JP6229474B2 - 半導体レーザ装置、光アンプおよび判定方法 - Google Patents

半導体レーザ装置、光アンプおよび判定方法 Download PDF

Info

Publication number
JP6229474B2
JP6229474B2 JP2013258689A JP2013258689A JP6229474B2 JP 6229474 B2 JP6229474 B2 JP 6229474B2 JP 2013258689 A JP2013258689 A JP 2013258689A JP 2013258689 A JP2013258689 A JP 2013258689A JP 6229474 B2 JP6229474 B2 JP 6229474B2
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
wavelength
unit
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013258689A
Other languages
English (en)
Other versions
JP2015115556A (ja
Inventor
尾中 美紀
美紀 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013258689A priority Critical patent/JP6229474B2/ja
Priority to US14/537,438 priority patent/US20150171596A1/en
Priority to CN201410721355.XA priority patent/CN104713704A/zh
Publication of JP2015115556A publication Critical patent/JP2015115556A/ja
Priority to US15/285,821 priority patent/US20170025817A1/en
Application granted granted Critical
Publication of JP6229474B2 publication Critical patent/JP6229474B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Description

本発明は、半導体レーザ装置、光アンプおよび判定方法に関する。
近年、FTTH(Fiber To The Home)サービス等の高速なインターネットアクセスサービスが普及している。FTTHサービスにおいて、たとえば一本の光ファイバを複数のユーザで共有するPON(Passive Optical Network)が知られている。また、海底ケーブルシステムにおいて、所定波長帯を透過する光フィルタを用いて、半導体レーザの光波長を監視する装置が知られている(たとえば、下記特許文献1参照。)。
特開平10−9961号公報
しかしながら、上述した従来技術では、半導体レーザや半導体光増幅器等の半導体光デバイスが急激に劣化して動作しなくなる頓死の予兆を早期に予測することは困難であるという問題がある。
1つの側面では、本発明は、半導体光デバイスの頓死を早期に予測することができる半導体レーザ装置、光アンプおよび判定方法を提供することを目的とする。光デバイスの一例としては、ファブリペロー型半導体レーザ、VCSEL(Vertical Cavity Surface Emitting Laser:垂直共振器面発光レーザ)、0.98[μm]励起レーザ、SOA(Semiconductor Optical Amplifier:半導体光増幅器)などがある。さらに具体的には、頓死という故障モードを発生させやすいと一般的に言われている活性層にAlを含む場合(たとえばAlGaAsやAlGaInAs)や活性層の材料がGaAsの場合に当該発明を適用するのが好ましい。
上述した課題を解決し、目的を達成するため、本発明の一側面によれば、活性層にアルミまたはヒ素ガリウムを含む半導体レーザからの出射光の波長の短波長側への移動を検出し、前記出射光の波長の短波長側への移動の検出結果に基づいて前記半導体レーザの頓死の予兆を判定する半導体レーザ装置、光アンプおよび判定方法が提案される。
また、本発明の別の側面によれば、活性層にアルミまたはヒ素ガリウムを含む半導体光増幅器からの自然放出光の波長の短波長側への移動を検出し、前記自然放出光の波長の短波長側への移動の検出結果に基づいて前記半導体光増幅器の頓死の予兆を判定する光アンプおよび判定方法が提案される。
本発明の一側面によれば、半導体光デバイスの頓死を早期に予測することができるという効果を奏する。
図1Aは、実施の形態1にかかる半導体レーザ装置の一例を示す図である。 図1Bは、図1Aに示した半導体レーザ装置における光および電気の流れの一例を示す図である。 図1Cは、図1Aに示した半導体レーザ装置の変形例を示す図である。 図1Dは、図1Cに示した半導体レーザ装置における光および電気の流れの一例を示す図である。 図1Eは、実施の形態1にかかる光アンプの一例を示す図である。 図1Fは、図1Eに示した光アンプにおける光および電気の流れの一例を示す図である。 図1Gは、図1Eに示した光アンプの変形例を示す図である。 図1Hは、図1Gに示した光アンプにおける光および電気の流れの一例を示す図である。 図1Iは、実施の形態1にかかる光アンプの他の例(半導体光増幅器)を示す図である。 図1Jは、図1Iに示した光アンプ(半導体光増幅器)における光および電気の流れの一例を示す図である。 図1Kは、図1Iに示した光アンプの変形例を示す図である。 図1Lは、図1Kに示した光アンプにおける光および電気の流れの一例を示す図である。 図2Aは、実施の形態2にかかる判定装置の一例を示す図である。 図2Bは、図2Aに示した判定装置における光および電気の流れの一例を示す図である。 図2Cは、実施の形態2にかかる判定装置の変形例を示す図である。 図2Dは、図2Cに示した判定装置における光および電気の流れの一例を示す図である。 図3Aは、光フィルタの波長透過特性の一例を示す図である。 図3Bは、光フィルタの波長透過特性の変形例を示す図である。 図4Aは、GaInAsP系の結晶層を有するLDにおけるエネルギバンドギャップ形状の一例を示す図である。 図4Bは、AlGaInAs系の結晶層を有するエネルギバンドギャップ形状における特性の一例を示す図である。 図4Cは、半導体レーザの一例を示す図である。 図5Aは、結晶欠陥と波長シフトの因果関係の一例を示す図である。 図5Bは、活性層のキャリア密度の増加と波長シフトの因果関係の一例を示す図(その1)である。 図5Cは、活性層のキャリア密度の増加と波長シフトの因果関係の一例を示す図(その2)である。 図5Dは、LDの活性層に生じるダークラインの一例を示す図である。 図6は、発振波長のシフトの一例を示す図である。 図7Aは、初期状態の発振光と光フィルタの波長透過特性との関係の一例を示す図である。 図7Bは、初期状態の発振光と光フィルタの波長透過特性との関係の他の例を示す図である。 図8は、波長シフト時の透過率の変化の一例を示す図である。 図9Aは、波長シフトによる第1PDによる受光パワーの低下の一例を示す図である。 図9Bは、発振波長のシフトに対する各部の特性の一例を示す図である。 図10は、PDのダイナミックレンジの一例を示す図である。 図11は、時間経過による発振波長の変化の一例を示す図(その1)である。 図12は、時間経過による発振波長の変化の一例を示す図(その2)である。 図13は、判定装置による処理の一例を示すフローチャートである。 図14Aは、判定装置を適用した通信システムの一例を示す図である。 図14Bは、図14Aに示した通信システムにおける光および電気の流れの一例を示す図である。 図15Aは、OLTの変形例1を示す図である。 図15Bは、OLTの変形例2を示す図である。 図16Aは、実施の形態3にかかる光アンプの一例を示す図である。 図16Bは、図16Aに示した光アンプにおける光および電気の流れの一例を示す図である。 図17は、駆動電流に対する発振波長の温度ごとの特性の一例を示す図である。 図18は、時間経過によるPD受光パワーの変化と発振波長との関係の一例を示す図である。 図19Aは、LDを切り替え可能なLDチップの一例を示す図である。 図19Bは、図19Aに示したLDチップの構成における光および電気の流れの一例を示す図である。 図19Cは、図19Aに示したLDチップの変形例を示す図である。 図19Dは、図19Cに示したLDチップの構成における光および電気の流れの一例を示す図である。 図20Aは、駆動回路およびLDチップの一例を示す図である。 図20Bは、図20Aに示した駆動回路およびLDチップにおける光および電気の流れの一例を示す図である。 図21Aは、電気スイッチ回路の一例を示す図である。 図21Bは、電気スイッチ回路の切替回路の動作の一例を示す図である。 図22Aは、実施の形態4にかかる光アンプの一例を示す図である。 図22Bは、図22Aに示した光アンプにおける光および電気の流れの一例を示す図である。 図23Aは、実施の形態4にかかる光アンプの変形例を示す図である。 図23Bは、図23Aに示した光アンプにおける光および電気の流れの一例を示す図である。 図24Aは、SOAにおける信号光およびASE光の一例を示す図である。 図24Bは、波長シフト時の透過率の変化の一例を示す図である。
以下に図面を参照して、本発明にかかる半導体レーザ装置、光アンプおよび判定方法の実施の形態を詳細に説明する。
(実施の形態1)
(実施の形態1にかかる半導体レーザ装置)
図1Aは、実施の形態1にかかる半導体レーザ装置の一例を示す図である。図1Bは、図1Aに示した半導体レーザ装置における光および電気の流れの一例を示す図である。図1A,図1Bに示すように、実施の形態1にかかる半導体レーザ装置100は、半導体レーザ110と、判定装置120と、を備える。
半導体レーザ110は、活性層にアルミ(AL)またはヒ素ガリウム(GaAs)を含むLD(Laser Diode:レーザダイオード)である。半導体レーザ110は、入力される駆動電流に応じた光を発振して出射する。
判定装置120は、半導体レーザ110の頓死の予兆を判定する判定装置である。判定装置120には、半導体レーザ110からの出射光が入射される。図1A,図1Bにおいては、半導体レーザ110からの前方出射光が分岐されて判定装置120へ入射される構成を示しているが、半導体レーザ110からの後方出射光(バック光)が判定装置120へ入射される構成としてもよい。
判定装置120は、たとえば、検出部121と、判定部122と、を備える。検出部121は、半導体レーザ110からの出射光の波長の、時間経過にともなう短波長側への移動を検出する。そして、検出部121は、検出結果を判定部122へ出力する。
判定部122は、検出部121から出力された検出結果に基づいて、半導体レーザ110の頓死の予兆の有無を判定する。そして、判定部122は、判定結果を出力する。たとえば、判定部122は、半導体レーザ装置100の保守者に対して判定結果を出力する。または、判定部122は、たとえば半導体レーザ110の制御回路などへ判定結果を出力してもよい。
また、判定装置120は、半導体レーザ110とは異なる装置内に設けられていてもよい。たとえば、判定装置120は、半導体レーザ110によって送信された信号光を中継する中継装置や、半導体レーザ110によって送信された信号光を受信する光受信装置に設けられていてもよい。
図1Cは、図1Aに示した半導体レーザ装置の変形例を示す図である。図1Dは、図1Cに示した半導体レーザ装置における光および電気の流れの一例を示す図である。図1C,図1Dにおいて、図1A,図1Bと同様の構成については同一の符号を付して説明を省略する。図1C,図1Dに示すように、半導体レーザ装置100において、半導体レーザ110からの後方出射光(バック光)が判定装置120へ入射される構成としてもよい。これにより、半導体レーザ110の前方出射光(フロント光)を分岐しなくても短波シフトをモニタすることが可能になる。
(実施の形態1にかかる光アンプ)
図1Eは、実施の形態1にかかる光アンプの一例を示す図である。図1Fは、図1Eに示した光アンプにおける光および電気の流れの一例を示す図である。図1E,図1Fにおいて、図1A,図1Bに示した部分と同様の部分については同一の符号を付して説明を省略する。図1E,図1Fに示すように、実施の形態1にかかる光アンプ130は、半導体レーザ110と、判定装置120と、光増幅媒体131(Optical Gain Medium)と、を備える。
光増幅媒体131は、光アンプ130への入射光と、半導体レーザ110からの出射光と、を通過させることで、光アンプ130への入射光を増幅して出射する光増幅媒体である。光増幅媒体131は、たとえばEDF(Erbium Doped Fiber:エルビウム添加ファイバ)である。
図1E,図1Fは、光アンプ130への入射光と、半導体レーザ110からの出射光と、が合波されて光増幅媒体131の前段から入射される前方励起の構成を示している。これに対して、たとえば、光アンプ130への入射光は光増幅媒体131の前段から入射し、半導体レーザ110からの出射光が光増幅媒体131の後段から入射される後方励起の構成としてもよい。または、前方励起および後方励起を組み合わせた双方向励起の構成としてもよい。
図1Gは、図1Eに示した光アンプの変形例を示す図である。図1Hは、図1Gに示した光アンプにおける光および電気の流れの一例を示す図である。図1G,図1Hにおいて、図1E,図1Fと同様の構成については同一の符号を付して説明を省略する。図1G,図1Hに示すように、光アンプ130において、半導体レーザ110からの後方出射光(バック光)が判定装置120へ入射される構成としてもよい。これにより、半導体レーザ110の前方出射光(フロント光)を分岐しなくても短波シフトをモニタすることが可能になる。
(実施の形態1にかかる光アンプの他の例)
図1Iは、実施の形態1にかかる光アンプの他の例(半導体光増幅器)を示す図である。図1Jは、図1Iに示した光アンプ(半導体光増幅器)における光および電気の流れの一例を示す図である。図1I,図1Jにおいて、図1A,図1Bに示した部分と同様の部分については同一の符号を付して説明を省略する。図1I,図1Jに示すように、実施の形態1にかかる光アンプ150は、半導体光増幅器151と、判定装置120と、を備える。
半導体光増幅器151は、たとえば活性層にアルミまたはヒ素ガリウムを含む半導体光増幅器である。半導体光増幅器も半導体レーザと同様にレーザ誘導放出という原理が用いられているため、半導体レーザと同様に頓死のリスクはある。さらにその活性層にアルミが含まれていると、半導体レーザと同様に高温時の効率(駆動電流 対 光出力パワー)を向上させることができるが、アルミは酸素と結合しやすいために結晶欠陥の増長を加速させる要因にもなるため、頓死のリスクが増える。
たとえば、半導体光増幅器151は、SOAである。半導体光増幅器151は、入射された光を、入力される駆動電流に応じて増幅して出射する。また、半導体光増幅器151からはASE(Amplified Spontaneous Emission:自然放出)光が出射される。
判定装置120は、半導体光増幅器151の頓死の予兆を判定する判定装置である。判定装置120には、半導体光増幅器151からのASE光が入射される。図1I,図1Jにおいては、半導体光増幅器151からの前方出射光が分岐されて判定装置120へ入射される構成を示しているが、半導体光増幅器151からの後方出射光(バック光)が判定装置120へ入射される構成としてもよい。
検出部121は、半導体光増幅器151からのASE光の波長の短波長側への移動を検出する。判定部122は、検出部121から出力された検出結果に基づいて、半導体光増幅器151の頓死の予兆の有無を判定する。
図1Kは、図1Iに示した光アンプの変形例を示す図である。図1Lは、図1Kに示した光アンプにおける光および電気の流れの一例を示す図である。図1K,図1Lにおいて、図1I,図1Jに示した部分と同様の部分については同一の符号を付して説明を省略する。図1K,図1Lに示すように、光アンプ150において、半導体光増幅器151からの後方出射光(バック光)が判定装置120へ入射される構成としてもよい。これにより、半導体光増幅器151の前方出射光(フロント光)を分岐しなくても短波シフトをモニタすることが可能になる。
このように、実施の形態1によれば、たとえば活性層にアルミまたはヒ素ガリウムを含む半導体レーザ110や半導体光増幅器151について、頓死の前兆として早期に現れる出力波長の短波長側へのシフトを検出することができる。これにより、半導体レーザ110や半導体光増幅器151などの半導体光デバイスの頓死を早期に予測することが可能になる。半導体光デバイスの頓死を早期に予測することが可能になることで、たとえば、頓死前の機器の切り替え等が可能になる。
(波長移動の検出方法の一例)
検出部121は、たとえば、出射光(またはASE光)の波長の初期状態からの短波長側への移動量に応じた値を取得する。波長の移動量に応じた値は、たとえば、波長の移動量を直接的または間接的に示す値であってもよいし、波長の移動量に応じて増減する値であってもよい。これにより、出射光(またはASE光)の波長が初期状態から短波長側へある程度移動した場合に、半導体レーザ110や半導体光増幅器151の頓死の予兆があると判定することができる。
また、検出部121は、出射光(またはASE光)の波長の単位時間あたりの短波長側への移動量に応じた値を取得してもよい。これにより、出射光(またはASE光)の波長が短波長側へ急激に移動した場合に、半導体レーザ110や半導体光増幅器151の頓死の予兆があると判定することができる。
また、判定装置120は、半導体レーザ110や半導体光増幅器151の温度を示す情報を取得する取得部を備えてもよい。そして、検出部121は、取得部によって取得された温度の情報に基づいて補正した、出射光(またはASE光)の波長の短波長側への移動を検出する。これにより、半導体レーザ110や半導体光増幅器151の温度の変動による出射光(またはASE光)の波長の移動があっても、アルミ酸化や結晶欠陥が増長しやすい活性層材料等に起因する、頓死の予兆としての波長の短波長側への移動を精度よく検出することができる。これにより、頓死の予兆を精度よく判定することができる。
また、判定装置120は、半導体レーザ110や半導体光増幅器151の駆動電流や温度の大きさを示す情報を取得する取得部を備えてもよい。そして、検出部121は、取得部によって取得された駆動電流や温度の大きさの情報に基づいて補正した、出射光(またはASE光)の波長の短波長側への移動を検出する。これにより、半導体レーザ110や半導体光増幅器151の駆動電流や温度の大きさの変動による出射光(またはASE光)の波長の移動があっても、アルミ酸化等に起因する、頓死の予兆としての波長の短波長側への移動を精度よく検出することができる。これにより、頓死の予兆を精度よく判定することができる。
(頓死の予兆の検出時の動作について)
また、たとえば半導体レーザ装置100や光アンプ130は、半導体レーザ110を複数備えてもよい。複数の半導体レーザ110は、それぞれ別のチップとして形成されていてもよいし、1つのチップに複数の電極および活性層を設けることによって形成されてもよい。そして、半導体レーザ装置100や光アンプ130は、判定部122によって頓死の予兆があると判定された場合に、複数の半導体レーザ110のうちの駆動する半導体レーザを切り替える制御部を備えてもよい。
これにより、複数の半導体レーザ110のうちの使用している半導体レーザに頓死の予兆を検出したら、使用する半導体レーザ110を切り替え、光信号の送信が途切れること(システムダウン)を回避することができる。ただし、半導体レーザ装置100や光アンプ130は、このような冗長構成に限らず、半導体レーザ110を一つ備える構成であってもよい。
また、光アンプ150も同様に、半導体光増幅器151を複数備えてもよい。複数の半導体光増幅器151は、それぞれ別のチップとして形成されていてもよいし、1つのチップに複数の電極および活性層を設けることによって形成されてもよい。そして、光アンプ150は、判定部122によって頓死の予兆があると判定された場合に、複数の半導体光増幅器151のうちの駆動する半導体光増幅器を切り替える制御部を備えてもよい。
これにより、複数の半導体光増幅器151のうちの使用している半導体光増幅器に頓死の予兆がある場合に、使用する半導体光増幅器を切り替え、光信号の送信が途切れること(システムダウン)を回避することができる。ただし、光アンプ150は、このような冗長構成に限らず、半導体光増幅器151を一つ備える構成であってもよい。
(他の半導体光デバイスについて)
活性層にアルミを含み、または活性層の材料がヒ素ガリウムである場合のLDやSOAの頓死の予兆の判定について説明したが、上述した判定方法の対象の半導体光デバイスは、活性層にアルミまたはヒ素ガリウムを含むLDやSOAに限らない。たとえば、上述した判定方法は、経年劣化によって結晶周期構造を乱す要因となる材料を活性層に含み、結晶周期構造の乱れに応じて出力光の波長が短波長側にシフトする半導体光デバイスに用いることができる。
(実施の形態2)
(実施の形態2にかかる判定装置)
図2Aは、実施の形態2にかかる判定装置の一例を示す図である。図2Bは、図2Aに示した判定装置における光および電気の流れの一例を示す図である。図2A,図2Bに示すように、実施の形態2にかかる判定装置200は、分岐器201と、光フィルタ202と、第1PD203と、第2PD204と、時系列データ格納部205と、短波側シフト演算部206と、判定部207と、を備える。
図1A〜図1Lに示した判定装置120は、たとえば判定装置200によって実現することができる。図1A〜図1Lに示した検出部121は、たとえば時系列データ格納部205および短波側シフト演算部206によって実現することができる。図1A〜図1Lに示した判定部122は、たとえば判定部207によって実現することができる。
判定装置200は、たとえば活性層にアルミまたはヒ素ガリウムを含むLDの頓死の予兆の有無を判定する判定装置である。分岐器201には、判定装置200による判定対象のLDの発振光(LD発振光)が入力される。分岐器201は、入力された光を分岐し、分岐した各光をそれぞれ光フィルタ202および第2PD204へ出力する。
光フィルタ202は、分岐器201から出力された光を所定の波長透過特性で透過させ、透過させた光を第1PD203へ出力する。光フィルタ202の波長透過特性は、判定対象のLDの初期状態における発振波長と、初期状態における発振波長より短い波長と、において異なる透過率となる波長透過特性(たとえば図3A参照)である。光フィルタ202は、たとえば誘電体多層膜やファイバグレーティングにより実現することができる。光フィルタ202には、たとえば、一般的な帯域(たとえば1[nm])のバンドパスフィルタに比べて広帯域(たとえば40[nm])のフィルタを用いることができる。
第2PD204(Phase Detector:位相検波器)は、分岐器201から出力された光を受光し、受光した光のパワーに応じた電気信号を時系列データ格納部205へ出力する。第1PD203は、光フィルタ202から出力された光を受光し、受光した光のパワーに応じた電気信号を時系列データ格納部205へ出力する。
時系列データ格納部205は、第1PD203および第2PD204から出力される各電気信号の比の時系列データを格納する。第1PD203および第2PD204から出力される各電気信号の比は、判定装置200による判定対象のLDの発振波長の短波長側へのシフト量によって変化する。
短波側シフト演算部206は、時系列データ格納部205に格納された時系列データに基づいて、判定装置200による判定対象のLDの発振波長の短波長側へのシフト状態の演算を行う。シフト状態の演算は、たとえば、シフト量の初期状態からの変動量に応じた値の算出や、シフト量の単位時間あたりの変化量に応じた値の演算などである。そして、短波側シフト演算部206は、シフト量の演算結果を判定部207へ出力する。
判定部207は、短波側シフト演算部206から出力された演算結果に基づいて、判定装置200による判定対象のLDの頓死の予兆の有無を判定する。そして、判定部207は、LDの頓死の予兆があると判定した場合は、たとえば警報を出力する。
たとえば、判定部207は、単位時間あたりの短波長側へのシフト量に応じた値が所定値TH1を超えると、LDの頓死の予兆があると判定する。また、判定部207は、短波長側へのシフト量に応じた値が初期値より所定値TH2(たとえばTH2<TH1)を超えると、LDの頓死の予兆があると判定する。
図2A,図2Bに示す判定装置200によれば、所定の波長透過特性を有する光フィルタ202を用いることによりLDの発振波長の短波長側へのシフトを検出し、検出結果に基づいてLDの頓死の予兆を判定することができる。
また、光フィルタ202を透過させたLDの出射光と、光フィルタ202を透過させないLDの出射光と、の各受光パワーの比較結果を用いることができる。これにより、LDの温度や駆動電流等が変動しても、LDの発振波長の短波長側へのシフトを精度よく検出することができる。このため、LDの頓死の予兆を精度よく判定することができる。
時系列データ格納部205、短波側シフト演算部206および判定部207は、たとえばデジタル回路によって実現することができる。デジタル回路には、たとえばDSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)などを用いることができる。
図2Cは、実施の形態2にかかる判定装置の変形例を示す図である。図2Dは、図2Cに示した判定装置における光および電気の流れの一例を示す図である。図2C,図2Dにおいて、図2A,図2Bに示した部分と同様の部分については同一の符号を付して説明を省略する。図2C,図2Dに示すように、実施の形態2にかかる判定装置200は、図2A,図2Bに示した分岐器201および第2PD204を省いた構成としてもよい。
図2C,図2Dに示す構成においては、光フィルタ202には、判定装置200による判定対象のLDの発振光が入力される。また、時系列データ格納部205は、第1PD203から出力される電気信号の時系列データを格納する。第1PD203から出力される電気信号は、判定装置200による判定対象のLDの発振波長の短波長側へのシフト量によって変化する。
図2C,図2Dに示す判定装置200においても、所定の波長透過特性を有する光フィルタ202を用いることによりLDの発振波長の短波長側へのシフトを検出し、検出結果に基づいてLDの頓死の予兆を判定することができる。
(光フィルタの波長透過特性)
図3Aは、光フィルタの波長透過特性の一例を示す図である。図3Aにおいて、横軸は波長[nm]を示し、縦軸は抑圧比[dB]を示す。図2Aに示した光フィルタ202は、たとえば図3Aに示す波長透過特性300を有する。波長透過特性300は、波長ごとの抑圧比(透過率)を示す。
図3Aに示す例では、波長透過特性300は、45[nm]幅の波長帯域311において、短波長側ほど透過率が連続的に低くなる特性である。したがって、第1PD203における受光パワーは、LDの発振波長が短波長側へシフトするほど小さくなる。
このため、たとえば図2A,図2Bの構成においては、第2PD204の受光パワーに対する第1PD203の受光パワーの比の低下をモニタすることにより、LDの発振波長の短波長側へのシフトを検出することができる。また、図2C,図2Dの構成においては、第1PD203の受光パワーの低下をモニタすることにより、LDの発振波長の短波長側へのシフトを検出することができる。
なお、波長帯域311の幅は、LDの発振波長の固体バラツキ分(たとえば30[nm])、短波長側へのシフト分(たとえば10[nm])および温度や電流依存分(たとえば3[nm])を勘案して決定することができる(たとえば45[nm]以上)。
また、短波長側への波長シフトの検出精度をよくするために、波長帯域311における抑圧比を大きくしてもよい。たとえば、1[nm]の波長シフトを検出する場合は抑圧比を10[dB]以上としてもよい。
図3Bは、光フィルタの波長透過特性の変形例を示す図である。図3Bにおいて、図3Aに示した部分と同様の部分については同一の符号を付して説明を省略する。図3Bに示すように、波長透過特性300は、45[nm]幅の波長帯域311において、短波長側ほど透過率が連続的に高くなる特性であってもよい。この場合は、第1PD203における受光パワーは、LDの発振波長が短波長側へシフトするほど大きくなる。
このため、たとえば図2A,図2Bの構成においては、第2PD204の受光パワーに対する第1PD203の受光パワーの比の増加をモニタすることにより、LDの発振波長の短波長側へのシフトを検出することができる。また、図2C,図2Dの構成においては温度や駆動電流の条件や経年劣化などに配慮できない。このため、比較的に検出精度は劣るものの、頓死予兆の短波シフト量の判定基準値を大きめに設定することで、第1PD203の受光パワーの増加をモニタすることにより、LDの発振波長の短波長側へのシフトを検出することはもちろん可能である。
図3A,図3Bに示したように、光フィルタ202は、LDの初期の波長帯域から短い波長帯域にかけて、短波長になるほど透過率が増加または低下に変化する波長透過特性を有する。これにより、光フィルタ202を透過した光のパワーから、LDの発振波長のシフトの大きさを判定することができる。
ただし、光フィルタ202は、少なくとも、LDの出射光の初期の波長帯域での透過率と、その初期の波長帯域より短い波長帯域での透過率と、が異なっていればよい。これにより、光フィルタ202を透過した光のパワーから、LDの発振波長のシフトの有無を判定することができる。
以下、光フィルタ202の波長透過特性が図3Aに示した波長透過特性300である場合について説明する。
(LDにおけるエネルギバンドギャップ形状)
図4Aは、GaInAsP系の結晶層を有するLDにおけるエネルギバンドギャップ形状の一例を示す図である。図4Bは、AlGaInAs系の結晶層を有するエネルギバンドギャップ形状における特性の一例を示す図である。
図4A,図4Bにおいて、エネルギバンドギャップΔEgは、LDにおけるエネルギバンドギャップである。エネルギバンドギャップΔEgは、LDにおける価電子帯の励起エネルギE1と伝導帯の励起エネルギE2との差(E2−E1)である。また、エネルギバンドギャップΔEgは、LDの発振波長に対応する。図4A,図4Bに示す各例では、エネルギバンドギャップΔEgが同じとなっている。
図4A,図4Bにおいて、量子井戸の深さΔEcは、LDにおける量子井戸の深さである。活性層材料にアルミを含まないLDにおいては、図4Aに示すように、量子井戸の深さが、たとえばΔEc=0.4ΔEgとなる。活性層材料にアルミまたはヒ素ガリウムを含むLDにおいては、図4Bに示すように、量子井戸の深さが、たとえばΔEc=0.72ΔEgとなる。
このように、活性層材料にアルミ(Al)を含めることにより、電子の閉じ込めが大きくなり、高温における量子井戸からの電子リークを抑制することができる。このため、温度特性に優れたLDを実現することができる。また、ホール側のバンドオフセットが小さいため有効質量の大きいホールの不均一注入が起こりにくくなる。このため、高速変調に適したLDを実現することができる。
図4Cは、半導体レーザの一例を示す図である。判定装置200による判定対象のLDには、たとえば図4Cに示す半導体レーザ430を用いることができる。半導体レーザ430は、たとえばファブリペロー型半導体レーザである。
ミラー431,432は、半導体レーザ430の両面のミラーである。活性層433は半導体レーザ430の活性層である。共振長Lは、活性層433の共振長であって、ミラー431,432の間隔である。レーザ発振の特性について、たとえば下記(1)式のように示すことができる。
Γ・G = αi+αm …(1)
Γは、半導体レーザ430における光の閉じ込めの割合を示す定数である。Gは、活性層433に注入されているキャリアの密度(キャリア密度)であって、利得に対応する。αiは、半導体レーザ430の活性層433における内部損失である。αmは、半導体レーザ430のミラー431,432における共振ミラー損失である。
半導体レーザ430の活性層433の長手方向について、上記(1)式は下記(2)式のように換算することができる。
Γ・(Gng・Lng+Gok・Lok) = αi・L+αm・L …(2)
Lは、活性層433の共振長Lである。また、L=Lng+Lokである。Lngは、活性層433のうちの結晶が欠陥して光らない部分の長さである。Lokは、活性層433のうちの正常に光っている部分の長さである。Gngは、活性層433のうちの結晶が欠陥してしまった部分の利得である。Gokは、活性層433のうちの正常に光っている部分の利得である。
(結晶欠陥と波長シフトの因果関係)
図5Aは、結晶欠陥と波長シフトの因果関係の一例を示す図である。図5Aに示す符号501〜513は、活性層にアルミまたはヒ素ガリウムを含むLDの活性層における各現象等を示している。まず、アルミ部分の酸化や応力ストレスなどの様々な要因によって結晶欠陥が発生する(符号501)。そして、アルミ部分の酸化や応力ストレスなどの様々な要因によって結晶欠陥が進行(増長および増大)する(符号502)。結晶欠陥の進行(符号502)について、たとえば電流、温度、活性層材料中のアルミ酸化がさらなる加速要因となる。
そして、結晶欠陥の進行(符号502)により、活性層の長手方向にダークライン(DLD:Dark Line Defect:暗線欠陥)が発生したり、活性層の端面損傷(COD:Catastrophic Optical Damage)が発生したりする(符号503)。
ダークラインや端面損傷の発生(符号503)により、活性層内の光吸収が増加する(符号504)。活性層内の光吸収の増加(符号504)により、上記(2)式のGng利得がゼロに近づく(符号505)。このため、上記(2)式の関係から、相対的に利得Gokが増加し(符号506)、活性層のキャリア密度が増加する(符号507)。
また、活性層内の光吸収の増加(符号504)により、上記(1)式の内部損失αiが増加する(符号508)。このため、上記(1)式の関係から、相対的に利得Gが増加し(符号509)、活性層のキャリア密度が増加する(符号507)。
また、ダークラインや端面損傷の発生(符号503)により、端面反射率が低下(ミラー損失が増加)する(符号510)。端面反射率の低下(符号510)により、上記(1)式の共振ミラー損失αmが増加する(符号511)。このため、上記(1)式の関係から、相対的に利得Gが増加し(符号509)、活性層のキャリア密度が増加する(符号507)。
このように、結晶欠陥の発生および進行に伴い、複数の要因によって活性層のキャリア密度が増加する(符号507)。活性層のキャリア密度の増加(符号507)により、等価的にエネルギバンドギャップが増加する(符号512)。エネルギバンドギャップの増加(符号512)により、発振波長が短波側にシフトする(符号513)。
図5Aに示したように、LDにおいては、活性層の結晶欠陥の進行に伴って活性層のキャリア密度が増加し、キャリア密度の増加によって短波長側への波長シフトが発生する。そして、たとえば活性層にアルミが含まれる場合は、アルミの酸化が結晶欠陥の進行の加速要因となる。これは、たとえばLDの端面に露出したアルミ部分が空気に触れるなどの要因により酸化しやすく、アルミ部分が酸化するとアルミ酸化膜が形成され、活性層における結晶構造が崩れるためである。
ただし、この結晶欠陥と波長シフトの因果関係は、活性層にアルミを含む半導体レーザに限らず、たとえば活性層にヒ素ガリウムを含む面発光のVCSELでも同様である。すなわち、活性層にアルミを含まずにヒ素ガリウムを含むVCSELにおいても、結晶欠陥の進行に伴って活性層のキャリア密度が増加し、キャリア密度の増加によって短波長側への波長シフトが発生する。
(活性層のキャリア密度の増加と波長シフトの因果関係)
図5Bは、活性層のキャリア密度の増加と波長シフトの因果関係の一例を示す図(その1)である。図5Cは、活性層のキャリア密度の増加と波長シフトの因果関係の一例を示す図(その2)である。図5Bの電子分布521は、正常品のLDにおける電子の分布を示している。図5Cの電子分布521は、相対的に頓死に至る直前のLDにおける電子の分布を示している。電子分布521は、上準位E2以上のエネルギとなる。
分布中心522は、電子分布521におけるエネルギの平均値である。エネルギバンドギャップΔEgは、LDの基底準位E1と分布中心522との差である。また、エネルギバンドギャップΔEgは、LDの発振波長に対応する。
上述のように、LDは、頓死の前の活性層の欠陥進行により、活性層のキャリア密度が増加する。活性層のキャリア密度が増加すると、すなわち電子分布521がより高いエネルギに広がると、分布中心522が高エネルギ側へシフトし、エネルギバンドギャップΔEgが大きくなる。このため、LDの発振波長が短波長側へシフトする。
(LDの活性層に生じるダークライン)
図5Dは、LDの活性層に生じるダークラインの一例を示す図である。判定装置200による判定対象は、たとえば図5Dに示すLDチップ540とすることができる。LDチップ540は、活性層541にアルミを含むLDチップである。
LDチップ540においては、端面542の損傷の他に、活性層541のアルミ酸化により徐々に広がる非発光部であるダークライン543が発生する。ダークライン543が拡張することにより、LDチップ540の発振波長の短波長側へのシフトが生じる。
ただし、上述のように、活性層にアルミが含まれていなくても、たとえば活性層がヒ素ガリウムである場合(たとえばVCSEL)は、活性層の酸化等によって結晶構造が崩れ、ダークラインが発生し、その応力ひずみにより、活性層の結晶構造が崩れる。このため、光吸収部が生成され、引いては頓死に至るとともに短波長側への波長シフトが生じる。
(発振波長のシフト)
図6は、発振波長のシフトの一例を示す図である。図6において、横軸は波長[nm]を示し、縦軸は光パワー[dBm]および透過率[dB]を示す。スペクトル611は、LDの発振光の初期状態におけるスペクトルを示している。
波長範囲621は、LDの温度、駆動電流、固体ばらつきなどにより生じるLDの発振波長の正常な範囲(発振波長シフト正常範囲)を示している。
たとえばLDの磨耗故障により、LDの発振波長の長波長側へのシフト622が生じ、LDの発振光がスペクトル612,613のようになる。また、LDの活性層におけるアルミ酸化等により、LDの発振波長の短波長側へのシフト623が生じ、LDの発振光がスペクトル614〜616のようになる。
(初期状態の発振光と光フィルタの波長透過特性との関係)
図7Aは、初期状態の発振光と光フィルタの波長透過特性との関係の一例を示す図である。図7Aにおいて、図3Aまたは図6に示した部分と同様の部分については同一の符号を付して説明を省略する。図7Aに示すように、波長透過特性300は、たとえば、LDの発振光の初期状態におけるスペクトル611が、短波長側ほど透過率が連続的に低くなる帯域(たとえば図3Aに示した波長帯域311)に含まれる特性とすることができる。
図7Bは、初期状態の発振光と光フィルタの波長透過特性との関係の他の例を示す図である。図7Bにおいて、図3Aまたは図6に示した部分と同様の部分については同一の符号を付して説明を省略する。図7Bに示すように、波長透過特性300は、たとえば、LDの発振光の初期状態におけるスペクトル611が、短波長側ほど透過率が連続的に低くなる帯域より長波長側のフラットな帯域に含まれる特性とすることができる。
(波長シフト時の透過率の変化)
図8は、波長シフト時の透過率の変化の一例を示す図である。図8において、図7A,図7Bに示した部分と同様の部分については同一の符号を付して説明を省略する。また、図8においては、図7Bに示したように、LDの発振光の初期状態におけるスペクトル611が、波長透過特性300のフラットな帯域に含まれる特性とした場合について説明するが図7Aに示した場合においても同様である。
LDの発振波長が短波長側にシフトすると、LDの発振光はたとえばスペクトル801のようになる。これにより、光フィルタ202におけるLDの発振光の透過率が低くなるため、光フィルタ202から出力される光のパワーを低下させ、時系列データ格納部205に格納される値を変化させることができる。
(波長シフトによる第1PDによる受光パワーの低下)
図9Aは、波長シフトによる第1PDによる受光パワーの低下の一例を示す図である。図9Aにおいて、図3Aに示した部分と同様の部分については同一の符号を付して説明を省略する。図9Aにおいて、横軸は波長[nm]を示し、縦軸は光フィルタ202の抑圧比[dB](透過率)を示す。
横軸の時刻T0〜T4は、T0を初期とする時間経過を示す。スペクトル911〜915は、それぞれ時刻T0〜T4におけるLDの発振光のスペクトルを示す。スペクトル911〜915に示すように、時間経過に伴ってLDの発振波長が短波長側へシフトすると、光フィルタ202における抑圧比(透過率)が徐々に低下する。
図9Bは、発振波長のシフトに対する各部の特性の一例を示す図である。図9Bにおいて、横軸は時間を示す。グラフ921は、判定装置200による判定対象のLDにおける発振波長(LD発振波長)の時間経過による変化を示している。グラフ921に示すように、時刻T0と時刻T1の間において、LDの発振波長の短波長側へのシフトが始まり、時刻T1〜T4によって示す時間経過に伴ってLDの発振波長が徐々に短波長側へシフトしていく場合について説明する。
グラフ922は、第2PD204の受光パワー(第2PD受光パワー)の時間経過による変化を示している。第2PD204が受光する光は、光フィルタ202を経由していないため、グラフ922に示すように、LDの発振波長のシフトによる影響を受けない。ただし、グラフ922に示すように、LDの温度や駆動電流の変動等による第2PD204の受光パワーの低下は生じる場合がある。
グラフ923は、第1PD203の受光パワー(第1PD受光パワー)の時間経過による変化を示している。第1PD203が受光する光は、光フィルタ202を経由しているため、グラフ923に示すようにLDの発振波長のシフトに伴って低下する。
グラフ924は、時系列データ格納部205によって格納される、第2PD204の受光パワーに対する第1PD203の受光パワーの比(第1PD受光パワー/第2PD受光パワー)の時間経過による変化を示している。LDの発振波長の短波長側へのシフトに対して、第2PD204の受光パワーは影響を受けず、第1PD203の受光パワーは低下する。
このため、グラフ924に示すように、LDの発振波長のシフトがない期間においてはLDの温度や駆動電流の変動等があっても、第2PD204の受光パワーに対する第1PD203の受光パワーの比は一定である。また、LDの発振波長が短波長側へシフトすると、第2PD204の受光パワーに対する第1PD203の受光パワーの比が低下する。このため、第2PD204の受光パワーに対する第1PD203の受光パワーの比を用いることにより、LDの発振波長の短波長側のシフトを検出することができる。
(PDのダイナミックレンジ)
図10は、PDのダイナミックレンジの一例を示す図である。図10において、縦軸は第1PD203および第2PD204における受光パワー[dBm]を示している。ダイナミックレンジ1011は、たとえば加入者系ポート(距離)に応じた受光パワー変動分のダイナミックレンジ(たとえば15[dB])を示している。ダイナミックレンジ1012は、波長シフトによる受光パワー変動分のダイナミックレンジ(たとえば10[dB])を示している。
第1PD203および第2PD204には、たとえばダイナミックレンジ1011とダイナミックレンジ1012を合わせたダイナミックレンジを有するPDを用いることができる。たとえば、一般的な30[dB]程度のPDを第1PD203および第2PD204に用いることにより、ダイナミックレンジ1011,1012をカバーし、波長シフトによる受光パワー変動も含めてLDのパワーをモニタすることができる。
(時間経過による発振波長の変化)
図11は、時間経過による発振波長の変化の一例を示す図(その1)である。図11において、横軸は時間の経過を示し、縦軸はLDの発振波長[nm]および光出力[mW]を示している。図11においては、活性層にアルミまたはヒ素ガリウムを含むLDが運用開始から7年目で頓死する場合について説明する。
光出力変化1111は、活性層にアルミまたはヒ素ガリウムを含まないLDの光出力の変化を参考として示している。光出力変化1111に示すように、活性層にアルミまたはヒ素ガリウムを含まないLDの光出力は、アルミ酸化等による頓死がなく、時間経過により徐々に低下する。図11に示す例では、LDの寿命は、運用開始から20年以上となっている。
光出力変化1112は、活性層にアルミまたはヒ素ガリウムを含むLDの光出力の変化を示している。光出力変化1112に示すように、活性層にアルミまたはヒ素ガリウムを含むLDの光出力は、アルミ酸化等による頓死により、図11に示す例では運用開始から7年目で瞬時にゼロとなっている。このため、LDの光出力の低下によるLDの頓死の予測は困難である。
発振波長変化1121は、活性層にアルミまたはヒ素ガリウムを含まないLDの発振波長の変化を参考として示している。発振波長変化1121に示すように、活性層にアルミまたはヒ素ガリウムを含まないLDの発振波長は、時間経過に伴って変化しない。
発振波長変化1122は、活性層にアルミまたはヒ素ガリウムを含むLDの発振波長の変化を示している。発振波長変化1122に示すように、活性層にアルミまたはヒ素ガリウムを含むLDの発振波長は、LDの頓死(図11に示す例では7年目)より前に短波長側にシフトする。このため、LDの発振波長の短波長側へのシフトをモニタすることにより、LDの頓死の予兆を判定することができる。また、アルミ酸化等によるLDの発振波長の短波長側へのシフトは、頓死するLDに特有の現象であり、頓死症状である光出力の劣化より早い時期からモニタ可能である。
(時間経過による発振波長の変化)
図12は、時間経過による発振波長の変化の一例を示す図(その2)である。図12において、横軸は時間の経過を示し、縦軸はLDの発振波長[nm]を示している。図12においては、活性層にアルミまたはヒ素ガリウムを含むLDが運用開始から2年目で頓死する場合と、活性層にアルミまたはヒ素ガリウムを含むLDが運用開始から7年目で頓死する場合と、について説明する。
発振波長変化1211は、活性層にアルミまたはヒ素ガリウムを含まないLDの発振波長の変化を参考として示している。発振波長変化1212は、活性層にアルミまたはヒ素ガリウムを含むLDの、ダークライン(結晶欠陥)が進行しない理想的な場合の発振波長の変化を参考として示している。発振波長変化1211,1212に示す場合は、LDの発振波長の時間経過による変化は小さい。また、LDの寿命はたとえば運用開始から20年以上となる。
発振波長変化1221は、活性層にアルミまたはヒ素ガリウムを含むLDのアルミ部分等が酸化してダークラインが速く進行し、LDが運用開始から2年目で頓死する場合を示している。発振波長変化1222は、活性層にアルミまたはヒ素ガリウムを含むLDのアルミ部分等が酸化してダークラインが遅く進行し、LDが運用開始から7年目で頓死する場合を示している。発振波長変化1223は、活性層にアルミまたはヒ素ガリウムを含むLDのアルミ部分等が酸化する時期は遅いがダークラインが速く進行し、LDが運用開始から7年目で頓死する場合を示している。
たとえば発振波長変化1222の例のように、ダークラインが遅く進行する場合は、初期の発振波長からの短波長側へのシフト量が大きい場合に頓死の予兆があると判定すれば、頓死の予測から頓死までに十分な猶予期間を確保することができる。
これに対して、発振波長変化1221,1223の例のように、ダークラインが速く進行する場合は、初期の発振波長からの短波長側へのシフト量が大きくなってからでは、頓死の予測から頓死までに十分な猶予期間を確保することができない場合がある。
これに対して、判定装置200は、さらに、短時間当たりの波長シフト量が大きい場合に頓死の予兆があると判定することにより、ダークラインが速く進行する場合により早い段階で頓死を予測することができる。このため、頓死の予測から頓死までに十分な猶予期間を確保することができる。
(判定装置による処理)
図13は、判定装置による処理の一例を示すフローチャートである。判定装置200の短波側シフト演算部206および判定部207は、たとえば図13に示す各ステップを繰り返し実行する。まず、短波側シフト演算部206が、時系列データ格納部205に格納された時系列データを取得する(ステップS1301)。
つぎに、短波側シフト演算部206が、ステップS1301によって取得した時系列データに基づいて、判定対象のLDの発振波長の単位時間あたりのシフト量を算出する。そして、判定部207が、短波側シフト演算部206によって算出されたシフト量が所定値TH1以上か否かを判断する(ステップS1302)。
なお、ステップS1302などにおいて算出されるシフト量は、発振波長のシフト量そのものではなく、発振波長のシフト量に応じた量であってもよい。発振波長のシフト量に応じた量は、たとえば、第1PD203の受光パワーや、第2PD204の受光パワーに対する第1PD203の受光パワーの比などである。
ステップS1302において、単位時間あたりのシフト量が所定値TH1以上である場合(ステップS1302:Yes)は、判定部207が、判定対象のLDにおいて頓死の予兆があることを示す警報を出力し(ステップS1303)、一連の処理を終了する。
ステップS1302において、単位時間あたりのシフト量が所定値TH1未満である場合(ステップS1302:No)は、短波側シフト演算部206が、ステップS1301によって取得した時系列データに基づいて、判定対象のLDの発振波長の初期値からのシフト量を算出する。そして、判定部207が、短波側シフト演算部206によって算出されたシフト量に基づいて、判定対象のLDの発振波長の初期値からのシフト量が所定値TH2以上であるか否かを判断する(ステップS1304)。
ステップS1304において、初期値からのシフト量が所定値TH2以上である場合(ステップS1304:Yes)は、判定部207が、判定対象のLDにおいて頓死の予兆があることを示す警報を出力し(ステップS1305)、一連の処理を終了する。初期値からのシフト量が所定値TH2未満である場合(ステップS1304:No)は、判定装置200は、一連の処理を終了する。
また、所定値TH1は、たとえば所定値TH2より小さい値とすることができる。これにより、たとえば図12に示した発振波長変化1222のような急激な波長シフトが生じた場合に、ステップS1303によって早期に警報を出力することができる。
(判定装置を適用した通信システム)
図14Aは、判定装置を適用した通信システムの一例を示す図である。図14Bは、図14Aに示した通信システムにおける光および電気の流れの一例を示す図である。図14A,図14Bに示す光通信システム1400は、OLT(Optical Line Terminal:収容局側端末)と複数のONU(Optical Network Unit:加入者側端末)とがカプラによって接続されたPONシステムである。
図14A,図14Bに示す例では、光通信システム1400は、OLT1410と、ONU1421〜1424(A〜D)と、伝送路1402と、スプリッタ1403と、を含む。光通信システム1400のようなPONシステムにおいては、時間分割多重的にタイムスロットがONU1421〜1424のそれぞれにアサインされ、ONU1421〜1424が定められたタイミングで光信号を送信する。実施の形態2にかかる判定装置200は、たとえばOLT1410に適用することができる。
OLT1410は、LD1411と、光フィルタ1412,1413と、判定装置200と、アイソレータ1414と、制御部1415と、を備える。制御部1415は、たとえばDSPやFPGAなどのデジタル回路によって実現することができる。
LD1411は、たとえば制御部1415の制御にしたがって波長λ1の下り光信号を生成して光フィルタ1412へ出射する。光フィルタ1412は、LD1411から出射された波長λ1の下り光信号を、ポート1416を介してOLT1410から出射する。また、光フィルタ1412は、ポート1416を介してOLT1410へ入射された光のうちの波長λ1以外の光を光フィルタ1413へ出射する。
光フィルタ1413は、光フィルタ1412から出射された光のうちの、たとえば波長λ2の上り光信号を抽出して判定装置200へ出射する。判定装置200は、光フィルタ1413から出射された波長λ2の上り光信号に基づいて、上り光信号を生成したLD(たとえばONU1422のLD1431)における頓死の予兆の有無を判定する。たとえば、判定装置200の短波側シフト演算部206は、加入者ごとに割り当てられたタイムスロットごとに時分割したタイミングで、短波側へのシフト量を検出する。
制御部1415は、LD1411を制御することにより、下り光信号の送信処理を行う。また、制御部1415は、たとえば第2PD204による受光結果を取得することにより、上り光信号の受信処理を行う。また、制御部1415は、たとえばONU1422のLD1431の頓死の予兆があることを示す警報が判定装置200から出力された場合に、LD1411を制御し、LD1431の活性層の切替指示情報をONU1422へ送信する処理を行ってもよい。このとき、制御部1415は、切り替え対象のLD1431の休止期間において、LD1431の活性層を切り替えさせるようにしてもよい。
伝送路1402は、OLT1410から出射された波長λ1の下り光信号を通過させてスプリッタ1403へ出射する。また、伝送路1402は、スプリッタ1403から出射された光を通過させてOLT1410へ出射する。
スプリッタ1403は、伝送路1402から出射された光をN(N=2,3,4,…)分岐し、N本の経路へ出射する。また、スプリッタ1403は、N本の経路から出射された光を合波して伝送路1402へ出射する。たとえば、N本の経路からの各光には、ONU1421〜1424を含む複数のONUからの波長λ2の上り光信号が含まれる。
つぎに、ONU1422の構成について説明するが、ONU1421,1423,1424の構成についても同様である。ONU1422は、LD1431と、光フィルタ1432,1433と、PD1434と、を備えている。LD1431は、波長λ2の上り光信号を生成して光フィルタ1432へ出射する。また、LD1431は、活性層にアルミまたはヒ素ガリウムを含むLDであって、判定装置200による判定対象となるLDである。
光フィルタ1432は、LD1431から出射された波長λ2の上り光信号をONU1422から出射する。また、光フィルタ1432は、ONU1422へ入射された光のうちの波長λ2以外の光を光フィルタ1433へ出射する。
光フィルタ1433は、光フィルタ1432から出射された光のうちの、波長λ1の下り光信号を抽出してPD1434へ出射する。PD1434は、光フィルタ1433から出射された波長λ1の下り光信号を受光し、受光した下り信号を出力する。
ONU1421〜1424のそれぞれは、たとえばOLT1410から通知された送信期間によって自装置からの上りの光信号を送信する。これにより、ONU1421〜1424から送信される各上り光信号は、互いに異なるタイミングとなる。このため、ONU1421〜1424から送信される各上り光信号をOTDM(Optical Time Division Multiplexing:光時分割多重)によって伝送することができる。
また、ONU1421〜1424のそれぞれは、OLT1410から切替指示情報を受信した場合に、LD1431のLDを切り替える制御を行ってもよい(たとえば図19A〜図21B参照)。これにより、判定装置200によってLD1431の頓死の予兆があると判定された場合に、LD1431のLDを切り替え、光信号の送信が途切れること(システムダウン)を回避することができる。
このように、判定装置200は、たとえば光通信システム1400のOLT1410に適用することができる。この場合に、判定装置200による判定対象は、たとえばONU1421〜1424のLD1431とすることができる。これにより、局側の一つの送受信機(OLT1410)にて、加入者側の個々のLD1431の頓死の予兆を自律的に認識することが可能になる。
また、判定装置200による判定対象は、たとえばOLT1410のLD1411としてもよい。また、判定装置200をONU1421〜1424に適用してもよい。この場合は、判定装置200による判定対象は、たとえばONU1421〜1424のLD1431とすることができる。
(OLTの変形例)
図15Aは、OLTの変形例1を示す図である。図15Aにおいて、図14Aに示した部分と同様の部分については同一の符号を付して説明を省略する。たとえば図14Aに示したスプリッタ1403が、図15Aに示す分岐カプラ1521,1522によって実現されているとする。
分岐カプラ1521は、OLT1410の側に、OLT1410のポート1416に接続され、PONシステムの通信に用いられるポートと、OLT1410のポート1416には接続されず、PONシステムの通信には用いられない不使用ポートと、を有する。
OLT1410は、ポート1416に加えて、分岐カプラ1521の不使用ポートに接続されたポート1511を備える。そして、OLT1410は、分岐カプラ1521から分岐出射される上り光信号を、それぞれポート1416,1511から入射させる。
ポート1511は、分岐カプラ1521から入射した上り光信号を光フィルタ202へ出射する。これにより、たとえば図14A,図14Bに示した分岐器201を設けなくても、上り光信号を第2PD204および光フィルタ202へ入射させることができる。このため、装置の小型化を図ることができる。
また、第2PD204および光フィルタ202へ入射される上り光信号の強度の低下を抑え、第1PD203および第2PD204における受光特性を向上させることができる。また、第1PD203が受光する上り光信号の経路から光フィルタ1413を省くことが可能になる。このため、判定装置200の判定精度を向上させることができる。
図15Bは、OLTの変形例2を示す図である。図15Bにおいて、図15Aに示した部分と同様の部分については同一の符号を付して説明を省略する。図15Bに示すように、図15Aに示した分岐カプラ1521が、OLT1410のポート1416,1511に代えて設けられた構成としてもよい。
このように、実施の形態2によれば、活性層にアルミまたはヒ素ガリウムを含むLD1431などについて、アルミ酸化等による頓死の前兆として早期に現れる出力波長の短波長側へのシフトを検出することができる。これにより、LD1431などの頓死を早期に予測することが可能になる。LD1431などの頓死を早期に予測することが可能になることで、たとえば、頓死前の機器の切り替え等が可能になる。
(実施の形態3)
(実施の形態3にかかる光アンプ)
図16Aは、実施の形態3にかかる光アンプの一例を示す図である。図16Bは、図16Aに示した光アンプにおける光および電気の流れの一例を示す図である。図16A,図16Bにおいて、図2A〜図2Dに示した部分と同様の部分については同一の符号を付して説明を省略する。図16A,図16Bに示す光アンプ1600は、EDFを用いたEDFA(EDF Amplifier:エルビウム添加ファイバ増幅器)である。
図16A,図16Bに示すように、実施の形態3にかかる光アンプ1600は、分岐器1601と、アイソレータ1602と、合波器1603と、EDF1604と、アイソレータ1605と、分岐器1606と、光フィルタ1607と、を備える。また、光アンプ1600は、PD1608,1609と、出力/利得制御部1610と、励起光源1620と、を備える。
分岐器1601は、光アンプ1600へ入射された信号光を分岐し、分岐した各信号光をそれぞれアイソレータ1602およびPD1608へ出射する。アイソレータ1602は、分岐器1601から出射された信号光を合波器1603へ出射する。また、アイソレータ1602は、合波器1603から出射された光を遮断する。
合波器1603は、アイソレータ1602から出射された信号光と、励起光源1620から出射された励起光と、を合波する。そして、合波器1603は、合波した光をEDF1604へ出射する。EDF1604は、合波器1603から出射された光を通過させてアイソレータ1605へ出射する。また、EDF1604は、通過する光に含まれる信号光を、通過する光に含まれる励起光に応じて増幅する光増幅媒体である。
アイソレータ1605は、EDF1604から出射された光を分岐器1606へ出射する。また、アイソレータ1605は、分岐器1606から出射された光を遮断する。分岐器1606は、アイソレータ1605から出射された光を分岐する。そして、分岐器1606は、分岐した各光をそれぞれ光フィルタ1607およびPD1609へ出射する。
光フィルタ1607は、分岐器1606から出射された光のうちの信号波長成分のみを透過させることにより、分岐器1606から出射された光に含まれる信号光を抽出して出射する。
PD1608は、分岐器1601から出射された信号光を受光する。そして、PD1608は、受光した信号光のパワーを示す電気信号を出力/利得制御部1610へ出力する。PD1609は、分岐器1606から出射された光を受光する。そして、PD1609は、受光した信号光のパワーを示す電気信号を出力/利得制御部1610へ出力する。
出力/利得制御部1610は、励起光源1620の駆動回路1625を制御することにより、励起光源1620から出射される励起光のパワーを制御する。たとえば、出力/利得制御部1610は、PD1609から出力された電気信号に基づいて励起光源1620の出射光パワーを制御することにより、光アンプ1600の出力パワーを一定に制御するAPC(Auto Power Control:自動強度制御)を行う。
または、出力/利得制御部1610は、PD1608,1609から出力された各電気信号の比率に基づいて励起光源1620の出射光パワーを制御することにより、光アンプ1600の利得を一定に制御するAGC(Automatic Gain Control:利得一定制御)を行う。
励起光源1620は、合波器1603へ励起光を出射する励起光源である。励起光源1620は、LD1621と、光フィルタ1622と、PD1623と、温度モニタ1624と、駆動回路1625と、補正演算部1626と、時系列データ格納部205と、短波側シフト演算部206と、判定部207と、を備える。
LD1621は、駆動回路1625から供給される駆動電流に応じた光を発振し、発振した光を励起光として合波器1603へ出射する。また、LD1621は、バック光を光フィルタ1622へ出射する。また、LD1621は、活性層にアルミまたはヒ素ガリウムを含む励起用の半導体レーザである。
光フィルタ1622は、LD1621から出射された光を所定の波長透過特性で透過させ、透過させた光をPD1623へ出射する。光フィルタ1622の波長透過特性は、たとえば図2A,図2Bに示した光フィルタ202と同様の波長透過特性(たとえば図3A参照)である。PD1623は、光フィルタ1622から出射された光を受光し、受光した光のパワーを示す電気信号を補正演算部1626へ出力する。
温度モニタ1624は、LD1621の温度をリアルタイムでモニタする。そして、温度モニタ1624は、モニタした温度を補正演算部1626へ通知する。駆動回路1625は、LD1621へ駆動電流を供給することによりLD1621を駆動する。また、駆動回路1625は、出力/利得制御部1610からの制御に従って、LD1621へ供給する駆動電流を調整する。また、駆動回路1625は、LD1621へ供給している駆動電流の大きさをリアルタイムでモニタし、モニタ結果を補正演算部1626へ通知する。
補正演算部1626は、PD1623から出力された電気信号を、温度モニタ1624から通知される温度および駆動回路1625から通知される駆動電流によって補正する。たとえば、補正演算部1626は、LD1621の駆動電流と温度に対する発振波長の相関のデータベースを用いて補正を行う。
これにより、LD1621の温度や駆動電流の変動による差異を除いた、LD1621の発振波長のシフト量を示す電気信号を得ることができる。補正演算部1626は、補正した電気信号を時系列データ格納部205へ出力する。
時系列データ格納部205は、補正演算部1626から出力される補正後の電気信号の時系列データを格納する。これにより、LD1621における頓死の予兆の有無を判定部207によって判定することができる。また、補正演算部1626によって電気信号を補正することにより、LD1621の温度や駆動電流の変動があっても、LD1621における頓死の予兆の有無を精度よく判定することができる。
また、たとえばLD1621の頓死の予兆があることを示す警報が判定部207から出力された場合に、LD1621を制御し、LD1621のLDを切り替える制御を行う制御部を励起光源1620に設けてもよい。この制御部や補正演算部1626および出力/利得制御部1610は、たとえばDSPやFPGAなどのデジタル回路によって実現することができる。
また、励起光源1620におけるLD1621の頓死の予兆の判定処理の周期を、出力/利得制御部1610によるLD1621の駆動電流の制御周期より短く(たとえば1/10以下)してもよい。これにより、出力/利得制御部1610の制御に起因する駆動電流の変化やLD温度変化があっても、LD1621における頓死の予兆の有無を精度よく判定することができる。
図16A,図16Bにおいては、励起光源1620からの励起光をEDF1604の前段から入射させる前方励起の構成について説明したが、励起光源1620からの励起光をEDF1604の後段から入射させる後方励起の構成としてもよい。また、励起光源1620を2つ設け、励起光源1620からの各励起光を前段および後段から入射させる双方向励起の構成としてもよい。
また、図16A,図16Bに示した励起光源1620に、たとえば図2A〜図2Dに示した判定装置200を適用することも可能である。この場合は、たとえば温度モニタ1624や補正演算部1626を省いた構成としてもよい。また、たとえば図1A,図1B,図1E,図1F,図1I,図1Jに示したようにLDの前方向の光出力パワーを分岐してモニタする構成を適用することもできる。
(駆動電流に対する発振波長の温度ごとの特性)
図17は、駆動電流に対する発振波長の温度ごとの特性の一例を示す図である。図17において、横軸はLD1621へ供給される駆動電流[mA]を示し、縦軸はLD1621の発振中心波長[nm]を示す。
LD特性1711〜1715は、それぞれLD1621の温度が10℃、20℃、40℃、60℃、80℃である場合における、LD1621へ供給される駆動電流に対するLD1621の発振中心波長の特性を示している。光アンプ1600のメモリには、たとえばLD特性1711〜1715を示すデータベースが格納される。
補正演算部1626は、メモリに格納されたデータベースに基づいて、PD1623から出力された電気信号を、LD1621の温度が基準温度であり、LD1621の駆動電流が基準駆動電流である場合の電気信号に補正する。
たとえば、基準点1701に示すように、LD1621の基準温度が40℃であり、LD1621の駆動電流が50[mA]であり、LD1621の初期の波長が所定の基準波長であるとする。また、測定点1702に示すように、温度モニタ1624から通知される温度が60℃であり、駆動回路1625から通知される駆動電流が40[mA]であるとする。
この場合は、補正演算部1626は、データベースに基づいて、温度モニタ1624から通知される温度(60℃)と、駆動回路1625から通知される駆動電流(40[mA])における発振中心波長Aを導出する。そして、補正演算部1626は、発振中心波長Aと、基準波長と、の差分(A−基準波長)を算出する。
また、補正演算部1626は、PD1623から出力された電気信号が示す受光パワーP1と、光フィルタ1622の波長透過特性の傾き[dB/nm]と、を乗じることにより、LD1621の補正前の波長λ1を算出する。そして、補正演算部1626は、算出した波長λ1および(A−基準波長)によってλ1−(A−基準波長)を算出することにより、補正後の波長を得ることができる。
図18は、時間経過によるPD受光パワーの変化と発振波長との関係の一例を示す図である。図18において、横軸は時間を示している。図18に示すグラフ1811は、PD1623における受光パワーの時間経過による変化を示している。たとえば、時刻T1から時刻T2にかけて、LD1621の発振波長が短波長側へシフトし、PD1623における受光パワーが低下したとする。図18に示すグラフ1812は、LD1621の発振波長の時間経過による変化を示している。
たとえば、時刻T2においてはPD1623の受光パワーがP1であるため、時刻T2におけるLD1621の波長λ1は、λ1=P1×αによって算出することができる。αは、光フィルタ1622における波長に対する抑圧比(透過率)の傾き[dB/nm]である。
補正演算部1626は、算出したλ1を、基準温度(40℃)および基準駆動電流(50mA)における発振波長に補正する。たとえば、補正演算部1626は、λ−(A−基準波長)を算出することによって、基準温度(40℃)および基準駆動電流(50mA)における発振波長に補正した波長を得ることができる。
このように、実施の形態3によれば、活性層にアルミまたはヒ素ガリウムを含むLD1621などについて、アルミ酸化による頓死の前兆として早期に現れる出力波長の短波長側へのシフトを検出することができる。これにより、LD1621などの頓死を早期に予測することが可能になる。LD1621などの頓死を早期に予測することが可能になることで、たとえば、頓死前の機器の切り替え等が可能になる。
(LDを切り替え可能なLDチップ)
図19Aは、LDを切り替え可能なLDチップの一例を示す図である。図19Bは、図19Aに示したLDチップの構成における光および電気の流れの一例を示す図である。図19A,図19Bにおいて、図2A,図2Bに示した部分と同様の部分については同一の符号を付して説明を省略する。
図14A,図14Bに示したLD1431や、図16A,図16Bに示したLD1621には、たとえば図19A,図19Bに示すLDチップ1910を用いることができる。LDチップ1910は、たとえば、3つの活性層を有するLDチップである。信号電極1911〜1913は、LDチップ1910の3つの活性層に対応するアノード(またはカソード)電極である。
駆動回路1940は、たとえば、信号電極1911〜1913のいずれかに駆動電流を入力することにより、LDチップ1910が有する活性層のうちのいずれかを発光させる。この場合は、図19A,図19Bに示すように、LDチップ1910と光ファイバ1901との間にレンズアレイ1920および集光レンズ1930を設けてもよい。
レンズアレイ1920は、マイクロレンズ1921〜1923を有する。マイクロレンズ1921〜1923は、それぞれLDチップ1910が有する3つの活性層に対応して設けられ、対応する活性層から出射される光をコリメートして集光レンズ1930へ出射する。集光レンズ1930は、マイクロレンズ1921〜1923から出射される各光を光ファイバ1901へ集光させる。
または、レンズアレイ1920および集光レンズ1930に代えて、LDチップ1910の3つの活性層から出射される各光が通過する位置においてレンズ収差が抑えられている非球面レンズ等を用いて各光を光ファイバ1901へ集光させてもよい。
図19Cは、図19Aに示したLDチップの変形例を示す図である。図19Dは、図19Cに示したLDチップの構成における光および電気の流れの一例を示す図である。図19C,図19Dにおいて、図19A,図19Bに示した部分と同様の部分については同一の符号を付して説明を省略する。図19C,図19Dに示すように、LDチップ1910は、図19A,図19Bに示した構成に加えて、光フィルタ1951と、受光器1952と、電気回路1953と、を備えていてもよい。
光フィルタ1951は、所定の波長透過特性を有し、LDチップ1910のバック光を透過させる。光フィルタ1951は、たとえば上述した光フィルタ202や光フィルタ1622に対応する構成である。受光器1952は光フィルタ1951を透過した光を受光する。受光器1952は、たとえば上述した第1PD203やPD1623に対応する構成である。
電気回路1953は、受光器1952による受光結果の電気信号を処理する。電気回路1953は、時系列データ格納部205、短波側シフト演算部206および判定部207や補正演算部1626に対応する構成である。さらに、電気回路1953による頓死の判定結果に基づいて、駆動回路1940に対して切替指示情報を出力する制御回路を設けてもよい。
ここではLDチップ1910のバック光をモニタする構成について説明したが、LDチップ1910のフロント光を分岐して光フィルタ1951、受光器1952および電気回路1953によってモニタする構成としてもよい。
(駆動回路およびLDチップ)
図20Aは、駆動回路およびLDチップの一例を示す図である。図20Bは、図20Aに示した駆動回路およびLDチップにおける光および電気の流れの一例を示す図である。図20A,図20Bにおいて、図19A,図19Bに示した部分と同様の部分については同一の符号を付して説明を省略する。
図20A,図20Bに示すように、駆動回路1940は、たとえば、電源2011と、ドライバ回路2012と、電気スイッチ回路2013と、を備える。電源2011は、駆動電流を生成するための電源を供給する。ドライバ回路2012は、電源2011によって供給される電源を用いて、入力された信号データまたは発光指示情報に応じた駆動電流を生成する。そして、ドライバ回路2012は、生成した駆動電流を電気スイッチ回路2013へ出力する。
電気スイッチ回路2013は、ドライバ回路2012から出力された駆動電流を、LDチップ1910の信号電極1911〜1913のいずれかへ印加する。また、電気スイッチ回路2013は、切替指示情報が入力されると、信号電極1911〜1913のうちの駆動電流を印加する信号電極を切り替える。
LDチップ1910は、信号電極1911〜1913と、活性層2031〜2033と、接地電極2040と、を有する。信号電極1911〜1913は、LDチップ1910の一面に設けられている。信号電極1911〜1913には、駆動回路1940からの駆動電流が印加される。接地電極2040は、LDチップ1910における、信号電極1911〜1913が設けられた面とは反対側の面に設けられている。
活性層2031〜2033は、それぞれ信号電極1911〜1913と接地電極2040との間に設けられている。そして、活性層2031〜2033は、それぞれ信号電極1911〜1913に印加された駆動電流に応じてシングル発光する。活性層2031〜2033から出射される各光は、たとえば図19A,図19Bに示したレンズアレイ1920へ入射される。このように、図20A,図20Bに示すLDチップ1910においては、信号電極1911〜1913と、活性層2031〜2033と、接地電極2040と、によって3つのLDが形成されている。
(電気スイッチ回路)
図21Aは、電気スイッチ回路の一例を示す図である。図20A,図20Bに示した電気スイッチ回路2013は、たとえば、図21Aに示すように、入力端子2111,2112と、切替回路2113と、トランジスタTr1〜Tr3と、抵抗R1〜R3と、を備える。
入力端子2111には、ドライバ回路2012(たとえば図20A,図20B参照)から出力された駆動電流が入力される。入力端子2112には、判定部207からの警報に応じて送信された切替指示情報が入力される。
トランジスタTr1〜Tr3は、たとえばFET(Field Effect Transistor:電界効果トランジスタ)によって実現することができる。トランジスタTr1は、ゲートが切替回路2113に接続され、ドレインが入力端子2111に接続され、ソースが抵抗R1に接続されている。トランジスタTr2は、ゲートが切替回路2113に接続され、ドレインが入力端子2111に接続され、ソースが抵抗R2に接続されている。トランジスタTr3は、ゲートが切替回路2113に接続され、ドレインが入力端子2111に接続され、ソースが抵抗R3に接続されている。
抵抗R1は、一端がトランジスタTr1に接続され、他端が電極2131に接続されている。抵抗R2は、一端がトランジスタTr2に接続され、他端が電極2132に接続されている。抵抗R3は、一端がトランジスタTr3に接続され、他端が電極2133に接続されている。
図21Aに示す電極2131〜2133は、それぞれ図20A,図20B等に示した信号電極1911〜1913に対応する。LD2141〜2143は、それぞれ図20A,図20Bに示した活性層2031〜2033に対応する。グランド2140は、図20A,図20Bに示した接地電極2040に対応する。
切替回路2113は、入力端子2112から入力された切替指示情報に応じて、トランジスタTr1〜Tr3のゲートに印加する電圧を切り替える。つぎに、切替回路2113の動作について説明する。
(電気スイッチ回路の切替回路の動作)
図21Bは、電気スイッチ回路の切替回路の動作の一例を示す図である。図21Aに示した電気スイッチ回路2013の切替回路2113は、たとえば図21Bに示す状態テーブル2150にしたがって動作する。
状態テーブル2150においては、「状態1」、「状態2」、「状態3」のそれぞれに、トランジスタTr1〜Tr3のゲートへ印加する電圧が対応付けられている。状態テーブル2150において、「H」は印加する電圧がHigh(オン)であることを示し、「L」は印加する電圧がLow(オフ)であることを示している。
たとえば、切替回路2113は、初期状態として「状態1」に設定されているとする。この場合は、切替回路2113は、トランジスタTr1のゲートに印加する電圧をHighにし、トランジスタTr2,Tr3のゲートに印加する電圧をLowにする。これにより、入力端子2111へ入力された駆動電流が電極2131に印加され、LD2141(活性層2031)が発光する。
また、切替回路2113は、「状態1」において入力端子2112から切替指示情報が入力されると「状態2」へ移行する。この場合は、切替回路2113は、トランジスタTr2のゲートに印加する電圧をHighにし、トランジスタTr1,Tr3のゲートに印加する電圧をLowにする。これにより、入力端子2111へ入力された駆動電流が電極2132に印加され、LD2142(活性層2032)が発光する。
また、切替回路2113は、「状態2」において入力端子2112から切替指示情報が入力されると「状態3」へ移行する。この場合は、切替回路2113は、トランジスタTr3のゲートに印加する電圧をHighにし、トランジスタTr1,Tr2のゲートに印加する電圧をLowにする。これにより、入力端子2111へ入力された駆動電流が電極2133に印加され、LD2143(活性層2033)が発光する。
これにより、電気スイッチ回路2013は、ドライバ回路2012から出力された駆動電流をLDチップ1910の信号電極1911〜1913のいずれかへ印加するとともに、切替指示情報が入力されると駆動電流を印加する信号電極を切り替えることができる。
(実施の形態4)
(実施の形態4にかかる光アンプ)
図22Aは、実施の形態4にかかる光アンプの一例を示す図である。図22Bは、図22Aに示した光アンプにおける光および電気の流れの一例を示す図である。図22A,図22Bに示すように、実施の形態4にかかる光アンプ2200は、アイソレータ2201と、分岐器2202と、SOA2203と、分岐器2204と、アイソレータ2205と、を備える。また、光アンプ2200は、入力モニタ用受光器2206と、出力モニタ用受光器2207と、SOA制御回路2208と、判定装置200と、を備える。SOA制御回路2208は、たとえばDSPやFPGAなどのデジタル回路によって実現することができる。
アイソレータ2201は、光アンプ2200へ入射された信号光を分岐器2202へ出射する。また、アイソレータ2201は、分岐器2202から出射された光を遮断する。
分岐器2202は、2入力2出力の分岐カプラである。分岐器2202は、アイソレータ2201から出射された信号光を分岐する。そして、分岐器2202は、分岐した各信号光をSOA2203および入力モニタ用受光器2206へ出射する。
また、分岐器2202は、SOA2203から出射される逆方向のASE光を分岐する。そして、分岐器2202は、分岐した各ASE光をアイソレータ2201および判定装置200へ出射する。このように、2入力2出力の分岐器2202を用いてSOA2203からの逆方向のASE光を判定装置200へ入射させることにより、SOA2203の出射光を分岐するための分岐器や光フィルタ(たとえば図23A,図23B参照)を別途設けなくてもよい。
SOA2203は、SOA制御回路2208から供給される駆動電流に応じて、分岐器2202から出射された信号光を増幅する。そして、SOA2203は、増幅した信号光を分岐器2204へ出射する。また、SOA2203は、たとえば活性層にアルミまたはヒ素ガリウムを含む半導体光増幅器である。また、SOA2203は、ASE光を発生させる。SOA2203において発生したASE光は分岐器2202および分岐器2204へ出射される。
分岐器2204は、SOA2203から出射された光を分岐する。そして、分岐器2204は、分岐した各光をアイソレータ2205および出力モニタ用受光器2207へ出射する。
アイソレータ2205は、分岐器2204から出射された信号光を光アンプ2200の後段へ出射する。また、アイソレータ2205は、光アンプ2200の出力端から入射された光を遮断する。
入力モニタ用受光器2206は、分岐器2202から出射された光を受光する。そして、入力モニタ用受光器2206は、受光した光のパワーを示す電気信号をSOA制御回路2208へ出力する。出力モニタ用受光器2207は、分岐器2204から出射された光を受光する。そして、出力モニタ用受光器2207は、受光した光のパワーを示す電気信号をSOA制御回路2208へ出力する。
SOA制御回路2208は、SOA2203へ駆動電流を供給することによりSOA2203を駆動する。また、SOA制御回路2208は、SOA2203へ供給する駆動電流を制御することにより、SOA2203による光増幅を制御する。
たとえば、SOA制御回路2208は、出力モニタ用受光器2207から出力された電気信号に基づいて駆動電流を制御することにより、光アンプ2200の出力パワーを一定に制御するAPCを行う。または、SOA制御回路2208は、入力モニタ用受光器2206および出力モニタ用受光器2207から出力された各電気信号の比率に基づいて駆動電流を制御することにより、光アンプ2200の利得を一定に制御するAGCを行う。
図23Aは、実施の形態4にかかる光アンプの変形例を示す図である。図23Bは、図23Aに示した光アンプにおける光および電気の流れの一例を示す図である。図23A,図23Bにおいて、図22A,図22Bに示した部分と同様の部分については同一の符号を付して説明を省略する。図23A,図23Bに示すように、実施の形態4にかかる光アンプ2200は、図22A,図22Bに示した構成に加えて、分岐器2301と、光バンドパスフィルタ2302と、を備えてもよい。
分岐器2204は、分岐した各光をアイソレータ2205および分岐器2301へ出射する。分岐器2301は、分岐器2204から出射された信号光を分岐する。そして、分岐器2301は、分岐した各光を出力モニタ用受光器2207および光バンドパスフィルタ2302へ出射する。
出力モニタ用受光器2207は、分岐器2301から出射された光を受光する。光バンドパスフィルタ2302は、分岐器2301から出射された光のうちの、信号帯域成分を除去する。そして、光バンドパスフィルタ2302は、信号帯域成分を除去した光を判定装置200へ入射させる。
(SOAにおける信号光およびASE光)
図24Aは、SOAにおける信号光およびASE光の一例を示す図である。図24Aにおいて、図3Aに示した部分と同様の部分については同一の符号を付して説明を省略する。図24Aにおいて、横軸は波長[nm]を示し、縦軸は抑圧比[dB]および光パワー[dBm]を示す。スペクトル2401は、SOA2203による増幅対象の信号光を示す。スペクトル2402は、SOA2203におけるASE光を示す。
図24Aに示すように、波長透過特性300は、たとえば、SOA2203のASE光の初期状態におけるスペクトル2402の短波長側が、短波長側ほど透過率が連続的に低くなる帯域により長波長側のフラットな帯域に含まれる特性とすることができる。
(波長シフト時の透過率の変化)
図24Bは、波長シフト時の透過率の変化の一例を示す図である。図24Bにおいて、図24Aに示した部分と同様の部分については同一の符号を付して説明を省略する。SOA2203のASE光の波長が短波長側にシフトすると、SOA2203のASE光のスペクトル2402は、たとえば図24Bに示すようにシフトする。
これにより、光フィルタ202におけるASE光の透過率が低くなるため、光フィルタ202から出力される光のパワーを低下させ、時系列データ格納部205に格納される値を変化させることができる。
このように、実施の形態4によれば、活性層にアルミまたはヒ素ガリウムを含むSOA2203などについて、アルミ酸化による頓死の前兆として早期に現れる出力波長の短波長側へのシフトを検出することができる。これにより、SOA2203などの頓死を早期に予測することが可能になる。SOA2203などの頓死を早期に予測することが可能になることで、たとえば、頓死前の機器の切り替え等が可能になる。
(スクリーニングへの適用)
上述した判定方法は、光通信システムの運用中にかぎらず、たとえばLDベンダーのLDの出荷試験時のスクリーニングに適用することもできる。このスクリーニングは、たとえば、LDベンダーでの出荷前に、頓死品を事前に見極め、取り除くための試験として実施される。上述した判定方法によれば、LDの頓死の予兆を早期に判定することができるため、たとえばLDの光出力特性の劣化をモニタする場合に比べて短時間の通電で、将来の頓死品を検出することが可能になる。
たとえば、出荷するLDの装置保証寿命(仕様)が10年(87600時間)であるとする。この場合は、LDの光出力特性(光効率)の劣化によりLDの寿命を判定すると、10年分に相当する加速劣化試験を要する。たとえば、100倍の加速劣化試験である場合は、10年分に相当する加速劣化試験には876時間を要する。
これに対して、LDの発振波長の短波長側へのシフトによりLDの寿命を判定すれば、たとえば5年分に相当する加速劣化試験で済む。たとえば、100倍の加速劣化試験である場合は、5年分に相当する加速劣化試験には438時間を要する。このため、出荷試験時のスクリーニングに要する期間を、たとえば半分程度に短縮することができる。
また、LDのスクリーニングについて説明したが、SOAのスクリーニングについても同様である。
以上説明した半導体レーザ装置、光アンプおよび判定方法によれば、半導体光デバイスの頓死を早期に予測することができる。
たとえば、LDには、運用中に突然、光出力が出なくなるという現象(頓死)がある。これは、予兆無く突然に発生する現象であり、磨耗故障とは異なる。原因は、結晶欠陥の発生や増長による活性層内部の非発光部の生成である。結晶欠陥は、LDの材料、製造、運用条件などに依存して発生し、最初に点で形成されていたとしても、結晶構造の乱れが隣の正常な結晶への応力となり、点欠陥、線欠陥、面欠陥へと進行する。最初の結晶欠陥が活性層外にあったとしても、結晶同士の引き攣れにより進行し、活性層内にまでに入り込む可能性がある。
運用中のLDの活性層内でいったん結晶構造が乱れると、深刻な現象となる。活性層内は、注入電流のジュール熱に加え、光吸収による発熱が加わり、結晶欠陥による非発光部の拡大が加速度的に進み、さらなる光吸収、発熱、光吸収、発熱の繰り返しとなる。特に活性層材料にアルミが入っていると、アルミの酸化による表面準位形成、非発光再結合、さらなる結晶周期構造の乱れ、さらなる発熱の繰り返しになり、半導体融点を超えるほどの発熱、共振器構造破綻、レーザ発振の急停止等に至る。LDの頓死のメカニズムについては、たとえば図5Aにおいて説明したとおりである。
頓死品の故障解析により、ダークラインや端面損傷が確認され、後天性の故障であるという上述のメカニズムは実証済みである。また、スクリーニングなどで事前に故障品を取り除くことは困難であることが分かっている。また、上述のLDの頓死は、活性層にアルミまたはヒ素ガリウムを含むSOAにおいても発生する。
これに対して、光出力パワーの劣化もしくは効率劣化を検出する方法がある。たとえば、LDの励起電流一定制御(ACC:Automatic Current Control)を行う場合は、LDのフロント光パワー、バック光パワー、もしくはそれらの比をモニタする方法がある。また、LDのバック光パワーもしくはフロント光パワーのモニタによる光出力パワー一定制御(APC)を行う場合は、LDの駆動電流をモニタする方法がある。
しかし、頓死は光出力劣化から光パワーオフまでの遷移時間が極めて短い現象であるため、これらの方法による光出力パワー劣化や効率劣化の検出では、頓死の直前を検出できても、頓死の予兆を早期に検出することはできない。
また、これらの方法では、一般的なLDの経年劣化である磨耗故障による光出力パワーの変動との区別がつきにくい。このため、たとえば頓死の特徴である大きな光パワー劣化や著しい効率劣化を判定基準にすることが考えられるが、これらは次の瞬間には頓死という段階であるため、頓死の予兆を早期に検出することはできない。
これに対して、上述した各実施の形態においては、頓死の根本原因であるアルミの酸化による物理現象を判断基準として用いる。すなわち、頓死による光出力パワー劣化や効率劣化が生じる前の現象を捉えることで、より早期に頓死故障品を判別することができる。たとえば、活性層にアルミまたはヒ素ガリウムを含むLDやSOAについて、アルミ酸化による頓死の前兆として早期に現れる出力波長の短波長側へのシフトを検出することで、頓死を早期に予測することができる。
上述した各実施の形態に関し、さらに以下の付記を開示する。
(付記1)活性層にアルミまたはヒ素ガリウムを含む半導体レーザと、
前記半導体レーザからの出射光の波長の短波長側への移動を検出する検出部と、
前記検出部による検出結果に基づいて前記半導体レーザの頓死の予兆を判定する判定部と、
を備えることを特徴とする半導体レーザ装置。
(付記2)前記出射光を透過させ、前記出射光の初期の波長帯域での透過率と、前記初期の波長帯域より短い波長帯域での透過率と、が異なる光フィルタと、
前記光フィルタを透過した光を受光する受光部と、
を備え、
前記検出部は、前記受光部による受光強度に基づいて前記出射光の波長の短波長側への移動を検出する、
ことを特徴とする付記1に記載の半導体レーザ装置。
(付記3)前記出射光を分岐する分岐部と、
前記受光部(「第1受光部」と称する。)と異なる、前記分岐部によって分岐された光の一方を受光する第2受光部と、
を備え、
前記光フィルタは、前記分岐部によって分岐された光の他方を透過させ、
前記検出部は、前記第1受光部および前記第2受光部による各受光強度の比較結果に基づいて前記出射光の波長の短波長側への移動を検出する、
ことを特徴とする付記2に記載の半導体レーザ装置。
(付記4)前記光フィルタは、前記初期の波長帯域から前記短い波長帯域にかけて短波長になるほど透過率が連続的に増加または低下に変化することを特徴とする付記2または3に記載の半導体レーザ装置。
(付記5)前記検出部は、前記出射光の波長の初期状態からの短波長側への移動量に応じた値を取得し、
前記判定部は、前記検出部によって取得された値に基づいて前記予兆を判定する、
ことを特徴とする付記1〜4のいずれか一つに記載の半導体レーザ装置。
(付記6)前記検出部は、前記出射光の波長の単位時間あたりの短波長側への移動量に応じた値を取得し、
前記判定部は、前記検出部によって取得された値に基づいて前記予兆を判定する、
ことを特徴とする付記1〜5のいずれか一つに記載の半導体レーザ装置。
(付記7)前記半導体レーザの温度を示す情報を取得する取得部を備え、
前記検出部は、前記取得部によって取得された情報に基づいて補正した前記出射光の波長の短波長側への移動を検出する、
ことを特徴とする付記1〜6のいずれか一つに記載の半導体レーザ装置。
(付記8)前記半導体レーザの駆動電流の大きさを示す情報を取得する取得部を備え、
前記検出部は、前記取得部によって取得された情報に基づいて補正した前記出射光の波長の短波長側への移動を検出する、
ことを特徴とする付記1〜7のいずれか一つに記載の半導体レーザ装置。
(付記9)前記半導体レーザを複数備え、
前記判定部によって前記頓死の予兆があると判定された場合に、前記半導体レーザのうちの駆動する半導体レーザを切り替える制御部を備える、
ことを特徴とする付記1〜8のいずれか一つに記載の半導体レーザ装置。
(付記10)活性層にアルミまたはヒ素ガリウムを含む半導体レーザと、
入射光と前記半導体レーザからの出射光とを通過させることで前記入射光を増幅して出射する光増幅媒体と、
前記半導体レーザからの出射光の波長の短波長側への移動を検出する検出部と、
前記検出部による検出結果に基づいて前記半導体レーザの頓死の予兆を判定する判定部と、
を備えることを特徴とする光アンプ。
(付記11)活性層にアルミまたはヒ素ガリウムを含む半導体光増幅器と、
前記半導体光増幅器からの自然放出光の波長の短波長側への移動を検出する検出部と、
前記検出部による検出結果に基づいて前記半導体光増幅器の頓死の予兆を判定する判定部と、
を備えることを特徴とする光アンプ。
(付記12)活性層にアルミまたはヒ素ガリウムを含む半導体レーザからの出射光の波長の短波長側への移動を検出し、
前記出射光の波長の短波長側への移動の検出結果に基づいて前記半導体レーザの頓死の予兆を判定する、
ことを特徴とする判定方法。
(付記13)活性層にアルミまたはヒ素ガリウムを含む半導体光増幅器からの自然放出光の波長の短波長側への移動を検出し、
前記自然放出光の波長の短波長側への移動の検出結果に基づいて前記半導体光増幅器の頓死の予兆を判定する、
ことを特徴とする判定方法。
(付記14)活性層にアルミまたはヒ素ガリウムを含む半導体レーザからの出射光の波長の短波長側への移動を検出する検出部と、
前記検出部による検出結果に基づいて、前記出射光の波長の短波長側への移動の検出結果に基づいて前記半導体レーザの頓死の予兆を判定する判定部と、
を備えることを特徴とする判定装置。
(付記15)活性層にアルミまたはヒ素ガリウムを含む半導体光増幅器からの自然放出光の波長の短波長側への移動を検出する検出部と、
前記検出部による検出結果に基づいて、前記自然放出光の波長の短波長側への移動の検出結果に基づいて前記半導体光増幅器の頓死の予兆を判定部と、
を備えることを特徴とする判定装置。
100 半導体レーザ装置
110,430 半導体レーザ
120,200 判定装置
121 検出部
122,207 判定部
130,150,1600,2200 光アンプ
131 光増幅媒体
151 半導体光増幅器
201,1601,1606,2202,2204,2301 分岐器
202,1412,1413,1432,1433,1607,1622,1951 光フィルタ
203 第1PD
204 第2PD
205 時系列データ格納部
206 短波側シフト演算部
300 波長透過特性
311 波長帯域
431,432 ミラー
433,541,2031〜2033 活性層
521 電子分布
522 分布中心
540,1910 LDチップ
542 端面
543 ダークライン
611〜616,801,911〜915,2401,2402 スペクトル
621 波長範囲
622,623 シフト
921〜924,1811,1812 グラフ
1011,1012 ダイナミックレンジ
1111,1112 光出力変化
1121,1122,1211,1212,1221〜1223 発振波長変化
1400 光通信システム
1402 伝送路
1403 スプリッタ
1410 OLT
1411,1431,1621,2141〜2143 LD
1414,1602,1605,2201,2205 アイソレータ
1415 制御部
1416,1511 ポート
1421〜1424 ONU
1434,1608,1609,1623 PD
1521,1522 分岐カプラ
1603 合波器
1604 EDF
1610 出力/利得制御部
1620 励起光源
1624 温度モニタ
1625,1940 駆動回路
1626 補正演算部
1701 基準点
1702 測定点
1711〜1715 LD特性
1901 光ファイバ
1911〜1913 信号電極
1920 レンズアレイ
1921〜1923 マイクロレンズ
1930 集光レンズ
1952 受光器
1953 電気回路
2011 電源
2012 ドライバ回路
2013 電気スイッチ回路
2040 接地電極
2111,2112 入力端子
2113 切替回路
2131〜2133 電極
2140 グランド
2150 状態テーブル
2203 SOA
2206 入力モニタ用受光器
2207 出力モニタ用受光器
2208 SOA制御回路
2302 光バンドパスフィルタ

Claims (9)

  1. 活性層にアルミまたはヒ素ガリウムを含む半導体レーザと、
    前記半導体レーザからの出射光を分岐する分岐部と、
    前記分岐部によって分岐された光の一方を受光する第1受光部と、
    前記分岐部によって分岐された光の他方を透過させ、前記出射光の初期の波長帯域での透過率と、前記初期の波長帯域より短い波長帯域での透過率と、が異なる光フィルタと、
    前記光フィルタを透過した光を受光する第2受光部と、
    前記第1受光部および前記第2受光部による各受光強度の比較結果に基づいて、前記出射光の波長の短波長側への移動を検出する検出部と、
    前記検出部による検出結果に基づいて前記半導体レーザの頓死の予兆を判定する判定部と、
    を備えることを特徴とする半導体レーザ装置。
  2. 前記検出部は、前記出射光の波長の初期状態からの短波長側への移動量に応じた値を取得し、
    前記判定部は、前記検出部によって取得された値に基づいて前記予兆を判定する、
    ことを特徴とする請求項1に記載の半導体レーザ装置。
  3. 前記検出部は、前記出射光の波長の単位時間あたりの短波長側への移動量に応じた値を取得し、
    前記判定部は、前記検出部によって取得された値に基づいて前記予兆を判定する、
    ことを特徴とする請求項1または2に記載の半導体レーザ装置。
  4. 前記半導体レーザの温度を示す情報を取得する取得部を備え、
    前記検出部は、前記取得部によって取得された情報に基づいて補正した前記出射光の波長の短波長側への移動を検出する、
    ことを特徴とする請求項1〜3のいずれか一つに記載の半導体レーザ装置。
  5. 前記半導体レーザの駆動電流の大きさを示す情報を取得する取得部を備え、
    前記検出部は、前記取得部によって取得された情報に基づいて補正した前記出射光の波長の短波長側への移動を検出する、
    ことを特徴とする請求項1〜4のいずれか一つに記載の半導体レーザ装置。
  6. 前記半導体レーザを複数備え、
    前記判定部によって前記頓死の予兆があると判定された場合に、前記半導体レーザのうちの駆動する半導体レーザを切り替える制御部を備える、
    ことを特徴とする請求項1〜5のいずれか一つに記載の半導体レーザ装置。
  7. 活性層にアルミまたはヒ素ガリウムを含む半導体レーザと、
    入射光と前記半導体レーザからの出射光とを通過させることで前記入射光を増幅して出射する光増幅媒体と、
    前記出射光を分岐する分岐部と、
    前記分岐部によって分岐された光の一方を受光する第1受光部と、
    前記分岐部によって分岐された光の他方を透過させ、前記出射光の初期の波長帯域での透過率と、前記初期の波長帯域より短い波長帯域での透過率と、が異なる光フィルタと、
    前記光フィルタを透過した光を受光する第2受光部と、
    前記第1受光部および前記第2受光部による各受光強度の比較結果に基づいて、前記出射光の波長の短波長側への移動を検出する検出部と、
    前記検出部による検出結果に基づいて前記半導体レーザの頓死の予兆を判定する判定部と、
    を備えることを特徴とする光アンプ。
  8. 活性層にアルミまたはヒ素ガリウムを含む半導体光増幅器と、
    前記半導体光増幅器からの自然放出光を分岐する分岐部と、
    前記分岐部によって分岐された光の一方を受光する第1受光部と、
    前記分岐部によって分岐された光の他方を透過させ、前記自然放出光の初期の波長帯域での透過率と、前記初期の波長帯域より短い波長帯域での透過率と、が異なる光フィルタと、
    前記光フィルタを透過した光を受光する第2受光部と、
    前記第1受光部および前記第2受光部による各受光強度の比較結果に基づいて、前記自然放出光の波長の短波長側への移動を検出する検出部と、
    前記検出部による検出結果に基づいて前記半導体光増幅器の頓死の予兆を判定する判定部と、
    を備えることを特徴とする光アンプ。
  9. 活性層にアルミまたはヒ素ガリウムを含む半導体レーザからの出射光を分岐し、
    分岐した光の一方を第1受光部により受光し、
    分岐した光の他方を、前記出射光の初期の波長帯域での透過率と、前記初期の波長帯域より短い波長帯域での透過率と、が異なる光フィルタに透過させ、
    前記光フィルタを透過した光を第2受光部により受光し、
    前記第1受光部および前記第2受光部による各受光強度の比較結果に基づいて、前記出射光の波長の短波長側への移動を検出し、
    前記出射光の波長の短波長側への移動の検出結果に基づいて前記半導体レーザの頓死の予兆を判定する、
    ことを特徴とする判定方法。

JP2013258689A 2013-12-13 2013-12-13 半導体レーザ装置、光アンプおよび判定方法 Expired - Fee Related JP6229474B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013258689A JP6229474B2 (ja) 2013-12-13 2013-12-13 半導体レーザ装置、光アンプおよび判定方法
US14/537,438 US20150171596A1 (en) 2013-12-13 2014-11-10 Semiconductor laser device, optical amplifier, and method of detecting a sign of sudden failure of semiconductor laser device
CN201410721355.XA CN104713704A (zh) 2013-12-13 2014-12-02 半导体激光装置、光放大器及检测突发故障的迹象的方法
US15/285,821 US20170025817A1 (en) 2013-12-13 2016-10-05 Semiconductor laser device, optical amplifier, and method of detecting a sign of sudden failure of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258689A JP6229474B2 (ja) 2013-12-13 2013-12-13 半導体レーザ装置、光アンプおよび判定方法

Publications (2)

Publication Number Publication Date
JP2015115556A JP2015115556A (ja) 2015-06-22
JP6229474B2 true JP6229474B2 (ja) 2017-11-15

Family

ID=53369642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258689A Expired - Fee Related JP6229474B2 (ja) 2013-12-13 2013-12-13 半導体レーザ装置、光アンプおよび判定方法

Country Status (3)

Country Link
US (2) US20150171596A1 (ja)
JP (1) JP6229474B2 (ja)
CN (1) CN104713704A (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253989B (zh) * 2015-06-09 2019-04-16 广东海信宽带科技有限公司 光模块以及光信号输出控制方法
JP2017098277A (ja) * 2015-11-18 2017-06-01 富士通株式会社 レーザ装置、光アンプ、光伝送装置および判定方法
CN107024744A (zh) * 2016-01-29 2017-08-08 青岛海信宽带多媒体技术有限公司 一种光模块及波长监控方法
JP6807811B2 (ja) * 2017-07-19 2021-01-06 株式会社フジクラ レーザ装置、レーザ装置の光源の劣化度推定方法
CN110708117B (zh) * 2018-07-09 2022-10-11 中兴通讯股份有限公司 确定光信号的波长信息的方法、装置及存储介质
CN109981180B (zh) * 2019-03-15 2020-06-30 武汉电信器件有限公司 一种波长锁定光模块、装置和波长锁定方法
CN112179919B (zh) * 2020-09-27 2023-11-10 西安立芯光电科技有限公司 一种半导体激光器芯片失效分析方法
CN114662346B (zh) * 2022-05-24 2022-08-09 山东大学 一种半导体激光器中位错扩展特性的模拟预测方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800715B2 (ja) * 1995-05-12 1998-09-21 日本電気株式会社 光ファイバ増幅器
JPH109961A (ja) * 1996-06-21 1998-01-16 Kokusai Denshin Denwa Co Ltd <Kdd> 光波長監視装置
US6101200A (en) * 1997-12-24 2000-08-08 Nortel Networks Corporation Laser module allowing simultaneous wavelength and power control
US6526085B2 (en) * 1998-10-05 2003-02-25 Lambda Physik Ag Performance control system and method for gas discharge lasers
US6163555A (en) * 1998-06-12 2000-12-19 Nortel Networks Limited Regulation of emission frequencies of a set of lasers
US6353623B1 (en) * 1999-01-04 2002-03-05 Uniphase Telecommunications Products, Inc. Temperature-corrected wavelength monitoring and control apparatus
CN1423853A (zh) * 2000-04-13 2003-06-11 西门子公司 用于控制起放大作用的媒介,尤其是光导纤维的方法和装置
US6518563B1 (en) * 2000-06-22 2003-02-11 Agere Systems Inc. Detecting aging of optical components
US6763046B2 (en) * 2001-03-01 2004-07-13 Applied Optoelectronics, Inc. Method and system employing multiple reflectivity band reflector for laser wavelength monitoring
US6731424B1 (en) * 2001-03-15 2004-05-04 Onetta, Inc. Dynamic gain flattening in an optical communication system
JP3606235B2 (ja) * 2001-06-20 2005-01-05 日本電気株式会社 半導体レーザ劣化監視装置
US6900920B2 (en) * 2001-09-21 2005-05-31 The Regents Of The University Of California Variable semiconductor all-optical buffer using slow light based on electromagnetically induced transparency
US6646790B2 (en) * 2002-01-28 2003-11-11 Nortel Networks Limited Optical amplifier gain control monitoring
JP3953837B2 (ja) * 2002-02-27 2007-08-08 日本電信電話株式会社 光増幅器の監視装置、光増幅器の補償化装置、光増幅器の監視方法、光増幅器の補償化方法、光増幅器の監視プログラムおよび光増幅器の補償化プログラム
US6690689B2 (en) * 2002-05-29 2004-02-10 Triquint Technology Holding, Co. Apparatus and method for compensating for age induced wavelength drift in tunable semiconductor lasers
US7573688B2 (en) * 2002-06-07 2009-08-11 Science Research Laboratory, Inc. Methods and systems for high current semiconductor diode junction protection
JP2004080301A (ja) * 2002-08-15 2004-03-11 Kddi Submarine Cable Systems Inc 分布ラマン光伝送線路の監視方法及びシステム
WO2004038871A2 (en) * 2002-08-22 2004-05-06 Xponent Photonics Inc. Grating-stabilized semiconductor laser
US7162113B2 (en) * 2002-10-08 2007-01-09 Infinera Corporation Deployment of electro-optic amplitude varying elements (AVEs) and electro-optic multi-functional elements (MFEs) in photonic integrated circuits (PICs)
WO2004077700A1 (ja) * 2003-02-27 2004-09-10 The Furukawa Electric Co. Ltd. 波長多重励起ラマンアンプの制御装置、制御方法およびその制御プログラム
US7460572B2 (en) * 2003-05-13 2008-12-02 Nippon Telegraph And Telephone Corporation Optical module and method for monitoring and controlling wavelengths
JP4282573B2 (ja) * 2004-09-03 2009-06-24 シャープ株式会社 半導体光増幅駆動装置
DE102004047745A1 (de) * 2004-09-30 2006-04-27 Siemens Ag Ermittlung der verstärkten spontanen Emission in einem optischen Faserverstärker
JP4677922B2 (ja) * 2006-02-15 2011-04-27 住友電気工業株式会社 半導体レーザ素子の検査方法
US7609741B2 (en) * 2007-01-23 2009-10-27 The Boeing Company Disk laser including an amplified spontaneous emission (ASE) suppression feature
JP5303124B2 (ja) * 2007-07-19 2013-10-02 住友電工デバイス・イノベーション株式会社 半導体レーザ装置の制御方法
JP2009182220A (ja) * 2008-01-31 2009-08-13 Opnext Japan Inc 光伝送モジュール、波長モニタ、および波長ずれ検出方法
JP2009295871A (ja) * 2008-06-06 2009-12-17 Panasonic Corp 半導体発光素子
JP2010232336A (ja) * 2009-03-26 2010-10-14 Fujitsu Optical Components Ltd 光源制御装置および光源装置
JP5730469B2 (ja) * 2009-03-27 2015-06-10 古河電気工業株式会社 波長可変光源装置
CN102062675B (zh) * 2010-12-16 2013-03-20 西安炬光科技有限公司 一种半导体激光器寿命测试装置
CN201993440U (zh) * 2010-12-16 2011-09-28 西安炬光科技有限公司 一种激光器特性测试装置
CN102307068B (zh) * 2011-06-24 2015-04-01 武汉光迅科技股份有限公司 一种实现目标拉曼增益锁定的方法及其拉曼光纤放大器
CN102353524B (zh) * 2011-06-27 2014-04-16 北京理工大学 半导体激光器动态光谱测试方法及装置
CN102865999B (zh) * 2011-07-08 2015-03-04 中国科学院微电子研究所 Led光学特性检测方法及检测装置
JP6010897B2 (ja) * 2011-11-15 2016-10-19 富士通株式会社 光増幅装置および光伝送システム
JP6003255B2 (ja) * 2012-06-07 2016-10-05 富士通株式会社 増幅装置および制御方法

Also Published As

Publication number Publication date
JP2015115556A (ja) 2015-06-22
US20170025817A1 (en) 2017-01-26
US20150171596A1 (en) 2015-06-18
CN104713704A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
JP6229474B2 (ja) 半導体レーザ装置、光アンプおよび判定方法
US10534128B2 (en) Pulsed laser device
Peng et al. A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode
JP2013089961A (ja) 波長モニタ、波長固定レーザ及び波長固定レーザの出射光波長の調整方法
JP2007274482A (ja) 光伝送装置
WO2013151145A1 (ja) 光半導体装置、半導体レーザモジュールおよび光ファイバ増幅器
Ahmad et al. SOA-based multi-wavelength laser using fiber Bragg gratings
EP4213318A1 (en) Light source, light source device, method for driving light source, raman amplifier, and raman amplification system
JP2012178478A (ja) 高速光増幅器
JP5333238B2 (ja) 波長可変レーザ装置及びその波長切替方法
JP2007214170A (ja) 光ファイバ増幅器、光ファイバレーザ装置及び故障検出方法
US11070027B2 (en) Variable wavelength light source and method for controlling wavelength switching of variable wavelength light source
US20030068125A1 (en) Semiconductor laser device, semiconductor laser module and optical fiber amplifier using the semiconductor laser module
JP4222855B2 (ja) 光増幅装置
JP2006066610A (ja) 光増幅装置、ラマン増幅器、光波長多重伝送システム、光波長多重伝送方法
JP2004301991A (ja) 光増幅制御ユニットおよび光増幅制御方法
JP2007227723A (ja) 波長可変光源装置、及び、波長可変光源制御方法
JP4310971B2 (ja) 光ファイバ増幅器
JP3593058B2 (ja) 光増幅装置
US20240114270A1 (en) Assemblies and methods for managing spectral hole burning
US20240136783A1 (en) Method and device for increasing useful life of laser system
US8922876B2 (en) Optical amplifying device and optical transmission system
Yeh et al. Employing dual-saturable-absorber-based filter for stable and tunable erbium-doped fiber ring laser in single-frequency
JP2019057541A (ja) 半導体光集積素子
US8477030B2 (en) Optical amplifier module and dispersion compensation fiber loss detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6229474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees