JP6260477B2 - 振動解析装置及び振動解析方法 - Google Patents

振動解析装置及び振動解析方法 Download PDF

Info

Publication number
JP6260477B2
JP6260477B2 JP2014139895A JP2014139895A JP6260477B2 JP 6260477 B2 JP6260477 B2 JP 6260477B2 JP 2014139895 A JP2014139895 A JP 2014139895A JP 2014139895 A JP2014139895 A JP 2014139895A JP 6260477 B2 JP6260477 B2 JP 6260477B2
Authority
JP
Japan
Prior art keywords
vibration
variable
unknown
variables
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014139895A
Other languages
English (en)
Other versions
JP2016017808A (ja
Inventor
神保 智彦
智彦 神保
日比野 良一
良一 日比野
山口 裕之
裕之 山口
松永 仁
仁 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2014139895A priority Critical patent/JP6260477B2/ja
Publication of JP2016017808A publication Critical patent/JP2016017808A/ja
Application granted granted Critical
Publication of JP6260477B2 publication Critical patent/JP6260477B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、複数の振動要素を有する振動系の振動解析装置及び振動解析方法に関する。
下記特許文献1では、入出力間の振動伝達特性を求めるために、実稼働状態にて入出力ともに加速度を計測し、入出力間の伝達率(出力加速度/入力加速度)を計算している。下記特許文献2では、入出力間の振動伝達特性を求めるために、入力として加速度と力の両方を計測するとともに出力として加速度を計測し、加速度入力に対しては伝達率を計算し、力入力に対しては伝達関数(加速度/力)を計算している。
特開2007−57460号公報 特開2011−81543号公報 特開2009−97973号公報
特許文献1,2において計算される伝達率や伝達関数は、振動系(システム)の入出力間の周波数毎のノンパラメトリックモデルであるため、伝達率や伝達関数を計算するだけでは、振動系(システム)内部の個々の振動要素間の弾性係数や減衰係数のパラメータを求めることは困難であり、パラメトリックモデルを構築することは困難である。振動系の弾性係数や減衰係数のパラメータを求めるためには、振動系の振動要素を伝わる伝達力を計測する必要があるが、力は加速度に比べて直接的な計測が困難である。
本発明は、振動系の振動要素を伝わる伝達力の推定を可能にすることを目的とする。
本発明に係る振動解析装置及び振動解析方法は、上述した目的を達成するために以下の手段を採った。
本発明に係る振動解析装置は、複数の振動要素を有する振動系の振動解析装置であって、各振動要素の加速度、振動系の加振力、及び各振動要素を伝わる伝達力の変数のうち、いずれか複数を観測変数として取得する観測変数取得部と、複数の振動要素間の接続関係を表して振動系をモデル化した場合における各振動要素の運動方程式を用いて、前記変数のうち観測変数以外の未知変数を、観測変数取得部で取得された観測変数に基づいて推定する未知変数推定部と、を備えることを要旨とする。上記の加速度については、並進加速度であってもよいし、角加速度であってもよい。そして、上記の加振力及び伝達力についても、並進方向の力であってもよいし、回転方向の力(トルク)であってもよい。
本発明の一態様では、振動要素を伝わる伝達力に基づいて振動要素間の弾性係数及び減衰係数を推定するパラメータ推定部を備えることが好適である。
本発明の一態様では、未知変数に関わる列ベクトルをxunknown、観測変数に関わる列ベクトルをxmeasuredとし、前記運動方程式を行列H1,H2を用いて、
Figure 0006260477
で表した場合に、観測変数取得部は、行列H1が列フルランクになる条件を満たすように観測変数を取得することが好適である。
本発明の一態様では、観測変数取得部は、各振動要素の加速度を観測変数として取得し、未知変数推定部は、観測変数取得部で取得された各振動要素の加速度に基づいて、振動系の加振力及び各振動要素を伝わる伝達力を未知変数として推定することが好適である。
また、本発明に係る振動解析方法は、複数の振動要素を有する振動系の振動解析方法であって、各振動要素の加速度、振動系の加振力、及び各振動要素を伝わる伝達力の変数のうち、いずれか複数を観測変数として取得する観測変数取得処理と、複数の振動要素間の接続関係を表して振動系をモデル化した場合における各振動要素の運動方程式を用いて、前記変数のうち観測変数以外の未知変数を、観測変数取得処理で取得された観測変数に基づいて推定する未知変数推定処理と、を含むことを要旨とする。
本発明によれば、複数の振動要素間の接続関係を表して振動系をモデル化した場合における各振動要素の運動方程式を用いて、観測変数に基づいて未知変数を推定することで、振動要素を伝わる伝達力を推定することができる。
本発明の実施形態に係る振動解析装置の適用対象となる車両の概略構成を示す図である。 本発明の実施形態に係る振動解析装置の概略構成を示す図である。 原理モデルの一例を示す図である。 変速機と駆動輪間の伝達トルクを推定した結果の一例を示す図である。 原理モデルの他の例を示す図である。 車体とサブフレーム間の伝達力、車体とパワートレインブロック間の伝達力、及び車体慣性力を算出した結果の一例を示す図である。 駆動輪と路面間の駆動力、サブフレームと駆動輪間の伝達力、パワートレインブロックとサブフレーム間の伝達力、及びサブフレーム慣性力を算出した結果の一例を示す図である。
以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。
図1は本発明の実施形態に係る振動解析装置の適用対象となる車両10の概略構成を示す図であり、図2は本発明の実施形態に係る振動解析装置の概略構成を示す図である。振動系としての車両10は、複数の振動要素として車体11とパワートレインブロック12(エンジン13及び変速機14を含む)と駆動輪15を含む。エンジン13は変速機14に連結され、変速機14は駆動輪15に連結され、エンジン13及び変速機14はパワートレインブロック12に含まれている。パワートレインブロック12はマウント16を介して車体11に支持され、駆動輪15はサスペンションブッシュ17を介して車体11に支持されている。車両10の実稼働状態において、エンジン13はトルク(回転力)を加振力として発生し、エンジン13と変速機14間でトルクが伝達され、変速機14と駆動輪15間でトルクが伝達され、エンジン13及び変速機14とパワートレインブロック12間でトルクが伝達される。その際に、パワートレインブロック12とエンジン13と変速機14と駆動輪15が回転方向に互いに相対的に振動する。さらに、マウント16を介してパワートレインブロック12と車体11間で車両前後方向の力が伝達され、サスペンションブッシュ17を介して駆動輪15と車体11間で車両前後方向の力が伝達される。その際に、車体11とパワートレインブロック12と駆動輪15が車両前後方向に互いに相対的に振動する。
回転方向に振動する振動要素の角加速度を検出するために、パワートレインブロック12の角加速度d2θb/dt2を検出するための角加速度センサ22がパワートレインブロック12に付設され、エンジン13の角加速度d2θe/dt2を検出するための角加速度センサ23がエンジン13に付設され、変速機14の角加速度d2θm/dt2を検出するための角加速度センサ24が変速機14に付設され、駆動輪15の角加速度d2θw/dt2を検出するための角加速度センサ25が駆動輪15に付設されている。また、車両前後方向に振動する振動要素の車両前後方向並進加速度を検出するために、車体11の車両前後方向並進加速度d2v/dt2を検出するための並進加速度センサ31が車体11に付設され、パワートレインブロック12の車両前後方向並進加速度d2b/dt2を検出するための並進加速度センサ32がパワートレインブロック12に付設され、駆動輪15の車両前後方向並進加速度d2w/dt2を検出するための並進加速度センサ35が駆動輪15に付設されている。車両10の実稼働状態における、角加速度センサ22によるパワートレインブロック12の角加速度d2θb/dt2、角加速度センサ23によるエンジン13の角加速度d2θe/dt2、角加速度センサ24による変速機14の角加速度d2θm/dt2、角加速度センサ25による駆動輪15の角加速度d2θw/dt2、並進加速度センサ31による車体11の車両前後方向並進加速度d2v/dt2、並進加速度センサ32によるパワートレインブロック12の車両前後方向並進加速度d2b/dt2、及び並進加速度センサ35による駆動輪15の車両前後方向並進加速度d2w/dt2は、振動解析装置70に入力される。
本実施形態では、振動解析装置70で車両10の振動解析を行うために、例えば図3に示すように、複数の振動要素(車体11とパワートレインブロック12とエンジン13と変速機14と駆動輪15)間の接続関係を表して振動系(車両10)をモデル化する。以下、複数の振動要素間の接続関係を表した振動系のモデルを原理モデルとする。原理モデルにおいて、エンジン13が発生するトルク(振動系の加振力)をτe、エンジン13と変速機14間で伝達されるトルクをτm、変速機14と駆動輪15間で伝達されるトルクをτds、パワートレインブロック12に伝達されるトルクをτb、車体11とパワートレインブロック12間で伝達される車両前後方向の力をFb、車体11と駆動輪15間で伝達される車両前後方向の力をFs、駆動輪15と路面間に作用する車両前後方向の力をFdとすると、パワートレインブロック12の回転運動方程式は以下の(1)式で表され、エンジン13の回転運動方程式は以下の(2)式で表され、変速機14の回転運動方程式は以下の(3)式で表され、駆動輪15の回転運動方程式は以下の(4)式で表される。そして、車両前後方向に関して、駆動輪15の並進運動方程式は以下の(5)式で表され、車体11の並進運動方程式は以下の(6)式で表され、パワートレインブロック12の並進運動方程式は以下の(7)式で表される。
Figure 0006260477
(1)〜(7)式において、Jbはパワートレインブロック12の慣性モーメント、Jeはエンジン13の慣性モーメント、Jmは変速機14の慣性モーメント、Jwは駆動輪15の慣性モーメント、mwは駆動輪15の質量、mvは車体11の質量、mbはパワートレインブロック12の質量、dmは変速機14の変速比、rwは駆動輪15の半径である。ただし、(1)〜(7)式では、時間微分d/dtを・(ドット)で表し(以下の他式も同様)、パワートレインブロック12の角加速度d2θb/dt2をθbの上に・・を付して表し、エンジン13の角加速度d2θe/dt2をθeの上に・・を付して表し、変速機14の角加速度d2θm/dt2をθmの上に・・を付して表し、駆動輪15の角加速度d2θw/dt2をθwの上に・・を付して表し、駆動輪15の車両前後方向並進加速度d2w/dt2をxwの上に・・を付して表し、車体11の車両前後方向並進加速度d2v/dt2をxvの上に・・を付して表し、パワートレインブロック12の車両前後方向並進加速度d2b/dt2をxbの上に・・を付して表している。
(1)〜(7)式については、以下の(8)式のように書き換えることができる。(8)式において、Maは各振動要素の慣性力に関わる7行の列ベクトルで以下の(9)式により表され、fは各振動要素に作用する力(加振力及び伝達力)に関わる7行の列ベクトルで以下の(10)式により表され、Cは係数に関わる7行7列の行列で以下の(11)式により表される。
Figure 0006260477
振動解析装置70の機能ブロック図の一例を図2に示す。振動解析装置70は、CPUを中心としたコンピュータとして構成可能であり、コンピュータを以下に説明する観測変数取得部71、設定定数記憶装置72、未知変数推定部73、パラメータ推定部74、及び伝達関数演算部75として機能させる。
振動解析装置70において、設定定数記憶装置72には、車体11の質量mv、パワートレインブロック12の質量mb、駆動輪15の質量mw、パワートレインブロック12の慣性モーメントJb、エンジン13の慣性モーメントJe、変速機14の慣性モーメントJm、駆動輪15の慣性モーメントJw、変速機14の変速比dm、及び駆動輪15の半径rwが記憶されている。設定定数記憶装置72に記憶するmv,mb,mw,Jb,Je,Jm,Jw,dm,rwの値については、予め計測しておくか設計値を用いる。(1)〜(7)式におけるmv,mb,mw,Jb,Je,Jm,Jw,dm,rwは、設定定数記憶装置72に記憶された値から既知となる。
観測変数取得部71は、(1)〜(7)式における各振動要素の角加速度d2θb/dt2,d2θe/dt2,d2θm/dt2,d2θw/dt2及び並進加速度d2w/dt2,d2v/dt2,d2b/dt2、振動系の加振力(エンジン13のトルク)τe、及び加振力τeにより各振動要素を伝わる伝達力τm,τds,τb,Fb,Fs,Fdの変数のうち、いずれか複数を観測変数として取得する。ここでは、角加速度センサ22,23,24,25及び並進加速度センサ31,32,35による角加速度d2θb/dt2,d2θe/dt2,d2θm/dt2,d2θw/dt2及び並進加速度d2v/dt2,d2b/dt2,d2w/dt2を観測変数として取得する。
未知変数推定部73は、(1)〜(7)式の各振動要素の運動方程式を用いて、(1)〜(7)式の変数のうち観測変数以外の未知変数を、観測変数取得部71で取得された観測変数に基づいて推定する。ここでは、観測変数として各振動要素の角加速度d2θb/dt2,d2θe/dt2,d2θm/dt2,d2θw/dt2及び並進加速度d2w/dt2,d2v/dt2,d2b/dt2に基づいて、未知変数として振動系の加振力τe及び加振力τeにより各振動要素を伝わる伝達力τm,τds,τb,Fb,Fs,Fdを推定する。
ここで、(8)式を以下の(12)式のように書き換える。(12)式において、Hは以下の(13)式で表されるn行m列の行列であり、xは以下の(14)式で表されるm行の列ベクトルである。
Figure 0006260477
(11)式を(13)式に代入すると、Hは以下の(15)式で表される7行14列の行列となり、(9)、(10)式を(14)式に代入すると、xは以下の(16)式で表される14行の列ベクトルとなる(n=7,m=14)。(15)式において、列ベクトルh1はτbに対応する係数を表し、列ベクトルh2はτeに対応する係数を表し、列ベクトルh3はτmに対応する係数を表し、列ベクトルh4はτdsに対応する係数を表し、列ベクトルh5はFdに対応する係数を表し、列ベクトルh6はFsに対応する係数を表し、列ベクトルh7はFbに対応する係数を表す。そして、列ベクトルh8はJb×d2θb/dt2に対応する係数を表し、列ベクトルh9はJe×d2θe/dt2に対応する係数を表し、列ベクトルh10はJm×d2θm/dt2に対応する係数を表し、列ベクトルh11はJw×d2θw/dt2に対応する係数を表し、列ベクトルh12はmw×d2w/dt2に対応する係数を表し、列ベクトルh13はmv×d2v/dt2に対応する係数を表し、列ベクトルh14はmb×d2b/dt2に対応する係数を表す。また、Hの1行目は(1)式に対応する係数を表し、Hの2行目は(2)式に対応する係数を表し、Hの3行目は(3)式に対応する係数を表し、Hの4行目は(4)式に対応する係数を表し、Hの5行目は(5)式に対応する係数を表し、Hの6行目は(6)式に対応する係数を表し、Hの7行目は(7)式に対応する係数を表す。
Figure 0006260477
(14)式のベクトルxの成分を未知変数と観測変数に分け、(12)式を以下の(17)式のように書き換える。(17)式において、xunknownは未知変数に関わるm1行の列ベクトルであり、xmeasuredは観測変数に関わるm2行の列ベクトルであり、H1はn行m1列の行列で未知変数に対応する係数を表し、H2はn行m2列の行列で観測変数に対応する係数を表し、m=m1+m2,m1≦n,m2≦nである。
Figure 0006260477
(1)〜(7)式において、未知変数はτb,τe,τm,τds,Fd,Fs,Fbであり、観測変数はd2θb/dt2,d2θe/dt2,d2θm/dt2,d2θw/dt2,d2w/dt2,d2v/dt2,d2b/dt2であり、m1=7,m2=7となる。したがって、xunknownは以下の(18)式で表され、xmeasuredは以下の(19)式で表される。その場合、H1は以下の(20)式で表され、H2は以下の(21)式で表される。
Figure 0006260477
(20)式で表されるH1のランクは7でH1の列の数m2=7に等しく、H1が列フルランクとなる。その場合、xunknownは、xmeasured,H1,H2を用いて以下の(22)式により算出される。未知変数推定部73は、観測変数取得部71で各サンプリング時刻k毎に取得された観測変数d2θb(k)/dt2,d2θe(k)/dt2,d2θm(k)/dt2,d2θw(k)/dt2,d2w(k)/dt2,d2v(k)/dt2,d2b(k)/dt2に基づいて(22)式で算出されたxunknownによって、未知変数τb(k),τe(k),τm(k),τds(k),Fd(k),Fs(k),Fb(k)を各サンプリング時刻k毎に推定することができる。ただし、H1が正方行列である場合は、(22)式は、当然、xunknown=−H1 -12measuredでよい。
Figure 0006260477
未知変数推定部73で変速機14と駆動輪15間の伝達トルクτds(k)を推定した結果の一例を図4に示す。図4では、(22)式で算出された推定トルクτds(k)の時系列波形を、トルクセンサで計測された変速機14と駆動輪15間の計測トルクの時系列波形と比較している。図4に示すように、未知変数推定部73で推定された推定トルクτds(k)がトルクセンサでの計測トルクにほぼ一致していることがわかる。つまり、未知変数推定部73により、変速機14と駆動輪15間の伝達トルクτds(k)を精度よく推定できていることがわかる。
伝達関数演算部75は、観測変数取得部71で取得された観測変数及び未知変数推定部73で推定された未知変数のいずれかに基づいて、振動系の伝達関数を演算する。例えばτe(k)を入力、d2v(k)/dt2を出力とする場合における入出力の関係を表す伝達関数d2v/dt2/τeを算出する。また、τe(k)を入力、τds(k)を出力とする場合における入出力の関係を表す伝達関数τds/τeを算出することも可能である。
パラメータ推定部74は、未知変数推定部73で推定された振動要素を伝わる伝達力に基づいて、振動要素間の弾性係数及び減衰係数を推定する。例えば変速機14と駆動輪15間で伝達されるトルクτds(k)については、変速機14と駆動輪15間の回転方向の弾性係数(ばね定数)kds及び減衰係数(粘性係数)cdsを用いて以下の(23)式で表すことが可能である。(23)式において、θm(k)は変速機14の回転角、θw(k)は駆動輪15の回転角である。ただし、(23)式でも、変速機14の角速度dθm(k)/dtをθm(k)の上に・を付して表し、駆動輪15の角速度dθw(k)/dtをθw(k)の上に・を付して表している。(23)式において、変速機14と駆動輪15間の伝達トルクτds(k)については、未知変数推定部73で推定することができる。変速機14の角速度dθm(k)/dtについては、角加速度センサ24による変速機14の角加速度d2θm(k)/dt2を積分演算して取得することができ、変速機14の回転角θm(k)については、変速機14の角速度dθm(k)/dtを積分演算して取得することができる。駆動輪15の角速度dθw(k)/dtについては、角加速度センサ25による駆動輪15の角加速度d2θw(k)/dt2を積分演算して取得することができ、駆動輪15の回転角θw(k)については、駆動輪15の角速度dθw(k)/dtを積分演算して取得することができる。
Figure 0006260477
(23)式を各サンプリング時刻k=1,2,〜,N毎に行列化すると、以下の(24)式が得られる。パラメータ推定部74は、各サンプリング時刻k毎に得られる、τds(k),dθm(k)/dt,dθw(k)/dt,θm(k),θw(k)を用いて、(24)式における未知パラメータcds,kdsを最小二乗法により同定する。
Figure 0006260477
(24)式を以下の(25)式のように書き換える。ただし、(25)式のA,bは以下の(26)、(27)式でそれぞれ表される。
Figure 0006260477
(26)、(27)式はNサンプリング点からなる既知の縦ベクトルであり、未知パラメータcds,kdsは以下の(28)式により算出される。パラメータ推定部74は、τds(k),dθm(k)/dt,dθw(k)/dt,θm(k),θw(k)に基づく(28)式により、変速機14と駆動輪15間の弾性係数kds及び減衰係数cdsを推定することができる。
Figure 0006260477
また、(24)式を時間微分すると、以下の(29)式が得られる。(29)式を(25)式のように書き換えると、未知パラメータcds,kdsは以下の(30)式により算出される。ただし、(30)式のA,bは以下の(31)、(32)式でそれぞれ表される。パラメータ推定部74は、dτds(k)/dt,d2θm(k)/dt2,d2θw(k)/dt2,dθm(k)/dt,dθw(k)/dtに基づく(30)式によっても、変速機14と駆動輪15間の弾性係数kds及び減衰係数cdsを推定することができる。
Figure 0006260477
同様に、エンジン13と変速機14間の回転方向の弾性係数km及び減衰係数cmについても、(28)式のcds,kdsをcm,kmにそれぞれ置き換えた式に以下の(33)、(34)式を代入するか、(30)式のcds,kdsをcm,kmにそれぞれ置き換えた式に以下の(35)、(36)式を代入することで、推定することができる。(33)式において、θe(k)はエンジン13の回転角である。
Figure 0006260477
同様に、車体11とパワートレインブロック12間の車両前後方向の弾性係数kb及び減衰係数cbについても、(28)式のcds,kdsをcb,kbにそれぞれ置き換えた式に以下の(37)、(38)式を代入するか、(30)式のcds,kdsをcb,kbにそれぞれ置き換えた式に以下の(39)、(40)式を代入することで、推定することができる。(37)式において、xv(k)は車体11の車両前後方向変位、xb(k)はパワートレインブロック12の車両前後方向変位である。
Figure 0006260477
同様に、車体11と駆動輪15間の車両前後方向の弾性係数ks及び減衰係数csについても、(28)式のcds,kdsをcs,ksにそれぞれ置き換えた式に以下の(41)、(42)式を代入するか、(30)式のcds,kdsをcs,ksにそれぞれ置き換えた式に以下の(43)、(44)式を代入することで、推定することができる。(41)式において、xw(k)は駆動輪15の車両前後方向変位である。
Figure 0006260477
このようにして弾性係数及び減衰係数をパラメータ推定部74で推定できるため、(1)〜(7)式については、以下の(45)式のように書き換えることができる。(45)式において、Mは質量mv,mb,mw及び慣性モーメントJb,Je,Jm,Jwに関わる行列であり、Cは減衰係数に関わる行列であり、Kは弾性係数に関わる行列であり、x,uは以下の(46)式で表される。
Figure 0006260477
以上説明した本実施形態では、複数の振動要素間の接続関係だけを表して振動系をモデル化する。そして、各振動要素の加速度、振動系の加振力、及び各振動要素を伝わる伝達力の変数のうち、いずれか複数(ここでは各振動要素の加速度d2θb/dt2,d2θe/dt2,d2θm/dt2,d2θw/dt2,d2v/dt2,d2b/dt2,d2w/dt2)を観測変数として取得する処理と、(1)〜(7)式の運動方程式を用いて観測変数d2θb/dt2,d2θe/dt2,d2θm/dt2,d2θw/dt2,d2v/dt2,d2b/dt2,d2w/dt2に基づいて未知変数(ここでは振動系の加振力τe及び各振動要素を伝わる伝達力τm,τds,τb,Fb,Fs,Fd)を推定する処理とをコンピュータに実行させる。その場合、H1が列フルランクになる条件を満たすため、未知変数(振動系の加振力τe及び各振動要素を伝わる伝達力τm,τds,τb,Fb,Fs,Fd)を推定することができ、振動伝達経路解析を実稼働データから実施することができる。その際には、加速度d2θb/dt2,d2θe/dt2,d2θm/dt2,d2θw/dt2,d2v/dt2,d2b/dt2,d2w/dt2を観測変数とすることで、加速度に比べて直接的な計測の難しい加振力τe及び伝達力τm,τds,τb,Fb,Fs,Fdの計測が不要となる。また、車体11を含むパッシブ系とエンジン13及び変速機14を含むアクティブ系の全系のシステムを扱うため、アクティブ系を考慮する必要がある低周波数領域でも利用することが可能である。また、特許文献1,2の伝達率や伝達関数のような線形モデルに限定されずに、非線形モデルを扱うことも可能であり、また、定常現象のみならず、車両10の加速時のような過渡現象も扱うことが可能である。
さらに、本実施形態では、振動要素を伝わる伝達力に基づいて振動要素間の弾性係数及び減衰係数を推定する処理をコンピュータに実行させる。これによって、振動系の弾性係数及び減衰係数のパラメータを求めてパラメトリックモデルを構築することができ、振動系の設計に利用することができる。さらに、本実施形態では、観測変数及び未知変数に基づいて振動系の伝達関数を演算する処理をコンピュータに実行させる。伝達関数は伝達率とは異なりシステム極(共振点)の情報が含まれており、共振点をずらす(例えば上げる)ための弾性係数及び減衰係数の設計に利用することができる。
上記の説明では、観測変数d2θb(k)/dt2,d2θe(k)/dt2,d2θm(k)/dt2,d2θw(k)/dt2,d2w(k)/dt2,d2v(k)/dt2,d2b(k)/dt2に基づいて、未知変数τb(k),τe(k),τm(k),τds(k),Fd(k),Fs(k),Fb(k)を推定する例について説明した。ただし、観測変数及び未知変数については、H1が列フルランクとなる条件を満たせば、上記に説明したもの以外であってもよい。例えば観測変数として、d2θb/dt2,d2θe/dt2,τe,d2θw/dt2,d2w/dt2,d2v/dt2,d2b/dt2を観測変数取得部71で取得することも可能である。その場合、xunknownは以下の(47)式で表され、xmeasuredは以下の(48)式で表され、H1は以下の(49)式で表され、H2は以下の(50)式で表される。(49)式で表されるH1のランクも7でH1の列の数m2=7に等しく、H1が列フルランクとなるため、(48)式のxmeasured、(49)式のH1、及び(50)式のH2を用いて(22)式により未知変数τb(k),d2θm/dt2,τm(k),τds(k),Fd(k),Fs(k),Fb(k)を推定することができる。
Figure 0006260477
また、原理モデルの他の例を図5に示す。図5の原理モデルでは、図3の原理モデルと比較して、車体11とパワートレインブロック12が連結されているとともに、サブフレーム18が車体11、パワートレインブロック12、及び駆動輪15と連結されている。図5の原理モデルを用いて、車体11とサブフレーム18間の車両前後方向伝達力Fsf(k)、車体11とパワートレインブロック12間の車両前後方向伝達力Frod(k)、及び車体11の車両前後方向慣性力を算出した結果を図6に示し、駆動輪15と路面間の車両前後方向駆動力Fd(k)、サブフレーム18と駆動輪15間の車両前後方向伝達力Fs(k)、パワートレインブロック12とサブフレーム18間の車両前後方向伝達力Fb(k)、及びサブフレーム18の車両前後方向慣性力を算出した結果を図7に示す。
以上の実施形態では、振動系が車両10である例について説明したが、本実施形態は車両以外の振動系に対しても適用可能である。
以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
10 車両、11 車体、12 パワートレインブロック、13 エンジン、14 変速機、15 駆動輪、22,23,24,25 角加速度センサ、31,32,35 並進加速度センサ、70 振動解析装置、71 観測変数取得部、72 設定定数記憶装置、73 未知変数推定部、74 パラメータ推定部、75 伝達関数演算部。

Claims (4)

  1. 複数の振動要素を有する振動系の振動解析装置であって、
    各振動要素の加速度、振動系の加振力、及び各振動要素を伝わる伝達力の変数のうち、いずれか複数を観測変数として取得する観測変数取得部と、
    複数の振動要素間の接続関係を表して振動系をモデル化した場合における各振動要素の運動方程式を用いて、前記変数のうち観測変数以外の未知変数を、観測変数取得部で取得された観測変数に基づいて推定する未知変数推定部と、
    を備え
    未知変数に関わる列ベクトルをx unknown 、観測変数に関わる列ベクトルをx measured
    とし、前記運動方程式を行列H 1 ,H 2 を用いて、
    Figure 0006260477
    で表した場合に、観測変数取得部は、行列H 1 が列フルランクになる条件を満たすように観測変数を取得する、振動解析装置。
  2. 請求項1に記載の振動解析装置であって、
    振動要素を伝わる伝達力に基づいて振動要素間の弾性係数及び減衰係数を推定するパラメータ推定部を備える、振動解析装置。
  3. 請求項1又は2に記載の振動解析装置であって、
    観測変数取得部は、各振動要素の加速度を観測変数として取得し、
    未知変数推定部は、観測変数取得部で取得された各振動要素の加速度に基づいて、振動系の加振力及び各振動要素を伝わる伝達力を未知変数として推定する、振動解析装置。
  4. 複数の振動要素を有する振動系の振動解析方法であって、
    各振動要素の加速度、振動系の加振力、及び各振動要素を伝わる伝達力の変数のうち、いずれか複数を観測変数として取得する観測変数取得処理と、
    複数の振動要素間の接続関係を表して振動系をモデル化した場合における各振動要素の運動方程式を用いて、前記変数のうち観測変数以外の未知変数を、観測変数取得処理で取得された観測変数に基づいて推定する未知変数推定処理と、
    を含
    未知変数に関わる列ベクトルをx unknown 、観測変数に関わる列ベクトルをx measured
    とし、前記運動方程式を行列H 1 ,H 2 を用いて、
    Figure 0006260477
    で表した場合に、観測変数取得部は、行列H 1 が列フルランクになる条件を満たすように観測変数を取得する、振動解析方法。
JP2014139895A 2014-07-07 2014-07-07 振動解析装置及び振動解析方法 Active JP6260477B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014139895A JP6260477B2 (ja) 2014-07-07 2014-07-07 振動解析装置及び振動解析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014139895A JP6260477B2 (ja) 2014-07-07 2014-07-07 振動解析装置及び振動解析方法

Publications (2)

Publication Number Publication Date
JP2016017808A JP2016017808A (ja) 2016-02-01
JP6260477B2 true JP6260477B2 (ja) 2018-01-17

Family

ID=55233126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014139895A Active JP6260477B2 (ja) 2014-07-07 2014-07-07 振動解析装置及び振動解析方法

Country Status (1)

Country Link
JP (1) JP6260477B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094805A (ja) * 2017-03-08 2020-06-18 株式会社日立製作所 振動騒音問題要因推定システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4028562B2 (ja) * 2005-08-26 2007-12-26 本田技研工業株式会社 振動・音圧伝達特性解析装置及び方法
JP4967981B2 (ja) * 2007-10-16 2012-07-04 トヨタ自動車株式会社 車両の振動解析方法及び装置
JP5282976B2 (ja) * 2009-10-06 2013-09-04 スズキ株式会社 寄与度解析方法及び装置
JP6159954B2 (ja) * 2013-11-12 2017-07-12 大成建設株式会社 連結部材の特性評価方法

Also Published As

Publication number Publication date
JP2016017808A (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
JP5226437B2 (ja) 路面平坦性測定装置
JP6090336B2 (ja) 車両の振動解析方法及び振動解析装置
JP5912415B2 (ja) ゴルフスイング解析装置およびゴルフスイング解析方法
JP4967981B2 (ja) 車両の振動解析方法及び装置
CN109791094A (zh) 用于高效的载荷识别的方法和系统
JP2013216278A (ja) 接地荷重推定装置
JP5493373B2 (ja) 伝達経路毎の成分を算定するための方法
CN106644519A (zh) 一种车辆垂向动力学模型参数辨识的方法及装置
JP2016002844A (ja) 車両のばね上−ばね下相対速度推定装置
JP5751241B2 (ja) 車両操舵装置及びプログラム
JP6260477B2 (ja) 振動解析装置及び振動解析方法
JP6238294B2 (ja) 積載部の外力算出方法およびその装置
Jin et al. Theoretical calculation and experimental analysis of the rigid body modes of powertrain mounting system
JP2019018773A (ja) サスペンションの制御システム
JP6535208B2 (ja) 振動解析モデルの構造同定装置及びその同定方法
JP6589428B2 (ja) 重心高推定装置
Lugo et al. Test-driven full vehicle modelling for ADAS algorithm development
JP5494047B2 (ja) 車体振動の評価を行うシャシーダイナモメータシステムおよび車体振動の評価方法
CN114096454B (zh) 推定装置、推定方法、及存储介质
JP6630203B2 (ja) 変位計測装置
JP6062642B2 (ja) 伝達力調整治具、および、伝達力調整治具を用いたタイロッドの試験装置、伝達力調整治具を用いたタイロッドの試験システム、ならびに、タイロッドの試験方法
JP6835034B2 (ja) 自動車車体の特性試験方法
US10890499B2 (en) System and method for predicting strain power spectral densities of light machine structure
Tcherniak Application of Transmissibility Matrix method to structure borne path contribution analysis
JP2021039513A (ja) 車両特性最適化装置、車両特性最適化方法及びプログラム

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6260477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150