JP6274279B2 - 鋼板の通板位置制御装置および方法 - Google Patents

鋼板の通板位置制御装置および方法 Download PDF

Info

Publication number
JP6274279B2
JP6274279B2 JP2016168990A JP2016168990A JP6274279B2 JP 6274279 B2 JP6274279 B2 JP 6274279B2 JP 2016168990 A JP2016168990 A JP 2016168990A JP 2016168990 A JP2016168990 A JP 2016168990A JP 6274279 B2 JP6274279 B2 JP 6274279B2
Authority
JP
Japan
Prior art keywords
steel plate
electromagnet
determined
current
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016168990A
Other languages
English (en)
Other versions
JP2016204758A (ja
Inventor
雄亮 石垣
雄亮 石垣
石田 匡平
匡平 石田
西名 慶晃
慶晃 西名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2016204758A publication Critical patent/JP2016204758A/ja
Application granted granted Critical
Publication of JP6274279B2 publication Critical patent/JP6274279B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0032Apparatus specially adapted for batch coating of substrate
    • C23C2/00322Details of mechanisms for immersing or removing substrate from molten liquid bath, e.g. basket or lifting mechanism
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/24Removing excess of molten coatings; Controlling or regulating the coating thickness using magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/51Computer-controlled implementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate
    • C23C2/5245Position of the substrate for reducing vibrations of the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、鋼板の通板位置制御装置および方法に関し、鋼板を所定の範囲内で安定的に通板(travel)させるものであり、特に亜鉛等の溶融めっき(hot-dip coating)ライン、コーティングライン等に有用なものである。
鋼板を製造するラインにおいて、鋼板の振動(vibration)や反り(warp)を抑制して鋼板のパスライン(pass line)を安定に保つことは、鋼板の品質を向上させるばかりでなく、その製造ラインの能率を向上させることにも寄与する。
例えば、溶融亜鉛めっき鋼板の製造ラインのめっき工程においては、鋼板を溶融亜鉛浴槽中の溶融亜鉛に浸漬しながら通板(travel)することにより、鋼板の表面に溶融亜鉛をめっきする。この工程の後に、溶融亜鉛浴槽後に設けられたガスワイパからワイピングガスを鋼板表面に吹き付けることにより鋼板表面のめっき厚(coating thickness)を均一にする。
このめっき厚を均一にするための工程では、ワイピングガスの圧力が、鋼板の表裏および板幅方向で均一になるようにすることが必要である。したがって、鋼板が振動している場合、鋼板が反っている場合、あるいは鋼板のパスラインが表裏どちらかに偏っている場合など、ガスワイパと鋼板との距離が一定ではないときは、ワイピングガスの圧力が鋼板表裏および板幅方向に均一にならない。その結果、鋼板の表裏や板幅方向および通板方向で亜鉛の付着量が不均一になるという問題が生じる。
このような問題点を解決する方法として、電磁石を用いて鋼板の反りや振動を非接触(non-contact)で抑制し、鋼板のパスラインを安定化する技術が知られている。例えば、鋼板のパスラインに対して一対の電磁石を互いに対向するように配置し、別途設けた位置検出器からの信号に応じて各電磁石の吸引力(attractive force)を相互に切り替えながら鋼板の通板位置(以下、単に鋼板の位置とも記載)を非接触で制御する方法が知られている(特許文献1参照)。
特開平2−62355号公報
しかしながら、鋼板に作用する電磁石の吸引力は、鋼板と電磁石の距離に対して非線形の関係、すなわち鋼板が電磁石に近づくほど吸引力が急激に大きくなる特性がある。特許文献1に記載された技術では、何らかの外乱や操業条件の変化等が有った場合に、鋼板が吸引されて電磁石に接触してしまう。その結果、品質欠陥や設備故障を引き起こす危険性があった。一般的には、鋼板が電磁石に接近した場合には、電磁石への電流供給を停止する安全対策が取られる。しかし、この場合は電磁石が稼動しなくなるため、鋼板の通板位置制御ができなくなるという問題点があった。
本発明は上記課題に鑑みてなされたものであって、その目的は、電磁石への電流供給を停止することなく、鋼板の通板位置の制御を行うことができる鋼板の通板位置制御装置および方法を提供することである。
本発明者らは上記課題を解決すべく鋭意検討を重ねた。その結果、鋼板の通板位置を非接触で制御する場合、鋼板と電磁石の距離に応じて制御パターンを変更することで、電磁石への電流供給を停止させることなく、持続的に鋼板の通板位置の制御を続けることができることを見出した。
本発明は上記知見に基づきなされたものであり、その要旨は以下のとおりである。
(1)通板位置制御の対象となる鋼板の一方の面側とその反対の面側にそれぞれ配置される電磁石と、
前記鋼板の通板位置を非接触で測定する変位センサーと、
該変位センサーが測定した鋼板の通板位置に基づいて前記電磁石に供給する電流量を決定する制御部と、
該制御部で決定した電流量に基づいて前記電磁石に電流を供給する電流供給部とを具備し、
前記制御部は、前記鋼板の移動の必要性の有無を判断する判断部と予め設定された閾値を格納する記憶部とからなり、
前記判断部は、
前記鋼板の通板位置が予め設定した目標位置と一致せず、前記鋼板を移動させる必要があると判断した場合は、移動の方向、使用する電磁石、電流量を決定し、前記電流供給部に出力して、前記鋼板を移動させ、
移動した鋼板を前記変位センサーで再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合と、前記閾値よりも前記決定した電磁石に近い場合とで、異なる制御を行うことを特徴とする鋼板の通板位置制御装置。
(2)上記(1)に記載の鋼板の通板位置制御装置において、
前記再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合には、
前記鋼板を前記目標位置に近づけるように、前記決定した電磁石に流す電流量を前記再度測定した鋼板の通板位置と前記目標位置との距離に応じて増減させて、
前記閾値よりも前記決定した電磁石に近い場合には、
前記鋼板が予め設定した許容範囲内に入るまで、前記距離にかかわらず前記決定した電磁石に流す電流量を一定の値もしくは一定の割合で減少させることを特徴とする鋼板の通板位置制御装置。
(3)上記(1)または(2)に記載の鋼板の通板位置制御装置において、
前記鋼板のそれぞれの面側において前記電磁石が前記鋼板の幅方向に複数設置され、それぞれ独立して電流を供給できることを特徴とする鋼板の通板位置制御装置。
(4)通板位置制御の対象となる鋼板の一方の面側とその反対の面側にそれぞれ電磁石を配置し、
前記鋼板の通板位置を変位センサーにて非接触で測定し、
測定した鋼板の通板位置が予め設定した目標位置と一致せず、前記鋼板を移動させる必要があると判断した場合は、前記電磁石のうち、前記測定した鋼板の通板位置からより離れた電磁石を前記鋼板の移動に使用する電磁石として決定し、
前記目標位置から前記測定した鋼板の通板位置までの距離に応じて、前記決定した電磁石に流す電流量を決定、出力して、前記鋼板を移動させ、
移動した鋼板を再度測定した鋼板の通板位置が、前記決定した電磁石に対して予め設定した閾値以上、前記決定した電磁石よりも離れている場合と、前記閾値よりも前記決定した電磁石に近い場合とで、異なる制御を行うことによって、前記鋼板の通板位置を制御することを特徴とする鋼板の通板位置制御方法。
(5)上記(4)に記載の鋼板の通板位置制御方法において、
前記再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合には、
前記鋼板を前記目標位置に近づけるように、前記決定した電磁石に流す電流量を前記再度測定した鋼板の通板位置と前記目標位置との距離に応じて増減させて、
前記閾値よりも前記決定した電磁石に近い場合には、
前記鋼板が予め設定した許容範囲内に入るまで、前記距離にかかわらず前記決定した電磁石に流す電流量を一定の値もしくは一定の割合で減少させることを特徴とする鋼板の通板位置制御方法。
(6)製造ライン通板中の鋼板に溶融金属を付着させる付着工程と、
前記鋼板に付着した過剰の溶融金属を払拭するガスワイパによって溶融金属の付着量を調整する調整工程と、
上記(1)〜(3)の何れか1項に記載の鋼板の通板位置制御装置により、前記鋼板の振動および位置を非接触で制御する制御工程と、
を有することを特徴とする鋼板の製造方法。
本発明に係る鋼板の通板位置制御装置および方法、ならびに鋼板の製造方法によれば、鋼板と電磁石の距離に応じて制御パターンを変更するようにしたので、電磁石への電流供給を停止させることなく、持続的に鋼板の通板位置の制御を続けることができ、生産性の向上が図れる。
図1は、本発明の実施形態に係る鋼板の通板位置制御装置の構成を示す図である。 図2は、従来の鋼板の製造装置における制御部の構成を示すブロック図である。 図3は、鋼板の位置が安定的に制御されている場合に、鋼板に作用する力を示す模式図である。 図4は、鋼板の位置が安定的に制御されていない場合に、鋼板に作用する力を示す模式図である。 図5は、本発明の実施形態の位置制御方法を用いることにより鋼板が安定的に制御されている場合の、鋼板に作用する力を示す模式図である。 図6は、本発明の実施形態の鋼板の通板位置制御の考え方を説明する図である。 図7は、本発明の実施形態の制御部および電流供給部を示すブロック図である。 図8は、本発明の実施形態の制御方法を示すフローである。 図9は、本発明の実施形態の制御方法を示すフローのうち、鋼板が閾値を超えて電磁石に接近した場合の制御方法を示すフローである。 図10は、一般的な溶融めっき金属帯の製造ラインの一部を示す概略図である。 図11は、溶融めっき金属帯の製造ラインのガスワイパの近傍の拡大図である。
本発明の実施形態に係る鋼板の通板位置制御装置について、溶融亜鉛めっき鋼板(hot-dip galvanized steel sheet)の製造ラインを例に説明する。
図1は、本発明の実施形態に係る鋼板の通板位置制御装置の構成を示す図である。制御装置100は、電磁石と鋼板とを接触させることなく持続的に制御するための装置であり、上方に走行する鋼板1を挟むように対向して1対の電磁石2が設置され、電磁石2の近傍に非接触変位センサー(displacement sensor)3が配置されている。また電磁石2に流す電流を制御する制御部4が設置されている。電磁石は複数対あってもよい。
図1には示されていないが、鋼板1の下方に、溶融亜鉛浴槽およびガスワイパがそれぞれ設置されている。
非接触変位センサー3は、鋼板の片側にのみ取り付けられている。これは、鋼板の両側から距離を測定すると、使用する電磁石の選択や電流の大きさを決定することが難しくなり、結果として電磁石の制御に支障をきたすからである。また、非接触変位センサー3は、鋼板との距離を適切に測定できればよく、例えば、渦電流式、レーザーなどの光学式など、任意の方式のものが使用できる。距離測定の基準点の位置は、非接触変位センサー3の位置としてもよいし、制御装置100の所定の位置としてもよい。
図2は、従来の鋼板の製造装置における制御部の構成を示すブロック図である。従来は、非接触変位センサー3で鋼板の位置が測定され、制御部4で鋼板の位置と目標位置との偏差信号(error signal)に比例、微分、積分などの処理(例えばPID制御)(proportional-integral-derivative control )が実施され鋼板1のパスラインを制御するための操作量が演算され、得られた操作量に応じて電流量が決定され、表裏選択装置により選ばれた電磁石にアンプを介して決定された電流量の電流が流される。そして発生する吸引力によって、鋼板1の振動および反りが抑制され、鋼板のパスラインの制御が行われていた。
図3は、鋼板の位置が安定的に制御されている場合に、鋼板に作用する力を示す模式図である。電磁石2の吸引力で鋼板を移動させる場合、鋼板には図3に示すような力が作用する。
図中、A、B、Cは、電磁石の吸引力を、Dは鋼板の復元力をそれぞれ示す。また、図3は、図1における非接触変位センサー3から、鋼板1が離れていく方向に移動したために、電磁石2aを使用して鋼板1を目標位置に引き寄せる場合を示す。
鋼板1は電磁石2aの吸引力により移動する。そして、電磁石2aの吸引力は、鋼板が電磁石2aに近づくほど大きくなり、また電磁石2aに流れる電流が大きくなるほど大きい。すなわち、電磁石2aに供給される電流が大きくなると、図のA、B、Cの順に電流が大きくなると吸引力が大きくなっていく。
一方、鋼板1には通板方向に張力がかけられているため、移動前の位置に戻ろうとする復元力が鋼板1の移動量に比例して作用する。復元力は鋼板1の移動方向とは反対の方向、すなわち電磁石2aの吸引力とは反対の方向に作用する。電磁石2aの吸引力と鋼板1の復元力がつり合ったところで鋼板1の移動は停止し、このつり合い点で鋼板1は安定する。
非接触変位センサー3で測定した鋼板1の位置から目標位置までの距離に応じて電磁石へ電流を流し、フィードバック制御によって鋼板1が目標位置に達するまで電磁石2aに供給する電流を変化させて、鋼板1を目標位置に移動させる。目標位置はあらかじめ設定されており、電磁石2aと2bの間のおよそ中間となるが、必ずしも固定点に限られるわけではなく、鋼板にコーティングされる溶融金属の付着量(coating weight)の仕様範囲内で適宜目標の範囲を決めて設定するようにしてもよい。フィードバック制御には、PID制御などの制御方法を適宜使用することができる。
このつり合い点から鋼板1が電磁石2aに近づく方向に移動した場合は、電磁石の吸引力に比べて鋼板の復元力が大きくなり鋼板1はつり合い点に戻ろうとする。逆に、鋼板が電磁石2aから遠ざかる方向に移動した場合は、鋼板の復元力に比べて電磁石2aの吸引力が大きくなり鋼板1はつり合い点に戻ろうとする。つまり、このつり合い点において鋼板1を安定的に保持することが可能となる。
しかし、鋼板に対する電磁石の吸引力は、鋼板の厚さ等にも依存するため、板厚が厚い場合などの操業条件によっては、鋼板1の復元力と電磁石2aの吸引力が目標位置でつり合わない場合があり、制御が不安定になることがある。
図4は、鋼板の位置が安定的に制御されていない場合に、鋼板に作用する力を示す模式図であり、鋼板1と電磁石2aとの距離が近くなると電磁石2aの吸引力が急激に大きくなる条件の場合を示している。図4に示すように、フィードバック制御により電磁石2aへ供給する電流を大きくしていくと、ある電流値を超えたところ(図4中のカーブC)で復元力と吸引力とのつり合い点が存在しない状態になる。そのため、従来の方法では鋼板1を安定させることができなくなり、鋼板1がそのまま電磁石2aまで吸引され、接触してしまう危険性がある。そこで、電磁石2aへの電流供給を停止すれば、鋼板1はその復元力によって制御前の元の位置に戻り、電磁石2aへの接触は防げるものの、溶融金属の付着量が不均一になってしまうという問題が生ずる。
鋼板の移動にあわせて電磁石に流す電流を追随させる制御が理想であるが、電磁石の応答速度には限界があり、速い制御はできない。また鋼板の位置が安定しているのかどうかの判断にも時間が必要である。そのため、電流の制御の間隔が離散的になる。
そこで、本発明では、フィードバック制御の結果、鋼板1の位置があらかじめ設定された閾値よりも電磁石2aに接近してしまった場合には、電磁石2aの制御方法を変更することで、鋼板1と電磁石2aとの接触を防止する。
すなわち、鋼板1が電磁石2aに必要以上に接近した場合にはつり合い点は存在しないと判断し、直ちに電磁石2aに流す電流を小さくして吸引力を減少させ、復元力により鋼板1の移動方向を逆転させ、鋼板1が復元力と吸引力とがつり合う位置に落ち着かせる。
ここで、閾値は、電磁石2aから目標位置方向への距離をあらわすもので、その距離よりも近くに鋼板1が来た場合には、たとえ電磁石2aの電流を下げるように指令を出しても、鋼板1の移動方向を逆転させることができずに位置制御が間に合わなくなってしまう限界の距離である。
この場合、鋼板1に作用する力は、図5のようになる。図5は、本発明の実施形態の位置制御方法を用いることにより鋼板が安定的に制御されている場合の、鋼板に作用する力を示す模式図である。
フィードバック制御によって電磁石2aへ流す電流が大きくなると、鋼板1が電磁石2aの方向に吸引される。そして、鋼板1が閾値を超えたとき、電磁石2aの吸引力を減少させるため電磁石2aに流す電流を小さくする。結果として、鋼板1は復元力により電磁石2aから遠ざかり、復元力と吸引力とがつり合う位置(図5中の●の位置:落着点)に落ち着くことになる。これは結果的には、鋼板1は目標位置とは異なる位置に落ち着くことになるものの、鋼板1が電磁石2aに吸引され接触してしまうことを防止できる。なお、図5では、落着点は非接触変位センサー3から見て目標位置よりも遠いところになっているが、落着点は目標位置よりも近くてもよい。
その際に、最適なパスラインの位置を示す目標位置を含めて操業上や製品上の観点から許容できる範囲の位置を許容範囲として予め定めておき、鋼板1がその許容範囲内の位置に落ち着くようにするとよい。
例えば、許容範囲として、鋼板にコーティングする溶融金属の付着量仕様範囲の上限および下限を満たすように設定すれば、不良品を製造するおそれはない。通常、許容範囲は図6に示されるように、電磁石2a側の閾値1と電磁石2b側の閾値2の間に設定される。
また、場合によっては、閾値1と閾値2の間を許容範囲として設定することも考えられる。それによって、鋼板と電磁石との接触や吸着による設備損傷や操業停止を回避することができる。
なお、電流の減少量を鋼板1と電磁石2aとの距離に応じて変化させてしまうと制御が不安定となる可能性があるため、鋼板1が閾値よりも電磁石2aに近づいた位置にあると判断された場合には、鋼板1と電磁石2aとの距離にかかわらず電流値を一定の値減少させる。鋼板が電磁石より閾値以上に離れ、かつ上述の許容範囲に入るまでこの手順が繰り返される。
PID制御はきめ細かい制御が可能な反面、応答時間が長くかかる。鋼板が閾値を超えた場合においてもPID制御を継続すると、電流の制御が板の移動に追いつかなくなる。結果として、鋼板が電磁石に接触する可能性が発生する。そこで、鋼板が閾値より近づいたらすぐに制御の方法を切り替え、電流を一定の値減少させる。例えば、閾値より近づいていると判断された時点の電流値から1秒間で3A減少させていく。つまり、制御ループが1msなら、1回の制御ループ毎に0.003Aずつ減少させる。なお、場合によっては、電流を一定の割合で減少させてもよい。
図6は、図5における鋼板1の位置制御を模式的に表した図である。閾値として、閾値1と閾値2がそれぞれ設定される。閾値1は電磁石2a用の、閾値2は電磁石2b用の閾値である。閾値1、閾値2は、鋼種や板厚にかかわらず固定とし、電磁石2aと2bとの間隔、電磁石の応答速度、フィードバック制御のタイムラグなどを考慮して決定される。
11aは、鋼板が目標位置から外れてしまった状態の鋼板の位置を示している。そして、フィードバック制御によって電磁石2aに電流を流すことで吸引力が発生し、鋼板は電磁石2a側に移動する。しかしながら、もし閾値1を超えて電磁石2aに近づいてしまった場合(11bの位置)には、フィードバック制御から制御方法を変更し、それまでの供給電流量からを一定の値で電流量を減少させる。この電流量の減少を鋼板1が許容範囲内の位置(11cの位置)に落ち着くまで繰り返す。
図7は、本発明の実施形態における制御部4および電流供給部5のブロック図である。制御部4は、判断部41と記憶部42からなる。先ず、判断部41は、非接触変位センサー3で測定された、予め設定した基準点と鋼板1との距離をもとに、鋼板の位置を決定する。そして、鋼板の位置と目標位置と比べて、鋼板1の移動の必要性の有無を判断する。鋼板の位置が目標位置と一致せず、鋼板を目標位置に移動させる必要があると判断した場合は、移動の方向、使用する電磁石、電流量を決定する。そして、電流供給部5に対して、使用する電磁石および供給する電流の増加または減少の指令を出す。記憶部42には、設定されている閾値1および閾値2の値が格納されており、また鋼板1の位置が随時記録される。
電流供給部5は、制御部4からの指令を受けて、使用する電磁石2aまたは2bの切替を電磁石切替部51で行う。そして、決定された電流量を供給する。なお、図7に図示はしていないが、電流供給部5には電流供給に必要な機器が含まれる。また、本実施形態では、電流供給部5は制御部4とは分離しているものとしたが、制御部4と電流供給部5が一体化していてもよく、また電流供給部5が制御部4の機能の一部となっていてもよい。さらに、鋼板の幅方向に一対の電磁石が複数設置され、それぞれ独立して制御できるようにしてもよい。
図8および図9に、本発明の実施形態に係る鋼板の通板位置制御装置における制御フローの例を示す。この制御フローに基づいて、以下に処理手順の説明を行う。
まず、ステップ100(以下、ステップをSと略す)において非接触変位センサー3を用いて、予め設定した基準点と鋼板との距離を測定し鋼板の位置を決定する。そして、S110において、鋼板の位置を修正すべきかどうか判断する。目標位置に対して鋼板1の位置がずれているために修正すべきと判断された場合には、S120において鋼板1を移動させる方向を、S130において鋼板の移動に使用する電磁石を決定し(例えば、電磁石2aに決定、以下、電磁石2aを決定したとして説明する)、目標位置から鋼板1までの距離に応じてS140にて電磁石2aに流す電流量を決定する。
なお、S130において鋼板の移動に使用する電磁石を決定するにあたっては、鋼板から遠い方の電磁石を選ぶようにする。図6では、11aの位置からの制御において、11aに近い電磁石2bではなく、遠い電磁石2aを鋼板の移動に用いている。これは、鋼板に近い電磁石を選び、その後の鋼板の電磁石への吸引や接触といった問題が生ずるのを避け、一先ず安定的なフィードバック制御をS140およびS150にて行うためである。
S150では、S140で決定した電流量を電気供給部5から電磁石2aに出力する。そして、電磁石2aに電流を流して鋼板を移動させる。この後S160で、移動した鋼板1の位置を再度測定する。そして、S170で鋼板が目標位置にあるかどうかを判定する。ここで目標位置に鋼板1が到達した(Yes)と判断されれば、S200で電磁石2aに流れる電流を維持して安定状態を保つ。
一方、S170で目標位置に鋼板1が到達していない(No)と判断した場合には、S180で、鋼板1の位置が、決定した電磁石に対して閾値1より近い(閾値1より電磁石2aに近い)か否かを判断する。
ここで、閾値1より近くない(閾値1以上電磁石2aと鋼板1が離れている)と判断された場合(No)には、それまでのフィードバック制御を継続する。すなわち、S190で、電磁石2aに流す電流量を目標位置から鋼板1までの距離に応じて所定量を増減させて、再度S150以降のフローを繰り返す。
これに対して、S180で、鋼板1の位置が、決定した電磁石に対して閾値1より近い(閾値1より電磁石2aに近い)と判断された場合(Yes)には、図9に示す処理フローに移行する。この場合は、鋼板1が電磁石2aに接触する危険性があると判断して、フィードバック制御でなく、S310以降に示すように制御方法の変更を行う。
すなわち、S310以降でそれまでに供給していた電流量から順次減少させる制御を行う。S310の予め設定しておいた一定の電流減少量のもとに、S320で電磁石2aに流す電流を減少させて鋼板1を逆方向に移動させる。移動後、S330で鋼板1との距離を再度測定する。
そして、S340で鋼板の位置が許容範囲内にあるかどうか判定します。鋼板1が、図6に示すように予め決めた許容範囲内の位置にある(Yes)と判断されれば、S350で電磁石2aに流す電流を維持してその状態を保つ。鋼板1が許容範囲内の位置になければ(No)、S310にもどり、さらに電磁石2aに流す電流を減少させて鋼板1が許容範囲内の位置に収まるまで繰り返す。ここでの制御の特徴は、S310における電流の減少が、目標位置と鋼板との距離によらずに一定の値で減少させることにある。
鋼板1が目標位置あるいは許容範囲内の位置で一度安定した場合であっても、製造ラインの条件の変化、たとえば温度変化等により、同一の製品といえども、鋼板1の位置が移動する場合がある。そのような場合に備えて、鋼板1の位置は、目標位置あるいは許容範囲内の位置で安定した時点で、図8のS260において記憶部42に記録される。さらに鋼板1の位置は、継続的に測定される。この測定間隔は、電磁石の応答速度、フィードバック制御のタイムラグなどを考慮して決定される。そして、S100以降のフローが継続される。
また、製造される製品が変わった場合には直ちにS100が開始される。製品の切り替えの識別は、鋼板1につけられた識別用のマーク類を検出することで行ってもよいし、別途外部から情報を与える手段を用いてもよい。
本実施形態では、鋼板1が非接触変位センサー3側から離れたために、非接触変位センサー3側に移動させる場合を例に説明したが、反対に鋼板1が非接触変位センサー3側に近づいた場合であっても同様に鋼板1の位置を制御することが可能である。その場合は、電磁石2bの吸引力を使って鋼板1を移動させることになる。また鋼板1の距離との比較は閾値2で行うが、当該距離が閾値2を超えて電磁石2bに近くなりすぎたと判断されたときに、本発明による鋼板1の制御を行う。
電磁石2aあるいは2bの選択は、制御が始まる時点で、鋼板1が電磁石2aと2bとの間の中央よりどちら側に近いかで決められる。ただし、一度使用する電磁石(2aまたは2b)を決定したら、鋼板1が目標位置または安定点で安定に保持されるまでは同じ電磁石を使い続ける。鋼板1が安定しないうちに電磁石を切り替えると、つり合い点が決まらないために鋼板1が電磁石2aと2bとの間を移動し続けることになり、結果として鋼板1が振動してしまうからである。
電磁石2は、鋼板の幅方向に複数対あってもよい。というのも、鋼板の位置の変動は、たとえば鋼板の幅方向の反りによっても発生するからで、このような場合は鋼板の中央部と端部では距離が異なることになる。そこで、鋼板の幅方向に電磁石を複数対設置すれば、鋼板の幅方向の反りにも適切に対応できるようになる。また、複数対設置された電磁石をそれぞれ独立して制御することにより、必要な部分のみ位置を制御することができ、鋼板全体を最適な位置で通板させることが可能になる。
制御部4は、ひとつですべての電磁石の制御を行ってもよいし、対応する電磁石に個別に制御部4を設置してもよい。同様に、ひとつの電流供給部5ですべての電磁石に電流を供給してもよいし、対応する電磁石に個別に電流供給部5を設置してもよい。
非接触変位センサー3は、1対の電磁石に対して1個設置してもよいし、電磁石の対の数と異なる数のセンサーを設置してもよい。たとえば、1個のセンサーで測定した距離をもとに複数の電磁石の対を制御してもよいし、逆に複数のセンサーで測定した距離をもとに1対の電磁石を制御するようにしてもよい。ただし、電磁石の対の数とセンサーの数とを1:1とするほうが、制御が容易になる。
なお、ここでは、鋼板を挟んで対になるように電磁石を配置しているが、配置スペース等の都合によっては、電磁石を向かい合わせとはせずに配置してもよい。例えば、鋼板を挟んで互い違いになる位置に配置してもよいし、鋼板を挟んで電磁石の配置個数が異なっていてもよい。
制御のフローも本実施形態に限定されるわけではなく、鋼板の位置の移動が可能であり、かつ電磁石と鋼板との接触が回避できるものであれば、どのようなフローであってもよい。
例えば、図9では、閾値を越えた鋼板1が許容範囲内に位置すれば、その位置で保持するために電流値を維持している。しかし、その位置で一定時間以上安定した状態にある場合は、さらに目標位置に移動するように制御することも考えられる。
また本発明の実施形態を、溶融亜鉛めっき鋼板の製造ラインを例に説明したが、電磁石を使用して鋼板の通板位置制御を行う製造ラインであれば、本発明による制御を適用することができることは言うまでもない。さらに鋼板の通板方向も、鉛直方向に限らず水平方向であってもよい。
製品の鋼種や板厚によって電磁石の吸引力の特性が変わるため、各条件ごとに電磁石の巻数や配置などのハード構成をその都度最適化することも考えられるものの現実的ではなく、本発明では製品の鋼種、板厚によらず、基準点と鋼板との距離に基づいて電磁石に供給される電流を変えることのみで鋼板の通板位置制御が実現できる。
以上、本発明によって、鋼板と電磁石が過度に接近した場合でも電磁石への電流供給を停止させる必要がなくなり、鋼板の位置の制御を持続的に安定して続けることができ、生産性の向上が図れる。
次に、本発明の実施形態に係る鋼板の通板位置制御装置を、溶融めっき金属帯の製造ラインに配置する構成例について説明する。
図10は、一般的な溶融めっき金属帯の製造ラインの一部を示す概略図である。図10に示される溶融めっき金属帯の製造ラインにおいて、鋼板1は、冷間圧延プロセスなどの前工程から運搬され、無酸化性あるいは還元性の雰囲気に保たれた焼鈍炉14において焼鈍処理をされた後、溶融金属の温度とほぼ同程度まで冷却されて溶融金属浴15内に導かれる。
溶融金属浴15内において、鋼板1は、溶融金属中を浸漬しながら通板し、その表面に溶融金属が付着する。その後、溶融金属浴15から引き出された鋼板1は、ガスワイパ16から噴出されるガスにより過剰な溶融金属が払拭され、溶融金属の付着量の調整が行われる。
続くプロセスでは、用途に応じて、例えばその鋼板1が自動車用外板として使用される場合には、合金化炉17を使用して金属帯を再加熱し均質な合金層を作り出す合金化処理を施す場合がある。鋼板1は冷却帯18を通過した後、化成処理部19で特殊の防錆、耐食処理が施され、コイルに巻き取られて出荷される。
図11は、溶融めっき金属帯の製造ラインのガスワイパの近傍(図10中の破線領域)の拡大図である。図11に示されるように、溶融めっき金属帯の製造ラインのガスワイパ16の近傍では、引き込みローラー20が鋼板1を溶融金属浴15中に引き込み、溶融金属浴15中で鋼板1に溶融金属を付着させ、引き上げローラー21が鋼板1を溶融金属浴15外に引き上げる。ガスワイパ16は、引き上げローラー21が鋼板1を引き上げる途中のパスラインに配置され、鋼板1に付着した過剰の溶融金属を払拭することによって溶融金属の付着量を調整する。
本発明の実施形態に係る鋼板の通板位置制御装置の電磁石2a,2bおよび非接触変位センサー3は、ガスワイパ16の直上のパスラインに配置され、金属帯の振動および位置を制御する。当該配置により、ガスワイパ16と鋼板1との距離が一定となる結果、ワイピングガスの圧力が均一になり、鋼板1に対する溶融金属の付着量のムラを抑えることができる。
本発明は、鋼板を製造するラインに有用であり、特に亜鉛等の溶融めっきライン、コーティングライン等の製造ラインに適している。
100 鋼板の通板位置制御装置
1、11a、11b、11c 鋼板
2、2a、2b 電磁石
3 非接触変位センサー
4 制御部
41 判断部
42 記憶部
5 電流供給部
51 電磁石切替部
14 焼鈍炉
15 溶融金属浴
16 ガスワイパ
17 合金化炉
18 冷却帯
19 化成処理部
20 引き込みローラー
21 引き上げローラー

Claims (3)

  1. 通板位置制御の対象となる鋼板の一方の面側とその反対の面側にそれぞれ配置される電磁石と、
    前記鋼板の通板位置を非接触で測定する変位センサーと、
    該変位センサーが測定した鋼板の通板位置に基づいて前記電磁石に供給する電流量を決定する制御部と、
    該制御部で決定した電流量に基づいて前記電磁石に電流を供給する電流供給部とを具備し、
    前記制御部は、前記鋼板の移動の必要性の有無を判断する判断部と予め設定された閾値を格納する記憶部とからなり、
    前記判断部は、
    前記鋼板の通板位置が予め設定した目標位置と一致せず、前記鋼板を移動させる必要があると判断した場合は、移動の方向、使用する電磁石、電流量を決定し、前記電流供給部に出力して、前記鋼板を移動させ、
    前記閾値は、前記決定した電磁石から前記目標位置の方向への距離であり、この距離よりも近くに前記鋼板が来た場合には、たとえ前記決定した電磁石の電流を下げるようにフィードバック制御の指令を出しても、前記鋼板の移動方向を逆転させることができずに位置制御が間に合わなくなってしまう限界の距離であり、
    移動した鋼板を前記変位センサーで再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合には、
    前記鋼板を前記目標位置に近づけるように、前記決定した電磁石に流す電流量を前記再度測定した鋼板の通板位置と前記目標位置との距離に応じて増減させるフィードバック制御を行い
    移動した鋼板を前記変位センサーで再度測定した鋼板の通板位置が、前記閾値よりも前記決定した電磁石に近い場合には、
    前記フィードバック制御から、前記鋼板が予め設定した許容範囲内に入るまで、前記距離にかかわらず前記決定した電磁石に流す電流量を一定の値もしくは一定の割合で減少させる制御に変更することを特徴とする鋼板の通板位置制御装置。
  2. 請求項1に記載の鋼板の通板位置制御装置において、
    前記鋼板のそれぞれの面側において前記電磁石が前記鋼板の幅方向に複数設置され、それぞれ独立して電流を供給できることを特徴とする鋼板の通板位置制御装置。
  3. 通板位置制御の対象となる鋼板の一方の面側とその反対の面側にそれぞれ電磁石を配置し、
    前記鋼板の通板位置を変位センサーにて非接触で測定し、
    測定した鋼板の通板位置が予め設定した目標位置と一致せず、前記鋼板を移動させる必要があると判断した場合は、前記電磁石のうち、前記測定した鋼板の通板位置からより離れた電磁石を前記鋼板の移動に使用する電磁石として決定し、
    前記目標位置から前記測定した鋼板の通板位置までの距離に応じて、前記決定した電磁石に流す電流量を決定、出力して、前記鋼板を移動させ、
    前記閾値は、前記決定した電磁石から前記目標位置の方向への距離であり、この距離よりも近くに前記鋼板が来た場合には、たとえ前記決定した電磁石の電流を下げるようにフィードバック制御の指令を出しても、前記鋼板の移動方向を逆転させることができずに位置制御が間に合わなくなってしまう限界の距離であり、
    移動した鋼板を再度測定した鋼板の通板位置が、前記決定した電磁石に対して予め設定した閾値以上、前記決定した電磁石よりも離れている場合には、
    前記鋼板を前記目標位置に近づけるように、前記決定した電磁石に流す電流量を前記再度測定した鋼板の通板位置と前記目標位置との距離に応じて増減させるフィードバック制御をし
    移動した鋼板を再度測定した鋼板の通板位置が、前記閾値よりも前記決定した電磁石に近い場合には、
    前記フィードバック制御から、前記鋼板が予め設定した許容範囲内に入るまで、前記距離にかかわらず前記決定した電磁石に流す電流量を一定の値もしくは一定の割合で減少させる制御に変更することを特徴とする鋼板の通板位置制御方法。
JP2016168990A 2013-07-22 2016-08-31 鋼板の通板位置制御装置および方法 Active JP6274279B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013151231 2013-07-22
JP2013151231 2013-07-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014554113A Division JP6065921B2 (ja) 2013-07-22 2014-07-18 鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2016204758A JP2016204758A (ja) 2016-12-08
JP6274279B2 true JP6274279B2 (ja) 2018-02-07

Family

ID=52392973

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014554113A Active JP6065921B2 (ja) 2013-07-22 2014-07-18 鋼板の製造方法
JP2016168990A Active JP6274279B2 (ja) 2013-07-22 2016-08-31 鋼板の通板位置制御装置および方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014554113A Active JP6065921B2 (ja) 2013-07-22 2014-07-18 鋼板の製造方法

Country Status (2)

Country Link
JP (2) JP6065921B2 (ja)
WO (1) WO2015011909A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011909A1 (ja) * 2013-07-22 2015-01-29 Jfeスチール株式会社 鋼板の通板位置制御装置および方法、ならびに鋼板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2629029B2 (ja) * 1988-08-26 1997-07-09 川崎製鉄株式会社 鋼板の振動抑制および位置制御装置
JP3238290B2 (ja) * 1994-10-17 2001-12-10 株式会社神戸製鋼所 鋼板反り矯正装置
JPH09184055A (ja) * 1995-12-28 1997-07-15 Kawasaki Steel Corp 溶融金属めっき装置における振動制御装置
JPH1060614A (ja) * 1996-08-12 1998-03-03 Nisshin Steel Co Ltd 電磁力を利用しためっき付着量調整方法及び装置
JPH10298727A (ja) * 1997-04-23 1998-11-10 Nkk Corp 鋼板の振動・形状制御装置
JP4154804B2 (ja) * 1999-05-26 2008-09-24 神鋼電機株式会社 鋼板の制振装置
RU2436861C1 (ru) * 2007-08-22 2011-12-20 Смс Зимаг Аг Способ и установка для нанесения защитного покрытия погружением в расплав для стабилизации полосы с нанесенным покрытием, пропускаемой между сдувающими соплами установки для нанесения покрытия погружением в расплав
CN102803544B (zh) * 2010-03-19 2015-04-01 昕芙旎雅有限公司 电磁减振装置、电磁减振控制程序
WO2015011909A1 (ja) * 2013-07-22 2015-01-29 Jfeスチール株式会社 鋼板の通板位置制御装置および方法、ならびに鋼板の製造方法

Also Published As

Publication number Publication date
JPWO2015011909A1 (ja) 2017-03-02
JP2016204758A (ja) 2016-12-08
JP6065921B2 (ja) 2017-01-25
WO2015011909A1 (ja) 2015-01-29

Similar Documents

Publication Publication Date Title
US20090280270A1 (en) Method and Device for the Hot Dip Coating of a Metal Strip
JP5979323B1 (ja) 金属帯の安定装置およびこれを用いた溶融めっき金属帯の製造方法
JP5444706B2 (ja) 金属帯の制御方法及び溶融めっき金属帯の製造方法
EP1516939A1 (en) Molten metal plated steel sheet production method and apparatus
JP6274279B2 (ja) 鋼板の通板位置制御装置および方法
RU2329332C2 (ru) Способ и устройство для нанесения покрытия на металлическое изделие погружением в расплав
JP5263433B2 (ja) 金属帯の安定装置および溶融めっき金属帯の製造方法
JP5842855B2 (ja) 溶融亜鉛めっき鋼帯の製造方法
JPH1053849A (ja) 溶融めっき鋼帯の蛇行防止方法及び装置
JP3876810B2 (ja) 金属帯の制振装置及び金属帯の製造方法
JP5644141B2 (ja) 金属帯の制振及び位置矯正装置、および該装置を用いた溶融めっき金属帯製造方法
US7361224B2 (en) Device for hot dip coating metal strands
JP2000345310A (ja) 鋼帯の連続溶融金属めっき設備
JP5223451B2 (ja) 溶融めっき金属帯の製造方法
JPH1060614A (ja) 電磁力を利用しためっき付着量調整方法及び装置
JP4525105B2 (ja) 金属帯の制御装置および溶融めっき金属帯の製造方法
JP6187577B2 (ja) 金属帯の安定装置および溶融めっき金属帯の製造方法
JP5600873B2 (ja) 溶融めっき鋼帯の製造方法
JP3840912B2 (ja) 強磁性体の制御装置及び強磁性体の製造方法
JP4450662B2 (ja) 鋼板の制振装置
JP6112040B2 (ja) 金属帯の非接触制御装置および溶融めっき金属帯の製造方法
WO2016092601A1 (ja) 金属帯の安定装置および溶融めっき金属帯の製造方法
JP2002275610A (ja) 金属帯形状制御装置
JP2006247671A (ja) 鋼板の形状矯正装置および形状矯正方法
JP2002302315A (ja) 非接触通板方向転換装置及び鋼帯の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6274279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250