JP2004301991A - 光増幅制御ユニットおよび光増幅制御方法 - Google Patents

光増幅制御ユニットおよび光増幅制御方法 Download PDF

Info

Publication number
JP2004301991A
JP2004301991A JP2003093279A JP2003093279A JP2004301991A JP 2004301991 A JP2004301991 A JP 2004301991A JP 2003093279 A JP2003093279 A JP 2003093279A JP 2003093279 A JP2003093279 A JP 2003093279A JP 2004301991 A JP2004301991 A JP 2004301991A
Authority
JP
Japan
Prior art keywords
light
external control
optical
signal
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003093279A
Other languages
English (en)
Inventor
Tomoto Tanaka
智登 田中
Yuji Tamura
裕司 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003093279A priority Critical patent/JP2004301991A/ja
Priority to US10/792,746 priority patent/US7133192B2/en
Publication of JP2004301991A publication Critical patent/JP2004301991A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

【課題】簡易に光増幅器の利得を制御できるようにする。
【解決手段】複数の励起光源7は、信号光を増幅させる効果を有する励起光を発生させる。外部制御光源6は、励起光による信号光への増幅効果に影響を与える波長の外部制御光を発生させる。合波部は、励起光と前記外部制御光とを合波し、合波された光を光ファイバ1に対して信号光とは逆の方向に入射する。制御部5は、外部制御光源6による外部制御光の出力を制御する。これにより、複数の励起光源により増幅された信号光の利得が制御できる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は光増幅制御ユニットおよび光増幅制御方法に関し、特にラマン効果を用いた光増幅器およびそれを用いた光増幅制御ユニットおよび光増幅制御方法に関する。
【0002】
【従来の技術】
波長多重光伝送システムにおける光増幅器には、希土類元素が添加された光増幅器(エルビウム添加光増幅器など)と誘導ラマン散乱効果を用いたラマン増幅器とがある。エルビウム添加光増幅器では、たとえば、エルビウム添加光ファイバと励起光源とを備えたエルビウム添加光ファイバアンプに外部制御光発生装置を接続し、外部制御光により、エルビウム添加光ファイバ内の反転成分を制御する(特許文献1参照)。
【0003】
ところで、光増幅器が多段で接続した光伝送システムにおいて利得の波長特性が生じた場合、利得の低いチャネルは光信号対雑音比(光SNR)が劣化する。また、利得の高いチャネルにおいては、非線形光学効果などにより波形が劣化する。そのため、利得波長特性を平坦にする必要がある。
【0004】
ラマン増幅器では、複数の異なる波長の励起光源を用いて、各励起光量を調整することで、帯域内の利得波長特性を一定にしている。たとえば、利得平坦化を実現するために、互いに異なる12波長の光を合波したものを励起光としたラマン増幅器がある(非特許文献1参照)。
【0005】
図17は、従来のラマン増幅器の構成例を示す図である。光ファイバ201への入射光λはWDM(Wavelength Division Multiplexing)カプラ202と光カプラ203とを経由して出射される。光カプラ203では、入射光λの一部が受光素子204に送られる。受光素子204は光を受光し、その光の強度に応じた電気信号を制御部205に送る。制御部205は、送られた電気信号に基づいて入射光λの強度を測定し、光ファイバ201に入射すべき励起光源の強度を演算する。そして、制御部205は、演算結果に応じた制御信号を励起光源206に対して出力する。
【0006】
励起光源206は、制御部205からの制御信号に応じた強度の複数の励起光λP1〜λPNを発生させる。励起光源206で発生した励起光λP1〜λPNは、WDMカプラ202によって光ファイバ201に導かれる。すると、光ファイバ201内ではラマン散乱が発生し、入射光λが増幅される。
【0007】
図18は、従来の励起光源の出力制御方式を示すブロック図である。伝送路210内を伝送する信号光は、WDMカプラ211を経由して光カプラ212に達する。光カプラ212では、信号光の一部が取り出されチャネルモニタ213に伝送される。チャネルモニタ213は、各チャネルの波長と出力を検知し、各チャネルの波長情報とチャネル出力情報とを、電気信号によって制御部214に送る。
【0008】
制御部214では、各励起光源221、222,223の出力パワーを個別に決定する。そして、決定された出力パワーを示す制御情報が、制御部214から各励起光源221、222,223に送られる。各励起光源221、222,223は、制御部214からの制御情報に従ったパワーの励起光を出力する。
【0009】
各励起光は、合波器231で合波されWDMカプラ211に送られる。WDMカプラ211は、合波器から送られた励起光を伝送路210に対して、信号光とは逆方向に入射する。
【0010】
図19は、従来技術による波長と光出力との関係を示す図である。図19において、横軸に波長を示しており、縦軸に光出力(利得)を示している。
図19に示すように、各励起光源221,222,223にて出力が変化する場合、単一励起時の利得スペクトル241,242,243の利得が合成され、複数励起時のラマン利得スペクトル244となる。
【0011】
【特許文献1】
特開平11−145533号公報(第1図)
【非特許文献1】
Y. Emori, et al., ”100 nm bandwidth flat gain Raman amplifiers pumped and gain−equalized by 12−wavelenth−channel WDM high powerlaser diodes”, OFC’99, PD19 (1999)
【0012】
【発明が解決しようとする課題】
しかし、ラマン増幅器では、送信機のレベル変動、伝送路ファイバの損失変動を補償するために、光増幅の利得波長特性を保持したまま制御する必要がある。また、高出力な励起光源により、高利得で動作しているラマン増幅器の出力においては、帯域アップグレード及び伝送信号のAdd/Dropを行うOADM(光号波・分波器)ノードによる波長数増減等により波長数が変化した場合、利得が変化し運用している信号光に対して影響を及ぼすことが考えられる。
【0013】
従来の励起光量を調整する光出力制御では、利得平坦化を実現するために用いられた複数の励起光源の比率を考慮してそれぞれ制御しなければならない。そのため、簡易かつ高速に制御することが困難である。たとえば、図18に示す各励起光源221,222,223にて出力が変化する場合、単一励起時の利得スペクトル241,242,243が重なっている(図19参照)。そのため、各チャネル出力情報をモニタし、各帯域(チャネル)に与える関係を明らかにして制御する必要がある。あるいは、各励起光源パワーを段階的に制御する必要が生じる。その結果、制御部214によって適当な励起光源パワーを演算させるのが困難になっていた。なお、演算の単純化を図り、励起比率を一意に制御した場合は、利得チルトが発生してしまう。
【0014】
本発明はこのような点に鑑みてなされたものであり、簡易に光増幅器の利得を制御することができる光増幅制御ユニットおよび光増幅制御方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明では上記課題を解決するために、図1に示す様な光増幅制御ユニットが提供される。本発明に係る光増幅制御ユニットは、光ファイバ1内を伝搬する信号光に対して生じさせる光増幅を制御するためのものである。この光増幅制御ユニットは、複数の励起光源7、外部制御光源6、合波部(WDMカプラ2,8)、および制御部5を有する。複数の励起光源7は、信号光を増幅させる効果を有する励起光を発生させる。外部制御光源6は、励起光による信号光への増幅効果に影響を与える波長の外部制御光を発生させる。合波部は、励起光と前記外部制御光とを合波し、合波された光を光ファイバ1に対して信号光とは逆の方向に入射する。制御部5は、外部制御光源6による外部制御光の出力を制御する。
【0016】
このような光増幅制御ユニットによれば、外部制御光の出力が、制御部5によって出力が制御される。その外部制御光と複数の励起光とが、光ファイバ1に対して信号光とは逆方向に入射される。すると、外部制御光の出力に応じた利得だけ、複数の励起光源により信号光が増幅される。
【0017】
また、上記課題を解決するために、光ファイバ内を伝搬する信号光に対して生じさせる光増幅を制御するための光増幅制御方法において、前記信号光を増幅させる効果を有する複数の励起光を発生させ、前記励起光による前記信号光へ利得に影響を与える波長の外部制御光を発生させ、前記励起光と前記外部制御光とを合波し、合波された光を前記光ファイバに対して前記信号光とは逆の方向に入射する、ことを特徴とする光増幅制御方法が提供される。
【0018】
このような光増幅制御方法によれば、外部制御光の出力が、制御部5によって出力が制御される。その外部制御光と複数の励起光とが、光ファイバ1に対して信号光とは逆方向に入射される。すると、外部制御光の出力に応じた利得だけ、複数の励起光源により信号光が増幅される。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明に係る励起光制御ユニットの実施の形態を示す図である。本発明の光増幅器における増幅器出力は、励起光と同一方向の外部制御光の出力を調整することにより、簡易に高速制御を実現できる。
【0020】
図1に示すように本発明に係る光増幅制御ユニットでは、光ファイバ1はWDMカプラ2に接続されている。WDMカプラ2は、光カプラ3に接続されている。光カプラ3は、入射光λ(信号波長λS1〜λSN)の出射経路とは別に、受光素子4に接続されている。
【0021】
受光素子4は、入射した光の強度に応じた電気信号を発生させる素子である。受光素子4としては、たとえば、フォトダイオードがある。受光素子4は、電気的な信号線で制御部5に接続されている。制御部5は、受光素子4で検出された光の強度に応じて外部制御光の強度を演算する回路である。制御部5は、制御信号を伝えるための信号線で外部制御光源6に接続されている。
【0022】
外部制御光源6は、制御部5からの制御信号に応じて外部制御光λ(外部制御光波長λC1〜λCN)を発生させる複数の光源である。外部制御光λは、励起光λ(励起光波長λP1〜λPN)による信号光への増幅効果に影響を与える多波長の光である。なお、外部制御光λは、入射光λの信号帯域付近に設定されており、入射光λの増幅に関して直接的には寄与しない。
【0023】
外部制御光源6は、外部制御光λを伝搬させるための伝送路を介してWDMカプラ8に接続されている。
また、励起光λを発生する励起光源7が、励起光λを伝搬させるための伝送路を介してWDMカプラ8に接続されている。励起光源7は、励起光λを発生させる複数の光源である。励起光λは、光ファイバ1を伝播する入射光λに対してラマン増幅させる多波長の光である。
【0024】
WDMカプラ8は、WDMカプラ2に接続されている。WDMカプラ8とWDMカプラ2とにより、外部制御光λと励起光λとを光ファイバ1に導入する合波器が構成されている。
【0025】
なお、外部制御光源6、励起光源7としては、ファイバラマンレーザ、DFB(Distributed Feed−Back)−LD(Laser Diode)、DBR(Distributed Bragg Reflection)−LD、FP(Fabry Perot)−LDなどが考えられる。ラマン利得は、信号帯域に対してラマンの利得周波数シフト量[13.2THz≒100nm]を有する。よって、信号帯域付近に設定される外部制御光λは、励起光としての目的と異なり、入射光λの利得に直接的には影響を与えない。
【0026】
以上のような構成の励起光制御ユニットでは、以下のようにして入射光λを増幅するための励起光λ(励起光波長λP1〜λPN)が制御される。
光ファイバ1からの入射光λはWDM2と光カプラ3とを経由して出射される。光カプラ3では、入射光λの一部が受光素子4に送られる。受光素子4は光を受光し、その光の強度に応じた電気信号を制御部5に送る。制御部5は、送られた電気信号に基づいて入射光λの強度を測定し、光ファイバ1に入射すべき励起光源の強度を演算する。そして、制御部5は、演算結果に応じた制御信号を外部制御光源6に対して出力する。
【0027】
外部制御光源6は、制御部5からの制御信号に応じた外部制御光λを発生させる。外部制御光源6で発生した外部制御光λは、WDMカプラ8に入射される。
【0028】
WDMカプラ8には、さらに励起光源7から出力された励起光λが入射されている。外部制御光λと励起光λとは、WDMカプラ8を介してWDMカプラ2に送られる。外部制御光λと励起光λとは、WDMカプラ2によって光ファイバ1に導かれる。
【0029】
光ファイバ1を伝搬する間、励起光λに基づく光ファイバ1内でのラマン散乱に起因し、入射光λが増幅される。このとき、増幅の利得の量は、外部制御光λの強さに応じて変化する。すなわち、励起光λによるラマン散乱効果の影響が外部制御光λにも及ぶことにより、入射光λの利得が減少する。
【0030】
図2は、信号波長、励起波長、および外部制御光波長の関係を示す図である。図2では、横軸に波長、縦軸にパワーを示している。入射光λに含まれる信号波長λS1〜λSNの帯域から100nm程度シフトさせた帯域(周波数で約13.2THzのずれ)に、励起波長λP1〜λPNが設定される。
【0031】
また、信号波長λS1〜λSNの帯域に対して+30nmから−30nmの範囲内に、外部制御光の波長が設定される。図2の例ででは、信号波長λS1〜λSNの帯域から+30nm程短波長側にシフトさせた波長に外部制御波長λC1が設定され、信号波長λS1〜λSNの帯域の中央に外部制御波長λC2が設定され、信号波長λS1〜λSNの帯域から30nm程長波長側にシフトさせた波長に外部制御波長λC3が設定されている。
【0032】
図2に示すように信号波長、励起波長、および外部制御光波長を分布させることで、外部制御光のパワーを制御することで、励起光のパワーを制御できる。ここで、外部制御光として3種類の波長の光を制御することで、励起波長λP1〜λPN全体を調整できる。そのため、励起波長λP1〜λPNのパワーを個別に制御する場合に比べて、励起光の調整が容易となる。
【0033】
次に、上記のような構成の光増幅制御ユニットを用いた光伝送システムについて説明する。なお、ラマン増幅における光増幅作用は光ファイバ内で発生するため、厳密には励起光制御ユニットと光ファイバとで1つのラマン増幅器を構成するが、以下の説明では、励起光制御ユニットも光増幅器(ラマン増幅器)の1つとして捉えるものとする。
【0034】
図3は、ラマン増幅器を使用する光ファイバ伝送システムの概略構成図である。なお、図3中、左から右方向をZ軸方向とする。
光ファイバ伝送システムは、送信部11〜15から出力された光信号が合波部21に入力される。合波部21は、信号光を合波する。合波部21による信号の出力側に光増幅器22が設けられている。光増幅器22は、伝送路光ファイバ23を介して光増幅器24に接続されている。光増幅器24は、伝送路光ファイバ25を介して光増幅器26に接続されている。
【0035】
光増幅器26は、ノード27に接続されている。ノード27は、光チャネルの追加または削除を行う。ノード27は、伝送路光ファイバ28を介して光増幅器29に接続されている。光増幅器29は、分波部30に接続されている。分波部30は、入力された光信号を分波する。分波部30は、分波した光信号に対応する複数の受信部41〜45に接続されている。
【0036】
光増幅器22,24,26,29の構成としては、本発明を適用したラマン増幅器のみであってもよいし、そのラマン増幅器の後段に、エルビウム添加光増幅器などのような希土類添加増幅器を設けてもよい。
【0037】
このような構成の光ファイバ伝送システムにおいて、各送信部11〜15から入力された光信号(信号波長λ〜λ)は、合波部21で合波される。合波された光信号は、光増幅器22で増幅され、伝送路光ファイバ23内を伝搬する。伝送路光ファイバ23へ入射されてから一定期間は、伝搬中に伝送路損失が発生し、各チャネル出力が低下する。光信号は光増幅器24に近づき、ラマン増幅の影響範囲内に達すると、各チャネル出力が増加する。
【0038】
光増幅器24を通り過ぎた光信号は、同様の伝送路損失とラマン増幅による利得とを受けながら、伝送路光ファイバ25内を伝搬する。そして、光信号は、光増幅器26を経由してノード27に達する。
【0039】
ノード27において、任意のチャネルの信号(信号波長λ,λ)が取り出されたり、別のチャネルの信号(信号波長λ,λ)が追加されたりする。その後、光信号は、ノード27から伝送路光ファイバ28に入射され、伝送路光ファイバ28内を伝送路損失とラマン増幅による利得とを受けながら伝搬する。そして、光信号は、光増幅器29を経由して分波部30に入射する。分波部30では、光信号がチャネル毎の信号に分波され、チャネル毎の受信部41〜45に入射する。
【0040】
図4は、伝送路損失と所要利得の関係を示す図である。図4では、横軸に、Z軸方向の位置を示しており、縦軸にZ軸方向の位置での各チャネルの出力を示している。
【0041】
伝搬する光信号は、伝搬距離に応じて伝送路光損失を受けるが、光増幅器の位置に近づくとラマン増幅による利得を得る。
このとき、光増幅器の各チャネル出力レベルを一定に保つ必要がある。たとえば、伝送路光ファイバ23の伝送で生じる伝送路損失#1と光増幅器24に達するまでに生じる所要利得#1とが等しくなるように、励起光の出力を制御する必要がある。同様に、伝送路光ファイバ25の伝送で生じる伝送路損失#2と光増幅器26に達するまでに生じる所要利得#2とが等しくなるように、励起光の出力を制御する必要がある。
【0042】
また、図3の構成においてノード27によって光チャネルの追加や削除が行われても、光増幅器の利得は波長数が変化した場合でも一定に制御する必要がある。さらに、伝送路損失等が変化した場合においても、光増幅器における利得を変化させて出力レベルを一定に保つ必要がある。
【0043】
出力レベルの制御は一般的にトータル光出力(=チャネル出力×波長数)で制御している。よって、波長数が一定の場合においては、トータル出力を一定に制御することで対応できるが、上記で示すノード27によるチャネルの増減、または断線等で波長数が変化した場合、利得を一定にする制御が必要である。
【0044】
以下に、外部制御光のパワーに応じた利得の変化について説明する。
図5は、外部制御光のパワーを変化させた場合の単一モード光ファイバ(SMF)でのラマン利得の波長特性を示す。図5では、横軸に波長(nm)を示し、縦軸に利得変化(dB)を示している。外部制御光の波長は、1565nmとした。
【0045】
この例では、外部制御光パワーが0[dBm]の場合の利得変化51、外部制御光パワーが3[dBm]の場合の利得変化52、外部制御光パワーが6[dBm]の場合の利得変化53、外部制御光パワーが9[dBm]の場合の利得変化54、外部制御光パワーが12[dBm]の場合の利得変化55、外部制御光パワーが15[dBm]の場合の利得変化56が示されている。
【0046】
このように、外部制御光の出力を増加することにより、利得形状を比較的保ったままで、可変することができる。すなわち、外部制御光パワーが強くなるほど、利得が少なくなる。なお、分布型のラマン増幅器では、伝送路光ファイバを増幅媒体に用いていることから、入力レベル情報の即時認識が不可能である。
【0047】
図6は、増幅器出力に応じた平均ラマン利得の変化を示す図である。この例では、増幅器出力に応じた平均ラマン利得の変化を、外部制御光が有る場合と無い場合とを比較している。また、励起光量一定の状態で波長数が変化して、増幅器出力が変化した場合の例である。図6において、横軸に増幅器出力[dBm]が示されており、縦軸に平均ラマン利得が示されている。
【0048】
外部制御光が無い場合の平均ラマン利得61は、増幅器出力に応じて変化する。一方、外部制御光が有る場合の平均ラマン利得62は、増幅器出力が変化してもほぼ一定にすることが可能である。
【0049】
この例では、励起光量一定の状態で波長数(チャネル数)が変化して、増幅器出力が変化した場合、外部制御光が入力されていないと、ラマン増幅器の利得が大きく変化することが示されている。すなわち、波長数が変化した場合に運用している信号光のレベルは変化する。ただし、波長数が増加することによる利得飽和量は、励起光一定状態だと信号光出力から一意に決定する。
【0050】
一方、外部制御光が入力されていれば、利得飽和量の状態が維持され、波長数が変化しても、ラマン増幅器の利得はあまり変化しない。このように、外部制御光量と利得制御量は、一定の関係にあるため、出力モニタのみで外部制御光を用いて、高速制御が可能となる。
【0051】
図7は、外部制御光を用いて利得を変化した場合の増幅器出力の関係を示す図である。図7では、横軸に増幅器出力[dBm]が示されており、縦軸に外部制御光出力[mW]が示されている。
【0052】
図8は、外部制御光による平均ON/OFF利得変化を示す図である。平均ON/OFF利得とは、「励起光ON時の出力−励起光OFF時の出力」である。この例では、外部制御光の波長が1565nmの場合である。図8では、横軸に外部制御光出力[dBm]を示し、縦軸に平均ON/OFF利得を示している。このように、外部制御光出力が上がるほど、平均ON/OFF利得が低下する。すなわち、ラマン効果による信号光の増幅効果が低下する。
【0053】
図9は、増幅出力のZ軸方向変化の一例を示す図である。図9では、横軸にZ軸方向のファイバ長(Km)を示しており、縦軸に信号光パワー[dBm]を示している。図9に示すように、外部制御光なしの場合の信号光パワー71は、外部制御光(+15dBm)ありの場合の信号光パワー72よりも高い値となる。外部制御光は、間接的に、信号光パワーを下げる(増幅における利得を下げる)効果を有していることが分かる。
【0054】
図10は、励起出力のZ軸方向の変化の一例を示す図である。図10では、横軸にZ軸方向(長手方向)のファイバ長[Km]を示しており、縦軸に励起出力(Pump Power)[dB]を示している。なお、励起光の波長は1446nmである。
【0055】
図10に示すように、伝送路光ファイバの終端(130km)から入射した励起出力は、ファイバ内を伝搬するのに従って減少する(130km→0km)。このとき、外部制御光が無い場合の励起出力81の方が、伝搬した距離にかかわらず外部制御光(+15dBm)がある場合の励起出力82より高い値を示す。
【0056】
図11は、図10の部分拡大図である。図11では、図10と同様に横軸にZ軸方向(長手方向)のファイバ長[Km]を示しており、縦軸に励起出力(Pump Power)[dB]を示している。但し、Z方向のファイバ長が90Kmから130Kmまでの範囲のみを示している。
【0057】
図11に示すように、伝送路光ファイバの終端から一定の範囲内では、励行出力は外部制御光の有無に影響を受けない。終端から一定の距離以上離れると、励起出力が外部制御光の影響を受けて、急激に減少する。
【0058】
以上のような特性を踏まえて外部制御光源の適切な出力が求められる。以下に、外部励起光の演算処理について説明する。
図12は、外部制御光の出力制御を行うラマン増幅器の機能ブロック図である。伝送路100上には、WDMカプラ101と光カプラ102とが配置されている。WDMカプラ101は、合波器122から送られる光を、伝送路100に対して信号光と逆方向に送出する。光カプラ102は、モニタ103に接続されている。光カプラ102は、伝送路100を伝搬してきた光信号の一部をモニタ103に送る。
【0059】
モニタ103は、制御部104に電気的に接続されている。モニタ103は、信号光のトータルの出力を検出し、トータル出力情報を電気信号に変えて制御部104に送る。制御部104は、信号光のトータル出力情報に基づいて外部励起光源の出力パワーを決定する。制御部104は、外部制御光源121に接続されており、決定した出力パワーを指示する制御情報を外部制御光源121に対して入力する。
【0060】
外部制御光源121は、合波器122に接続されている。そして、外部制御光源121は、予め選定された波長の外部制御光を、制御部104で決定されたパワーで合波器122に向けて出力する。
【0061】
また、合波器122には、複数の励起光源111,112,113が接続されている。励起光源111,112,113は、チャネル毎の信号光をラマン効果によって増幅させるための励起光を合波器122に向けて出力する。さらに、合波器122は、WDMカプラ101に接続されている。そして、合波器122は、各励起光源111,112,113と外部制御光源121とから出力された光(励起光と外部制御光)を合波して、WDMカプラ101に対して出射する。
【0062】
このような構成のラマン増幅器によれば、信号光のトータル出力情報がモニタ103で検出され、制御部104に送られる。そして、制御部104では、トータル出力情報に基づいて外部制御光の出力パワーを演算し、外部制御光源121を制御する。すると、指定されたパワーの外部制御光が励起光と合波され、伝送路100に逆方向に出射される。
【0063】
このように、外部制御光による制御においては、外部制御波長をあらかじめ選定しておくことにより、トータル出力情報をモニタし、外部制御光のパワーを単純に制御することで出力制御が可能となる。
【0064】
以下に、励起比率調整制御、励起一定制御、外部制御光の出力制御それぞれにより信号光の出力制御を行ったときのチルト出力例を示す。
図13は、励起比率調整制御を行ったときのチルト変化を示す図である。励起比率調整制御では、利得変動量が0[dB]のときのチルト変化は0[dB]である。利得変動量が−1.14[dB]のときのチルト変化は0.15[dB]である。利得変動量が−2.33[dB]のときのチルト変化は0.26[dB]である。利得変動量が−3.55[dB]のときのチルト変化は0.36[dB]である。利得変動量が−6.07[dB]のときのチルト変化は0.61[dB]である。利得変動量が−8.64[dB]のときのチルト変化は0.87[dB]である。利得変動量が−11.22[dB]のときのチルト変化は1.15[dB]である。利得変動量が−13.79[dB]のときのチルト変化は1.40[dB]である。利得変動量が−16.34[dB]のときのチルト変化は1.63[dB]である。利得変動量が−18.86[dB]のときのチルト変化は1.82[dB]である。
【0065】
図14は、励起一定制御を行ったときのチルト変化を示す図である。励起一定制御では、利得変動量が0[dB]のときのチルト変化は0[dB]である。利得変動量が−1.11[dB]のときのチルト変化は0.33[dB]である。利得変動量が−2.27[dB]のときのチルト変化は0.65[dB]である。利得変動量が−3.47[dB]のときのチルト変化は0.97[dB]である。利得変動量が−5.95[dB]のときのチルト変化は1.56[dB]である。利得変動量が−8.50[dB]のときのチルト変化は2.06[dB]である。利得変動量が−11.07[dB]のときのチルト変化は2.44[dB]である。利得変動量が−13.66[dB]のときのチルト変化は2.68[dB]である。利得変動量が−16.24[dB]のときのチルト変化は2.76[dB]である。利得変動量が−18.80[dB]のときのチルト変化は2.65[dB]である。
【0066】
図15は、外部制御光の出力制御を行ったときのチルト変化を示す図である。外部制御光の出力制御では、利得変動量が0[dB]のときのチルト変化は0[dB]である。利得変動量が−0.01[dB]のときのチルト変化は0.00[dB]である。利得変動量が−0.14[dB]のときのチルト変化は0.02[dB]である。利得変動量が−1.27[dB]のときのチルト変化は0.14[dB]である。利得変動量が−2.31[dB]のときのチルト変化は0.26[dB]である。利得変動量が−3.91[dB]のときのチルト変化は0.44[dB]である。利得変動量が−6.08[dB]のときのチルト変化は0.72[dB]である。利得変動量が−8.73[dB]のときのチルト変化は1.14[dB]である。利得変動量が−11.75[dB]のときのチルト変化は1.80[dB]である。
【0067】
図16は、制御種別毎の利得変動量に対する出力チルト変化量を示す図である。図16では、横軸に利得変動量[dB]を示しており、縦軸に出力チルト変化量を示している。励起比率調整制御の場合の出力チルト変化量91は、ほぼ直線を示している。励起一定制御の場合の出力チルト変化量92は、励起比率調整制御の場合に比べ、非常に大きな値を示している。外部制御光の出力制御の場合の出力チルト変化量93は、利得変動量が0に近い時は、励起比率調整制御の場合と同様の特性を示している。そして、外部制御光の出力制御の場合の出力チルト変化量93は、利得変動量が0から遠ざかると、励起比率調整制御の場合に比べ徐々に大きな値となる。
【0068】
以上で説明したように、外部制御光源を用いることで光増幅器の利得の簡易な高速制御が可能となる。すなわち、励起光の波長数よりも少ない数の外部制御光によってラマン効果による利得を制御できるため、光増幅の制御が容易となる。
【0069】
(付記1) 光ファイバ内を伝搬する信号光に対して生じさせる光増幅を制御するための光増幅制御ユニットにおいて、
前記信号光を増幅させる効果を有する励起光を発生させる複数の励起光源と、
前記励起光による前記信号光への増幅効果に影響を与える波長の外部制御光を発生させる外部制御光源と、
前記励起光と前記外部制御光とを合波し、合波された光を前記光ファイバに対して前記信号光とは逆の方向に入射する合波部と、
前記外部制御光源による前記外部制御光の出力を制御する制御部と、
を有することを特徴とする光増幅制御ユニット。
【0070】
(付記2) 前記外部制御光源は、前記励起光による前記信号光へ利得を低減させる効果を有する前記外部制御光を発生させることを特徴とする付記1記載の光増幅制御ユニット。
【0071】
(付記3) 前記外部制御光源は、前記信号光の波長地域内の波長の前記外部制御光を発生させることを特徴とする付記3記載の光増幅制御ユニット。
(付記4) 前記外部制御光源は、前記信号光の波長地域の+30nmから−30nmの範囲内の波長の前記外部制御光を発生させることを特徴とする付記3記載の光増幅制御ユニット。
【0072】
(付記5) 前記外部制御光源は、複数設けられていることを特徴とする付記1記載の光増幅制御ユニット。
(付記6) 全ての前記外部制御光源は前記信号光の波長地域の+30nmから−30nmの範囲内の波長の前記外部制御光を発生させ、一部の前記外部制御光源は前記信号光の波長地域内の波長の前記外部制御光を発生させることを特徴とする付記5記載の光増幅制御ユニット。
【0073】
(付記7) 前記信号光のパワーを検出する受光素子を更に有し、
前記制御部は、前記受光素子で受光された前記パワーに基づいて、前記外部制御光の適切なパワーを演算し、演算結果に応じて前記外部制御光源による前記外部制御光の出力を制御することを特徴とする付記1記載の光増幅制御ユニット。
【0074】
(付記8) 前記励起光源は、前記光ファイバ内で前記信号光のラマン増幅を生じさせる波長の前記励起光を発生させることを特徴とする付記1記載の光増幅制御ユニット。
【0075】
(付記9) 光ファイバ内を伝搬する信号光に対して生じさせる光増幅を制御するための光増幅制御方法において、
前記信号光を増幅させる効果を有する複数の励起光を発生させ、
前記励起光による前記信号光への増幅効果に影響を与える波長の外部制御光を発生させ、
前記励起光と前記外部制御光とを合波し、合波された光を前記光ファイバに対して前記信号光とは逆の方向に入射する、
ことを特徴とする光増幅制御方法。
【0076】
【発明の効果】
以上説明したように本発明では、外部制御光によって複数の励起光源が信号光に与える利得を制御するようにしたため、複数の励起光源の出力を直接制御する場合に比べ簡易な方法で所望の利得が得られるように光増幅を制御することができる。
【図面の簡単な説明】
【図1】本発明に係る光増幅制御ユニットの実施の形態を示す図である。
【図2】信号波長、励起波長、および外部制御光波長の関係を示す図である。
【図3】ラマン増幅器を使用する光ファイバ伝送システムの概略構成図である。
【図4】伝送路損失と所要利得の関係を示す図である。
【図5】外部制御光のパワーを変化させた場合の単一モード光ファイバ(SMF)でのラマン利得の波長特性を示す図である。
【図6】増幅器出力に応じた平均ラマン利得の変化を示す図である。
【図7】外部制御光を用いて利得を変化した場合の増幅器出力の関係を示す図である。
【図8】外部制御光による平均ON/OFF利得変化を示す図である。
【図9】増幅出力のZ軸方向変化の一例を示す図である。
【図10】励起出力のZ軸方向の変化の一例を示す図である。
【図11】図10の部分拡大図である。
【図12】外部制御光の出力制御を行うラマン増幅器の機能ブロック図である。
【図13】励起比率調整制御を行ったときのチルト変化を示す図である。
【図14】励起一定制御を行ったときのチルト変化を示す図である。
【図15】外部制御光の出力制御を行ったときのチルト変化を示す図である。
【図16】制御種別毎の利得変動量に対する出力チルト変化量を示す図である。
【図17】従来のラマン増幅器の構成例を示す図である。
【図18】従来の励起光源の出力制御方式を示すブロック図である。
【図19】従来技術による波長と光出力との関係を示す図である。
【符号の説明】
1 光ファイバ
2 WDMカプラ
3 光カプラ
4 受光素子
5 制御部
6 外部制御光源
7 励起光源

Claims (5)

  1. 光ファイバ内を伝搬する信号光に対して生じさせる光増幅を制御するための光増幅制御ユニットにおいて、
    前記信号光を増幅させる効果を有する励起光を発生させる複数の励起光源と、
    前記励起光による前記信号光への増幅効果に影響を与える波長の外部制御光を発生させる外部制御光源と、
    前記励起光と前記外部制御光とを合波し、合波された光を前記光ファイバに対して前記信号光とは逆の方向に入射する合波部と、
    前記外部制御光源による前記外部制御光の出力を制御する制御部と、
    を有することを特徴とする光増幅制御ユニット。
  2. 前記外部制御光源は、前記励起光による前記信号光へ利得を低減させる効果を有する前記外部制御光を発生させることを特徴とする請求項1記載の光増幅制御ユニット。
  3. 前記外部制御光源は、前記信号光の波長地域内の波長の前記外部制御光を発生させることを特徴とする請求項3記載の光増幅制御ユニット。
  4. 前記信号光のパワーを検出する受光素子を更に有し、
    前記制御部は、前記受光素子で受光された前記パワーに基づいて、前記外部制御光の適切なパワーを演算し、演算結果に応じて前記外部制御光源による前記外部制御光の出力を制御することを特徴とする請求項1記載の光増幅制御ユニット。
  5. 光ファイバ内を伝搬する信号光に対して生じさせる光増幅を制御するための光増幅制御方法において、
    前記信号光を増幅させる効果を有する複数の励起光を発生させ、
    前記励起光による前記信号光への増幅効果に影響を与える波長の外部制御光を発生させ、
    前記励起光と前記外部制御光とを合波し、合波された光を前記光ファイバに対して前記信号光とは逆の方向に入射する、
    ことを特徴とする光増幅制御方法。
JP2003093279A 2003-03-31 2003-03-31 光増幅制御ユニットおよび光増幅制御方法 Pending JP2004301991A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003093279A JP2004301991A (ja) 2003-03-31 2003-03-31 光増幅制御ユニットおよび光増幅制御方法
US10/792,746 US7133192B2 (en) 2003-03-31 2004-03-05 Light amplification control unit and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093279A JP2004301991A (ja) 2003-03-31 2003-03-31 光増幅制御ユニットおよび光増幅制御方法

Publications (1)

Publication Number Publication Date
JP2004301991A true JP2004301991A (ja) 2004-10-28

Family

ID=32985391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093279A Pending JP2004301991A (ja) 2003-03-31 2003-03-31 光増幅制御ユニットおよび光増幅制御方法

Country Status (2)

Country Link
US (1) US7133192B2 (ja)
JP (1) JP2004301991A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332301A (ja) * 2005-05-26 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> 光増幅器
JP2007012767A (ja) * 2005-06-29 2007-01-18 Nec Corp 光増幅器及び光増幅の制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992565B2 (ja) * 2002-08-27 2007-10-17 富士通株式会社 光伝送システム
US7477446B2 (en) * 2002-10-04 2009-01-13 Fujitsu Limited Raman amplification system utilizing modulated second-order raman pumping
JP4184046B2 (ja) * 2002-11-18 2008-11-19 富士通株式会社 ラマン増幅器
KR100533914B1 (ko) * 2003-10-08 2005-12-06 한국전자통신연구원 라만 증폭기 및 라만 펌핑 방법
CN102843192B (zh) * 2012-09-05 2016-05-11 武汉光迅科技股份有限公司 混合光纤放大器及其增益、增益斜率的调整方法及装置
US9575390B2 (en) * 2015-03-31 2017-02-21 Ipg Photonics Corporation Higher order seedless raman pumping

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700696B2 (en) * 2000-08-09 2004-03-02 Jds Uniphase Corporation High order fiber Raman amplifiers
US6424455B1 (en) * 2000-10-03 2002-07-23 Tycom (Us) Inc. Wide bandwidth fiber raman amplifier
US6417958B1 (en) * 2001-01-24 2002-07-09 Lucent Technologies Inc. WDM optical communication system using co-propagating Raman amplification
JP4541574B2 (ja) * 2001-02-07 2010-09-08 富士通株式会社 光中継伝送システムおよび光中継伝送方法
DE10111491A1 (de) * 2001-03-09 2002-09-19 Siemens Ag Pumpquelle mit jeweils mehreren Pumplasern zur Raman-Verstärkung eines WDM-Signals mit minimierter Vierwellenmischung
DE10111969B4 (de) * 2001-03-13 2004-04-15 Siemens Ag Multiplexer zur Realisierung von nicht-äquidistanten Abständen zwischen den Pumpenwellenlängen in Breitband Raman Verstärkern
DE60219758T2 (de) * 2002-02-21 2008-01-17 Alcatel Lucent Faseroptisches Übertragungssystem mit Raman-Verstärkung
US7199919B2 (en) * 2002-03-15 2007-04-03 The Furukawa Electric Co., Ltd. Tunable multimode wavelength division multiplex Raman pump and amplifier, and a system, method, and computer program product for controlling tunable Raman pumps, and Raman amplifiers
US6721088B2 (en) * 2002-03-15 2004-04-13 Ofs Fitel Single-source multiple-order raman amplifier for optical transmission systems
US6813067B1 (en) * 2002-11-05 2004-11-02 At&T Corp. Method and apparatus for providing a broadband raman amplifier with improved noise performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332301A (ja) * 2005-05-26 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> 光増幅器
JP2007012767A (ja) * 2005-06-29 2007-01-18 Nec Corp 光増幅器及び光増幅の制御方法

Also Published As

Publication number Publication date
US20040190122A1 (en) 2004-09-30
US7133192B2 (en) 2006-11-07

Similar Documents

Publication Publication Date Title
JP4115027B2 (ja) 励起光発生手段と、ラマン増幅器とそれを用いた光中継器
US6636659B2 (en) Optical amplification apparatus and optical transmission system
JP4626918B2 (ja) ラマン光増幅中継器
JPH08278523A (ja) 光増幅装置
US6775055B2 (en) Raman amplifier
JP2002229084A (ja) ラマン増幅器およびそれを用いた光伝送システム
US20100073762A1 (en) Raman amplifier and control method thereof
JPH10256634A (ja) 光増幅装置および光増幅装置の制御方法ならびに光増幅装置を用いた光伝送システム
US8077382B2 (en) Gain-clamped optical amplifying apparatus using fiber Raman amplifier having Raman cavity
JP2004193640A (ja) ラマン増幅器および光中継伝送システム
JP3655508B2 (ja) ラマン増幅器及び光通信システム
JP4415746B2 (ja) ラマン増幅器
US7158285B2 (en) Raman amplification repeater and optical transmission system using the same
US8027082B2 (en) Raman amplifier and excitation light source used thereof
JP2004064500A (ja) 光中継器
JP2004301991A (ja) 光増幅制御ユニットおよび光増幅制御方法
JP2002344054A (ja) 光増幅装置および光伝送システム
JP2000040847A (ja) 光増幅器
JP3570927B2 (ja) ラマン増幅を用いた光ファイバ通信システム
JP3811134B2 (ja) 光増幅器
US7580183B2 (en) Light generator, optical amplifier, and optical communication system
JP3977363B2 (ja) ラマン増幅器及び光通信システム
JP3936275B2 (ja) 光伝送システム及び光伝送方法
JP2003338650A (ja) 光増幅器
JP4205651B2 (ja) 光中継器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110