び排出路6を通じてタンク2へ導く。
リフトシリンダ10は、シリンダチューブ11の内部をボトム側室12とヘッド側室13とに区画するピストン14を有する単動形シリンダである。ピストン14にはロッド15が取り付けられている。第1制御弁16は、リフトシリンダ10の作動を停止する中立位置16a、ロッド15を上昇させる上昇位置16b、及びロッド15を下降させる下降位置16cを有する5ポート3位置切換弁である。以下において、上昇位置16bを作動位置とも称する。
第1制御弁16は、中立位置16aにある場合には、供給路3における作動油の流れを遮断し、バイパス路4における作動油の流れを許容する。この場合、リフトシリンダ10は作動しない。
第1制御弁16は、上昇位置16bにある場合には、供給路3における作動油の流れを許容し、バイパス路4における作動油の流れを遮断する。この場合、ボトム側室12は供給路3と連通し、作動油がポンプ1からボトム側室12に供給される。その結果、ロッド15が上昇する。
第1制御弁16は、下降位置16cにある場合には、供給路3における作動油の流れを遮断し、バイパス路4における作動油の流れを許容する。この場合、ボトム側室12は第1制御弁16を通じて排出路6と連通し、ボトム側室12内の作動油は第1制御弁16及び排出路6を通ってタンク2へ導かれる。その結果、ロッド15はピストン14、ロッド15及びフォークに作用する重力によって下降する。
チルトシリンダ20は、シリンダチューブ21の内部をボトム側室22とヘッド側室23とに区画するピストン24を有する複動形シリンダである。ピストン24にはロッド25が取り付けられている。第2制御弁26は、チルトシリンダ20の作動を停止する中立位置26a、マストを前傾させるようにチルトシリンダ20を作動させる前傾位置26b、及びマストを後傾させるようにチルトシリンダ20を作動させる後傾位置26cを有する8ポート3位置切換弁である。以下において、前傾位置26b及び後傾位置26cを作動位置とも称する。
第2制御弁26は、中立位置26aにある場合、供給路3における作動油の流れを遮断し、バイパス路4における作動油の流れを許容する。この場合、チルトシリンダ20は作動しない。
第2制御弁26は、前傾位置26bにある場合、供給路3における作動油の流れを許容し、バイパス路4における作動油の流れを制限する。この場合、ボトム側室22は供給路3と連通し、ヘッド側室23は第2制御弁26を通じて排出路6と連通する。ポンプ1からボトム側室22に作動油が供給されるとともにヘッド側室23の作動油がタンク2に排出される。その結果、ロッド25がシリンダチューブ21に対して移動し、チルトシリンダ20に連結されたマストが前傾する。
第2制御弁26は、後傾位置26cにある場合、供給路3における作動油の流れを許容し、バイパス路4における作動油の流れを制限する。この場合、ボトム側室22は第2制御弁26を通じて排出路6と連通し、ヘッド側室23は供給路3と連通する。ポンプ1からヘッド側室23に作動油が供給されるとともにボトム側室22の作動油がタンク2に排出される。その結果、ロッド25がシリンダチューブ21に対して移動し、チルトシリンダ20に連結されたマストが後傾する。
付属装置用アクチュエータ30,40は複動形シリンダであり、第2制御弁36,46は8ポート3位置切換弁である。付属装置用アクチュエータ30,40及び第2制御弁36,46の構造は、チルトシリンダ20及び第2制御弁26と同じであるため、ここではその説明を省略する。
逆止弁17は、第1制御弁16が中立位置16aにある場合にリフトシリンダ10の作動油が供給路3に流れるのを防ぐ。逆止弁27,37,47は、逆止弁17と同様に、第2制御弁26,36,46が中立位置26a,36a,46aにある場合にチルトシリンダ20及び付属装置用アクチュエータ30,40の作動油が供給路3に流れるのをそれぞれ防ぐ。
本実施形態では、リフトシリンダ10として単動形シリンダを用い、チルトシリンダ20及び付属装置用アクチュエータ30,40として複動形シリンダを用いているが、本発明はこの形態に限られない。リフトシリンダ10は複動形シリンダ又は他の形式の流体圧アクチュエータであってもよい。チルトシリンダ20及び付属装置用アクチュエータ30,40は単動形シリンダ又は他の形式の流体圧アクチュエータであってもよい。
第1及び第2制御弁16,26,36,46は、5ポート3位置切換弁及び8ポート3位置切換弁にそれぞれ限られず、他の形式の弁であってもよい。
また、流体圧制御装置100は、供給路3における第1及び第2制御弁16,26,36,46の上流側から分岐する分岐路5と、分岐路5に設けられた切換弁50と、分岐路5における切換弁50の下流側に設けられた第1リリーフ弁60と、を備える。
分岐路5は、第1及び第2制御弁16,26,36,46を迂回してバイパス路4に接続されている。したがって、第1及び第2制御弁16,26,36,46の少なくとも1つがバイパス路4における作動油の流れを遮断する場合、ポンプ1から吐出された作動油は分岐路5を通じて切換弁50へ導かれる。
切換弁50は、分岐路5における作動油の流れを遮断する遮断位置50aと、分岐路5における作動油の流れを許容する連通位置50bと、を有する2ポート2位置切換弁である。切換弁50はパイロット室51を有し、パイロット室51への作動油の供給に応じて、遮断位置50aと連通位置50bとが切り換えられる。パイロット路28,38,48がパイロット室51と第2制御弁26,36,46とをそれぞれ接続しており、作動油は供給路3から第2制御弁26,36,46を通じてパイロット室51に供給される。
本実施形態では、第2制御弁26,36,46は、中立位置26a,36a,46aにある場合、パイロット路28,38,48を供給路3から切り離し、パイロット路28,38,48をバイパス路4に接続する。つまり、第2制御弁26,36,46は、中立位置26a,36a,46aにある場合、供給路3からパイロット室51への作動油の供給を遮断し、パイロット室51からバイパス路4への作動油の流れを許容する。
第2制御弁26,36,46は、作動位置26b,26c,36b,36c,46b,46cにある場合、パイロット路28,38,48を供給路3に接続し、パイロット路28,38,48をバイパス路4から切り離す。つまり、第2制御弁26,36,46は、作動位置26b,26c,36b,36c,46b,46cにある場合、供給路3からパイロット室51への作動油の供給を許容し、パイロット室51からバイパス路4への作動油の流れを遮断する。
逆止弁39はパイロット室51から第2制御弁36への作動油の流れを遮断し、逆止弁49はパイロット室51から第2制御弁46への作動油の流れを遮断する。逆止弁39,49をパイロット路38,48に設ける代わりに、パイロット路38,48を予めバイパス路4から切り離しておいてもよい。
バイパス路4における第2制御弁36,46の上流側に連通するパイロット路28には、逆止弁が設けられていない。これは、パイロット室51に圧力がこもって切換弁50が連通位置50bに保たれるのを防ぐためである。パイロット路28に逆止弁を設けなくても、例えば第2制御弁36が作動位置36b,36cにあればバイパス路4が遮断されるので、パイロット室51内の作動油はパイロット路28を通じてタンク2へ排出されることはない。
第1リリーフ弁60は、第1リリーフ弁60の入口ポート61における圧力が第1圧力限界値以下のときに閉じ、入口ポート61における圧力が第1圧力限界値に達したときに開く。第1リリーフ弁60が開くと、作動油は分岐路5から第1リリーフ弁60を通じてバイパス路4へと導かれる。したがって、分岐路5内の圧力は第1圧力限界値以下に制限される。つまり、第1リリーフ弁60は、第1リリーフ弁60への作動油の流れが許容された場合に分岐路5内の圧力を第1圧力限界値以下に制限する。
本実施形態では、第1リリーフ弁60が分岐路5に設けられているので、第2制御弁26,36,46のそれぞれに供給路3から第1リリーフ弁60までの流路を形成する必要がない。供給路3から第2制御弁26,36,46を通りパイロット室51に至る流路(パイロット路28,38,48)は、パイロット室51の容積に対応する量の作動油を流せれば足りるので、流路面積が小さくてもよく、第2制御弁26,36,46を小型化することができる。したがって、流体圧制御装置100をより小型化することができる。
流体圧制御装置100は、切換弁50の上流側に設けられた第2リリーフ弁70をさらに備える。第2リリーフ弁70は、供給路3内の圧力を第1圧力限界値よりも高い第2圧力限界値以下に制限する。
より具体的には、第2リリーフ弁70は、第2リリーフ弁70の入口ポート71における圧力が第2圧力限界値以下のときに閉じ、入口ポート71における圧力が第2圧力限界値に達したときに開く。第2リリーフ弁70が開くと、作動油は供給路3から第2リリーフ弁70を通じてバイパス路4へと導かれる。したがって、供給路3内の圧力は第2圧力限界値以下に制限される。
図1から図3に示される実施形態では、第2リリーフ弁70は供給路3から分岐する流路に設けられているが、第2リリーフ弁70は、分岐路5における切換弁50の上流側から分岐する流路に設けられていてもよい。
次に、流体圧制御装置100の動作について説明する。
まず、第2制御弁26,36,46の少なくとも1つが作動位置26b,26c,36b,36c,46b,46cにある場合(図2参照)について説明する。
第2制御弁26は、前傾位置26bにある場合すなわちチルトシリンダ20への作動油の流れを許容する場合、供給路3からパイロット室51への作動油の供給を許容する。逆止弁39,49がパイロット室51から第2制御弁36,46への作動油の流れを遮断するので、作動油はパイロット室51へ供給され、切換弁50が連通位置50bに切り換わる。切換弁50は分岐路5における作動油の流れを許容し、その結果、第1リリーフ弁60への作動油の流れが許容される。
分岐路5は供給路3に連通しているので、第1リリーフ弁60は、分岐路5及び供給路3内の圧力を第1圧力限界値以下に制限する。したがって、チルトシリンダ20が供給路3と連通していても第1圧力限界値を超える圧力がチルトシリンダ20に作用するのを防ぐことができる。
第1圧力限界値をチルトシリンダ20の圧力上限値以下に設定することによって、チルトシリンダ20にチルトシリンダ20の圧力上限値を超える圧力が作用しなくなる。その結果、チルトシリンダ20の破損を防止することができる。
このように、本実施形態では、第2制御弁26がチルトシリンダ20への作動油の流れを許容する場合には、第2制御弁26がパイロット室51への作動油の供給を許容するので、作動油はパイロット室51へ供給される。その結果、切換弁50は第1リリーフ弁60への作動油の流れを許容し、第1リリーフ弁60が分岐路5内の圧力を第1圧力限界値以下に制限する。分岐路5は供給路3に連通しているので、供給路3内の圧力は第1リリーフ弁60により第1圧力限界値以下に制限される。したがって、第1圧力限界値を越える圧力がチルトシリンダ20に作用するのを防ぐことができる。
第2制御弁36,46が作動位置36b,36c,46b,46cにある場合、第2制御弁26が作動位置26b,26cにある場合と同様に、付属装置用アクチュエータ30,40に第1圧力限界値を超える圧力が作用するのを防ぐことができる。したがって、付属装置用アクチュエータ30,40の破損を防止することができる。
供給路3内の圧力は、第1制御弁16の位置に関わらず第1圧力限界値以下に制限される。したがって、高圧アクチュエータ10と、低圧アクチュエータ20,30,40の少なくとも1つと、を作動させる場合であっても、低圧アクチュエータ20,30,40に第1圧力限界値を超える圧力が作用するのを防ぐことができる。
次に、第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合(図3参照)について説明する。
第2制御弁26は、中立位置26aにある場合すなわちチルトシリンダ20への作動油の流れを遮断する場合、供給路3からパイロット室51への作動油の供給を遮断する。この場合、第2制御弁26はパイロット室51からバイパス路4への作動油の流れを許容する。第2制御弁36,46は、中立位置36a,46aにある場合、第2制御弁26と同様に、供給路3からパイロット室51への作動油の供給を遮断する。
第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合、パイロット室51はバイパス路4及び排出路6を通じてタンク2と連通する。したがって、パイロット室51に作動油が供給されず、切換弁50は遮断位置50aに切り換わる。遮断位置50aでは、分岐路5における作動油の流れが遮断され、その結果、第1リリーフ弁60への作動油の流れが遮断される。
第1リリーフ弁60へ作動油が流れなくなることによって、供給路3内の圧力は第1圧力限界値に制限されなくなる。つまり、供給路3の圧力を第1圧力限界値よりも高くすることが可能になる。したがって、第1制御弁16を上昇位置16bに切り換えてリフトシリンダ10を伸長作動させる際に、リフトシリンダ10に第1圧力限界値を超える圧力を作用させることができる。
供給路3から第2リリーフ弁70への作動油の流れは、第1及び第2制御弁16,26,36,46の位置に関わらず、遮断されない。したがって、供給路3内の圧力は第2圧力限界値以下に制限され、リフトシリンダ10が供給路3と連通していても第2圧力限界値を超える圧力がリフトシリンダ10に作用するのを防ぐことができる。
このように、本実施形態では、第2リリーフ弁70が切換弁50の上流側に設けられているので、供給路3内の圧力は第2リリーフ弁70により第2圧力限界値以下に制限される。したがって、第1リリーフ弁60が供給路3内の圧力を制限しない場合であっても、リフトシリンダ10に第2圧力限界値以上の圧力が作用することを防ぐことができる。
第2圧力限界値をリフトシリンダ10の圧力上限値以下に設定することによって、リフトシリンダ10にリフトシリンダ10の圧力上限値を超える圧力が作用しなくなる。その結果、リフトシリンダ10の破損を防止することができる。
なお、本実施形態に係る流体圧制御装置100は、1つの高圧アクチュエータ10の作動を制御する1つの第1制御弁16を備えるが、流体圧制御装置100はこの形態に限られない。流体圧制御装置100は、複数の高圧アクチュエータの作動をそれぞれ制御する複数の第1制御弁を備えていてもよい。
また、流体圧制御装置100は、複数の低圧アクチュエータ20,30,40の作動をそれぞれ制御する複数の第2制御弁26,36,46を備えているが、1つの低圧アクチュエータの作動を制御する1つの第2制御弁26を備える形態であってもよい。
さらに、分岐路5は、供給路3における第1制御弁16の下流側かつ第2制御弁26,36,46の上流側から分岐し第2制御弁26,36,46を迂回する形態であってもよい。
以上の第1実施形態によれば、以下に示す効果を奏する。
第1リリーフ弁60が分岐路5に設けられているので、第2制御弁26,36,46のそれぞれに供給路3から第1リリーフ弁60までの流路を形成する必要がない。供給路3から第2制御弁26,36,46を通りパイロット室51に至る流路は、パイロット室51の容積に対応する量の作動油を流せれば足りるので、流路面積が小さくてもよく、第2制御弁26,36,46のそれぞれが小型化される。したがって、流体圧制御装置100をより小型化することができる。
第2制御弁26がチルトシリンダ20への作動油の流れを許容する場合、パイロット室51に作動油が供給されるので、切換弁50は分岐路5における作動油の流れを許容する。第1リリーフ弁60への作動油の流れが許容され、分岐路5及び供給路3内の圧力は第1リリーフ弁60により第1圧力限界値以下に制限される。したがって、チルトシリンダ20が供給路3と連通していても第1圧力限界値を超える圧力がチルトシリンダ20に作用するのを防ぐことができる。
第2リリーフ弁70が切換弁50の上流側に設けられているので、切換弁50が分岐路5における作動油の流れを遮断していても供給路3内の圧力は第2リリーフ弁70を用いて第2圧力限界値以下に制限される。したがって、リフトシリンダ10が供給路3と連通していても第2圧力限界値を超える圧力がリフトシリンダ10に作用するのを防ぐことができる。
<第2実施形態>
次に、図4を参照して、本発明の第2実施形態に係る流体圧制御装置200について説明する。なお、第1実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
図4に示すように、第2リリーフ弁70は、分岐路5における切換弁250の下流側に設けられている。そして、第2リリーフ弁70は、第2リリーフ弁70への作動油の流れが許容された場合に分岐路5内の圧力を第2圧力限界値以下に制限する。第2圧力限界値は、第1圧力限界値よりも高い。
切換弁250は、分岐路5における作動油を第1リリーフ弁60に導く第1連通位置250aと、分岐路5における作動油の流れを第2リリーフ弁70に導く第2連通位置250bと、を有する3ポート2位置切換弁である。切換弁250は、第1連通位置250aにある場合に第2リリーフ弁70への作動油の流れを遮断し、第2連通位置250bにある場合に第1リリーフ弁60への作動油の流れを遮断する。
また、切換弁250はパイロット室251を有し、パイロット室251への作動油の供給に応じて、第1連通位置250aと第2連通位置250bとが切り換えられる。パイロット室251は第2制御弁26,36,46のそれぞれに接続されており、作動油は供給路3から第2制御弁26,36,46を通じてパイロット室251に供給される。
パイロット室251に作動油が供給された場合、切換弁250は、第1リリーフ弁60へ作動油を導くとともに第2リリーフ弁70への作動油の流れを遮断する。したがって、第1リリーフ弁60が分岐路5内の圧力を第1圧力限界値以下に制限する。分岐路5は供給路3に接続されているので、供給路3内の圧力は第1リリーフ弁60によって第1圧力限界値以下に制限される。
パイロット室251への作動油の供給が遮断された場合、切換弁250は、第1リリーフ弁60への作動油の流れを遮断するとともに第2リリーフ弁70への作動油を導く。したがって、第2リリーフ弁70が分岐路5内の圧力を第2圧力限界値以下に制限する。分岐路5は供給路3に接続されているので、供給路3内の圧力は第2リリーフ弁70によって第2圧力限界値以下に制限される。
次に、流体圧制御装置200の動作について説明する。
まず、第2制御弁26,36,46の少なくとも1つが作動位置26b,26c,36b,36c,46b,46cにある場合について説明する。
第2制御弁26は、作動位置26b,26cにある場合すなわちチルトシリンダ20への作動油の流れを許容する場合、供給路3からパイロット室251への作動油の供給を許容する。作動油がパイロット室251へ供給されることによって、切換弁250は第1連通位置250aに切り換わる。切換弁250は第1リリーフ弁60へ作動油を導くとともに第2リリーフ弁70への作動油の流れを遮断する。
作動油が第1リリーフ弁60へ導かれるので、分岐路5及び供給路3内の圧力は第1リリーフ弁60によって第1圧力限界値以下に制限される。したがって、チルトシリンダ20が供給路3と連通していても第1圧力限界値を超える圧力がチルトシリンダ20に作用するのを防ぐことができる。
第2制御弁36,46が作動位置36b,36c,46b,46cにある場合、第2制御弁26が作動位置26b,26cにある場合と同様に、第1圧力限界値を超える圧力が付属装置用アクチュエータ30,40に作用するのを防ぐことができる。
供給路3内の圧力は、第1制御弁16の位置に関わらず第1圧力限界値以下に制限される。したがって、高圧アクチュエータ10と、低圧アクチュエータ20,30,40の少なくとも1つと、を作動させる場合であっても、低圧アクチュエータ20,30,40に第1圧力限界値を超える圧力が作用するのを防ぐことができる。
次に、第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合について説明する。
第2制御弁26は、中立位置26aにある場合すなわちチルトシリンダ20への作動油の流れを遮断する場合、供給路3からパイロット室251への作動油の供給を遮断する。このとき、第2制御弁26はパイロット室251とバイパス路4とを連通させる。第2制御弁36,46は、中立位置36a,46aにある場合、パイロット室251への作動油の供給を遮断する。
第2制御弁26,36,46の全てが中立位置26a,36a,46aにあるとき、パイロット室251はバイパス路4及び排出路6を通じてタンク2と連通する。したがって、パイロット室251に作動油が供給されず、切換弁250は第2連通位置250bに切り換わる。第2連通位置250bでは、第2リリーフ弁70へ作動油が導かれるとともに第1リリーフ弁60への作動油の流れが遮断される。
第1リリーフ弁60へ作動油が流れなくなることによって、供給路3内の圧力は第1圧力限界値に制限されなくなる。つまり、供給路3内の圧力を第1圧力限界値よりも高くすることが可能になる。したがって、第1制御弁16を上昇位置16bに切り換えてリフトシリンダ10を伸長作動させる際に、リフトシリンダ10に第1圧力限界値を超える圧力を作用させることができる。
第2リリーフ弁70への作動油の流れは許容されているので、供給路3内の圧力は第2圧力限界値以下に制限される。したがって、リフトシリンダ10が供給路3と連通していても第2圧力限界値を超える圧力がリフトシリンダ10に作用するのを防ぐことができる。
以上の第2実施形態によれば、第1実施形態が奏する効果に加え、以下に示す効果を奏する。
本実施形態では、第1及び第2リリーフ弁60,70が分岐路5に設けられているので、第2リリーフ弁70を分岐路5とは異なる流路に設ける場合に比べ、供給路3から第1及び第2リリーフ弁60,70までの流路のスペースは小さい。したがって、流体圧制御装置200をより小型化することができる。
また、切換弁250が作動油の流れの方向を切り換えるので、供給路3内の圧力は第1又は第2圧力限界値以下に制限される。したがって、チルトシリンダ20及び付属装置用アクチュエータ30,40に第1圧力限界値以上の圧力が作用すること、並びにリフトシリンダ10に第2圧力限界値以上の圧力が作用することを防ぐことができる。
<第3実施形態>
次に、図5を参照して、本発明の第3実施形態に係る流体圧制御装置300について説明する。なお、第1及び第2実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
図5に示すように、第2リリーフ弁70は、分岐路5における切換弁250の下流側に設けられている。そして、第2リリーフ弁70は、第2リリーフ弁70への作動油の流れが許容された場合に分岐路5内の圧力を第2圧力限界値以下に制限する。第2圧力限界値は、第1圧力限界値よりも高い。
切換弁250は、分岐路5における作動油を第1リリーフ弁60に導く第1連通位置250aと、分岐路5における作動油の流れを第2リリーフ弁70に導く第2連通位置250bと、を有する3ポート2位置切換弁である。切換弁250は、第1連通位置250aにある場合に第2リリーフ弁70への作動油の流れを遮断し、第2連通位置250bにある場合に第1リリーフ弁60への作動油の流れを遮断する。
また、切換弁250はパイロット室251を有し、パイロット室251への作動油の供給に応じて、第1連通位置250aと第2連通位置250bとが切り換えられる。パイロット室251は第2制御弁26,36,46のそれぞれに接続されており、作動油は第2制御弁26,36,46を通じて供給路3からパイロット室251に供給される。
パイロット室251に作動油が供給された場合、切換弁250は、第1リリーフ弁60へ作動油を導くとともに第2リリーフ弁70への作動油の流れを遮断する。したがって、分岐路5内の圧力は第1リリーフ弁60によって第1圧力限界値以下に制限される。
パイロット室251への作動油の供給が遮断された場合、切換弁250は、第1リリーフ弁60への作動油の流れを遮断するとともに第2リリーフ弁70への作動油を導く。したがって、分岐路5内の圧力は第2リリーフ弁70によって第2圧力限界値以下に制限される。
流体圧制御装置300は、分岐路5における切換弁250の上流側に設けられたアンロード弁80をさらに備える。アンロード弁80は、切換弁250を迂回して排出路6に作動油を導く排出路6aに接続されており、開弁時には作動油を分岐路5から排出路6aに導く。
アンロード弁80は、弁体81と、弁体81の背面に臨んで設けられた背圧室82と、背圧室82に収容されたスプリング83と、弁体81に設けられた絞り84と、を有する。絞り84は背圧室82に連通しており、背圧室82は分岐路5を通じて切換弁250に連通する。したがって、供給路3の作動油は、絞り84及び背圧室82を通じて切換弁250に導かれる。
スプリング83は弁体81を閉弁方向に付勢している。したがって、背圧室82内の圧力及びスプリング83の付勢力は、弁体81をシート部85に着座させる方向に作用する。
供給路3内の圧力により弁体81に作用する荷重が、背圧室82内の圧力及びスプリング83の付勢力により弁体81に作用する荷重よりも小さい場合には、弁体81はシート部85に着座し、分岐路5から排出路6aへの作動油の流れを遮断する。供給路3内の圧力により弁体81に作用する荷重が、背圧室82内の圧力及びスプリング83の付勢力により弁体81に作用する荷重よりも大きい場合には、弁体81はシート部85から離れ、分岐路5から排出路6aへの作動油の流れを許容する。このように、弁体81は、背圧室82内の圧力に応じて開閉する。
次に、流体圧制御装置300の動作について説明する。
まず、第2制御弁26,36,46の少なくとも1つが作動位置26b,26c,36b,36c,46b,46cにある場合について説明する。
第2制御弁26は、作動位置26b,26cにある場合すなわちチルトシリンダ20への作動油の流れを許容する場合、供給路3からパイロット室251への作動油の供給を許容する。作動油がパイロット室251へ供給されることによって、切換弁250は第1連通位置250aに切り換わる。切換弁250は、第1リリーフ弁60へ作動油を導くとともに第2リリーフ弁70への作動油の流れを遮断する。作動油が第1リリーフ弁60へ導かれるので、背圧室82には第1リリーフ弁60内の圧力が作用する。
供給路3内の圧力が第1圧力限界値以下の場合、第1リリーフ弁60は閉じているので、背圧室82には供給路3内の圧力と同等の圧力が作用する。供給路3内の圧力により弁体81に作用する荷重は、背圧室82内の圧力及びスプリング83の付勢力により弁体81に作用する荷重よりも小さく、弁体81は閉弁状態となる。
供給路3内の圧力が第1圧力限界値に達すると、第1リリーフ弁60が開き、背圧室82内の作動油は第1リリーフ弁60を通じてタンク2へ流れる。供給路3内の作動油は絞り84を通過して背圧室82へ供給されるので、背圧室82内の圧力は供給路3内の圧力よりも低下する。供給路3内の圧力により弁体81に作用する荷重は、背圧室82内の圧力及びスプリング83の付勢力により弁体81に作用する荷重よりも大きくなり、弁体81は開弁状態となる。供給路3内の作動油はアンロード弁80を通じて排出路6aへ流れ、供給路3の圧力が下がる。
このように、供給路3内の圧力はアンロード弁80によって第1圧力限界値以下に制限される。したがって、チルトシリンダ20が供給路3と連通していても第1圧力限界値を超える圧力がチルトシリンダ20に作用するのを防ぐことができる。
第2制御弁36,46が作動位置36b,36c,46b,46cにある場合、第2制御弁26と同様に、付属装置用アクチュエータ30,40に第1圧力限界値を超える圧力が作用するのを防ぐことができる。
供給路3内の圧力は、第1制御弁16の位置に関わらず第1圧力限界値以下に制限される。したがって、高圧アクチュエータ10と、低圧アクチュエータ20,30,40の少なくとも1つと、を作動させる場合であっても、低圧アクチュエータ20,30,40に第1圧力限界値を超える圧力が作用するのを防ぐことができる。
次に、第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合について説明する。
第2制御弁26は、中立位置26aにある場合すなわちチルトシリンダ20への作動油の流れを遮断する場合、供給路3からパイロット室251への作動油の供給を遮断する。このとき、第2制御弁26はパイロット室251とバイパス路4とを連通させる。第2制御弁36,46は、中立位置36a,46aにある場合、パイロット室251への作動油の供給を遮断する。
第2制御弁26,36,46の全てが中立位置26a,36a,46aにあるとき、パイロット室251はバイパス路4及び排出路6を通じてタンク2と連通する。したがって、パイロット室251に作動油が供給されず、切換弁250は第2連通位置250bに切り換わる。第2連通位置250bでは、第2リリーフ弁70へ作動油が導かれるとともに第1リリーフ弁60への作動油の流れが遮断される。作動油が第2リリーフ弁70へ導かれるので、背圧室82には第2リリーフ弁70内の圧力が作用する。
供給路3内の圧力が第2圧力限界値以下の場合、第2リリーフ弁70は閉じているので、背圧室82には供給路3内の圧力と同等の圧力が作用する。したがって、供給路3内の圧力により弁体81に作用する荷重は、背圧室82内の圧力及びスプリング83の付勢力により弁体81に作用する荷重よりも小さく、弁体81は閉弁状態となる。
供給路3内の圧力が第2圧力限界値に達すると、第2リリーフ弁70が開き、背圧室82内の作動油は第2リリーフ弁70を通じてタンク2へ流れる。供給路3内の作動油は絞り84を通過して背圧室82へ供給されるので、背圧室82内の圧力は供給路3内の圧力よりも低下する。その結果、供給路3内の圧力により弁体81に作用する荷重は、背圧室82内の圧力及びスプリング83の付勢力により弁体81に作用する荷重よりも大きくなり、弁体81は開弁状態となる。供給路3内の作動油はアンロード弁80を通じて排出路6aへ流れ、供給路3の圧力が下がる。
このように、供給路3内の圧力はアンロード弁80によって第2圧力限界値以下に制限される。したがって、リフトシリンダ10が供給路3と連通していても第2圧力限界値を超える圧力がリフトシリンダ10に作用するのを防ぐことができる。
以上の第3実施形態によれば、第1実施形態が奏する効果に加え、以下に示す効果を奏する。
弁体81は、背圧室82内の圧力に応じて開閉し、分岐路5から排出路6aへの作動油の流れを許容又は遮断する。アンロード弁80よりも下流側における分岐路5の部分は、第1及び第2リリーフ弁60,70内の圧力を背圧室82に伝えることができれば足りるので、流路面積は小さくてもよい。また、アンロード弁80は、開弁時に分岐路5から切換弁250を迂回して作動油を排出路6aに導く。供給路3から分岐路5へ導かれた作動油は、アンロード弁80の開弁時には、主に排出路6a,6を通じてタンク2に排出されるので、アンロード弁80よりも下流側における分岐路5の部分の流路面積は小さくてもよい。したがって、流体圧制御装置300をより小型化することができる。
<第4実施形態>
次に、図6を参照して、本発明の第4実施形態に係る流体圧制御装置400について説明する。なお、第1実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
図6に示すように、流体圧制御装置400は、パイロット路28に設けられる逆止弁29を備える。逆止弁29は、パイロット路28における第2制御弁26からパイロット室51への作動油の流れを許容し、パイロット路28におけるパイロット室51から第2制御弁26への作動油の流れを遮断する。
また、流体圧制御装置400では、パイロット室51は、排出路52を通じて排出路6に接続される。排出路52には絞り53が設けられる。
第2制御弁26が作動位置26b,26cにある場合、ポンプ1から吐出された作動油は、供給路3、第2制御弁26を通じてパイロット路28に導かれる。排出路52に絞り53が設けられるので、パイロット路28に導かれた作動油はパイロット室51に供給され、切換弁50は連通位置50bに切り換えられる。切換弁50が連通位置50bに切り換えられた後では、パイロット路28に導かれた作動油は、排出路52及び排出路6を通じてタンク2に排出される。
第2制御弁36,46が作動位置36b,36c,46b,46cにある場合においても、パイロット路38,48の作動油はパイロット室51に供給され、切換弁50は連通位置50bに切り換えられる。
第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合には、供給路3からパイロット室51への作動油の供給が遮断される。パイロット室51内の作動油は、排出路52及び排出路6を通じてタンク2に排出される。その結果、切換弁50が遮断位置50aに切り換えられる。
次に、流体圧制御装置400の動作について説明する。
まず、第2制御弁26,36,46の少なくとも1つが作動位置26b,26c,36b,36c,46b,46cにある場合について説明する。
第2制御弁26は、作動位置26b,26cにある場合、供給路3からパイロット室51への作動油の供給を許容する。絞り53が排出路52に設けられるので、ポンプ1から吐出された作動油はパイロット室51へ供給され、切換弁50が連通位置50bに切り換わる。切換弁50は分岐路5における作動油の流れを許容し、その結果、第1リリーフ弁60への作動油の流れが許容される。
作動油が第1リリーフ弁60へ導かれるので、分岐路5及び供給路3内の圧力は第1リリーフ弁60によって第1圧力限界値以下に制限される。したがって、第1圧力限界値を超える圧力が第2制御弁26を通じてチルトシリンダ20に作用するのを防ぐことができる。
第2制御弁36,46が作動位置36b,36c,46b,46cにある場合、第2制御弁26が作動位置26b,26cにある場合と同様に、第1圧力限界値を超える圧力が付属装置用アクチュエータ30,40に作用するのを防ぐことができる。
次に、第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合について説明する。
第2制御弁26,36,46は、中立位置26a,36a,46aにあるとき、供給路3からパイロット室51への作動油の供給を遮断する。したがって、パイロット室51に作動油が供給されない。
パイロット室51内の作動油が排出路52及び排出路6を通じてタンク2に排出されるので、切換弁50は遮断位置50aに切り換わる。その結果、分岐路5における作動油の流れが遮断され、第1リリーフ弁60への作動油の流れが遮断される。
第1リリーフ弁60へ作動油が流れなくなることによって、供給路3内の圧力は第1圧力限界値に制限されなくなる。つまり、供給路3内の圧力を第1圧力限界値よりも高くすることが可能になる。したがって、第1制御弁16を上昇位置16bに切り換えてリフトシリンダ10を伸長作動させる際に、リフトシリンダ10に第1圧力限界値を超える圧力を作用させることができる。
以上の第4実施形態によれば、第1実施形態と同様に、流体圧制御装置400をより小型化することができる。また、第1圧力限界値を超える圧力が低圧アクチュエータ20,30,40に作用するのを防ぐことができる。更に、第2圧力限界値を超える圧力が高圧アクチュエータ10に作用するのを防ぐことができる。
<第5実施形態>
次に、図7を参照して、本発明の第5実施形態に係る流体圧制御装置500について説明する。なお、第1及び第4実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
図7に示すように、第2制御弁526は、9ポート3位置切換弁である。パイロット路28a,28bがパイロット室51と第2制御弁526とを接続する。パイロット路28a,28bには、それぞれ、逆止弁29a,29bが設けられる。
逆止弁29aは、パイロット路28aにおける第2制御弁526からパイロット室51への作動油の流れを許容し、パイロット路28aにおけるパイロット室51から第2制御弁526への作動油の流れを遮断する。逆止弁29bは、パイロット路28bにおける第2制御弁526からパイロット室51への作動油の流れを許容し、パイロット路28bにおけるパイロット室51から第2制御弁526への作動油の流れを遮断する。
第2制御弁526は、中立位置526aにある場合、パイロット路28a,28bを供給路3から切り離す。つまり、第2制御弁526は、中立位置526aにある場合、供給路3からパイロット室51への作動油の供給を遮断する。
第2制御弁526は、作動位置526bにある場合、パイロット路28aを供給路3に接続し、パイロット路28bを供給路3から切り離す。つまり、第2制御弁526は、作動位置526bにある場合、パイロット路28aを通じての供給路3からパイロット室51への作動油の供給を許容する。ポンプ1から吐出された作動油は、供給路3、第2制御弁526、パイロット路28aを通じてパイロット室51に供給され、切換弁50は連通位置50bに切り換えられる。
第2制御弁526は、作動位置526cにある場合、パイロット路28bを供給路3に接続し、パイロット路28aを供給路3から切り離す。つまり、第2制御弁526は、作動位置526cにある場合、パイロット路28bを通じての供給路3からパイロット室51への作動油の供給を許容する。ポンプ1から吐出された作動油は、供給路3、第2制御弁526、パイロット路28bを通じてパイロット室51に供給され、切換弁50は連通位置50bに切り換えられる。
第2制御弁536,546は、第2制御弁526と同様に、9ポート3位置切換弁である。パイロット路38a,38bがパイロット室51と第2制御弁536とを接続し、パイロット路48a,48bがパイロット室51と第2制御弁546とを接続する。パイロット路38a,38b,48a,48bには、それぞれ、逆止弁39a,39b,49a,49bが設けられる。
第2制御弁536は、中立位置536aにある場合、パイロット路38a,38bを供給路3から切り離す。第2制御弁546は、中立位置546aにある場合、パイロット路48a,48bを供給路3から切り離す。
第2制御弁536,546は、作動位置536b,546bにある場合、パイロット路38a,48aを供給路3に接続し、パイロット路38b,46bを供給路3から切り離す。ポンプ1から吐出された作動油は、供給路3、第2制御弁536,546及びパイロット路38a,48aを通じてパイロット室51に供給され、切換弁50は連通位置50bに切り換えられる。
第2制御弁536,546は、作動位置536c,546cにある場合、パイロット路38b,48bを供給路3に接続し、パイロット路38a,48aを供給路3から切り離す。ポンプ1から吐出された作動油は、供給路3、第2制御弁536,546及びパイロット路38b,48bを通じてパイロット室51に供給され、切換弁50は連通位置50bに切り換えられる。
次に、流体圧制御装置500の動作について説明する。
まず、第2制御弁526,536,546の少なくとも1つが作動位置526b,526c,536b,536c,546b,546cにある場合について説明する。
第2制御弁526は、作動位置526bにある場合、パイロット路28aを通じての供給路3からパイロット室51への作動油の供給を許容する。また、第2制御弁526は、作動位置526cにある場合、パイロット路28bを通じての供給路3からパイロット室51への作動油の供給を許容する。絞り53が排出路52に設けられるので、ポンプ1から吐出された作動油はパイロット室51へ供給され、切換弁50が連通位置50bに切り換わる。切換弁50は分岐路5における作動油の流れを許容し、その結果、第1リリーフ弁60への作動油の流れが許容される。
作動油が第1リリーフ弁60へ導かれるので、分岐路5及び供給路3内の圧力は第1リリーフ弁60によって第1圧力限界値以下に制限される。したがって、第1圧力限界値を超える圧力が第2制御弁526を通じてチルトシリンダ20に作用するのを防ぐことができる。
第2制御弁536,546が作動位置536b,536c,546b,546cにある場合、第2制御弁526が作動位置526b,526cにある場合と同様に、第1圧力限界値を超える圧力が付属装置用アクチュエータ30,40に作用するのを防ぐことができる。
第2制御弁526,536,546の全てが中立位置526a,536a,546aにある場合については、第4実施形態と略同じであるため、ここではその説明を省略する。
以上の第5実施形態によれば、第1実施形態と同様に、流体圧制御装置500をより小型化することができる。また、第1圧力限界値を超える圧力が低圧アクチュエータ20,30,40に作用するのを防ぐことができる。更に、第2圧力限界値を超える圧力が高圧アクチュエータ10に作用するのを防ぐことができる。
<第6実施形態>
次に、図8を参照して、本発明の第6実施形態に係る流体圧制御装置600について説明する。なお、第1及び第4実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
図8に示すように、パイロット路38,48は、第2制御弁36,46を通じてバイパス路4に接続されず、絞り53を有する排出路52を通じてのみ排出路6に接続される。そのため、ポンプ1から吐出された作動油は、第2制御弁26が作動位置26b,26cにある場合には、パイロット路38,48に逆止弁39,49(図6参照)が設けられていなくても、パイロット路28を通じてパイロット室51に供給される。
パイロット路28は、第2制御弁26を通じてバイパス路4に接続されず、絞り53を有する排出路52を通じてのみ排出路6に接続される。そのため、ポンプ1から吐出された作動油は、第2制御弁36,46が作動位置36b,36c,46b,46cにある場合、パイロット路28に逆止弁29(図6参照)が設けられていなくても、パイロット路38,48を通じてパイロット室51に供給される。
第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合には、供給路3からパイロット室51への作動油の供給が遮断される。パイロット室51内の作動油は、排出路52及び排出路6を通じてタンク2に排出される。その結果、切換弁50が遮断位置50aに切り換えられる。
流体圧制御装置600の動作については、第4実施形態に係る流体圧制御装置400(図6参照)と略同じであるため、ここではその説明を省略する。
以上の第6実施形態によれば、第1実施形態と同様に、流体圧制御装置600をより小型化することができる。また、第1圧力限界値を超える圧力が低圧アクチュエータ20,30,40に作用するのを防ぐことができる。更に、第2圧力限界値を超える圧力が高圧アクチュエータ10に作用するのを防ぐことができる。
<第7実施形態>
次に、図9を参照して、本発明の第7実施形態に係る流体圧制御装置700について説明する。なお、第1及び第5実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
図9に示すように、第2制御弁726は、10ポート3位置切換弁である。パイロット路28a,28bがパイロット室51と第2制御弁726とを接続する。第2制御弁736,746は、第2制御弁726と同様に、10ポート3位置切換弁である。パイロット路38a,38bがパイロット室51と第2制御弁736とを接続し、パイロット路48a,48bがパイロット室51と第2制御弁746とを接続する。
パイロット路38a,38b,48a,48bは、第2制御弁736,746を通じてバイパス路4に接続されず、絞り53を有する排出路52を通じてのみ排出路6に接続される。そのため、ポンプ1から吐出された作動油は、第2制御弁726が作動位置726b,726cにある場合に、パイロット路38a,38b,48a,48bに逆止弁39a,39b,49a,49b(図7参照)が設けられていなくても、パイロット室51に供給される。
パイロット路28a,28bは、第2制御弁726を通じてバイパス路4に接続されず、絞り53を有する排出路52を通じてのみ排出路6に接続される。そのため、ポンプ1から吐出された作動油は、第2制御弁736,746が作動位置736b,736c,746b,746cにある場合に、パイロット路28a,28bに逆止弁29a,29b(図7参照)が設けられていなくても、パイロット室51に供給される。
第2制御弁726,736,746の全てが中立位置726a,736a,746aにある場合には、供給路3からパイロット室51への作動油の供給が遮断される。パイロット室51内の作動油は、排出路52及び排出路6を通じてタンク2に排出される。その結果、切換弁50が遮断位置50aに切り換えられる。
流体圧制御装置700の動作については、第5実施形態に係る流体圧制御装置500と略同じであるため、ここではその説明を省略する。
以上の第7実施形態によれば、第1実施形態と同様に、流体圧制御装置700をより小型化することができる。また、第1圧力限界値を超える圧力が低圧アクチュエータ20,30,40に作用するのを防ぐことができる。更に、第2圧力限界値を超える圧力が高圧アクチュエータ10に作用するのを防ぐことができる。
<第8実施形態>
次に、図10及び図11を参照して、本発明の第8実施形態に係る流体圧制御装置800について説明する。なお、第1実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
図10に示すように、流体圧制御装置800は、高圧選択弁としてのシャトル弁54,55を備える。シャトル弁54は第1、第2及び第3ポート54a,54b,54cを有し、シャトル弁55は、第1、第2及び第3ポート55a,55b,55cを有する。
シャトル弁54の第1ポート54aはパイロット路28を通じて第2制御弁26に接続され、第2ポート54bはパイロット路38を通じて第2制御弁36に接続される。シャトル弁54の第3ポート54cは、パイロット路56を通じてシャトル弁55の第1ポート55aに接続される。シャトル弁55の第2ポート55bはパイロット路48を通じて第2制御弁46に接続され、第3ポート55cはパイロット路57を通じてパイロット室51に接続される。
以下において、パイロット路28,56を「第1パイロット路」とも称することがあり、パイロット路38,48を「第2パイロット路」とも称することがある。
図11は、切換弁50及びシャトル弁54,55の周辺を示す油圧回路図である。図11に示すように、シャトル弁54は、第1ポート54aと第2ポート54bとに連通する通路54dと、通路54dから分岐し第3ポート54cに連通する通路54eと、を有する。通路54dの一端部(第1ポート54a側の端部)には第1シート部54fが形成され、通路54dの他端部(第2ポート54b側の端部)には第2シート部54gが形成される。通路54d内には弁体54iが移動自在に設けられる。
パイロット路(第1パイロット路)28内の圧力がパイロット路(第2パイロット路)38内の圧力よりも高いときには、弁体54iは第1シート部54fから離れ第2シート部54gに着座する。その結果、パイロット路(第2パイロット路)38とパイロット路56との間の連通が遮断され、パイロット路(第1パイロット路)28とパイロット路56との間の連通が許容される。
パイロット路(第1パイロット路)28内の圧力がパイロット路(第2パイロット路)38内の圧力よりも低いときには、弁体54iは第2シート部54gから離れ第1シート部54fに着座する。その結果、パイロット路(第1パイロット路)28とパイロット路56との間の連通が遮断され、パイロット路(第2パイロット路)38とパイロット路56との間の連通が許容される。
このように、シャトル弁54は、パイロット路(第1パイロット路)28内の圧力とパイロット路(第2パイロット路)38内の圧力との差に応じて、パイロット路28,38の一方とパイロット路56との間の連通を許容し、パイロット路28,38の他方とパイロット路56との連通を遮断する。
シャトル弁55は、シャトル弁54と同様に、パイロット路(第1パイロット路)56内の圧力とパイロット路(第2パイロット路)48内の圧力との差に応じて、パイロット路56,48の一方とパイロット路57とを連通し、パイロット路56,48の他方とパイロット路57との連通を遮断する。シャトル弁55の構造は、シャトル弁54の構造と同じであるため、ここではその説明を省略する。
次に、図10及び図11を参照して、流体圧制御装置800の動作について説明する。
まず、第2制御弁26が作動位置26b,26cにあり第2制御弁36,46が中立位置36a,46aにある場合について説明する。
第2制御弁26は、作動位置26b,26cにある場合、供給路3からパイロット路28への流れを許容し、第2制御弁26を通じたバイパス路4とパイロット路28との間の連通を遮断する。パイロット路28は第2制御弁26及び供給路3を通じてポンプ1に連通し、ポンプ1の吐出圧力がパイロット路(第1パイロット路)28に作用する。
第1制御弁16及び第2制御弁26はバイパス路4における第2制御弁36,46の上流側に設けられる。そのため、第2制御弁36,46が中立位置36a,46aにある場合、パイロット路38は、第1制御弁16及び第2制御弁26の位置に関わらず、第2制御弁36,46、バイパス路4及び排出路6を通じてタンク2に連通する。したがって、パイロット路(第2パイロット路)38内の圧力はパイロット路(第1パイロット路)28内の圧力よりも低く、シャトル弁54の弁体54iは第2シート部54gに着座する。その結果、パイロット路(第1パイロット路)28とパイロット路56とがシャトル弁54を通じて連通し、ポンプ1の吐出圧力がパイロット路56に作用する。
第2制御弁46が中立位置46aにある場合、パイロット路48は、第2制御弁46、バイパス路4及び排出路6を通じてタンク2に連通する。そのため、パイロット路(第2パイロット路)48内の圧力はパイロット路(第1パイロット路)56内の圧力よりも低く、シャトル弁55の弁体55iは第2シート部55gに着座する。その結果、パイロット路57は、パイロット路56,28、第2制御弁26及び供給路3を通じてポンプ1に連通し、ポンプ1から吐出された作動油はパイロット室51に供給される。
作動油がパイロット室51へ供給されることにより、切換弁50が連通位置50bに切り換わる。切換弁50は分岐路5における作動油の流れを許容し、その結果、第1リリーフ弁60への作動油の流れが許容される。
分岐路5は供給路3に連通しているので、第1リリーフ弁60は、分岐路5及び供給路3内の圧力を第1圧力限界値以下に制限する。したがって、チルトシリンダ20が供給路3と連通していても第1圧力限界値を超える圧力がチルトシリンダ20に作用するのを防ぐことができる。
第1圧力限界値をチルトシリンダ20の圧力上限値以下に設定することによって、チルトシリンダ20にチルトシリンダ20の圧力上限値を超える圧力が作用しなくなる。その結果、チルトシリンダ20の破損を防止することができる。
次に、第2制御弁36が作動位置36b,36cにあり第2制御弁26,46が中立位置26a,46aにある場合について説明する。
第2制御弁36は、作動位置36b,36cにある場合、供給路3からパイロット路38への流れを許容し、第2制御弁36を通じたバイパス路4とパイロット路38との間の連通を遮断し、バイパス路4における作動油の流れを遮断する。パイロット路38は第2制御弁36及び供給路3を通じてポンプ1に連通し、ポンプ1の吐出圧力がパイロット路(第2パイロット路)38に作用する。
第2制御弁26が中立位置26aにあるので、パイロット路(第1パイロット路)28は、第2制御弁26を通じてバイパス路4に連通する。
ここで、第1制御弁16が中立位置16a又は下降位置16cにある場合と、上昇位置16bにある場合とに分けて、パイロット路56に作用する圧力について説明する。
第1制御弁16が中立位置16a又は下降位置16cにある場合には、パイロット路28は、第2制御弁26、バイパス路4及び第1制御弁16を通じてポンプ1に連通する。したがって、ポンプ1の吐出圧力はパイロット路(第1パイロット路)28に作用する。
パイロット路28,38の両方にポンプ1の吐出圧力が作用するため、シャトル弁54の弁体54iは移動しない。そのため、弁体54iが第1シート部54fに着座しているときには、パイロット路(第2パイロット路)38とパイロット路56とが連通し、パイロット路56にポンプ1の吐出圧力が作用する。弁体54iが第2シート部54gに着座しているときには、パイロット路(第1パイロット路)28とパイロット路56とが連通し、パイロット路56にポンプ1の吐出圧力が作用する。つまり、弁体54iの位置に関わらず、パイロット路56にポンプ1の吐出圧力が作用する。
第1制御弁16が上昇位置16bにある場合には、バイパス路4における作動油の流れは第2制御弁26の上流側で遮断され、パイロット路(第1パイロット路)28にはポンプ1の吐出圧力が作用しない。そのため、パイロット路(第1パイロット路)28内の圧力はパイロット路(第2パイロット路)38内の圧力よりも低く、シャトル弁54の弁体54iは第1シート部54fに着座する。したがって、パイロット路(第2パイロット路)38とパイロット路56とがシャトル弁54を通じて連通し、ポンプ1の吐出圧力はパイロット路56に作用する。
このように、第1制御弁16の位置に関わらず、パイロット路56にはポンプ1の吐出圧力が作用する。
第2制御弁46が中立位置46aにある場合には、パイロット路48は、第2制御弁46、バイパス路4及び排出路6を通じてタンク2に連通する。そのため、パイロット路(第2パイロット路)48内の圧力はパイロット路(第1パイロット路)56内の圧力よりも低く、シャトル弁55の弁体55iは第2シート部55gに着座する。その結果、パイロット路57は、パイロット路(第1パイロット路)56を通じてポンプ1に連通し、ポンプ1から吐出された作動油はパイロット室51に供給される。
作動油がパイロット室51へ供給されることにより、第2制御弁26が作動位置26b,26cにある場合と同様に、第1圧力限界値を超える圧力が付属装置用アクチュエータ30に作用するのを防ぐことができる。
次に、第2制御弁46が作動位置46b,46cにあり第2制御弁26,36が中立位置26a,36aにある場合について説明する。
第2制御弁46は、作動位置46b,46cにある場合、供給路3からパイロット路48への流れを許容し、第2制御弁46を通じたバイパス路4とパイロット路48との間の連通を遮断し、バイパス路4における作動油の流れを遮断する。パイロット路48は第2制御弁46及び供給路3を通じてポンプ1に連通し、ポンプ1の吐出圧力がパイロット路(第2パイロット路)48に作用する。
第2制御弁26が中立位置26aにあるので、パイロット路28は、第2制御弁26を通じてバイパス路4に連通する。第2制御弁36が中立位置36aにあるので、パイロット路38は、第2制御弁36を通じてバイパス路4に連通する。
ここで、第1制御弁16が中立位置16a又は下降位置16cにある場合と、上昇位置16bにある場合とに分けて、パイロット路57への作動油の供給について説明する。
第1制御弁16が中立位置16a又は下降位置16cにある場合には、パイロット路(第1パイロット路)28は、第2制御弁26、バイパス路4及び第1制御弁16を通じてポンプ1に連通する。パイロット路(第2パイロット路)38は、第2制御弁36、バイパス路4、第2制御弁26及び第1制御弁16を通じてポンプ1に連通する。したがって、パイロット路28,38の両方にポンプ1の吐出圧力が作用する。
パイロット路28,38の両方にポンプ1の吐出圧力が作用するので、シャトル弁54の弁体54iの位置に関わらず、パイロット路(第1パイロット路)56にポンプ1の吐出圧力が作用する。また、パイロット路(第2パイロット路)48には第2制御弁46及び供給路3を通じてポンプ1の吐出圧力が作用するので、パイロット路57は、シャトル弁55の弁体55iの位置に関わらず、シャトル弁55を通じてポンプ1に連通する。したがって、ポンプ1から吐出された作動油は、供給路3、第2制御弁46、パイロット路48及びパイロット路57を通じて、又は、バイパス路4、第2制御弁26,36、パイロット路56及びパイロット路57を通じてパイロット室51に供給される。
第1制御弁16が上昇位置16bにある場合には、バイパス路4における作動油の流れは第2制御弁26,36の上流側で遮断され、パイロット路28,38にはポンプ1の吐出圧力が作用しない。そのため、パイロット路(第1パイロット路)56内の圧力はパイロット路(第2パイロット路)48内の圧力よりも低く、シャトル弁55の弁体55iは第1シート部55fに着座する。その結果、パイロット路(第2パイロット路)48とパイロット路57とがシャトル弁55を通じて連通する。ポンプ1から吐出された作動油は、供給路3、第2制御弁46、パイロット路48及びパイロット路57を通じてパイロット室51に供給される。
このように、第1制御弁16の位置に関わらず、パイロット室51には作動油が供給される。
作動油がパイロット室51へ供給されることにより、第2制御弁26が作動位置26b,26cにある場合と同様に、第1圧力限界値を超える圧力が付属装置用アクチュエータ40に作用するのを防ぐことができる。
第2制御弁26,36,46のいずれか2つが作動位置にあり1つが中立位置にある場合、及び第2制御弁26,36,46の全てが作動位置にある場合においても、第1制御弁16の位置に関わらず、パイロット室51に作動油が供給される。したがって、第1圧力限界値を超える圧力が低圧アクチュエータ20,30,40に作用するのを防ぐことができる。
次に、第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合について説明する。
第2制御弁26は、中立位置26aにある場合、供給路3からパイロット路28への作動油の流れを遮断し、バイパス路4における作動油の流れを許容し、第2制御弁26を通じたパイロット路28とバイパス路4との連通を許容する。第2制御弁36は、中立位置36aにある場合、供給路3からパイロット路38への作動油の流れを遮断し、バイパス路4における作動油の流れを許容し、第2制御弁36を通じたパイロット路38とバイパス路4との連通を許容する。第2制御弁46は、中立位置46aにある場合、供給路3からパイロット路48への作動油の流れを遮断し、バイパス路4における作動油の流れを許容し、第2制御弁46を通じたパイロット路48とバイパス路4との連通を許容する。
第2制御弁26,36,46がバイパス路4における作動油の流れを許容するので、パイロット路28,38,48は、バイパス路4及び排出路6を通じてタンク2に連通する。したがって、パイロット室51への作動油の供給が遮断され、パイロット室51内の作動油は、パイロット路57,48を通じて、パイロット路57,56,38を通じて、又はパイロット路57,56,28を通じてタンク2へ排出される。
パイロット室51内の作動油が排出されることにより、切換弁50は遮断位置50aに切り換わる。遮断位置50aでは、分岐路5における作動油の流れが遮断され、その結果、第1リリーフ弁60への作動油の流れが遮断される。
第1リリーフ弁60へ作動油が流れなくなることによって、供給路3内の圧力は第1圧力限界値に制限されなくなる。つまり、供給路3の圧力を第1圧力限界値よりも高くすることが可能になる。したがって、第1制御弁16を上昇位置16bに切り換えてリフトシリンダ10を伸長作動させる際に、リフトシリンダ10に第1圧力限界値を超える圧力を作用させることができる。
供給路3から第2リリーフ弁70への作動油の流れは、第1及び第2制御弁16,26,36,46の位置に関わらず、遮断されない。したがって、供給路3内の圧力は第2圧力限界値以下に制限され、リフトシリンダ10が供給路3と連通していても第2圧力限界値を超える圧力がリフトシリンダ10に作用するのを防ぐことができる。
このように、本実施形態では、第2リリーフ弁70が切換弁50の上流側に設けられているので、供給路3内の圧力は第2リリーフ弁70により第2圧力限界値以下に制限される。したがって、第1リリーフ弁60が供給路3内の圧力を制限しない場合であっても、リフトシリンダ10に第2圧力限界値以上の圧力が作用することを防ぐことができる。
第2圧力限界値をリフトシリンダ10の圧力上限値以下に設定することによって、リフトシリンダ10にリフトシリンダ10の圧力上限値を超える圧力が作用しなくなる。その結果、リフトシリンダ10の破損を防止することができる。
図10に示す例では切換弁50の上流側に第2リリーフ弁70が設けられるが、第2実施形態(図4参照)のように、分岐路5における切換弁50の下流側に第2リリーフ弁70が設けられてもよい。この場合、切換弁50は、分岐路5における作動油を第1リリーフ弁60に導く第1連通位置50aと、分岐路5における作動油の流れを第2リリーフ弁70に導く第2連通位置50bと、を有する3ポート2位置切換弁である。
また、第3実施形態(図5参照)のように、分岐路5における切換弁50の上流側にアンロード弁80が設けられる形態であってもよい。
以上の第8実施形態によれば、第1実施形態が奏する効果に加え、以下に示す効果を奏する。
本実施形態では、逆止弁39,49(図1参照)に代えてシャトル弁54,55が用いられる。シャトル弁54,55といった高圧選択弁は、逆止弁39,49と比較して小型化が容易であるので、流体圧制御装置800をより小型化することができる。
<第9実施形態>
次に、図12を参照して、本発明の第9実施形態に係る流体圧制御装置900について説明する。なお、第1及び第8実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
流体圧制御装置100,200,300,400,500,600,700,800では、第1制御弁16,第2制御弁26,36,46,526,536,546,726,736,746として機械式切換弁が用いられる(図1から図10参照)。流体圧制御装置900では、図9に示すように、第1制御弁916,第2制御弁926,936,946として、電磁比例式切換弁が用いられる。以下、第1制御弁916,第2制御弁926,936,946の構造について、より具体的に説明する。
第1制御弁916は、パイロット室916d,916eと、パイロット室916dへの作動油の供給を制御するソレノイド916fと、パイロット室916eへの作動油の供給を制御するソレノイド916gと、を有する。パイロット室916d,916eへの作動油の供給に応じて、第1制御弁916の位置が切り換えられる。
パイロット室916dは、パイロット路7aを通じて供給路3に接続されるとともに、排出路8aを通じてバイパス路4における第2制御弁946の下流側に接続される。パイロット室916eは、パイロット路7bを通じて供給路3に接続されるとともに、排出路8bを通じてバイパス路4における第2制御弁946の下流側に接続される。
不図示のコントローラがソレノイド916fへ電気信号を出力すると、ソレノイド916fが励磁し、ポンプ1から吐出された作動油がパイロット路7aを通じてパイロット室916dに供給される。その結果、第1制御弁916は上昇位置916bに切り換わる。
コントローラがソレノイド916fへの電気信号の出力を停止すると、ソレノイド916fが非励磁となり、パイロット室916dへの作動油の供給が遮断される。パイロット室916d内の作動油は排出路8a、バイパス路4及び排出路6を通じてタンク2に排出される。その結果、第1制御弁916は中立位置916aに切り換わる。
コントローラがソレノイド916gへ電気信号を出力すると、ソレノイド916gが励磁し、ポンプ1から吐出された作動油がパイロット路7bを通じてパイロット室916eに供給される。その結果、第1制御弁916は下降位置916cに切り換わる。
コントローラがソレノイド916gへの電気信号の出力を停止すると、ソレノイド916gが非励磁となり、パイロット室916eへの作動油の供給が遮断される。パイロット室916e内の作動油は排出路8b、バイパス路4及び排出路6を通じてタンク2に排出される。その結果、第1制御弁916は中立位置916aに切り換わる。
このように、第1制御弁916の位置は、ソレノイド916f,916gへの電気信号の出力及び停止に応じて、切り換えられる。
第2制御弁926はパイロット室926d,926eとソレノイド926f,926gとを有する。パイロット室926dは、パイロット路7aを通じて供給路3に接続されるとともに、排出路8aを通じてバイパス路4における第2制御弁946の下流側に接続される。パイロット室926eは、パイロット路7bを通じて供給路3に接続されるとともに、排出路8bを通じてバイパス路4における第2制御弁946の下流側に接続される。
第2制御弁936はパイロット室936d,936eとソレノイド936f,936gとを有する。パイロット室936dは、パイロット路7aを通じて供給路3に接続されるとともに、排出路8aを通じてバイパス路4における第2制御弁946の下流側に接続される。パイロット室936eは、パイロット路7bを通じて供給路3に接続されるとともに、排出路8bを通じてバイパス路4における第2制御弁946の下流側に接続される。
第2制御弁946はパイロット室946d,946eとソレノイド946f,946gとを有する。パイロット室946dは、パイロット路7aを通じて供給路3に接続されるとともに、排出路8aを通じてバイパス路4における第2制御弁946の下流側に接続される。パイロット室946eは、パイロット路7bを通じて供給路3に接続されるとともに、排出路8bを通じてバイパス路4における第2制御弁946の下流側に接続される。
第2制御弁926,936,946の動作は第1制御弁916の動作と略同じであるため、ここではその説明を省略する。
流体圧制御装置900の動作は、流体圧制御装置800(図10参照)の動作と同じであるため、ここではその説明を省略する。
図12に示す例では切換弁50の上流側に第2リリーフ弁70が設けられるが、第2実施形態(図4参照)のように、分岐路5における切換弁250の下流側に第2リリーフ弁70が設けられてもよい。この場合、切換弁250は、分岐路5における作動油を第1リリーフ弁60に導く第1連通位置250aと、分岐路5における作動油の流れを第2リリーフ弁70に導く第2連通位置250bと、を有する3ポート2位置切換弁である(図4参照)。
また、第3実施形態(図5参照)のように、分岐路5における切換弁50の上流側にアンロード弁80が設けられる形態であってもよい。
第1から第7実施形態(図1から図9参照)における第1及び第2制御弁16,26,36,46,526,536,546,726,736,746として、本実施形態のように、電磁比例式切換弁が用いられてもよい。
以上の第9実施形態によれば、第8実施形態と同様に、流体圧制御装置900をより小型化することができる。
<第10実施形態>
次に、図13を参照して、本発明の第10実施形態に係る流体圧制御装置1000について説明する。なお、第1から第8実施形態における構成と同じ構成については同一の符号を付し、その説明を省略する。
図13に示すように、流体圧制御装置1000では、切換弁1050は、パイロット室1051に作動油が供給された際に遮断位置1050aに切り換えられ、パイロット室1051から作動油が排出された際に連通位置1050bに切り換えられる。パイロット室1051は、パイロット路58を通じて、分岐路5における切換弁1050の上流側に接続される。パイロット路58には絞り59が設けられる。
また、パイロット室1051には、排出路28c,38c,48cが接続される。排出路28cは第2制御弁26を介して排出路6に接続され、排出路38cは第2制御弁36を介して排出路6に接続され、排出路48cは第2制御弁46を介して排出路6に接続される。
第2制御弁26は、中立位置26aにある場合には、排出路28cにおける作動油の流れを遮断し、作動位置26b,26cにある場合には、排出路28cにおける作動油の流れを許容する。第2制御弁36,46は、第2制御弁26と同様に、中立位置36a,46aにある場合に排出路38c,48cにおける作動油の流れを遮断し、作動位置36b,36c,46b,46cにある場合に排出路38c,48cにおける作動油の流れを許容する。
第2制御弁26,36,46の少なくとも1つが作動位置26b,26c,36b,36c,46b,46cにある場合には、パイロット室1051は排出路28c,38c,48cの少なくとも1つを通じて排出路6に連通する。そのため、パイロット室1051内の作動油は、排出路28c,38c,48cの少なくとも1つ及び排出路6を通じてタンク2に排出される。
パイロット室1051から作動油が排出されるので、切換弁1050は連通位置1050bに切り換えられ、分岐路5における作動油の流れが許容される。その結果、第1リリーフ弁60への作動油の流れが許容される。分岐路5は供給路3に連通しているので、分岐路5及び供給路3内の圧力は、第1リリーフ弁60により第1圧力限界値以下に制限される。
第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合には、排出路28c,38c,48cにおける作動油の流れが遮断される。つまり、パイロット室1051からの作動流体の排出が遮断される。パイロット室1051はパイロット路58、分岐路5及び供給路3を通じてポンプ1に接続されるので、パイロット室1051に作動油が供給される。その結果、切換弁1050は遮断位置1050aに切り換えられる。
切換弁1050が遮断位置1050aに切り換えられるので、分岐路5における作動油の流れが遮断される。つまり、第1リリーフ弁60へ作動油が流れず、分岐路5及び供給路3内の圧力は第1圧力限界値に制限されない。
次に、流体圧制御装置1000の動作について説明する。
まず、第2制御弁26,36,46の少なくとも1つが作動位置26b,26c,36b,36c,46b,46cにある場合について説明する。
第2制御弁26は、作動位置26b,26cにある場合、排出路28cにおける作動油の流れを許容する。そのため、パイロット室1051は、排出路28c及び排出路6を通じてタンク2に連通する。
パイロット室1051内の作動油は、排出路28c及び排出路6を通じてタンク2へ排出される。その結果、切換弁1050が連通位置1050bに切り換わる。切換弁1050は分岐路5における作動油の流れを許容し、第1リリーフ弁60への作動油の流れが許容される。
分岐路5は供給路3に連通しているので、第1リリーフ弁60は、分岐路5及び供給路3内の圧力を第1圧力限界値以下に制限する。したがって、第2制御弁26が作動位置26b,26cにありチルトシリンダ20が供給路3と連通していても第1圧力限界値を超える圧力がチルトシリンダ20に作用するのを防ぐことができる。
第1圧力限界値をチルトシリンダ20の圧力上限値以下に設定することによって、チルトシリンダ20にチルトシリンダ20の圧力上限値を超える圧力が作用しなくなる。その結果、チルトシリンダ20の破損を防止することができる。
このように、本実施形態では、第2制御弁26は、供給路3からチルトシリンダ20への作動油の流れを許容する場合には、パイロット室1051から作動油を排出する。そのため、切換弁1050は連通位置1050bに切り換えられる。第1リリーフ弁60への作動油の流れが切換弁1050により許容され、分岐路5及び供給路3内の圧力が第1リリーフ弁60により第1圧力限界値以下に制限される。したがって、第1圧力限界値を越える圧力がチルトシリンダ20に作用するのを防ぐことができる。
第2制御弁36,46が作動位置36b,36c,46b,46cにある場合、第2制御弁26が作動位置26b,26cにある場合と同様に、付属装置用アクチュエータ30,40に第1圧力限界値を超える圧力が作用するのを防ぐことができる。したがって、付属装置用アクチュエータ30,40の破損を防止することができる。
供給路3内の圧力は、第1制御弁16の位置に関わらず第1圧力限界値以下に制限される。したがって、高圧アクチュエータ10と、低圧アクチュエータ20,30,40の少なくとも1つと、を作動させる場合であっても、低圧アクチュエータ20,30,40に第1圧力限界値を超える圧力が作用するのを防ぐことができる。
次に、第2制御弁26,36,46の全てが中立位置26a,36a,46aにある場合について説明する。
第2制御弁26は、中立位置26aにある場合、排出路28cにおける作動油の流れを遮断する。そのため、パイロット室1051からの作動油の排出が遮断される。第2制御弁36,46が中立位置36a,46aにある場合、第2制御弁26と同様に、パイロット室1051からの作動油の排出が遮断される。
ポンプ1から吐出された作動油が、供給路3、分岐路5及びパイロット路38を通じてパイロット室1051に供給されるので、切換弁1050が遮断位置1050aに切り換わる。その結果、第1リリーフ弁60への作動油の流れが遮断される。
第1リリーフ弁60への作動油の流れが遮断されることによって、供給路3内の圧力は第1圧力限界値に制限されなくなる。つまり、供給路3の圧力を第1圧力限界値よりも高くすることが可能になる。したがって、第1制御弁16を上昇位置16bに切り換えてリフトシリンダ10を伸長作動させる際に、リフトシリンダ10に第1圧力限界値を超える圧力を作用させることができる。
供給路3から第2リリーフ弁70への作動油の流れは、第1及び第2制御弁16,26,36,46の位置に関わらず、遮断されない。したがって、供給路3内の圧力は第2圧力限界値以下に制限され、リフトシリンダ10が供給路3と連通していても第2圧力限界値を超える圧力がリフトシリンダ10に作用するのを防ぐことができる。
このように、本実施形態では、第2リリーフ弁70が切換弁1050の上流側に設けられているので、供給路3内の圧力は第2リリーフ弁70により第2圧力限界値以下に制限される。したがって、第1リリーフ弁60が供給路3内の圧力を制限しない場合であっても、リフトシリンダ10に第2圧力限界値以上の圧力が作用することを防ぐことができる。
第2圧力限界値をリフトシリンダ10の圧力上限値以下に設定することによって、リフトシリンダ10にリフトシリンダ10の圧力上限値を超える圧力が作用しなくなる。その結果、リフトシリンダ10の破損を防止することができる。
図13に示す例では切換弁1050の上流側に第2リリーフ弁70が設けられるが、第2実施形態(図4参照)のように、分岐路5における切換弁250の下流側に第2リリーフ弁70が設けられてもよい。この場合、切換弁250は、分岐路5における作動油を第1リリーフ弁60に導く第1連通位置250aと、分岐路5における作動油の流れを第2リリーフ弁70に導く第2連通位置250bと、を有する3ポート2位置切換弁である(図4参照)。
また、第3実施形態(図5参照)のように、分岐路5における切換弁250の上流側にアンロード弁80が設けられる形態であってもよい。
さらに、第9実施形態(図12参照)のように、第1及び第2制御弁16,26,36,46として電磁比例式切換弁が用いられてもよい。
以上の第10実施形態によれば、第1実施形態と同様に、流体圧制御装置1000をより小型化することができる。また、第1圧力限界値を超える圧力が低圧アクチュエータ20,30,40に作用するのを防ぐことができる。更に、第2圧力限界値を超える圧力が高圧アクチュエータ10に作用するのを防ぐことができる。
以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
本実施形態では、流体圧制御装置100,200,300,400,500,600,700,800,900は、ポンプ(加圧部)1から吐出された作動油(作動流体)をリフトシリンダ(高圧アクチュエータ)10及びチルトシリンダ(低圧アクチュエータ)20に導く供給路3と、供給路3に設けられリフトシリンダ10の作動を制御する第1制御弁16,916と、供給路3に設けられチルトシリンダ20の作動を制御する第2制御弁26,526,726,926と、供給路3における第2制御弁26,526,726,926の上流側から分岐し第2制御弁26,526,726,926を迂回する分岐路5と、分岐路5に設けられ、供給路3から第2制御弁26,526,726,926を通じて作動油が供給されるパイロット室51,251を有する切換弁50,250と、分岐路5における切換弁50,250の下流側に設けられた第1リリーフ弁60と、を備え、第2制御弁26,526,726,926は、チルトシリンダ20への作動油の流れを許容する場合に供給路3からパイロット室51,251への作動油の供給を許容し、チルトシリンダ20への作動油の流れを遮断する場合に供給路3からパイロット室51,251への作動油の供給を遮断し、切換弁50,250は、パイロット室51,251へ作動油が供給された場合に第1リリーフ弁60への作動油の流れを許容し、パイロット室51,251への作動油の供給が遮断された場合に第1リリーフ弁60への作動油の流れを遮断し、第1リリーフ弁60は、第1リリーフ弁60への作動油の流れが許容された場合に分岐路5内の圧力を第1圧力限界値以下に制限する。
この構成では、第1リリーフ弁60が分岐路5に設けられているので、第2制御弁26,526,726,926に供給路3から第1リリーフ弁60までの流路を形成する必要がない。供給路3から第2制御弁26,526,726,926を通りパイロット室51,251に至る流路は、パイロット室51,251の容積に対応する量の作動油を流せればよいので、細くてもよく、第2制御弁26,526,726,926を小型化することができる。また、第2制御弁26,526,726,926がチルトシリンダ20への作動油の流れを許容する場合には、第2制御弁26,526,726,926はパイロット室51,251への作動油の供給を許容するので、作動油がパイロット室51,251へ供給され、切換弁50,250は第1リリーフ弁60への作動油の流れを許容する。そして、第1リリーフ弁60が分岐路5内の圧力を第1圧力限界値以下に制限するので、供給路3内の圧力は第1圧力限界値以下に制限される。したがって、チルトシリンダ20に第1圧力限界値以上の圧力を作用させることなく、リフトシリンダ10及びチルトシリンダ20の作動を制御する流体圧制御装置100,200,300,400,500,600,700,800,900をより小型化することができる。
また、本実施形態では、流体圧制御装置100,400,500,600,700,800,900は、切換弁50の上流側に設けられ、供給路3内の圧力を、第1圧力限界値よりも高い第2圧力限界値以下に制限する第2リリーフ弁70をさらに備える。
この構成では、第2リリーフ弁70が切換弁50の上流側に設けられているので、供給路3内の圧力は切換弁50の状態に関わらず第2圧力限界値以下に制限される。したがって、第1リリーフ弁60が供給路3内の圧力を制限しない場合であっても、リフトシリンダ10に第2圧力限界値以上の圧力が作用することを防ぐことができる。
また、本実施形態では、流体圧制御装置200,300は、分岐路5における切換弁250の下流側に設けられ、分岐路5内の圧力を第1圧力限界値よりも高い第2圧力限界値以下に制限する第2リリーフ弁70をさらに備え、切換弁250は、パイロット室251へ作動油が供給された場合に第1リリーフ弁60へ作動油を導くとともに第2リリーフ弁70への作動油の流れを遮断し、パイロット室251への作動油の供給が遮断された場合に第1リリーフ弁60への作動油の流れを遮断するとともに第2リリーフ弁70へ作動油を導く。
この構成では、第1及び第2リリーフ弁60,70の両方が分岐路5に設けられるので、供給路3から第2リリーフ弁70までの流路を分岐路5とは別に設ける必要がない。また、切換弁250が作動油の流れの方向を切り換えるので、供給路3内の圧力は第1又は第2圧力限界値以下に制限される。したがって、チルトシリンダ20に第1圧力限界値を超える圧力が作用するのを防ぐとともにリフトシリンダ10に第2圧力限界値を超える圧力が作用するのを防ぎつつ、流体圧制御装置200,300をより小型化することができる。
また、本実施形態では、流体圧制御装置300は、分岐路5における切換弁250の上流側に設けられ開弁時に分岐路5から切換弁250を迂回して作動油を排出路6に導くアンロード弁80をさらに備え、アンロード弁80は、分岐路5から排出路6への作動油の流れを許容又は遮断する弁体81と、弁体81の背面に臨んで設けられ供給路3の作動油が絞り84を通じて導かれるとともに切換弁250に連通する背圧室82と、を有し、弁体81は、背圧室82内の圧力に応じて開閉する。
この構成では、弁体81は背圧室82内の圧力に応じて開閉するので、アンロード弁80よりも下流側における分岐路5の部分は、第1及び第2リリーフ弁60,70内の圧力を背圧室82に伝えることができれば足り、流路面積は小さくてもよい。また、アンロード弁80は、開弁時に分岐路5から切換弁250を迂回して作動油を排出路6に導く。供給路3から分岐路5へ導かれた作動油は、アンロード弁80の開弁時には、主に排出路6a,6を通じてタンク2に排出されるので、アンロード弁80よりも下流側における分岐路5の部分の流路面積は小さくてもよい。したがって、流体圧制御装置300をより小型化することができる。
また、本実施形態では、流体圧制御装置800,900は、少なくとも2つの第2制御弁26,36と、第2制御弁26がチルトシリンダ20への作動油の流れを許容する場合に供給路3に接続されるパイロット路28と、第2制御弁36が付属装置用アクチュエータ30への作動油の流れを許容する場合に供給路3に接続されるパイロット路38と、パイロット路28,38に接続されるとともにパイロット室51に接続され、パイロット路28,38のうち圧力が高い方のパイロット路をパイロット室51と連通し他方のパイロット路における作動油の流れを遮断するシャトル弁54と、を更に備える。
この構成では、例えばパイロット路28内の圧力がパイロット路38内の圧力よりも高い場合に、シャトル弁54がパイロット路38における作動油の流れを遮断する。そのため、パイロット路28内の作動油は、パイロット路38を通じて他の通路(例えばバイパス路4及び排出路6)へ流れ難い。したがって、パイロット路28内の作動油をより確実にパイロット室51に供給することができ、チルトシリンダ20に第1圧力限界値を超える圧力が作用するのをより確実に防ぐことができる。
また、本実施形態では、流体圧制御装置1000は、ポンプ1から吐出された作動油をリフトシリンダ10及びチルトシリンダ20に導く供給路3と、供給路3に設けられリフトシリンダ10の作動を制御する第1制御弁16と、供給路3に設けられチルトシリンダ20の作動を制御する第2制御弁26と、供給路3における第2制御弁26の上流側から分岐し第2制御弁26を迂回する分岐路5と、分岐路5に設けられ、供給路3から第2制御弁26を迂回して作動油が供給されるパイロット室1051を有する切換弁1050と、分岐路5における切換弁1050の下流側に設けられた第1リリーフ弁60と、を備え、第2制御弁26は、チルトシリンダ20への作動油の流れを許容する場合にパイロット室1051からの作動油の排出を許容し、チルトシリンダ20への作動油の流れを遮断する場合にパイロット室1051からの作動油の排出を遮断し、切換弁1050は、パイロット室1051からの作動油の排出が遮断された場合に第1リリーフ弁60への作動油の流れを遮断し、パイロット室1051から作動油が排出された場合に第1リリーフ弁60への作動油の流れを許容し、第1リリーフ弁60は、第1リリーフ弁60への作動油の流れが許容された場合に分岐路5内の圧力を第1圧力限界値以下に制限する。
この構成では、第1リリーフ弁60が分岐路5に設けられているので、第2制御弁26に供給路3から第1リリーフ弁60までの流路を形成する必要がない。パイロット室1051から第2制御弁26を通り排出路6に至る流路は、パイロット室1051の容積に対応する量の作動油を流せればよいので、細くてもよく、第2制御弁26を小型化することができる。また、第2制御弁26がチルトシリンダ20への作動油の流れを許容する場合には、第2制御弁26はパイロット室1051からの作動油の排出を許容するので、パイロット室1051から作動油が排出され、切換弁1050は第1リリーフ弁60への作動油の流れを許容する。そして、第1リリーフ弁60が分岐路5内の圧力を第1圧力限界値以下に制限するので、供給路3内の圧力は第1圧力限界値以下に制限される。したがって、チルトシリンダ20に第1圧力限界値以上の圧力を作用させることなく、リフトシリンダ10及びチルトシリンダ20の作動を制御する流体圧制御装置1000をより小型化することができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
本願は2015年3月11日に日本国特許庁に出願された特願2015−48660に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。