JP6271957B2 - エンジン回転数演算装置、及び、エンジン制御装置 - Google Patents

エンジン回転数演算装置、及び、エンジン制御装置 Download PDF

Info

Publication number
JP6271957B2
JP6271957B2 JP2013234631A JP2013234631A JP6271957B2 JP 6271957 B2 JP6271957 B2 JP 6271957B2 JP 2013234631 A JP2013234631 A JP 2013234631A JP 2013234631 A JP2013234631 A JP 2013234631A JP 6271957 B2 JP6271957 B2 JP 6271957B2
Authority
JP
Japan
Prior art keywords
engine
rotational speed
crank position
predicted
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013234631A
Other languages
English (en)
Other versions
JP2015094304A (ja
Inventor
博志 秋山
博志 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2013234631A priority Critical patent/JP6271957B2/ja
Publication of JP2015094304A publication Critical patent/JP2015094304A/ja
Application granted granted Critical
Publication of JP6271957B2 publication Critical patent/JP6271957B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、エンジン回転数演算装置、及び、当該エンジン回転数演算装置を備えるエンジン制御装置に関する。
従来から、エンジンの制御で使用される機関回転速度パラメータ(エンジン回転数)には、一般的に、安定性や燃焼イベントの周期性等を考慮し、例えば、等間隔燃焼の4気筒エンジンであれは180°クランク期間、6気筒エンジンであれば120°クランク期間から算出した燃焼イベント毎の平均回転数が用いられている(例えば、特許文献1,2参照)。
特許文献1に記載の電子制御装置(ECU)では、クランク軸の180°CA時間T180からエンジンの平均回転数NEを算出している。より詳細には、ECUを構成するCPUは、回転信号の立ち下がりエッジの割り込み要求を受けたときに、その割り込みが切歯部検出時の割り込みであると判断すると、前回の切歯部検出時刻Z180iと今回の切歯部検出時刻Z180iとに基づいて、切歯部検出周期を求める。そして、この切歯部検出周期から、エンジンの回転数を求める。同様に、特許文献2に記載の燃料噴射制御装置では、エンジンのクランク軸が180度回転する時間T180、すなわちエンジンの一行程に相当する時間T180を読み込み、読み込んだT180に基づいてエンジン回転数を算出している。
また、エンジンの制御では、クランク角センサの検出信号(クランク角信号)が離散信号であるため、クランク角度に同期して制御を行う点火時期や燃料噴射時期の実行パラメータは、角度指示情報を、クランク角信号入力時のクランク角度とエンジン回転数(回転速度)とに基づいて、クランク角信号入力時からの経過時間に変換して利用している。また、通常、ECUの計算負荷の低減のため、すべてのクランク角信号入力時に角度情報を時間情報に変換することは少なく、パラメータの角度指示範囲を包括できる基準となるクランク角で変換を行い、比較的長い経過時間タイマを利用して制御を行うことが多い。
特開平07−217489号公報 特開平11−236846号公報
ところで、上述したエンジン回転数(回転速度)算出のタイミングは、前燃焼気筒の燃焼結果としてエンジン回転数(回転速度)を算出する意味から、次燃焼気筒の圧縮TDC〜BTDC10°CA付近に設定されることが多い。そのため、次燃焼気筒の点火時期算出に最新のエンジン回転数を利用できない等の状況が発生し得る。そのような場合に、エンジン回転数の変化が急な運転条件では、経過時間を設定するときに参照したエンジン回転数とその後のエンジン回転数とに乖離が生じ、指示した角度に応じた経過時間タイマにずれが生じて、ノッキングや燃焼悪化等の制御不良が起きるおそれがある。
また、エンジン回転数として上述した平均回転数を用いる場合は、平均化区間が長く(180°CA)、燃焼トルクが負荷に勝りエンジン回転数が上昇していく期間、及び負荷によってエンジン回転数が低下していく期間が含まれ、実際の圧縮TDC前の回転数に対して算出遅れが生じる。特に回転数変化が急な運転条件では、経過時間タイマを設定するときに参照したエンジン回転数が実際の圧縮TDC前の回転数と異なることにより、設定された目標クランク角度に応じた経過時間タイマにずれが生じ、ノッキングや燃焼悪化等の制御不良が起きるおそれがある。
本発明は、上記問題点を解消する為になされたものであり、エンジン回転数の算出遅れを低減でき、任意のクランク位置におけるエンジン回転数をより精度よく取得することが可能なエンジン回転数演算装置、及び、当該エンジン回転数演算装置を備えるエンジン制御装置を提供することを目的とする。
本発明に係るエンジン回転数演算装置は、エンジンのクランクシャフトの回転位置を検出するクランク位置検出手段と、クランク位置検出手段により検出されたクランクシャフトの回転位置に基づいて、燃焼気筒の燃焼行程期間中に設定された第1のクランク位置におけるエンジン回転数である瞬時回転数を求める回転数取得手段と、エンジンの動作状態に基づいて、エンジンのクランク位置が、第1のクランク位置から、第2のクランク位置まで回転する間のエンジンの回転数変化量を予測する回転数変化量予測手段と、回転数取得手段により求められた瞬時回転数と、回転数変化量予測手段により予測された回転数変化量とに基づいて、第2のクランク位置におけるエンジン回転数を予測して予測回転数を求める予測回転数演算手段とを備えることを特徴とする。
本発明に係るエンジン回転数演算装置によれば、燃焼行程(膨張行程)期間中に設定された第1のクランク位置における瞬時回転数と、エンジンの動作状態に基づいて予測される第1のクランク位置から第2のクランク位置まで回転する間のエンジンの回転数変化量とに基づいて、第2のクランク位置におけるエンジン回転数(予測回転数)が予測される。よって、エンジン回転数の算出遅れを低減でき、任意のクランク位置(第2のクランク位置)におけるエンジン回転数をより精度よく取得することが可能となる。
本発明に係るエンジン回転数演算装置では、回転数変化量予測手段が、非定常的な駆動負荷、及び定常的なエンジン負荷それぞれに基づいて、エンジンの回転数変化量を予測することが好ましい。
この場合、非定常駆動負荷、及び定常的なエンジン負荷を考慮して、エンジンの回転数変化量が予測されるため、第1のクランク位置から第2のクランク位置まで回転する間のエンジンの回転数変化量をより精度よく求めることが可能となる。
本発明に係るエンジン回転数演算装置では、回転数取得手段が、クランク位置検出手段により検出されたクランクシャフトの回転位置に基づいて、上記第2のクランク位置におけるエンジン回転数である瞬時回転数を求め、回転数変化量予測手段が、エンジンの動作状態に基づいて、エンジンのクランク位置が、第2のクランク位置から、第1のクランク位置まで回転する間のエンジンの回転数変化量を予測し、予測回転数演算手段が、回転数取得手段により求められた瞬時回転数と、回転数変化量予測手段により予測された回転数変化量とに基づいて、第1のクランク位置におけるエンジン回転数を予測して予測回転数を求めることが好ましい。
この場合、第2のクランク位置における瞬時回転数と、エンジンの動作状態に基づいて予測される第2のクランク位置から第1のクランク位置まで回転する間のエンジンの回転数変化量とに基づいて、第1のクランク位置におけるエンジン回転数(予測回転数)が予測される。よって、エンジン回転数の算出遅れを低減でき、任意のクランク位置(第1のクランク位置)におけるエンジン回転数をより精度よく取得することが可能となる。
本発明に係るエンジン回転数演算装置では、回転数変化量予測手段が、無負荷と仮定した場合の燃焼による回転数変化量、及び、非定常的な駆動負荷、並びに定常的なエンジン負荷それぞれに基づいて、エンジンの回転数変化量を予測することが好ましい。
この場合、無負荷と仮定した場合の燃焼による回転数変化量、及び、非定常的な駆動負荷、並びに定常的なエンジン負荷を考慮して、エンジンの回転数変化量が予測されるため、第2のクランク位置から第1のクランク位置まで回転する間のエンジンの回転数変化量をより精度よく求めることが可能となる。
本発明に係るエンジン回転数演算装置では、回転数変化量予測手段が、エンジンと駆動輪との締結が断たれている場合に、エンジンの回転数変化量を予測し、予測回転数演算手段が、エンジンと駆動輪との締結が断たれている場合に、予測回転数を求めることが好ましい。
このようにすれば、エンジンと駆動輪(駆動系)との締結が断たれている場合に、エンジンの回転数変化量が予測されて、予測回転数が求められる。すなわち、エンジン回転の変化が大きくなる過渡時に予測回転数が求められる。よって、より効果的にエンジン回転数の算出遅れを低減することが可能となる。
本発明に係るエンジン回転数演算装置では、第1のクランク位置が、次点火気筒の圧縮上死点前70°の位置であり、第2のクランク位置が、次点火気筒の圧縮上死点前10°であることが好ましい。
このようにすれば、算出遅れが低減されたエンジン回転数(予測回転数)を、例えば、点火時期を定めるタイマの設定時に利用することができる。よって、算出遅れが低減されたエンジン回転数(予測回転数)を用いて、例えば点火時期制御を実行することができる。そのため、エンジンをより高精度に制御することが可能となる。
本発明に係るエンジン回転数演算装置では、回転数取得手段が、予測回転数演算手段により予測された第1のクランク位置における予測回転数の前回値と、第3の所定のクランク位置からから第1のクランク位置までの区間の平均回転数と、第2のクランク位置における瞬時回転数相当値の前回値とに基づいて、瞬時回転数に代えて、第1のクランク位置における瞬時回転数相当値を求め、予測回転数演算手段が、回転数取得手段により求められた瞬時回転数相当値と、回転数変化量予測手段により予測された回転数変化量とに基づいて、第2のクランク位置におけるエンジン回転数を予測して予測回転数を求めることが好ましい。
このようにすれば、瞬時回転数を取得することができない場合であっても。瞬時回転数に代えて、瞬時回転数相当値を算出して用いることにより、エンジン回転数の算出遅れを低減でき、任意のクランク位置(第2のクランク位置)におけるエンジン回転数をより精度よく取得することが可能となる。
本発明に係るエンジン回転数演算装置では、回転数取得手段が、予測回転数演算手段により予測された第2のクランク位置における予測回転数の前回値と、第1のクランク位置から第2のクランク位置までの区間の平均回転数とに基づいて、瞬時回転数に代えて、第2のクランク位置における瞬時回転数相当値を求め、予測回転数演算手段が、回転数取得手段により求められた瞬時回転数相当値と、回転数変化量予測手段により予測された回転数変化量とに基づいて、第1のクランク位置におけるエンジン回転数を予測して予測回転数を求めることが好ましい。
このようにすれば、瞬時回転数を取得することができない場合であっても。瞬時回転数に代えて、瞬時回転数相当値を算出して用いることにより、エンジン回転数の算出遅れを低減でき、任意のクランク位置(第1のクランク位置)におけるエンジン回転数をより精度よく取得することが可能となる。
本発明に係るエンジン制御装置は、上述したいずれかのエンジン回転数演算装置と、第1のクランク位置における瞬時回転数と、第2のクランク位置における予測回転数との偏差に基づいて、点火時期制御、及び/又は、燃料噴射時期制御に用いるタイマ設定値を制御する制御手段とを備えることを特徴とする。
本発明に係るエンジン制御装置によれば、上述したエンジン回転数演算装置を備えているため、回転速度算出遅れをなくし、例えば、点火時期や燃料噴射時期等の制御パラメータのずれを抑制して、エンジンをより高精度に制御することが可能となる。
本発明に係るエンジン制御装置は、上述したいずれかのエンジン回転数演算装置と、第2のクランク位置における瞬時回転数と、第1のクランク位置における予測回転数との偏差に基づいて、燃料噴射時期制御に用いるタイマ設定値を制御する制御手段とを備えることを特徴とする。
本発明に係るエンジン制御装置によれば、上述したエンジン回転数演算装置を備えているため、回転速度算出遅れをなくし、例えば、燃料噴射時期等の制御パラメータのずれを抑制して、エンジンをより高精度に制御することが可能となる。
本発明によれば、エンジン回転数の算出遅れを低減でき、任意のクランク位置におけるエンジン回転数をより精度よく取得することが可能となる。
実施形態に係るエンジン回転数演算装置、並びに該エンジン回転数演算装置を備えるエンジン制御装置、及び該エンジン制御装置が適用されたエンジンの構成を示す図である。 実施形態に係るエンジン回転数演算装置によるエンジン回転数演算処理の処理手順を示すフローチャートである(1ページ目)。 実施形態に係るエンジン回転数演算装置によるエンジン回転数演算処理の処理手順を示すフローチャートである(2ページ目)。 各気筒のエンジン回転数を算出する区間等を説明するための図である。 エンジン始動時の瞬時回転数、予測回転数、及び行程平均回転数T180の変化の一例を示すタイミングチャートである。 変形例に係るエンジン回転数演算装置、並びに該エンジン回転数演算装置を備えるエンジン制御装置、及び該エンジン制御装置が適用されたエンジンの構成を示す図である。 エンジン始動時の瞬時回転数、予測回転数、行程平均回転数T180、及び行程平均回転数T120,T60の変化の一例を示すタイミングチャートである。
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図において、同一要素には同一符号を付して重複する説明を省略する。
まず、図1を用いて、実施形態に係るエンジン回転数演算部54、並びに該エンジン回転数演算部54を備えるエンジン制御装置50、及び該エンジン制御装置50が適用されたエンジン10それぞれの構成について説明する。図1は、エンジン回転数演算部54、並びにエンジン制御装置50、及びエンジン制御装置50が適用されたエンジン10の構成を示す図である。
エンジン10は、例えば水平対向型の4気筒ガソリンエンジンである。エンジン10では、エアクリーナ16から吸入された空気が、吸気管15に設けられた電子制御式スロットルバルブ(以下、単に「スロットルバルブ」ともいう)13により絞られ、インテークマニホールド11を通り、エンジン10に形成された各気筒に吸入される。ここで、エアクリーナ16から吸入された空気の量は、エアクリーナ16とスロットルバルブ13との間に配置されたエアフローメータ14により検出される。また、インテークマニホールド11を構成するコレクター部(サージタンク)の内部には、インテークマニホールド11内の圧力(吸気管負圧)を検出するバキュームセンサ30が配設されている。さらに、スロットルバルブ13には、該スロットルバルブ13の開度を検出するスロットル開度センサ31が配設されている。
インテークマニホールド11と連通する吸気ポート22近傍には、各気筒毎に、燃料を噴射するインジェクタ12が取り付けられている。インジェクタ12は、燃料タンクからフィードポンプにより吸い上げられて送出された燃料を吸気ポート22内に噴射する。また、各気筒のシリンダヘッドには混合気に点火する点火プラグ17、及び該点火プラグ17に高電圧を印加するイグナイタ内蔵型コイル21が取り付けられている。エンジン10の各気筒では、吸入された空気とインジェクタ12によって噴射された燃料との混合気が点火プラグ17により点火されて燃焼する。燃焼後の排気ガスは排気管18を通して排出される。
排気管18には、排気ガス中の酸素濃度に応じた信号を出力する空燃比センサ19が取り付けられている。空燃比センサ19としては、排気空燃比をオン−オフ的に検出するOセンサが用いられる。なお、空燃比センサ19として、排気空燃比をリニアに検出することのできるリニア空燃比センサ(LAFセンサ)を用いてもよい。
また、空燃比センサ19の下流には排気浄化触媒20が配設されている。排気浄化触媒20は三元触媒であり、排気ガス中の炭化水素(HC)及び一酸化炭素(CO)の酸化と、窒素酸化物(NOx)の還元を同時に行い、排気ガス中の有害ガス成分を無害な二酸化炭素(CO)、水蒸気(HO)及び窒素(N)に清浄化するものである。
排気管18には、エンジン10から排出された排気ガスの一部を、エンジン10のインテークマニホールド11に再循環させる排気ガス再循環装置(以下「EGR(Exhaust Gas Recirculation)装置」という)40が設けられている。EGR装置40は、エンジン10の排気管18とインテークマニホールド11とを連通するEGR配管41、及びEGR配管41上に介装され、排気ガス還流量(EGR流量)を調節するEGRバルブ42を有している。EGRバルブ42は、エンジン10の運転状態に応じて、後述する電子制御装置50によって開度が制御される。
上述したエアフローメータ14、空燃比センサ19、バキュームセンサ30、スロットル開度センサ31に加え、エンジン10のカムシャフト近傍には、エンジン10の気筒判別を行うためのカム角センサ32が取り付けられている。また、エンジン10のクランクシャフト10a近傍には、クランクシャフト10aの回転位置を検出するクランク角センサ33が取り付けられている。ここで、クランクシャフト10aの端部には、例えば、2歯欠歯した34歯の突起が10°間隔で形成されたタイミングロータ33aが取り付けられており、クランク角センサ33は、タイミングロータ33aの突起の有無を検出することにより、クランクシャフト10aの回転位置を検出する。すなわち、クランク角センサ33は、特許請求の範囲に記載のクランク位置検出手段に相当する。カム角センサ32及びクランク角センサ33としては、例えば、電磁ピックアップや、ホール素子、MR素子などが用いられる。
これらのセンサは、電子制御装置(以下「ECU」という)50に接続されている。さらに、ECU50には、エンジン10の冷却水の温度を検出する水温センサ34、潤滑油の温度を検出する油温センサ35、及び、アクセルペダルの踏み込み量すなわちアクセルペダルの開度を検出するアクセルペダル開度センサ36等の各種センサも接続されている。
ECU50は、演算を行うマイクロプロセッサ、該マイクロプロセッサに各処理を実行させるためのプログラム等を記憶するROM、演算結果などの各種データを記憶するRAM、12Vバッテリによってその記憶内容が保持されるバックアップRAM、及び入出力I/F等を有して構成されている。また、ECU50は、インジェクタ12を駆動するインジェクタドライバ、点火信号を出力する出力回路、及び、電子制御式スロットルバルブ13を開閉する電動モータを駆動するモータドライバ等を備えている。
ECU50では、カム角センサ32の出力から気筒が判別され、クランク角センサ33の出力からエンジン回転数が求められる。また、ECU50では、上述した各種センサから入力される検出信号に基づいて、吸入空気量、吸気管負圧、アクセルペダル開度、混合気の空燃比、及びエンジン10の水温や油温等の各種情報が取得される。そして、ECU50は、取得したこれらの各種情報に基づいて、燃料の噴射量・噴射時期や点火時期、及び、スロットルバルブ13等の各種デバイスを制御することによりエンジン10を総合的に制御する。すなわち、ECU50は、特許請求の範囲に記載のエンジン制御装置として機能する。
また、ECU50は、例えば過渡時における回転数急変時に、エンジン回転数の算出遅れを低減でき、任意のクランク角位置におけるエンジン回転数をより精度よく取得する。そして、点火時期や燃料噴射時期等の制御パラメータのずれを抑制して、エンジン10をより高精度に制御する。そのため、ECU50は、回転数取得部51、回転数変化量予測部52、並びに予測回転数演算部53からなるエンジン回転数演算部54、及びエンジン制御部55を機能的に備えている。ECU50では、ROMに記憶されているプログラムがマイクロプロセッサによって実行されることにより、回転数取得部51、回転数変化量予測部52、並びに予測回転数演算部53からなるエンジン回転数演算部54、及びエンジン制御部55の各機能が実現される。ここで、エンジン回転数演算部54は、特許請求の範囲に記載のエンジン回転数演算装置に相当する。
回転数取得部51は、クランク角センサ33により検出されたクランクシャフト10aの回転位置の時間変化に基づいて、任意のクランク角におけるエンジン回転数である瞬時回転数Nrealを求める。すなわち、回転数取得部51は、特許請求の範囲に記載の回転数取得手段として機能する。本実施形態では、クランクパルス毎(例えば10°毎)に、クランクパルス間の時間から瞬時回転数Nrealを算出する構成とした。なお、例えば、ハイブリッド車などにおいて、レゾルバを備えている場合には、該レゾルバを用いて、瞬時回転数Nrealを取得する構成としてもよい。
特に、回転数取得部51は、燃焼気筒の燃焼行程期間中(次点火気筒の圧縮行程)に設定された第1のクランク位置(以下「中間点」ともいう)における瞬時回転数を取得する。ここで、第1のクランク位置(中間点)は、次燃焼気筒の点火時期指示や、次燃焼気筒の燃料噴射時期指示に利用できるタイミングとすることが好ましく、本実施形態では、燃焼気筒の膨張下死点前70°(BBDC70°)、すなわち、4気筒エンジンでは、次点火(燃焼)気筒の圧縮上死点前70°(BTDC70°)の位置とした。なお、このタイミングは、燃焼圧による動力発生から、排気バルブが開き燃焼圧による動力発生が得難くなる切り替わりタイミングにも近い。
同様に、回転数取得部51は、クランク角センサ33により検出されたクランクシャフト10aの回転位置(クランク位置)の時間変化に基づいて、第2のクランク位置(以下「基準点」ともいう)における瞬時回転数を求める。なお、本実施形態では、第2のクランク位置(基準点)を、燃焼気筒の膨張下死点前10°(BBDC10°)、すなわち、4気筒エンジンでは、次点火(燃焼)気筒の圧縮上死点前10°(BTDC10°)の位置とした。
回転数取得部51は、瞬時回転数に加えて、クランク角センサ33により検出されたクランクシャフト10aの回転位置の時間変化に基づいて、予め定められた所定クランク角度間における平均エンジン回転数である行程平均回転数を求める。本実施形態では、燃焼行程(膨張行程)終了下死点BDC(4気筒エンジンの場合には点火順序が一つ後の気筒の圧縮行程上死点TDCと同じ)に対してBBDC10°のクランク信号入力時に、該信号入力前180°期間(すなわち、BTDC10°CA〜BBDC10°CA)の行程時間T180に基づいて、行程平均回転数NaveT180_BBDC10を算出する構成とした。
なお、ここで、図4に示されるように、エンジン10の点火順序は、1番気筒(#1)、3番気筒(#3)、2番気筒(#2)、4番気筒(#4)の順になっている。よって、行程平均回転数NaveT180_BBDC10は、例えば、1番気筒(#1)のBTDC10°CAからBBDC10°CAまでの区間において(すなわち、1番気筒(#1)のBTDC10°CAから3番気筒(#3)のBTDC10°CAまで回転するのに要する時間に基づいて)、求められる。なお、回転数取得部51により取得された瞬時回転数Nreal及び行程平均回転数NaveT180_BBDC10は、予測回転数演算部53、及びエンジン制御部55に出力される。
ここで、エンジン始動時の瞬時回転数、予測回転数(詳細は後述する)、及び行程平均回転数T180の変化の一例を図5に示す。なお、図5の横軸は、クランク角度(°)であり、縦軸は、瞬時回転数(rpm:実線)、予測回転数(rpm:二点鎖線)、行程平均回転数T180(rpm:一点鎖線)である。上述したように、行程平均回転数は、燃焼行程終了下死点BDCに対してBBDC10°のクランク信号入力時に、信号入力前180°期間時間T180を利用して回転数に変換される。この時間には回転上昇中時間が含まれる為、回転上昇が速い場合、図5に示されるように、瞬時回転数に対して算出タイミングが遅れるだけでなく回転数算出結果も低い結果となる。一方で瞬時回転数Nrealは、燃焼による回転上昇と、排気バルブが開き筒内圧力が下がった後のフリクションと次燃焼気筒の圧縮による回転低下を繰り返す回転変動となる。そのため、エンジンの動力を吸収する負荷がない場合、排気バルブ開タイミングに近い膨張行程途中(中間点)までの瞬時回転数Nrealを参考に、回転数と機関回転部イナーシャによる回転エネルギと圧縮仕事量とフリクションによる仕事量の関係から、行程終了時期の瞬時回転数Nrealの回転低下量の推定、またはこの回転低下を見越した行程平均回転数の予測が可能となる。
回転数変化量予測部52は、エンジン10の動作状態に基づいて、エンジン10のクランク位置が、第1のクランク位置(中間点:BTDC70°)から、第2のクランク位置(基準点:BTDC10°)まで回転する間のエンジン10の回転数変化量を予測する。すなわち、回転数変化量予測部52は、特許請求の範囲に記載の回転数変化量予測手段として機能する。
ここで、回転数変化量予測部52は、エンジン10と駆動輪(駆動系)との締結が断たれている場合(例えば駆動系に介在するクラッチが解放されている場合など、すなわち、エンジン回転数が変動し易い場合)に、エンジン10の回転数変化量を予測する。より具体的には、回転数変化量予測部52は、変速機がMT(手動変速機)又はトルクコンバータを持たない自動変速機の場合には、ギヤが選択されていないか、又は、クラッチが完全に締結されていないときに、エンジン10の回転数変化量を予測する。逆に、ギヤが選択されるとともに、クラッチが完全に締結されているときには、エンジン10の回転数変化量の予測を停止する。また、回転数変化量予測部52は、変速機がトルクコンバータ付き自動変速機(AT)の場合には、ロックアップ状態でないときにエンジン10の回転数変化量を予測する。逆に、ロックアップ状態が続いているときには、エンジン10の回転数変化量の予測を停止する。
回転数変化量予測部52は、非定常的な駆動負荷、及び定常的なエンジン負荷それぞれに基づいて、エンジン10の回転数変化量を予測する。より具体的には、回転数変化量予測部52は、定常負荷として、エンジン10の補機類の負荷、例えば、発電負荷・エアコンディショナ負荷・パワーステアリング負荷・エンジンフリクション等の負荷に基づいて、エンジン10の回転数変化量を予測する。ここで、エンジンフリクションはエンジン水温とエンジン回転数と筒内圧(吸入空気量と燃焼状態)に関連し、圧縮仕事やポンプ仕事は吸入空気量に関連する。また、既知のエンジン動力吸収負荷は、負荷の有無判定および負荷特性をエンジン回転数と表現できるパラメータにより定義し、例えば瞬時回転速度からの増減量を予めマップ化しておき、膨張行程途中の基準点の瞬時回転数でマップを参照して増減量を取得し、回転数変化量を求めることができる。なお、現象を物理モデルに落し演算することで推定精度を高めることも可能である。
また、回転数変化量予測部52は、非定常負荷として、変速機がトルクコンバータを持った自動変速機(AT)の場合には、トルクコンバータ及びロックアップクラッチ負荷による回転数変化量を算出する。また、回転数変化量予測部52は、変速機がMT又はトルコンを持たない自動変速機の場合には、クラッチミート負荷による回転数変化量を算出する。ここで、トルクコンバータやロックアップクラッチは、例えば、モデル化することにより推定できる。一方、MTは予測ができないため、前回予測された予測回転数と、その後実際に計測された瞬時回転数との偏差を負荷変化としてとらえ反映する。
同様に、回転数変化量予測部52は、エンジン10の動作状態に基づいて、エンジン10のクランク位置が、第2のクランク位置(基準点:BTDC10°)から、第1のクランク位置(中間点:BTDC70°)まで回転する間のエンジン10の回転数変化量を予測する。ここで、上述したように、回転数変化量予測部52は、エンジン10と駆動輪との締結が断たれている場合に、エンジン10の回転数変化量を予測する。
その際に、回転数変化量予測部52は、無負荷と仮定した場合のエンジン10の燃焼による回転数変化量、及び、非定常的な駆動負荷、並びに定常的なエンジン負荷それぞれに基づいて、エンジン10の回転数変化量を予測する。より具体的には、回転数変化量予測部52は、燃焼行程となる気筒の吸入空気量と供給燃料量及び点火時期に基づいて、燃焼による無負荷回転変化を予測する。その他、非定常的な駆動負荷、及び定常的な負荷による回転数変化量予測は上述した通りであるので、ここでは詳細な説明を省略する。回転数変化量予測部52により予測されたエンジン10の回転数変化量は、予測回転数演算部53に出力される。
予測回転数演算部53は、回転数取得部51により求められた第1のクランク位置(中間点:BTDC70°)における瞬時回転数と、回転数変化量予測部52により予測された、クランク位置が第1のクランク位置から、第2のクランク位置(基準点:BTDC10°)まで回転する間のエンジン10の回転数変化量とに基づいて、第2のクランク位置におけるエンジン回転数を予測して予測回転数を求める。すなわち、予測回転数演算部53は、次に点火される気筒(次点火気筒)の圧縮上死点(TDC)よりも所定角度前(本実施形態ではBTDC70°)において、所定タイミング(本実施形態ではBTDC10°)のエンジン回転数(予測回転数)を予測する。
すなわち、予測回転数演算部53は、燃焼により瞬時回転数が上昇する途中で、次に点火される気筒の圧縮行程終了時(すなわち点火時期近傍であり、制御パラメータの角度指示を実行するタイマ期間中)の回転数を予測する。予測回転数演算部53は、特許請求の範囲に記載の予測回転数演算手段として機能する。なお、予測回転数演算部53は、上述した回転数変化量予測部52の場合と同様に、エンジン10と駆動輪との締結が断たれている場合に、予測回転数を求める。
同様に、予測回転数演算部53は、回転数取得部51により求められた第2のクランク位置(基準点:BTDC70°)における瞬時回転数と、回転数変化量予測部52により予測された、クランク位置が第2のクランク位置から、第1のクランク位置(中間点:BTDC10°)まで回転する間のエンジン10の回転数変化量とに基づいて、第1のクランク位置(中間点)におけるエンジン回転数を予測して予測回転数を求める。なお、予測回転数演算部53により予測された、第2のクランク位置(基準点)におけるエンジン回転数(予測回転数)、及び、第1のクランク位置(中間点)におけるエンジン回転数(予測回転数)は、エンジン制御部55に出力される。
エンジン制御部55は、エンジン10の点火時期や燃料噴射時期等を制御する。すなわち、エンジン制御部55は、特許請求の範囲に記載の制御手段として機能する。例えば、点火時期制御では、エンジン制御部55は、中間点(BTDC70°)において、エンジン10の運転状態(例えばエンジン回転数と空気量等)に応じて最適な点火時期(クランク角度)と通電時間を演算し、エンジン回転数に基づいて、中間点(BTDC70°)から点火時期までの角度を時間(タイマ値)に変換して、タイマをセットする。その際に、エンジン制御部55は、第1のクランク位置(中間点)における瞬時回転数と、第2のクランク位置(基準点)における予測回転数との偏差に基づいて、点火時期制御に用いるタイマ設定値を制御(補正)する。これにより、次点火気筒の点火時期までの回転変化を補正した点火タイマがセットされる。
そして、エンジン制御部55は、タイマが経過し、点火時期が来たときに点火信号をイグナイタ内蔵型コイル21に出力する。イグナイタ内蔵型コイル21は点火信号に基づいて高電圧を発生させ、これを点火プラグ17の電極に印加する。点火プラグ17は、印加された高電圧で火花を飛ばし、燃焼室内の混合気を燃焼させる。また、エンジン制御部55は、次基準点までの間に燃料噴射を行う気筒がある場合、同様に回転変化を補正した燃料噴射開始タイマをセットする。
同様に、エンジン制御部55は、第2のクランク位置(基準点)における瞬時回転数と、第1のクランク位置(中間点)における予測回転数との偏差に基づいて、燃料噴射時期制御に用いるタイマ設定値を制御(補正)する。
次に、図2,3を併せて参照しつつ、ECU50(エンジン回転数演算部54)の動作について説明する。図2,3は、ECU50(エンジン回転数演算部54)によるエンジン回転数演算処理の処理手順を示すフローチャート(1ページ目及び2ページ目)である。本処理は、ECU50(主としてエンジン回転数演算部54)において、所定のタイミングで繰り返し実行される。
ステップS100では、エンジン回転数(平均回転数)が、所定回転数(例えば、3000rpm)以上であるか否かについての判断が行われる。ここで、エンジン回転数が所定回転数以上の場合には、本処理から一旦抜ける。一方、エンジン回転数が所定回転数未満のときには、ステップS102に処理が移行する。
ステップS102では、中間点クランク位置(次点火気筒のBTDC70°)における瞬時回転数(中間点瞬時回転数)が求められる。
次に、ステップS104では、変速機のギヤが入り、エンジン10が車両の駆動系と締結された状態であるか否かについての判断が行われる。なお、締結状態であるか否かの判定手法については、上述した通りであるので、ここでは詳細な説明を省略する。ここで、エンジン10が車両の駆動系と締結されていない場合には、ステップS106に処理が移行する。一方、エンジン10が車両の駆動系と締結されているときには、本処理から一旦抜ける。
ステップS106では、予測可能な定常的な負荷に基づく、中間点と基準点(次点火気筒のBTDC10°)との間の回転数変化量が算出される。なお、定常的な負荷による回転数変化量の算出手法については、上述した通りであるので、ここでは詳細な説明を省略する。
続くステップS108では、変速機がMT(手動変速機)又はトルクコンバータを持たない自動変速機であるか否かについての判断が行われる。ここで、変速機がトルクコンバータを持った自動変速機である場合には、ステップS110に処理が移行する。一方、変速機がMT又はトルクコンバータを持たない自動変速機である場合には、ステップS112に処理が移行する。
ステップS110では、トルクコンバータ及びロックアップクラッチ負荷による回転数変化量が算出される。その後、ステップS114に処理が移行する。一方、ステップS112では、クラッチミート負荷による回転数変化量が算出される。その後、ステップS114に処理が移行する。なお、これらの回転数変化量の算出方法については、上述した通りであるので、ここでは詳細な説明を省略する。
ステップS114では、中間点瞬時回転数と、ステップS106、及び、ステップS110又はS112で算出された回転数変化量とに基づいて、次基準点での回転数が推定される。
続いて、ステップS116では、次基準点までの回転変化を補正した点火タイマがセットされる。また、次基準点までの間に燃料噴射を行う気筒がある場合、同様に回転変化を補正した燃料噴射開始タイマがセットされる。
次に、ステップS118では、クランク角(位置)が次基準点になったか否かについての判断が行われる。ここで、クランク角(位置)が次基準点になった場合には、ステップS120に処理が移行する。一方、クランク角(位置)が次基準点になっていないときには、次基準点になるまで処理を待つ。
ステップS120では、基準点において瞬時回転数(基準点瞬時回転数)が求められる。
次に、ステップS122では、変速機のギヤが入り、エンジン10が車両の駆動系と締結された状態であるか否かについての判断が行われる。ここで、エンジンが車両の駆動系と締結されていない場合には、ステップS124に処理が移行する。一方、エンジンが車両の駆動系と締結されているときには、本処理から一旦抜ける。
ステップS124では、基準点瞬時回転数と、燃焼行程となる気筒の吸入空気量と供給燃料及び点火時期に基づいて、燃焼による無負荷回転数変化量が予測される。
続くステップS126では、予測可能な定常的な負荷に基づく、基準点から次中間点までの回転数変化量が算出される。
次に、ステップS128では、変速機がMT(手動変速機)又はトルクコンバータを持たない自動変速機であるか否かについての判断が行われる。ここで、変速機がトルクコンバータを持った自動変速機である場合には、ステップS130に処理が移行する。一方、変速機がMT又はトルクコンバータを持たない自動変速機である場合には、ステップS132に処理が移行する。
ステップS130では、トルクコンバータ及びロックアップクラッチ負荷による回転数変化量が算出される。その後、ステップS134に処理が移行する。一方、ステップS132では、クラッチミート負荷による回転数変化量が算出される。その後、ステップS134に処理が移行する。
ステップS134では、基準点瞬時回転数と、ステップS124、ステップS126、及び、ステップS130又はS132で算出された回転数変化量とに基づいて、次中間点での回転数が推定される。
続いて、ステップS136では、基準点から次中間点までの間に燃料噴射を行う気筒がある場合、回転変化を補正した燃料噴射開始タイマがセットされる。その後、本処理から一旦抜ける。
以上、詳細に説明したように、本実施形態によれば、燃焼行程(膨張行程)期間中に設定された第1のクランク位置(中間点:BTDC70°)における瞬時回転数と、エンジン10の動作状態(各種負荷)に基づいて予測される第1のクランク位置から第2のクランク位置(基準点:BTDC10°)まで回転する間のエンジン10の回転数変化量とに基づいて、第2のクランク位置におけるエンジン回転数(予測回転数)が予測される。よって、エンジン回転数の算出遅れを低減でき、任意のクランク位置(第2のクランク位置)におけるエンジン回転数をより精度よく取得することが可能となる。
その際に、本実施形態によれば、非定常的な駆動負荷、及び定常的なエンジン負荷に基づいて、エンジン10の回転数変化量が予測されるため、第1のクランク位置(中間点)から第2のクランク位置(基準点)まで回転する間のエンジン10の回転数変化量をより精度よく求めることができる。
同様に、本実施形態によれば、第2のクランク位置(基準点)における瞬時回転数と、エンジン10の動作状態(各種負荷)に基づいて予測される第2のクランク位置から第1のクランク位置(中間点)まで回転する間のエンジン10の回転数変化量とに基づいて、第1のクランク位置におけるエンジン回転数(予測回転数)が予測される。よって、エンジン回転数の算出遅れを低減でき、任意のクランク位置(第1のクランク位置)におけるエンジン回転数をより精度よく取得することが可能となる。
その際に、本実施形態によれば、無負荷と仮定した場合の燃焼による回転数変化量、及び、非定常的な駆動負荷、並びに定常的なエンジン負荷に基づいて、エンジン10の回転数変化量が予測されるため、第2のクランク位置(基準点)から第1のクランク位置(中間点)まで回転する間のエンジン10の回転数変化量をより精度よく求めることが可能となる。
また、本実施形態によれば、エンジン10と駆動輪との締結が断たれている場合に、エンジン10の回転数変化量が予測されて、予測回転数が求められる。すなわち、エンジン回転の変化が大きくなる過渡時に予測回転数が求められる。よって、より効果的にエンジン回転数の算出遅れを低減することが可能となる。
本実施形態によれば、第1のクランク位置(中間点)が、次点火気筒のBTDC70°の位置に設定され、第2のクランク位置が、次点火気筒のBTDC10°に設定されている。そのため、算出遅れが低減されたエンジン回転数(予測回転数)を、例えば、点火時期等を定めるタイマの設定時に利用することができる。
また、本実施形態によれば、上述したエンジン回転数演算部54を備えているため、過渡時の回転速度急変時に回転速度算出遅れをなくし、例えば、点火時期や燃料噴射時期等の制御パラメータのずれを抑制して、エンジン10をより高精度に制御することが可能となる。よって、エンジン回転数の変化が急な運転条件でのエンジン制御不良を防ぎ、ノッキングや燃焼不良を抑制することができる。
(変形例)
上述した実施形態では、中間点BTDC70°(又は基準点BTDC10°)の瞬時回転数を用いて、基準点BTDC10°(又は中間点BTDC70°)のエンジン回転数を予測したが、瞬時回転数に代えて、所定区間の平均回転数を利用して瞬時回転数相当値を求め、基準点(又は中間点)のエンジン回転数を予測することもできる。そこで、次に、図6を用いて変形例に係るエンジン回転数演算部54Bについて説明する。図6は、エンジン回転数演算部54B、並びに該エンジン回転数演算部54Bを備えるECU50B、及び該ECU50Bが適用されたエンジン10それぞれの構成を示すブロック図である。なお、図6において上記実施形態と同一又は同等の構成要素については同一の符号が付されている。
本変形例は、ECU50に代えてECU50Bが用いられている点で上述した実施形態と異なっている。また、ECU50Bは、エンジン回転数演算部54に代えてエンジン回転数演算部54Bを有している点で上述した実施形態と異なっている。さらに、エンジン回転数演算部54Bは、回転数取得部51に代えて回転数取得部51Bを有している点、及び予測回転数演算部53に代えて予測回転数演算部53Bを有している点で上述した実施形態と異なっている。その他の構成は、上述した実施形態と同一または同様であるので、ここでは詳細な説明を省略する。
回転数取得部51Bは、予測回転数演算部53Bにより予測された第1のクランク位置(中間点:BTDC70°)における予測回転数の前回値と、第3の所定のクランク位置(本実施形態ではBBDC10°に設定)から第1のクランク位置までの区間の平均回転数T120_BTDC70と、第2のクランク位置(基準点:BTDC10°)における瞬時回転数相当値の前回値とに基づいて、瞬時回転数に代えて、第1のクランク位置(中間点)における瞬時回転数相当値を求める。
同様に、回転数取得部51Bは、予測回転数演算部53Bにより予測された第2のクランク位置(基準点)における予測回転数の前回値と、第1のクランク位置(中間点)から第2のクランク位置までの区間の平均回転数T60_BTDC10とに基づいて、瞬時回転数に代えて、第2のクランク位置(基準点)における瞬時回転数相当値を求める。なお、回転数取得部51Bにより求められた第1のクランク位置(中間点)における瞬時回転数相当値、及び、第2のクランク位置(基準点)における瞬時回転数相当値は、予測回転数演算部53Bに出力される。
ここで、エンジン始動時の瞬時回転数、予測回転数、行程平均回転数T180、及び行程平均回転数T120,T60の変化の一例を図7に示す。なお、図7の横軸は、クランク角度(°)であり、縦軸は、瞬時回転数(rpm:実線)、予測回転数(rpm:二点鎖線)、行程平均回転数T180(rpm:一点鎖線)、行程平均回転数T120(rpm:粗い破線)、及び行程平均回転数T60(rpm:細かい破線)である。行程平均回転数T60は燃焼圧による回転変化が終わった後の期間の平均値であり、クランク軸10aの運動エネルギ消費がなければ瞬時回転数と一致する。エネルギ消費が既知の場合、燃焼圧による回転変化が終了したあたりの瞬時回転数が分かれば推定できる点火指示タイマの期間と略重なる。一方、行程平均回転数T120は、回転上昇期間が含まれるため瞬時回転数から遅れる。平均回転数T120は燃焼による回転上昇の結果であるので、この値と、燃焼開始前の平均回転数T60と、燃焼圧発生位置と、エネルギ消費とが分かれば、この時点の瞬時回転数の推定が可能である。
予測回転数演算部53Bは、回転数取得部51Bにより求められた瞬時回転数相当値と、回転数変化量予測部52により予測された回転数変化量とに基づいて、第2のクランク位置(基準点)におけるエンジン回転数を予測して予測回転数を求める。同様に、予測回転数演算部53Bは、回転数取得部51Bにより求められた瞬時回転数相当値と、回転数変化量予測部52により予測された回転数変化量とに基づいて、第1のクランク位置(中間点)におけるエンジン回転数を予測して予測回転数を求める。なお、予測回転数演算部53Bにより予測された、エンジン回転数(予測回転数)は、エンジン制御部55に出力される。エンジン制御部55の構成は上述した通りであるので、ここでは詳細な説明を省略する。
本変形例によれば、瞬時回転数を取得することができない場合であっても。瞬時回転数に代えて、瞬時回転数相当値を算出して用いることにより、エンジン回転数の算出遅れを低減でき、任意のクランク位置(第2のクランク位置及び第1のクランク位置)におけるエンジン回転数をより精度よく取得することが可能となる。
以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、第1のクランク位置(中間点)を、次点火気筒のBTDC70°の位置とし、第2のクランク位置(基準点)を、次点火気筒のBTDC10°の位置としたが、これらの位置(BTDC70°、BTDC10°)は例示であり、第1のクランク位置(中間点)及び第2のクランク位置(基準点)は上記実施形態には限られない。
また、上記実施形態では、エンジン10として4気筒エンジンを例にして説明したが、本発明は4気筒以外のエンジンにも適用することができる。さらに、上記実施形態では、本発明をポート噴射式のエンジンに適用した場合を例にして説明したが、本発明は、筒内噴射式のエンジン、及び、筒内噴射とポート噴射とを組み合わせたエンジンにも適用することができる。
10 エンジン
10a クランクシャフト
17 点火プラグ
21 イグナイタ内蔵型コイル
31 スロットル開度センサ
32 カム角センサ
33 クランク角センサ
33a タイミングロータ
50,50B ECU
51,51B 回転数取得部
52 回転数変化量予測部
53,53B 予測回転数演算部
54,54B エンジン回転数演算部
55 エンジン制御部

Claims (10)

  1. エンジンのクランクシャフトの回転位置を検出するクランク位置検出手段と、
    前記クランク位置検出手段により検出されたクランクシャフトの回転位置に基づいて、燃焼気筒の燃焼行程期間中に設定された第1のクランク位置におけるエンジン回転数である瞬時回転数を求める回転数取得手段と、
    エンジンの動作状態に基づいて、エンジンのクランク位置が、前記第1のクランク位置から、第2のクランク位置まで回転する間のエンジンの回転数変化量を予測する回転数変化量予測手段と、
    前記回転数取得手段により求められた瞬時回転数と、前記回転数変化量予測手段により予測された回転数変化量とに基づいて、前記第2のクランク位置におけるエンジン回転数を予測して予測回転数を求める予測回転数演算手段と、を備え
    前記回転数取得手段は、前記クランク位置検出手段により検出されたクランクシャフトの回転位置に基づいて、前記第2のクランク位置におけるエンジン回転数である瞬時回転数を求め、
    前記回転数変化量予測手段は、エンジンの動作状態に基づいて、エンジンのクランク位置が、前記第2のクランク位置から、前記第1のクランク位置まで回転する間のエンジンの回転数変化量を予測し、
    前記予測回転数演算手段は、前記回転数取得手段により求められた瞬時回転数と、前記回転数変化量予測手段により予測された回転数変化量とに基づいて、前記第1のクランク位置におけるエンジン回転数を予測して予測回転数を求めることを特徴とするエンジン回転数演算装置。
  2. 前記回転数変化量予測手段は、非定常的な駆動負荷、及び定常的なエンジン負荷それぞれに基づいて、エンジンのクランク位置が、前記第1のクランク位置から、第2のクランク位置まで回転する間の前記エンジンの回転数変化量を予測することを特徴とする請求項に記載のエンジン回転数演算装置。
  3. 前記回転数変化量予測手段は、無負荷と仮定した場合の燃焼による回転数変化量、及び、非定常的な駆動負荷、並びに定常的なエンジン負荷それぞれに基づいて、エンジンのクランク位置が、前記第2のクランク位置から、第1のクランク位置まで回転する間の前記エンジンの回転数変化量を予測することを特徴とする請求項1又は2に記載のエンジン回転数演算装置。
  4. 前記回転数変化量予測手段は、エンジンと駆動輪との締結が断たれている場合に、前記エンジンの回転数変化量を予測し、
    前記予測回転数演算手段は、エンジンと駆動輪との締結が断たれている場合に、前記予測回転数を求めることを特徴とする請求項1〜3のいずれか1項に記載のエンジン回転数演算装置。
  5. 前記第1のクランク位置は、次点火気筒の圧縮上死点前70°の位置であり、
    前記第2のクランク位置は、次点火気筒の圧縮上死点前10°であることを特徴とする請求項1〜4のいずれか1項に記載のエンジン回転数演算装置。
  6. エンジンのクランクシャフトの回転位置を検出するクランク位置検出手段と、
    前記クランク位置検出手段により検出されたクランクシャフトの回転位置に基づいて、燃焼気筒の燃焼行程期間中に設定された第1のクランク位置におけるエンジン回転数である瞬時回転数を求める回転数取得手段と、
    エンジンの動作状態に基づいて、エンジンのクランク位置が、前記第1のクランク位置から、第2のクランク位置まで回転する間のエンジンの回転数変化量を予測する回転数変化量予測手段と、
    前記回転数取得手段により求められた瞬時回転数と、前記回転数変化量予測手段により予測された回転数変化量とに基づいて、前記第2のクランク位置におけるエンジン回転数を予測して予測回転数を求める予測回転数演算手段と、を備え、
    前記第1のクランク位置は、次点火気筒の圧縮上死点前70°の位置であり、
    前記第2のクランク位置は、次点火気筒の圧縮上死点前10°であることを特徴とするエンジン回転数演算装置。
  7. 前記回転数取得手段は、前記予測回転数演算手段により予測された前記第1のクランク位置における予測回転数の前回値と、第3の所定のクランク位置からから前記第1のクランク位置までの区間の平均回転数と、前記平均回転数を用いて求められる、前記瞬時回転数に相当する瞬時回転数相当値であって前記第2のクランク位置における瞬時回転数相当値の前回値とに基づいて、前記瞬時回転数に代えて、前記第1のクランク位置における瞬時回転数相当値を求め、
    前記予測回転数演算手段は、前記回転数取得手段により求められた瞬時回転数相当値と、前記回転数変化量予測手段により予測された回転数変化量とに基づいて、前記第2のクランク位置におけるエンジン回転数を予測して予測回転数を求めることを特徴とする請求項1〜5のいずれか1項に記載のエンジン回転数演算装置。
  8. 前記回転数取得手段は、前記予測回転数演算手段により予測された前記第2のクランク位置における予測回転数の前回値と、前記第1のクランク位置から第2のクランク位置までの区間の平均回転数とに基づいて、前記瞬時回転数に代えて、前記第2のクランク位置における瞬時回転数相当値を求め、
    前記予測回転数演算手段は、前記回転数取得手段により求められた瞬時回転数相当値と、前記回転数変化量予測手段により予測された回転数変化量とに基づいて、前記第1のクランク位置におけるエンジン回転数を予測して予測回転数を求めることを特徴とする請求項7に記載のエンジン回転数演算装置。
  9. エンジンのクランクシャフトの回転位置を検出するクランク位置検出手段と、
    前記クランク位置検出手段により検出されたクランクシャフトの回転位置に基づいて、燃焼気筒の燃焼行程期間中に設定された第1のクランク位置におけるエンジン回転数である瞬時回転数を求める回転数取得手段と、
    エンジンの動作状態に基づいて、エンジンのクランク位置が、前記第1のクランク位置から、第2のクランク位置まで回転する間のエンジンの回転数変化量を予測する回転数変化量予測手段と、
    前記回転数取得手段により求められた瞬時回転数と、前記回転数変化量予測手段により予測された回転数変化量とに基づいて、前記第2のクランク位置におけるエンジン回転数を予測して予測回転数を求める予測回転数演算手段と、を備えるエンジン回転数演算装置と、
    前記第1のクランク位置における瞬時回転数と、前記第2のクランク位置における予測回転数との偏差に基づいて、点火時期制御、及び/又は、燃料噴射時期制御に用いるタイマ設定値を制御する制御手段と、を備えることを特徴とするエンジン制御装置。
  10. 請求項1〜5のいずれか1項に記載のエンジン回転数演算装置と、
    前記第2のクランク位置における瞬時回転数と、前記第1のクランク位置における予測回転数との偏差に基づいて、燃料噴射時期制御に用いるタイマ設定値を制御する制御手段と、を備えることを特徴とするエンジン制御装置。
JP2013234631A 2013-11-13 2013-11-13 エンジン回転数演算装置、及び、エンジン制御装置 Active JP6271957B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013234631A JP6271957B2 (ja) 2013-11-13 2013-11-13 エンジン回転数演算装置、及び、エンジン制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234631A JP6271957B2 (ja) 2013-11-13 2013-11-13 エンジン回転数演算装置、及び、エンジン制御装置

Publications (2)

Publication Number Publication Date
JP2015094304A JP2015094304A (ja) 2015-05-18
JP6271957B2 true JP6271957B2 (ja) 2018-01-31

Family

ID=53196879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234631A Active JP6271957B2 (ja) 2013-11-13 2013-11-13 エンジン回転数演算装置、及び、エンジン制御装置

Country Status (1)

Country Link
JP (1) JP6271957B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115876B4 (de) 2016-08-16 2022-12-15 Toyota Jidosha Kabushiki Kaisha Anomaliediagnosevorrichtung für einen Mechanismus zum Variieren eines Verdichtungsverhältnisses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2540988B2 (ja) * 1990-06-22 1996-10-09 三菱自動車工業株式会社 エンジン制御装置
JP3064531B2 (ja) * 1991-08-15 2000-07-12 富士重工業株式会社 エンジンの空燃比制御方法
JP2006207538A (ja) * 2005-01-31 2006-08-10 Toyota Motor Corp 内燃機関の点火時期制御装置
JP4577658B2 (ja) * 2006-08-04 2010-11-10 株式会社デンソー エンジン回転速度制御装置
JP2010150953A (ja) * 2008-12-24 2010-07-08 Hitachi Automotive Systems Ltd 内燃機関の失火診断装置

Also Published As

Publication number Publication date
JP2015094304A (ja) 2015-05-18

Similar Documents

Publication Publication Date Title
US8676478B2 (en) Engine stop control device
US9133811B2 (en) Method and apparatus for controlling start-up of internal combustion engine
US8000885B2 (en) Engine stop control device
US9175627B2 (en) Fuel injection control apparatus for an internal combustion engine
JP2010138722A (ja) 内燃機関の停止時に点火を停止する時期を制御する装置
JP2009133276A (ja) 内燃機関の制御装置
JP4385940B2 (ja) 内燃機関装置およびこれを搭載する自動車並びに内燃機関の運転停止方法
JP4291762B2 (ja) エンジン停止制御装置及びそれを搭載した車両
JP2015007396A (ja) エンジンの制御装置
JP2008014146A (ja) 内燃機関の停止制御装置
JP4499809B2 (ja) 内燃機関の制御装置
JP6271957B2 (ja) エンジン回転数演算装置、及び、エンジン制御装置
JP2015004342A (ja) 筒内噴射エンジンの制御装置
JP2013130092A (ja) 内燃機関の始動時気筒判別方法
JP4120614B2 (ja) 内燃機関の始動制御装置
JP6219609B2 (ja) エンジンの始動制御装置
JP5351064B2 (ja) 内燃機関の制御装置
JP6841119B2 (ja) エンジンの制御装置
JP2007107458A (ja) 内燃機関の制御装置
JP2007187168A (ja) 内燃機関の制御装置
JP6534864B2 (ja) エンジンの制御装置
JP7146131B1 (ja) 内燃機関の制御装置
JP7310740B2 (ja) エンジン装置
JP5206652B2 (ja) 内燃機関の燃料噴射制御装置
JP2007170198A (ja) 内燃機関のトルク制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6271957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250