JP6302239B2 - 抗腫瘍剤及びその製造方法 - Google Patents

抗腫瘍剤及びその製造方法 Download PDF

Info

Publication number
JP6302239B2
JP6302239B2 JP2013264582A JP2013264582A JP6302239B2 JP 6302239 B2 JP6302239 B2 JP 6302239B2 JP 2013264582 A JP2013264582 A JP 2013264582A JP 2013264582 A JP2013264582 A JP 2013264582A JP 6302239 B2 JP6302239 B2 JP 6302239B2
Authority
JP
Japan
Prior art keywords
heat
lactobacillus plantarum
antitumor agent
cells
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013264582A
Other languages
English (en)
Other versions
JP2015120651A (ja
Inventor
竜介 三浦
竜介 三浦
水谷 武夫
武夫 水谷
新 良一
良一 新
元行 片岡
元行 片岡
幸惠 伊藤
幸惠 伊藤
詩織 三浦
詩織 三浦
Original Assignee
株式会社エイ・エル・エイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイ・エル・エイ filed Critical 株式会社エイ・エル・エイ
Priority to JP2013264582A priority Critical patent/JP6302239B2/ja
Publication of JP2015120651A publication Critical patent/JP2015120651A/ja
Application granted granted Critical
Publication of JP6302239B2 publication Critical patent/JP6302239B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

本発明は、乳酸菌の加熱処理菌体を用いた抗腫瘍剤及びその製造方法に関する。
乳酸菌などを用いた多くのプロバイオティクス製品やプレバイオティクス製品について抗腫瘍作用を有することが報告されている。経口投与での抗腫瘍効果が認められている乳酸菌製剤として、抗悪性腫瘍剤OK-432(商品名:ピシバニール)がよく知られている(非特許文献1)。OK-432は、ストレプトコッカス・ピオゲネス(Streptococcus pyogenes)AIII Su株をペニシリン及びH2O2処理後に凍結乾燥した製剤である。OK-432の胃がんを対象とした薬効投与量域は0.1〜2mg/ヒト個体/1回/日(一週間に1〜7回経口投与)でありその幅は約20倍と考えられている。
特許文献1には、ラクトバチルス・プランタラムCJLP 243株生菌体の凍結乾燥物をマウスに経口投与したことにより免疫増強されたことが開示され、その菌をアトピー、アレルギー、癌及び自己免疫疾患の予防又は治療に利用できる可能性が示唆されている。しかし、特許文献1では抗腫瘍効果は実証されていない。
経口投与によって有効な抗腫瘍効果が得られることが判明している乳酸菌は多くはない。乳酸菌を用いた、経口投与でも高い抗腫瘍効果が得られる抗腫瘍剤の新たな製造方法の開発が求められている。
特表2013−509176
Kyoto Research Group For Digestive Organ Surgery, Ann. Surg., (1992) Vol. 216, No.1, p.44-54
本発明は、乳酸菌を用いた効果的な抗腫瘍剤を提供することを課題とする。
本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、ラクトバチルス・プランタラム菌体を比較的低温で加熱処理することにより、極めて広い投与量範囲(薬効投与量域)で強い腫瘍増殖抑制効果をもたらすことができることを見出し、本発明を完成するに至った。
すなわち、本発明は以下を包含する。
[1] ラクトバチルス・プランタラム(Lactobacillus plantarum)菌体を60〜80℃で加熱することにより、増強された腫瘍増殖抑制効果を示す加熱処理菌体を調製することを含む、抗腫瘍剤の製造方法。
[2] ラクトバチルス・プランタラムが、ラクトバチルス・プランタラムALAL006株(受託番号NITE BP-01754)である、上記[1]の方法。
[3] 前記加熱を5〜25分間行う、上記[1]又は[2]の方法。
[4]菌体を前記加熱後、乾燥させることをさらに含む、上記[1]〜[3]の方法。
[5] 乾燥が凍結乾燥である、上記[4]の方法。
[6] 上記[1]〜[5]の方法によって製造される、ラクトバチルス・プランタラムの加熱処理菌体を含む抗腫瘍剤。
[7] 上記[6]の抗腫瘍剤を含む、飲食品。
[8] 上記[6]の抗腫瘍剤を含む、腫瘍増殖抑制用の医薬。
本発明に従えば、乳酸菌を用いて、広い薬効投与量域で強い腫瘍増殖抑制効果を有する抗腫瘍剤を簡便に製造することができる。
図1は、BALB/cマウスにおけるP1、P2及びP3経口投与によるMeth-A腫瘍細胞に対する腫瘍増殖抑制効果を示す図である。図1AはサンプルP1、P2又はP3を1日当たり10mg投与したマウスにおける結果を示す。図1BはサンプルP1、P2又はP3を1日当たり0.2mg投与したマウスにおける結果を示す。**はP<0.01(対照群に対してTukey testで有意差)、NSは有意差無しを示す。四角が対照群、三角がP1投与群、白丸がP2投与群、黒丸がP3投与群を表す。 図2は、BALB/cマウスにおけるP1、P2及びP3経口投与によるMeth-A腫瘍細胞に対する腫瘍増殖抑制効果(Winnアッセイ)を示す図である。*はP<0.05、**はP<0.01、***はP<0.001(対照群に対してTukey testで有意差)、NSは有意差無しを示す。白四角がMeth-A腫瘍単独移植群、黒四角が対照群、三角がP1投与群、白丸がP2投与群、黒丸がP3投与群を表す。 図3は、BALB/cマウスパイエル氏板細胞培養におけるP1、P2及びP3刺激後のサイトカイン(TNF-α、IL-10)産生能の比較を示す図である。図3AはTNF-αの測定結果である。図3BはIL-10の測定結果である。NDは検出限界(15.6pg/ml)以下を表す。 図4は、BALB/cマウスパイエル氏板細胞培養におけるP1、P2及びP3刺激後のサイトカイン(IFN-γ)産生能の比較を示す図である。 図5は、BALB/cマウス脾臓細胞培養におけるP1、P2及びP3刺激後のサイトカイン産生能の比較を示す図である。図5AはIL-12の測定結果である。図5BはIFN-γの測定結果である。
以下、本発明を詳細に説明する。
本発明は、ラクトバチルス・プランタラム(Lactobacillus plantarum)菌体を比較的低温で加熱処理することにより得られる増強された腫瘍増殖抑制効果を示す加熱処理菌体を含む抗腫瘍剤及びその製造方法を提供する。
本発明に係る抗腫瘍剤の製造には、ラクトバチルス・プランタラムの菌体(細胞)を用いる。限定するものではないが、好適なラクトバチルス・プランタラム菌株としては、ラクトバチルス・プランタラム(Lactobacillus plantarum)ALAL006株が挙げられる。ラクトバチルス・プランタラム(Lactobacillus plantarum)ALAL006株は、2013年11月21日付で、独立行政法人 製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に、受託番号NITE BP-01754の下でブタペスト条約に基づき国際寄託されている。
本発明では、ラクトバチルス・プランタラムの腫瘍増殖抑制効果を増強するため、ラクトバチルス・プランタラムの菌体を、比較的低温、具体的には60〜80℃、好ましくは65℃〜75℃、例えば68℃〜72℃で加熱する。ラクトバチルス・プランタラム菌体の加熱は、通常は上記の加熱温度で、5〜25分間、例えば10〜20分間行えばよいが、これらに限定するものではない。加熱処理は任意の方法で行うことができるが、例えば菌体を含む溶液を収容した容器を、溶液の温度が上記加熱温度で維持されるように湯浴中で加温してもよい。
ラクトバチルス・プランタラムは、上記の加熱処理前に培養してもよい。ラクトバチルス・プランタラムの培養は、通常の培養条件に従って実施することができる。培養には、ラクトバチルス・プランタラムを始めとする乳酸菌の培養に用いられる様々な培地を用いて行うことができる。そのような培地としては、例えば、MRS(de MAN, ROGOSA, SHARPE)培地、LBS培地、APT培地、トマトジュース寒天培地、牛乳培地、豆乳培地などが挙げられるが、これらに限定されない。培養は、以下に限定するものではないが、例えば、25〜45℃、好ましくは30〜40℃、例えば35〜39℃で好適に行うことができる。培養時間は、特に限定されないが、例えば5〜30時間行うことができる。
培養後、培養液からラクトバチルス・プランタラムの菌体を回収し、生理食塩水等により洗浄した後に、加熱処理を行うことが好ましい。洗浄後の菌体を水や生理食塩水等に懸濁し、その懸濁液を加熱処理に供してもよい。
加熱処理後の菌体(又は菌体懸濁液)は、そのまま抗腫瘍剤に使用してもよいが、さらに乾燥させてから抗腫瘍剤に使用してもよい。乾燥は、凍結乾燥、減圧乾燥、風乾等の任意の乾燥法を用いて行うことができる。但し乾燥時の温度は上記加熱処理の温度(例えば60〜80℃)を超えないか又は下回ることが好ましい。乾燥は、非加熱条件下での乾燥がより好ましく、凍結乾燥がさらに好ましい。加熱処理後の菌体や乾燥させた加熱処理菌体については、さらに粉砕、顆粒化等の処理を施してもよい。
以上のようにして調製される、加熱処理を施した菌体又はそれに由来する組成物を、本発明では「加熱処理菌体」と称する。この加熱処理菌体は、通常は加熱死菌体である。本発明に係る加熱処理菌体は、強い腫瘍増殖抑制効果を示すことから、抗腫瘍剤に使用することができる。したがって本発明は、ラクトバチルス・プランタラム菌体を上記のように加熱することにより、ラクトバチルス・プランタラムの加熱処理菌体を調製することを含む、抗腫瘍剤を製造する方法も提供する。本発明はまた、そのような方法によって製造される、ラクトバチルス・プランタラムの加熱処理菌体を含む抗腫瘍剤も提供する。
本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤は、その加熱処理前の生菌体と比較して、増強された腫瘍増殖抑制効果を示す。本発明において増殖抑制の対象となる「腫瘍」は、悪性腫瘍であっても良性腫瘍であってもよいが、悪性腫瘍が特に好ましい。悪性腫瘍としては、線維肉腫、リンパ腫、粘液肉腫、脂肪肉腫、軟骨肉腫、骨肉腫、横紋筋肉腫、平滑筋肉腫、血管肉腫、悪性リンパ腫、腺癌、扁平上皮癌、移行上皮癌などが挙げられるが、これらに限定されない。本発明において増殖抑制の対象となる腫瘍の具体例としては、例えば、肺癌、乳癌、胃癌、腎癌、大腸癌(直腸癌、結腸癌、盲腸癌)、頭頸部癌、脳腫瘍、肝癌、子宮癌(子宮頸癌、子宮体癌)、卵巣癌、甲状腺癌、前立腺癌、食道癌、膵癌、胆道癌、膀胱癌、悪性リンパ腫、骨髄腫、骨肉腫、ユーイング肉腫、皮膚癌、黒色腫、白血病などが挙げられるが、これらに限定されない。
本発明における「腫瘍増殖抑制効果」は、例えば、後述の実施例に記載の移植腫瘍増殖抑制試験方法に従って評価することができる。簡単に説明すると、マウス(例えば、5週齢のBALB/c系統の雌マウス)に、本発明に係るラクトバチルス・プランタラムの加熱処理菌体を含む生理食塩水を一定期間(例えば3週間)にわたり定期的に(典型的には毎日1回)投与(例えば、経口投与)した後、適当量(例えば、1×106細胞)の腫瘍(例えばMeth-A腫瘍)をマウス鼠経部皮下に移植し、移植後も定期的に(例えば隔日で)加熱処理菌体の経口投与を継続する。腫瘍移植後、経時的に腫瘍のサイズを測定する。具体的には、腫瘍の長径と短径をノギスで計測し、その積の平方根を腫瘍サイズとして算出する。対照群として、本発明に係るラクトバチルス・プランタラムの加熱処理菌体の代わりに生理食塩水を投与して、同様に腫瘍を移植したマウスについても経時的に腫瘍サイズを測定する。このようにして腫瘍サイズを測定し、移植後一定期間経過後(例えば、移植の18日後)、ラクトバチルス・プランタラムの加熱処理菌体を投与したマウスにおいて、対照群と比較して、統計学的に有意に腫瘍サイズの増加率が低減されていれば、腫瘍増殖抑制効果を有すると評価できる。
本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤はまた、その腫瘍増殖抑制効果に関して、極めて幅広い薬効投与量域を有する。本発明において薬効投与量域とは、毒性を示すことなく腫瘍増殖抑制効果をもたらすのに有効である、薬剤の下限用量から上限用量までの範囲を意味する。本発明では、上記の移植腫瘍増殖抑制試験において、有害な影響が観察されることなく、対照群と比較して統計学的に有意な腫瘍サイズ増加率の低減をもたらした用量範囲は、薬効投与量域に含まれるものとする。薬効投与量域は、その幅に基づいて評価することができる。すなわち、薬効投与量域の下限用量に対する上限用量の倍率が大きい程、幅広い投与量で腫瘍増殖抑制効果をもたらすことができて有利である。本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤は、以下に限定するものではないが、例えば、35倍以上、好ましくは45倍以上の幅の薬効投与量域を有するものであり得る。特に、低温加熱処理によって得られる本発明に係る加熱処理菌体及びそれを含む抗腫瘍剤は、低用量でも増強された腫瘍増殖抑制効果を発揮することができるため、投与量を低減することができて有利である。本発明に係る加熱処理菌体及びそれを含む抗腫瘍剤の投与量は、ラクトバチルス・プランタラムの加熱処理菌体の乾燥重量で、例えば0.001〜200mg/体重kg/日、例えば0.001〜50mg/体重kg/日又は0.001〜5mg/体重kg/日に低減することができる。
本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤はまた、サイトカイン(例えば、TNF-α、IFN-γ及びIL-12)の産生を増強することができる。本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤はまた、サイトカイン、特にTNF-αを産生するM1マクロファージの活性化を顕著に促進することができる。本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤は、さらに、サイトカイン、特にIL-12を産生するT細胞の活性化を顕著に促進することができる。本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤は、そのようなサイトカインの増強により、全身免疫を増強することもできる。
本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤は、予防的な事前の投与により、腫瘍増殖を効果的に抑制することができる。したがって本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤は、予防的な投与により、体内で発生した腫瘍細胞の増殖を効果的に抑制できることから、腫瘍(好ましくは癌)の発生を阻止又は遅らせる上で有効である。また本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤は、腫瘍増殖を効果的に抑制することにより、腫瘍(好ましくは癌)の進行を遅らせ、化学療法、放射線療法や外科手術等との併用治療の治療成績を向上させる上で有効である。さらに本発明に係るラクトバチルス・プランタラムの加熱処理菌体及びそれを含む抗腫瘍剤は、腫瘍増殖を効果的に抑制することにより、癌の転移を阻止又は遅らせる上でも有効である。
本発明に係る抗腫瘍剤を被験体に投与することにより、被験体における腫瘍増殖を効果的に抑制し、かつ全身免疫を始めとする宿主免疫反応を増強することができる。本発明に係る抗腫瘍剤の投与対象となる被験体は、ヒト、家畜、愛玩動物、実験(試験)動物等を含む任意の哺乳動物である。特に好ましい被験体の例として、腫瘍(例えば癌)の発生リスクが高い環境に曝されている哺乳動物、腫瘍(例えば癌)の素因を有する哺乳動物、腫瘍(例えば癌)に罹患している哺乳動物、腫瘍(例えば癌)の再発又は転移のリスクがある哺乳動物等が挙げられるが、これらに限定されない。
本発明に係る抗腫瘍剤の投与量は、投与対象となる被験体の年齢及び体重、投与経路、投与回数により異なり、当業者の裁量によって広範囲に変更することができる。例えば、本発明に係る抗腫瘍剤を経口的に投与する場合には、本発明に係るラクトバチルス・プランタラムの加熱処理菌体の乾燥重量で、通常は0.001〜1000mg/体重kg/日、典型的には0.001〜200mg/体重kg/日、例えば0.001〜50mg/体重kg/日又は0.001〜5mg/体重kg/日となる量で投与することが好ましい。ヒトの場合、本発明に係るラクトバチルス・プランタラムの加熱処理菌体の乾燥重量で、例えば0.1mg〜20g/日、典型的には0.1mg〜200mg/日、より低用量では0.1mg〜50mg/日又は0.1mg〜1mg/日の投与が好ましい。本発明に係る抗腫瘍剤に含まれる加熱処理菌体は、上述のように幅広い薬効投与量域を有する。本発明に係る抗腫瘍剤は、単回投与でもよいが、反復的に複数回投与することが好ましく、例えば、5〜72時間の間隔で反復的に投与することが好ましいが、これに限定されない。本発明は、本発明に係るラクトバチルス・プランタラムの加熱処理菌体を含む抗腫瘍剤を上記のような被験体に投与することを含む、腫瘍増殖を抑制する方法も提供する。本発明はまた、本発明に係るラクトバチルス・プランタラムの加熱処理菌体を含む抗腫瘍剤を上記のような被験体に投与することを含む、腫瘍(例えば癌)の治療又は予防方法も提供する。このような腫瘍(例えば癌)の治療又は予防方法では、化学療法、放射線療法や外科手術等を併用することが好ましい。ここで腫瘍は、良性腫瘍又は悪性腫瘍(癌)である。本発明において腫瘍の「予防」とは、検出可能な腫瘍の発生を阻止若しくは遅延させること、又は腫瘍細胞の転移を阻止若しくは遅延させることを意味する。本発明において腫瘍の「治療」とは、腫瘍サイズの増加を阻止若しくは遅延させるか又は腫瘍サイズを低減させる(腫瘍の消滅を含む)ことを意味する。
本発明は、本発明に係るラクトバチルス・プランタラムの加熱処理菌体又はそれを含む抗腫瘍剤を含む飲食品も提供する。本発明において「飲食品」とは、限定するものではないが、飲料及び食品を包含する。
本発明に係る飲食品は、本発明に係るラクトバチルス・プランタラムの加熱処理菌体又はそれを含む抗腫瘍剤に加えて、食品分野で通常用いられる他の食材や食品添加物を含んでもよい。本発明に係る飲食品は、例えば、水、タンパク質、糖質、脂質、ビタミン類、ミネラル類、有機酸、有機塩基、果汁、フレーバー類等を含んでもよい。本発明に係る飲食品はまた、食品サプリメント等の調剤に使用される製剤補助剤(例えば、希釈剤、賦形剤、保存剤、結合剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤、溶解補助剤、懸濁化剤、コーティング剤等)を含んでいてもよい。本発明に係る飲食品は、固体、液体、懸濁液、ペースト、ゲル状、粉末、顆粒、カプセル等の任意の食品形態であってよい。
本発明に係る飲食品は、菓子、サプリメント、惣菜、調味料、清涼飲料、冷凍食品、流動食、病者用食品等の任意の形態の飲食品であってよい。本発明に係る飲食品は、機能性食品であってもよい。本発明において「機能性食品」は、生体に対して一定の機能性を有する食品を意味し、例えば、特定保健用食品(条件付きトクホ[特定保健用食品]を含む)及び栄養機能食品を含む保健機能食品、特別用途食品、栄養補助食品、健康補助食品、サプリメント製品(例えば、錠剤、被覆錠、糖衣錠、カプセル及び液剤などの各種剤形のもの)及び美容食品(例えばダイエット食品)などのいわゆる健康食品全般を包含する。本発明の機能性食品はまた、コーデックス(FAO/WHO合同食品規格委員会)の食品規格に基づく健康強調表示(Health claim)が適用される健康食品を包含する。本発明に係る飲食品は、腫瘍増殖抑制用の飲食品(例えば、機能性食品)であってもよい。
本発明に係るラクトバチルス・プランタラムの加熱処理菌体又はそれを含む抗腫瘍剤の飲食品への配合量は特に限定されず、場合に応じて様々であってよい。具体的な配合量は、飲食品の種類や求める味や食感を考慮して、当業者が適宜定めることができる。一般的には、添加される加熱処理菌体の総量で、0.001〜99質量%、例えば0.1〜80質量%となるような配合量が用いられる。本発明に係る飲食品の一日の摂取量は、上記の抗腫瘍剤の投与量に従って定められるが、比較的低用量となる量が好ましい。
本発明はまた、本発明に係るラクトバチルス・プランタラムの加熱処理菌体又はそれを含む抗腫瘍剤を含む医薬も提供する。本発明に係る医薬は、製剤分野において通常使用される任意の製剤補助剤を含んでもよい。製剤補助剤としては、製薬上許容される、不活性担体(固体又は液体担体)、賦形剤、界面活性剤、結合剤、崩壊剤、滑沢剤、矯臭剤、溶解補助剤、懸濁剤、コーティング剤、着色剤、矯味剤、保存剤、緩衝剤等の、様々な薬物担体又は添加剤を用いることができる。具体的には、水、他の水性溶媒、製薬上許容される有機溶媒、カルシウム、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、アルギン酸ナトリウム、水溶性デキストラン、水溶性デキストリン、カルボキシメチルスターチナトリウム、ペクチン、キサンタンガム、アラビアゴム、カゼイン、ゼラチン、寒天、グリセリン、プロピレングリコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトースなどの他、リポゾームなどの人工細胞構造物等も挙げられる。製剤補助剤は、製剤の剤形に応じて適宜又は組み合わせて選択されうる。本発明に係る医薬はまた、適当量のビタミン、ミネラル、有機酸、糖類、アミノ酸、ペプチド類などを含んでもよい。
本発明に係る医薬は、錠剤、顆粒剤、散剤、丸剤、カプセル剤などの固形製剤、ジェル剤、又は液剤、懸濁剤、シロップ剤などの液体製剤等の剤形であってよい。液体製剤として用いる場合には、本発明の医薬組成物を使用する際に再溶解させることを意図した乾燥物として供給してもよい。本発明に係る医薬は、経口的又は非経口的に投与することができるが、特に経口的に投与することが好ましい。
本発明に係る抗腫瘍剤を含む医薬は、高い腫瘍増殖抑制効果、及び全身免疫の増強効果を有する。したがって本発明は、腫瘍増殖抑制用の医薬も提供する。本発明に係る腫瘍増殖抑制用の医薬は、例えば、腫瘍(好ましくは癌)の予防又は治療用に用いることができる。
以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
[実施例1] 組成物の調製
1白金耳量の植物発酵物由来乳酸菌ラクトバチルス・プランタラム(Lactobacillus plantarum)ALAL006株を、2mlのMRS(de MAN, ROGOSA, SHARPE)液体培地(組成:培地1L当たり、ペプトン10.0g、ラブ−レムコ末(肉エキス)8.0g、酵母エキス4.0g、ブドウ糖20.0g、モノオレイン酸ソルビタン1.0ml、リン酸水素二カリウム2.0g、酢酸ナトリウム三水和物5.0g、クエン酸トリアンモニウム2.0g、硫酸マグネシウム七水和物0.2g、及び硫酸マンガン四水和物0.05g、pH 6.2±0.2;関東科学株式会社、東京)に接種し、37℃で24時間培養して前培養液を調製した。この前培養液を1Lの本培養培地(上記と同じMRS液体培地)に接種(1×106〜1×107/ml)し、37℃で20時間培養した。培養終了後、冷却遠心機にて集菌し、生理食塩水にて洗浄後、菌体ペレットを滅菌蒸留水90mlに懸濁した。得られた菌懸濁液の30mlをそのまま凍結乾燥することにより生菌体乾燥物を調製した(サンプルP1)。また菌懸濁液の30mlを115℃にて15分、又は70℃にて15分加熱殺菌した後、凍結乾燥することにより、加熱死菌体を含む組成物(それぞれサンプルP2、P3)を得た。この加熱処理は、具体的には、菌懸濁液の30mlを100ml三角フラスコに入れ、オートクレーブ滅菌器にて115℃で15分加熱することにより、又は、菌懸濁液の30mlを100ml三角フラスコに入れ、湯浴中でマグネットスターラーにて撹拌しながら菌懸濁液の温度が70℃に達してから15分加熱することにより、実施した。凍結乾燥後の組成物の重量はいずれも培養液1L当たり2.2gであった。
[実施例2] 移植腫瘍増殖抑制試験
5週齢のBALB/c系統の雌マウス(平均体重およそ16g)を対照群、P1投与群(0.2mg群、10mg群)、P2投与群(0.2mg群、10mg群)及びP3投与群(0.2mg群、10mg群)の各群にそれぞれ6匹ずつ割りつけた。投与群のマウスに与えるP1、P2及びP3懸濁液は、実施例1で調製したサンプルP1、P2及びP3のそれぞれについて10mg又は0.2 mgを生理食塩液0.2mLに混合することにより調製した。各投与群のマウスに、それぞれ指定された懸濁液(10mg又は0.2 mgのP1、P2又はP3/0.2mL)を3週間にわたり毎日1回ゾンデを用いて経口投与した。投与期間最終日の翌日に、マウス線維肉腫Meth-A(東北大学細胞センターより供与)1×106細胞をマウスの鼠経部皮下に移植した。移植後は隔日で、ゾンデを用いた各指定懸濁液の経口投与を継続した。対照群のマウスには、懸濁液に代えて生理食塩液(0.2mL)を用いること以外は、投与群と同じスケジュールで同様に経口投与及び移植を行った。腫瘍移植後、経時的に腫瘍の長径と短径をノギスで計測し、その積の平方根を腫瘍サイズとして算出し、そこから腫瘍増殖の推移を評価した。得られたデータについては、一元配置分散分析の後、Tukey又はDunnnetの多重比較検定を行った。統計的有意水準は5%未満とした。
結果を図1に示す。図1Aに示されるとおり、10mg/日の投与量の場合、P2、P3投与群では高い腫瘍増殖抑制効果が認められたが(対照群に対してp<0.01)、P1投与群では有意な腫瘍増殖抑制作用は認められなかった。一方、図1Bに示されるとおり、0.2mg/日の投与量の場合、P3投与群では高い腫瘍増殖抑制効果が認められたが(対照群に対してp<0.05)、P1投与群、P2投与群では有意な腫瘍増殖抑制作用は認められなかった。なお10mg/日及び0.2mg/日のいずれの投与量でも、マウスにおいて有害な影響は観察されなかった。
この結果は、生菌体(P1)では腫瘍増殖抑制効果が認められなかったにもかかわらず、加熱処理(P2、P3)することにより腫瘍増殖抑制効果が付与されたこと、さらに、比較的低温で加熱処理(P3)することにより、腫瘍増殖抑制効果がさらに増強され、高用量だけでなく低用量でも腫瘍増殖抑制効果を得られたことを示している。上記の結果は、サンプルP3の薬効投与量域が、少なくとも50倍の幅を有することも示している。すなわち、乳酸菌を低温加熱処理することにより、生菌体と比較して腫瘍増殖抑制効果を増強することができ、また腫瘍増殖抑制に有効な投与量(薬効投与量域)をより広範囲に拡張できることが示された。
[実施例3] 宿主免疫能の変化
サンプルP1、P2及びP3の投与による宿主免疫能の変化を抗腫瘍中和試験Winn assay(Saito M, et al., (1984) Int. J. Cancer, 33: p.271-276)を用いて評価した。
5週齢のBALB/c系統の雌マウスを対照群、P1投与群、P2投与群及びP3投与群の各群にそれぞれ6匹ずつ割りつけた。P1、P2及びP3投与群のマウスには、実施例2と同様にして調製した懸濁液(10mgのP1、P2又はP3/0.2mL/日)を3週間にわたり毎日1回ゾンデを用いて経口投与した。投与期間最終日の翌日に、Meth-A腫瘍1×106細胞をマウスの鼠経部皮下に移植した。対照群のマウスには、懸濁液に代えて生理食塩液(0.2mL)を用いること以外は、投与群と同じスケジュールで同様に経口投与及び移植を行った。腫瘍移植後20日目に各群それぞれのマウスから採取した脾細胞1×107細胞と新たなMeth-A腫瘍1×106細胞を混和(脾細胞数:腫瘍細胞数=30:1)し、それぞれ新たな6匹の5週齢のBALB/cマウスの鼠経部皮下に移植した。さらに、Meth-A腫瘍単独移植群として、マウス脾細胞と混和することなくMeth-A腫瘍単独を、6匹の5週齢のBALB/c雌マウスの鼠経部皮下に移植した。これらの腫瘍移植後、経時的に腫瘍の長径と短径をノギスで計測し、その積の平方根を腫瘍サイズとして算出し、そこから腫瘍増殖の推移を評価した。得られたデータについては、一元配置分散分析の後、Tukeyの多重比較検定を行った。統計的有意水準は5%未満とした。
結果を図2に示す。図2に示される通り、P1、P2、P3投与群では、Meth-A腫瘍単独移植群と比較して有意な腫瘍増殖抑制効果を示したが、対照群では有意差が認められなかった。またP3投与群では、対照群、P1群と比較して有意な腫瘍増殖抑制効果が認められた。
以上の結果は、低温加熱処理物(P3)の投与により、脾細胞中に強い腫瘍増殖抑制作用を有する免疫細胞群を誘導できたことを示している。
[実施例4] マウスパイエル氏板細胞におけるサイトカイン産生能に対する効果
経口投与した乳酸菌は、消化管のパイエル氏板の主にマクロファージに取り込まれ、宿主免疫を賦活すると考えられている(Hiramatsu Y., et al., Cytotechnology (2011) 63:307-317; Mowat A. M. and Bain C.C., J. Innate Immun., (2011) 3:550-564)。そこで、サンプルP1、P2及びP3がパイエル氏板の免疫細胞に及ぼす影響を、サイトカイン(TNF-α、IL-10、及びIFN-γ)産生誘導能に基づいて検討した。
具体的には、6週齢のBALB/c系統の雌マウスのパイエル氏板を採取し、コラゲナーゼ処理(コラゲナーゼ1mg/ml、37℃で1時間)した後、5%ウシ胎児血清(FCS)添加RPMI培地にて細胞浮遊液(2.5×106細胞/ml)を調製した。得られた細胞浮遊液に、実施例1で調製したサンプルP1、P2、又はP3を最終濃度0.1μg/ml(TNF-α、IL-10測定群)又は1μg/ml(IFN-γ測定群)で添加し、5%CO2下、37℃で3日間(IFN-γ測定群)又は7日間(TNF-α測定群及びIL-10測定群)培養した後、上清中のサイトカイン濃度(TNF-α、IL-10、又はIFN-γ)をELISA法で測定した。測定結果に基づき、抗腫瘍作用を誘導するM1マクロファージ及び免疫抑制作用を誘導するM2マクロファージの活性化(Hiramatsu Y., et al., Cytotechnology (2011) 63:307-317; Mowat A. M. and Bain C.C., J. Innate Immun., (2011) 3:550-564)を、それぞれTNF-α産生能とIL-10産生能で評価した(図3)。同様に、測定結果に基づき、抗腫瘍作用を誘導するT細胞の活性化をIFN-γ産生能で評価した(図4)。
図3Aに示される通り、TNF-αはP3刺激によってのみ産生された。したがって、サンプルP3は抗腫瘍作用を誘導するM1マクロファージを強く誘導(活性化)することが示された。一方、IL-10産生能についてはサンプルP1〜P3間で違いが認められなかったことから、サンプルP3は免疫抑制作用を誘導するM2マクロファージの活性化に対しては影響を及ぼさないことが示された。さらに、図4に示される通り、P3刺激はIFN-γ産生能を増強させたことから、サンプルP3は抗腫瘍作用を誘導するT細胞を強く誘導(活性化)することが示された。
[実施例5] マウス脾臓細胞におけるサイトカイン産生能に対する効果
サンプルP1、P2及びP3の投与が全身免疫に及ぼす影響を、脾臓細胞におけるサイトカイン(IL-12及びIFN-γ)産生能で評価した。IL-12はマクロファージや樹状細胞などから産生され、NK細胞の活性化やリンパ球からのIFN-γの産生を促進する。IFN-γには抗腫瘍作用やNK細胞活性化作用がある。いずれもNK細胞活性化を始めとする全身免疫の活性化において大きな役割を果たしている。
具体的には、まず、6週齢のBALB/c系統の雌マウスから採取した脾臓を、5%ウシ胎児血清(FCS)添加RPMI培地中で200メッシュのナイロンスクリーン上にのせ、1mlシリンジのプランジャーを用いて破砕して細胞浮遊液を調製することにより、脾臓細胞を調製した(2.5×106細胞/ml)。得られた脾臓細胞の細胞浮遊液に、実施例1で調製したサンプルP1、P2、又はP3を最終濃度1μg/ml(IL-12測定群)又は0.01μg/ml(IFN-γ測定群)で添加し、5%CO2下、37℃で72時間培養した後、上清中のサイトカイン濃度(IL-12、又はIFN-γ)をELISA法で測定した。
その結果、P3刺激はP1刺激の約5倍高いIL-12産生能(図5A)、またP1刺激の約1.6倍高いIFN-γ産生能(図5B)を示した。この結果から、サンプルP3は、全身免疫を増強し、抗腫瘍効果をより高めたことが示された。

Claims (10)

  1. ラクトバチルス・プランタラム(Lactobacillus plantarum)菌体を60〜80℃で加熱することにより、増強された腫瘍増殖抑制効果を示す加熱処理菌体を調製することを含む、抗腫瘍剤の製造方法であって、ラクトバチルス・プランタラムが、ラクトバチルス・プランタラムALAL006株(受託番号NITE BP-01754)である、方法
  2. 前記加熱を68〜72℃で行う、請求項1に記載の方法。
  3. 前記加熱を5〜25分間行う、請求項1又は2に記載の方法。
  4. 菌体を前記加熱後、乾燥させることをさらに含む、請求項1〜3のいずれか1項に記載の方法。
  5. 乾燥が凍結乾燥である、請求項4に記載の方法。
  6. 請求項1〜5のいずれか1項に記載の方法によって製造される、ラクトバチルス・プランタラムの加熱処理菌体を含む抗腫瘍剤。
  7. 請求項6に記載の抗腫瘍剤を含む、飲食品。
  8. 請求項6に記載の抗腫瘍剤を含む、腫瘍増殖抑制用の医薬。
  9. 請求項1〜5のいずれか1項に記載の方法によってラクトバチルス・プランタラムALAL006株(受託番号NITE BP-01754)の加熱処理菌体を調製し、その加熱処理菌体を含む飲食品を製造することを含む、腫瘍増殖抑制用の飲食品の製造方法。
  10. 請求項1〜5のいずれか1項に記載の方法によってラクトバチルス・プランタラムALAL006株(受託番号NITE BP-01754)の加熱処理菌体を調製し、その加熱処理菌体を含む医薬を製造することを含む、腫瘍増殖抑制用の医薬の製造方法。
JP2013264582A 2013-12-20 2013-12-20 抗腫瘍剤及びその製造方法 Active JP6302239B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264582A JP6302239B2 (ja) 2013-12-20 2013-12-20 抗腫瘍剤及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264582A JP6302239B2 (ja) 2013-12-20 2013-12-20 抗腫瘍剤及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015120651A JP2015120651A (ja) 2015-07-02
JP6302239B2 true JP6302239B2 (ja) 2018-03-28

Family

ID=53532655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264582A Active JP6302239B2 (ja) 2013-12-20 2013-12-20 抗腫瘍剤及びその製造方法

Country Status (1)

Country Link
JP (1) JP6302239B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455428B1 (ko) * 2015-11-24 2022-10-18 전남대학교산학협력단 암의 예방 또는 치료용 의약 조성물 및 건강기능식품
JP2019076089A (ja) * 2017-10-23 2019-05-23 有限会社佐藤修商店 魚肉練製品及びその製造方法
KR102136772B1 (ko) * 2018-12-10 2020-07-23 한국식품연구원 락토바실러스 사케아이 wikim30을 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물
JP7284467B1 (ja) 2022-06-01 2023-05-31 国立大学法人信州大学 免疫賦活性マクロファージ誘導剤、癌微小環境改善剤、癌アポトーシス誘導剤及び免疫賦活性マクロファージ誘導方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064481B2 (ja) * 1996-10-11 2008-03-19 ハウスウェルネスフーズ株式会社 免疫賦活剤
JP4712289B2 (ja) * 2003-08-26 2011-06-29 株式会社エイ・エル・エイ 免疫促進用組成物

Also Published As

Publication number Publication date
JP2015120651A (ja) 2015-07-02

Similar Documents

Publication Publication Date Title
Ouwehand et al. Probiotics: mechanisms and established effects
TWI359668B (ja)
KR101580678B1 (ko) 나노형 유산균
JP5709883B2 (ja) 新規なラクトバチルス・プランタラム及びこれを含む組成物
ES2356315T3 (es) Bacterias ácido-lácticas que presentan un efecto de inmunopotenciación de las mucosas.
JP7126004B2 (ja) 組成物及びその使用
JP7434375B2 (ja) 腸管免疫調節のための新規なプロバイオティック組成物
MX2013015175A (es) Composiciones probioticas y metodos.
CN106413724B (zh) 与多糖聚合物粘合剂缀合的鼠李糖乳杆菌rht-3201及其用途
JP4712289B2 (ja) 免疫促進用組成物
JP5527690B2 (ja) 免疫調節性機能誘導剤及び食品組成物
Mehta et al. The potential of paraprobiotics and postbiotics to modulate the immune system: A Review
JP5337535B2 (ja) Nk活性増強剤
JP6302239B2 (ja) 抗腫瘍剤及びその製造方法
JPWO2019045037A1 (ja) ヒアルロン酸産生促進用組成物
CN112351693A (zh) 用于抑制流感的重症化的抗流感病毒剂
JP5324283B2 (ja) 感染防御剤
WO2018190407A1 (ja) Toll様受容体2活性化用組成物
JP2024098008A (ja) 免疫チェックポイント阻害療法を促進するための組成物
JP5209294B2 (ja) インターロイキン12産生促進剤
JP2000247895A (ja) 自己免疫疾患予防組成物
WO2015046407A1 (ja) 免疫疾患予防剤
Nagpal et al. Probiotics, prebiotics and synbiotics: An introduction
CN112312920A (zh) 非存活两歧双歧杆菌及其用途
KR20230057980A (ko) 항암 활성을 갖는 신규 박테리아 균주 및 이를 이용한 암의 완화, 예방 또는 치료용 조성물

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180302

R150 Certificate of patent or registration of utility model

Ref document number: 6302239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250