JP4205651B2 - 光中継器 - Google Patents

光中継器 Download PDF

Info

Publication number
JP4205651B2
JP4205651B2 JP2004291889A JP2004291889A JP4205651B2 JP 4205651 B2 JP4205651 B2 JP 4205651B2 JP 2004291889 A JP2004291889 A JP 2004291889A JP 2004291889 A JP2004291889 A JP 2004291889A JP 4205651 B2 JP4205651 B2 JP 4205651B2
Authority
JP
Japan
Prior art keywords
light
fiber
raman amplifier
excitation light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004291889A
Other languages
English (en)
Other versions
JP2005027355A (ja
Inventor
芳博 江森
洋一 赤坂
周 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2004291889A priority Critical patent/JP4205651B2/ja
Publication of JP2005027355A publication Critical patent/JP2005027355A/ja
Application granted granted Critical
Publication of JP4205651B2 publication Critical patent/JP4205651B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は各種光通信システムで信号光の増幅に使うことができるラマン増幅器とそれを用いた光中継器に関するものであり、特に波長分割多重光の増幅に適するものである。
現在の光ファイバ通信システムで使用される光増幅器のほとんどは、希土類添加ファイバ増幅器である。特にEr(エルビウム)を添加したファイバを使用するEr添加光ファイバ増幅器(以下、EDFAと記載する)がよく用いられる。しかし、EDFAの実用的な利得波長帯は1530nmから1610nm程度である。(参考文献:Electron. Lett, vol.33, no.23, pp. 1967 ‐1968)また、EDFAは利得に波長依存性を持っており、波長分割多重光に用いる場合、信号光の波長によって利得に差が出る。図23はEDFAの利得波長依存性の一例を示したものであるが、1540nm以下と1560nm以上では特に波長に対する利得の変化が大きい。従って、そのような波長を含む帯域全体で一定の利得(大抵は利得偏差1dB 以内)を得るには、利得平坦化フィルタを使用する。
利得平坦化フィルタは利得が大きい波長の所で損失が大きくなるように設計されたフィルタであり、損失プロファイルは利得プロファイルとほぼ同じ形をしている。但し、EDFAは図24に示す様に平均利得の大きさが変化すると曲線a、b、cの様に利得プロファイルも変わるので、この場合、最適な利得平坦化フィルタの損失プロファイルも変わる。従って、損失プロファイルが固定的な利得補正フィルタによって平坦化が実現されている場合には、EDFAの利得が変化すると平坦度が劣化してしまう。
一方、光増幅器には光ファイバのラマン散乱を利用したラマン増幅器と呼ばれるものもある(参考文献:Nonlinear Fiber optics, Academic Press)。ラマン増幅器は励起光の周波数よりも約13THz 低い周波数に利得のピークを持つ。以下の記述では、1400nm帯の励起光を使用した場合を前提とし、約13THz 低い周波数を約100nm 長い波長と表現する。図25に中心波長が1450nmの励起光を用いたときの利得の波長依存性を示す。このとき利得のピークは1550nmであり、利得偏差1dB 以内の帯域幅は20nm程度である。ラマン増幅器は励起光源さえ用意できれば、任意の波長を増幅することができるため、EDFAで増幅する事のできない波長帯での使用が主に検討されている。その一方、ラマン増幅器はEDFAの利得帯域では用いられていない。これはラマン増幅器がEDFAと同等の利得を得るためにより大きい励起光パワーを必要とするためである。加えて、大きなパワーの励起光をファイバに入射して利得を高めようとすると、励起光による誘導ブリルアン散乱が発生して雑音が増えるため、ラマン増幅器の利用を難しくしており、かかる観点からラマン増幅器での誘導ブリルアン散乱を抑制する技術が開示されている(例えば、特許文献1参照。)。
また、ラマン増幅器は利得に偏波依存性を有し、信号光に含まれる偏波成分の中で励起光の偏波と一致する成分に対してのみ増幅作用をもたらす。従って、偏波依存性による利得の不安定性を低減する対策が求められるが、これには、増幅用ファイバとして偏波面を保存するファイバを用いるか、偏波状態がランダムな励起光源を用いることが考えられている。
この他、ラマン増幅器は利得帯域の拡大も必要とされており、この方法として、波長の異なる複数の励起光を利用することが考えられている(参考文献:OFC98, PD-6 )。しかしながら、利得偏差を1dB 以下にするという観点での取り組みはなされていない。
他方、光ファイバ伝送路において発生する伝送損失と波長分散を同時に補償する光中継器もあり、これはEr添加ファイバ増幅器(EDFA)と波長分散を補償するための分散補償用ファイバ(DCF )を組み合わせた構成である。図46はこの従来例であり、分散補償用ファイバAが2つのEr添加ファイバ増幅器B、Cで挟まれた構成となっている。第1のEr添加ファイバ増幅器Bは低レベルの信号光を比較的高いレベルに増幅するものであり、雑音特性に優れていることを特徴としている。第2のEr添加ファイバ増幅器Cは分散補償ファイバAにおいて減衰した光信号を再び高いレベルに増幅するものであり、出力レベルが高いことを特徴としている。
ところで前記光中継器は、その設計に際して、中継器入力レベル、中継器出力レベル、分散補償量(分散補償用ファイバAにおける損失)の各々を適切に設定する必要があり、また、分散補償用ファイバAの入力光レベルに上限値が存在するという制限項目もある。これは、分散補償用ファイバAへの入力パワーを大きくすると、分散補償用ファイバA中での非線形効果の影響が大きくなり、伝送波形の劣化が著しくなることによる。この分散補償用ファイバAへの入力パワーの上限値は、1波伝送時には自己位相変調(SPM )効果、WDM 伝送時には相互位相変調(XPM )効果が決定要因となっている。以上、光中継器ではいくつかの変動要因を考慮して、その条件下で利得平坦度と雑音特性に優れた中継器を設計しなければならない。
図47は中継器内部における光レベルダイアグラムを示したものである。第1のEr添加ファイバ増幅器Bの利得G1 [dB] は、中継器入力レベルPin [dB]と分散補償用ファイバAへの入力上限値Pd [dB] の差に設定される。第2のEr添加ファイバ増幅器Cの利得G2 [dB] は、分散補償用ファイバAにおける損失Ld [dB] と、中継器利得Gr [dB] と、第1のEr添加ファイバ増幅器Bの利得G1 [dB] とからGr+Ld−G1 [dB] に設定される。これらの設計パラメータはシステム毎に異なるため、システム毎にG1 [dB] 、G2 [dB] は異なり、従って、Er添加ファイバ増幅器B、Cはシステム毎に再設計する必要がある。このようなシステムにおける雑音特性は、分散補償用ファイバAにおける損失Ld [dB] と深い関係があり、損失が大きい程、雑音特性が悪くなることが知られている。また、現在は伝送路の損失や分散補償用ファイバAの損失のばらつきを、Er添加ファイバ増幅器BやCの利得を変化させて補償したり、別途可変減衰器等を設けて調整しているが、前者は利得平坦度を劣化させ、後者は雑音特性を劣化させるため一長一短がある。
特開平2−12986号公報
光ファイバ通信ではEr添加光ファイバ増幅器が普及しているが、Er添加光ファイバ増幅器にもいくつかの課題がある。また、ラマン増幅器も一般的な半導体レーザの出力が100 から200mW 程度であり、得られる利得は比較的小さいとか、利得が励起光のパワーや波長の変化に敏感であり、比較的高出力のファブリペロー型の半導体レーザを用いる場合には、そのモードホップが引き起こす利得変動による雑音が顕著となるとか、利得の大きさを調整する際に、励起レーザの駆動電流を変化させる必要があるが、駆動電流を変化させた場合の中心波長の変動は最大15nm程度あり、利得の波長依存性が大きく変わってしまうとかいった課題がある。また、このような中心波長のシフトは励起光を多重化するWDM カプラの結合損失の変化にもつながるので好ましくない課題がある。更に、光中継器もシステム毎にEr添加ファイバ増幅器B、Cを設計しなおす必要がある等課題がある。また、分散補償用ファイバを挿入することによる雑音特性の劣化は、現行の方式では、避け難い課題である。
本発明の目的は、必要な利得を得ることができ、利得平坦化フィルタを使用する必要がない程度に利得の波長依存性を小さくすることができ、EDFAの帯域でも使用することができるラマン増幅器を提供することであり、また、このラマン増幅器をEr添加ファイバ増幅器(EDFA)と分散補償用光ファイバ(DCF )で構成される光中継器に応用して、システム毎にEDFAを再設計する必要がなく、光中継器の特性を劣化させることもなく、伝送路損失やDCF 損失のばらつきを補償することもできる光中継器を提供する。また、DCF をラマン増幅することは、従来避けることのできなかったDCF 挿入に起因する雑音特性の劣化を軽減することを示す。
本発明にかかるラマン増幅器は図1又は図2又は図3に示す様に、複数の励起光を発生する励起光発生手段1を備え、同励起光発生手段1から出力される複数の励起光と光ファイバ2に伝播される信号光とを合波して当該信号光にラマン利得を与えるラマン増幅器であって、前記励起光発生手段1はファブリペロー型、DFB 型、DBR 型の半導体レーザ又はMOPA3を用いて構成し、各励起光はその中心波長を互いに異なるものとし、且つ中心波長の間隔を6nm 以上35nm以下とすることを特徴とするものである。
本発明にかかるラマン増幅器は、複数の励起光は中心波長が最大のものと最小のものとの波長の差を100nm 以内とすることを特徴とするものである。
本発明にかかるラマン増幅器は図3に示す様に、励起光発生手段1は隣り合う波長の励起光を光ファイバ2に互いに異なる2方向に伝播して信号光を双方向励起する構成であることを特徴とするものである。
本発明にかかるラマン増幅器は図3に示す様に、励起光発生手段1は複数の励起光を2つのグループに分けて配置すると共に、同一グループ内に隣接波長の励起光が入らない様にして夫々のグループ内で励起光を合波する構成とし、グループ内で合波された2つの励起光を光ファイバ2に互いに異なる2方向に伝播する様にしたことを特徴とするものである。
本発明にかかるラマン増幅器は図26又は図27に示す様に、入力光又は出力光をモニタし、その結果に基づいて励起光発生手段1の各励起光パワーを制御して、出力光パワーを所定値に保つ出力光パワー制御手段4を備えることを特徴とするものである。
本発明にかかるラマン増幅器は図4又は図5に示す様に、ラマン利得を受けた信号光を含む出力光をモニタし、その結果に基づいて励起光発生手段1の各励起光パワーを制御して、増幅器出力の波長依存性を平坦化する出力光パワー制御手段4を備えることを特徴するものである。
本発明にかかるラマン増幅器は図4に示す様に、出力光パワー制御手段4は、出力光から分岐したモニタ光を各励起光の波長に各々約100nm を加えた波長の波長光に分波してそれら波長光をモニタし、各波長光のパワーを揃える様に励起光発生手段1の各励起光パワーを制御するものであることを特徴とするものである。
本発明にかかるラマン増幅器は図5に示す様に、出力光パワー制御手段4は、出力光から分岐したモニタ光を更に励起光と同数に分配して、それらから各励起光の波長に各々約100nm を加えた波長光を透過させて各波長光をモニタし、各波長光のパワーを揃える様に励起光発生手段1の各励起光パワーを制御するものであることを特徴とするものである。
本発明にかかるラマン増幅器は図28に示す様に、入力光パワーと出力光パワーとをモニタし、それらの比が一定になる様に励起光発生手段1の各励起光パワーを制御して、利得を所定値に保つ出力光パワー制御手段4を備えることを特徴とするものである。
本発明にかかるラマン増幅器は図1又は図2又は図3に示す様に、励起光発生手段1はファブリペロー型の半導体レーザ3の出力側にファイバグレーティング等の波長安定化用の外部共振器5を設けて構成することを特徴とするものである。
本発明にかかるラマン増幅器は図1又は図2又は図3に示す様に、励起光発生手段1はファブリペロー型の半導体レーザ3の出力側に励起光を偏波合成するための偏波合成器6を設けて構成することを特徴としたものである。
本発明にかかるラマン増幅器は図1又は図2又は図3に示す様に、励起光発生手段1は複数の波長のファブリペロー型、DFB 型、DBR 型の半導体レーザ又はMOPAをマッハツェンダ干渉計を原理とする平面光波回路型波長合波器を設けて構成することを特徴とするものである。
本発明にかかるラマン増幅器は図6(a)又は図6(b)に示す様に、偏波面を90度回転する偏波面回転手段7を備え、光ファイバ2に励起光発生手段1で発生された複数の励起光と前記偏波面回転手段7により発生された前記各励起光と偏波面が直交する励起光とが同時に存在する様にしたことを特徴とするものである。
本発明にかかるラマン増幅器は、増幅用の光ファイバ2は非線形屈折率n2が3.5E‐20 [m2 / W]以上であることを特徴とするものである。
本発明にかかるラマン増幅器は、増幅用の光ファイバ2が伝送路の一部として存在するものであることを特徴とするものである。
本発明にかかる記載のラマン増幅器は増幅用ファイバ2が伝送路となっており、その内訳がSMF と-20ps/nm/km 未満の分散を持つファイバを接続して構成されたものであることを特徴とするものである。
本発明にかかる記載のラマン増幅器は増幅用ファイバ2が伝送路となっており、その内訳がSMF と-20ps/nm/km 未満の分散を持つファイバを接続して構成されたものであり、-20ps/nm/km 未満の分散を持つファイバからSMF へ向って励起光が伝播することを特徴とするものである。
本発明にかかるラマン増幅器は、増幅用の光ファイバ2が信号光を伝播するための伝送用ファイバから独立したものであり、同伝送用ファイバ中に挿入可能なラマン増幅用ファイバとして存在するものであることを特徴とするものである。
本発明にかかる光中継器は図7に示す様に、光ファイバ伝送路8中に挿入されて同光ファイバ伝送路8における損失を補償する光中継器であって、本発明にかかるラマン増幅器9を備え、同ラマン増幅器9で光ファイバ伝送路8における損失を補償する構成であることを特徴とするものである。
本発明にかかる記載の光中継器は図29〜図32に示す様に、ラマン増幅器9の残留励起光を光ファイバ伝送路8に入射し、光ファイバ伝送路8におけるラマン増幅効果を利用することを特徴とするものである。
本発明にかかる光中継器は図8に示す様に、ラマン増幅器9の前段又は後段又は前後両段に希土類添加ファイバ増幅器10を備えることを特徴とするものである。
本発明にかかる光中継器は図33〜図36に示す様に、ラマン増幅器9の残留励起光を希土類添加ファイバ増幅器10の励起光として利用することを特徴とするものである。
本発明にかかる光中継器は図45に示す様に、光ファイバ伝送路8中に挿入されて同光ファイバ伝送路8における波長分散を補償する光中継器であって、本発明にかかるラマン増幅器9を備え、その光ファイバ2に分散補償用ファイバを用いて光ファイバ伝送路8における波長分散を補償し、光ファイバ伝送路8及び増幅用の光ファイバ2における損失の一部又は全てを補償することを特徴とするものである。
本発明にかかる光中継器は図29〜図32に示す様に、ラマン増幅器9の残留励起光を光ファイバ伝送路8に入射し、光ファイバ伝送路8におけるラマン増幅効果を利用することを特徴とするものである。
本発明にかかる光中継器は図8に示す様に、ラマン増幅器9の前段又は後段又は前後両段に希土類添加ファイバ増幅器10を備えることを特徴とするものである。
本発明にかかる光中継器は図33〜図36に示す様に、ラマン増幅器の残留励起光を希土類添加ファイバ増幅器10の励起光として利用することを特徴とするものである。
本発明にかかる光中継器は図9に示す様に、分散補償用ファイバである光ファイバ2への入力レベルの変動や同ファイバ2における損失の変動を同光ファイバ2におけるラマン増幅により補償して、当該光ファイバ2からの出力を所定値に保つ制御手段を備えることを特徴とするものである。
本発明にかかる光中継器は図10に示す様に、分散補償用ファイバである光ファイバ2における損失又は利得を同光ファイバ2におけるラマン増幅により補償して一定に保つ制御手段を備えることを特徴とするものである。
本発明にかかる光中継器は、希土類添加ファイバ増幅器10の利得を一定に保ち、ラマン増幅器9の利得によって中継器の利得を調整する様にしたことを特徴とするものである。
本発明にかかる光中継器は図11に示す様に、希土類添加ファイバ増幅器10の利得の波長依存性をラマン増幅器9の利得の波長依存性を使って補償する様にしたことを特徴とするものである。
本発明にかかる光中継器は図8に示す様に、光ファイバ伝送路8中に挿入されて同光ファイバ伝送路8における損失と波長分散を補償する光中継器であって、励起光の波長が単一であるラマン増幅器9を備え、同ラマン増幅器9の前段又は後段又は前後両段に希土類添加ファイバ増幅器10を備えることを特徴とし、ラマン増幅器9の増幅用の光ファイバ2に分散補償用ファイバを用いることを特徴とするものである。
本発明にかかる光中継器は図33〜図36に示す様に、ラマン増幅器9の残留励起光を希土類添加ファイバ増幅器10の励起光として利用することを特徴とするものである。
本発明にかかる光中継器は図9に示す様に、分散補償用ファイバであるラマン増幅用の光ファイバ2への入力レベルの変動や同ファイバ2における損失変動を同ファイバ2におけるラマン増幅により補償して、当該光ファイバ2からの出力を所定値に保つ制御手段を備えることを特徴とするものである。
本発明にかかる光中継器は図10に示す様に、分散補償用ファイバであるラマン増幅用の光ファイバ2における損失又は利得を同ファイバ2におけるラマン増幅により補償して所定値に保つ制御手段を備えることを特徴とするものである。
本発明にかかる光中継器は図11に示す様に、希土類添加ファイバ増幅器10の利得を一定に保ち、ラマン増幅器9の利得によって中継器の利得を調整する様にしたことを特徴とするものである。
次に本発明のラマン増幅器とそれを用いた光中継器の作用について説明する。
本発明にかかるラマン増幅器では図1、2、3に示す様に、励起光発生手段1に小型で比較的高出力のファブリペロー型の半導体レーザ3を用いた場合、比較的高い利得を得ることができ、また、ファブリペロー型の半導体レーザ3は発振波長の線幅が広いため、励起光による誘導ブリルアン散乱の発生をほぼなくすことができる。DBF 型、DBR 型の半導体レーザ又はMOPAを用いた場合、発振波長の変動範囲が比較的小さいため、利得形状が駆動条件によって変化することがない。また、誘導ブリルアン散乱の発生は変調をかけることにより抑制することができる。
更に、励起光を中心波長の間隔を6nm 以上35nm以下とすることにより利得平坦化フィルタを必要としない程度に利得の波長依存性を小さくすることができる。励起光の中心波長間隔を6nm 以上とする理由は、反射帯域幅の狭い外部共振器5を接続したファブリペロー型の半導体レーザ3の発振帯域幅が図12に示す様に約3nm であることと、励起光を合波するためのWDM カプラ11(図1、2、3)に合波効率を良くするために励起光間の波長間隔にいくらかの余裕をもたせることを可能にするためである。WDM カプラ11は、異なる波長の光を別々のポートから入射し、入射光がほとんど損失を受けることなく1つの出力ポートへ結合するように設計されたものであるが、設計波長の中間の波長の光に対しては、どちらの入力ポートを使用しても損失が大きくなる。例えば、あるWDM カプラ11ではこの損失が大きくなる波長帯域の幅が3nm であった。従って、この帯域内に半導体レーザ3の帯域が含まれないようにするためには、図12に示す様に半導体レーザ3の帯城幅に3nm を加えた6nm が励起光の中心波長間隔の下限として適切である。一方、図13(a)の様に半導体レーザ3の中心波長の間隔を35nm以上とすると、図13(b)の様に隣り合う波長の励起光によって得られるラマン利得帯域の中間に利得の谷ができ、利得平坦度が悪くなる。これは、1つの励起光によって得られるラマン利得に関して、利得ピーク波長から15nmから20nm離れると利得が半分になることに起因する。従って、励起光の中心波長の間隔を6nm 以上35nm以下とすることで、利得平坦化フィルタを使用する必要がない程度に利得の波長依存性を小さくすることができる。
また、本発明にかかるラマン増幅器では、励起光の中心波長の最大値と最小値の差を100nm 以内とするため、励起光と信号光との波長の重複を防止して信号光の波形劣化を防止することができる。励起光と信号光の波長が近いと信号光の波形劣化につながるため、励起光と信号光の波長は重複しないように選ばなければならないが、励起光が1.4 μm 帯の場合には、励起光の中心波長の最大値と最小値の差を100nm 以下とすると、図14に示す様に1つの励起光から生じる利得の中心波長とその励起光との波長の差は約100nm であるため、励起光と信号光との波長の重複を防止することができる。
また、本発明にかかるラマン増幅器では、隣り合う波長の励起光を光ファイバ2に互いに異なる2方向に伝播して信号光を双方向励起する構成としたため、図1や図2、図3に示されるWDM カプラ11に要求される波長特性をあまくすることかできる。これは図15に示すように、双方向合わせた全ての励起光では中心波長がλ1 、λ2 、λ3 、λ4 となり間隔が6nm 以上35nm以下であるが、一方向の励起光だけについてみると中心波長がλ1 とλ3 、λ2 とλ4 となり波長間隔は2倍になり、WDM カプラ11の要求特性に余裕を持たすことができる。
また、本発明にかかるラマン増幅器では、ラマン増幅器への入力光又は出力光をモニタし、その結果に基づいて励起光発生手段1の各励起光パワーを制御して、ラマン増幅器の出力光パワーを所定値に保つ制御手段4を備えるため、ラマン増幅器への入力信号パワーの変動やラマン増幅用ファイバの損失のばらつきによらず、一定の出力を得ることができる。
また、本発明にかかるラマン増幅器では、ラマン利得を平坦化する出力光パワー制御手段4を備えるので、利得を平坦化することができる。かかるラマン増幅器では、図16(a)や(b)に示す様に各励起光の波長に各々約100nm を加えた波長の波長光をモニタし、それら波長光のパワーを揃える様に各励起光のパワーを制御するため、利得を平坦化することができる。また、後に記載する波長安定化用のファイバグレーティング(外部共振器5)を接続したものでは、駆動電流の変化による中心波長の変化が抑えられるため、利得の制御を可能にする手段としても作用する。
また、本発明にかかるラマン増幅器では、入力信号パワーと出力信号パワーをモニタし、それらの比が一定になる様に励起光パワーを制御して、ラマン増幅器の利得を所定値に保つ制御手段4を備えるため、ラマン増幅器への入力信号パワーの変動やラマン増幅用ファイバの損失のばらつきによらず、一定の利得を得ることができる。
また、本発明にかかるラマン増幅器では、ファブリペロー型の半導体レーザ3の出力側にファイバグレーティング等の波長安定化用の外部共振器5を設けるので、ファブリペロー型の半導体レーザ3のモードホップによる利得の変動による雑音を抑制することができる。また、半導体レーザ3に波長安定化用の外部共振器5を接続すると、1つの励起光源について見ると帯域幅を狭くすることになるが、WDM カプラ11(図1、2、3)で合波する際に、波長間隔を狭くすることができるため、最終的には、より高出力で広帯域な励起光が得られる。
また、本発明にかかるラマン増幅器では、半導体レーザ3の励起光を各波長毎に偏波合成して使用するため、利得の偏波依存性を解消すると同時に光ファイバ2に入射される励起光パワーを増加させることができる。ラマン増幅において利得が得られるのは、励起光の偏波と一致する成分のみであるため、励起光が直線偏波であり且つ増幅用ファイバが偏波保持ファイバでない場合、信号光と励起光の相対偏波の変動により利得が変動するが、直線偏波の励起光源を偏波面が直交するように合成することは、利得の偏波依存性を解消すると同時にファイバに入射される励起光パワーを増加させることになる。
また、本発明にかかるラマン増幅器では、複数の波長のファブリペロー型、DFB 型、DBR 型の半導体レーザ又はMOPAを合波する手段として、マッハツェンダ干渉計を原理とする平面光波回路型の波長合波器を使用するため、複数の波長のファブリペロー型の半導体レーザを多数合波する場合にも、極めて低損失で合波することができ、高出力な励起光が得られる。
また、本発明にかかるラマン増幅器では、図6に示す様に偏波面を90度回転する偏波面回転手段7を備え、光ファイバ2に励起光発生手段1で発生された複数の励起光とそれらと偏波面が直交される励起光とが同時に存在する様にしたため、原理的には、信号光の偏波面がいかようであろうとも常に一定の利得を得ることができる。ラマン増幅の帯域は、励起光の帯域に依存するため、複数の波長の励起光をWDM カプラ11で合波することは、増幅用の光ファイバ2に入射される励起光を広帯域化し、その結果としてラマン利得を広帯域化することになる。
また、本発明にかかるラマン増幅器では、光ファイバ2に非線形屈折率n2が3.5 E ‐20 [m2 / W]以上のものを使用するため、これまでの研究による成果であるが、十分な増幅効果が得られる。
また、本発明にかかるラマン増幅器では、光ファイバ2は信号光を伝播するための伝送用ファイバの一部として存在するので、伝送用光ファイバにそのまま増幅器を構成することが可能である。
また、本発明にかかるラマン増幅器では、光ファイバ2は信号光を伝播するための伝送用ファイバと独立された、同伝送用ファイバ中に挿入されるラマン増幅用ファイバとして存在するため、光ファイバ2にラマン増幅に適した光ファイバを利用することや、波長分散補償用ファイバを利用することが容易にでき、また集中型増幅器を構成することができる。
本発明にかかる光中継器では、ラマン増幅器を用いて光ファイバ伝送路8の損失を補償するため、本発明にかかるラマン増幅器の作用を持つ光中継器を得ることができる。
また、本発明にかかる光中継器では、ラマン増幅器の残留励起光を光ファイバ伝送路8に入射し、光ファイバ伝送路8におけるラマン増幅効果を利用することにより、光ファイバ伝送路8の損失の一部を補償することができる。
また、本発明にかかる光中継器では、ラマン増幅器の前段又は後段又は前後両段に希土類添加ファイバ増幅器9を備え、これらラマン増幅器9及び希土類添加ファイバ増幅器10で光ファイバ伝送路8の損失を補償するため、様々な伝送系に適する所望の増幅特性を得ることができる。
また、本発明にかかる光中継器では、ラマン増幅器の残留励起光を希土類添加ファイバ増幅器10の励起光として利用することにより、使用する半導体レーザの数を減らすことができる。
また、本発明にかかる光中継器では、ラマン増幅器9の光ファイバ2に分散補償用ファイバを用いてなるため、当該ラマン増幅器9で光ファイバ伝送路8の波長分散を補償し、光ファイバ伝送路8及び増幅用ファイバ2における損失の一部又は全てを補償することができる。
また、本発明にかかる光中継器では、ラマン増幅器9の前段又は後段又は前後両段に希土類添加ファイバ増幅器10を備え、これらラマン増幅器9及び希土類添加ファイバ増幅器10で光ファイバ伝送路8の損失と波長分散を補償するため、様々な伝送系に適する所望の増幅特性を得ることができる。
また、本発明のうち、ラマン増幅器9と希土類添加ファイバ増幅器10を組み合わせた構成では、様々なシステムに適応できる中継器を得ることができることを、ラマン増幅器9の増幅用ファイバにDCF を用いた場合を例として説明する。図17は従来の光中継器の設計パラメータの例であり、システム毎にG1、G2が異なっている。また、中継器入力とDCF 損失は、中継器の間隔のばらつきやDCF のばらつきにより、変動することが避けられない。この変動はEDFAの利得の変動に直結しており、その利得の変化が平坦度の劣化につながる。図18はEDFAの利得と平坦度の関係を模式的に示したものであるが、平坦度の最適化は使用帯域と平均利得を限定して行われるため、平均利得が最適化した点からずれると、利得の波長依存性が変化して平坦度が劣化する。平坦度の劣化を避けるためには、EDFAの利得は一定に保たれる必要がある。従来は、入力レベルやDCF 損失の変動を補償する手段として、可変減衰器が用いられてきた。図19(a)に入力レベルの変動に応じて、可変減衰器の減衰量を調整し、DCF への入力レベルを一定に制御する例と、図19(b)にDCF の損失の変動に応じて、減衰量を調整し、中間損失を一定に制御する例を示す。どちらの場合も2つのEDFAは利得一定となっている。しかしながら、この方法では、可変減衰器によって無駄な損失を加えるため雑音特性上不利である。
本発明では、中継器の設計パラメータの変化をDCF のラマン増幅効果で補償することによって、EDFAの利得を一定に保ち、システム毎にEDFAを設計する必要性をなくし、且つ平坦度も雑音特性も犠牲にすることなく、中継器間隔のばらつきやDCF のばらつきを補償することができる。図20は図17の中継器仕様に対して、DCF のラマン増幅効果を適用した場合のEDFAの設計値を示したものである。DCF のラマン利得を適当に選ぶことによって、3つの仕様に対して要求されるEDFAの特性を共通にすることができる。また、図21(a)、(b)に示す様に入力レベルやDCF 損失の変動は、EDFAの利得を変化させることなく、ラマン利得を変化させることによって補償することができる。いずれの場合も、EDFAの利得を一定に保ちつつ、DCF の出力レベルが一定になるようにラマン増幅利得を調整している。さらに、DCF 自体の損失をラマン増幅で補償することは、従来避けることのできなかったDCF 挿入に起因する雑音特性の劣化を軽減する。図37にDCF 挿入した場合の雑音指数の劣化量と同じDCF を用いたラマン増幅器を挿入した場合の雑音指数の劣化量の測定値を示す。
また、本発明にかかる光中継器では、励起光の波長が単一であるラマン増幅器を備えるため、複数の波長で励起されたラマン増幅器を備えた光中継器と比較すると動作範囲が狭い構成が単純で帯域幅以外はこれまでに述べた光中継器と同等の特性を得ることができる。図38、図39に単一波長で励起されたラマン増幅器を用いた光中継器と複数の波長で励起されたラマン増幅器を用いた光中継器の測定例を示した。
本発明のラマン増幅器では、中心波長の間隔が6nm 以上35nm以下であり、中心波長の最大値と最小値の差が100nm 以内であるように励起光源の波長を選択することにより、利得平坦化フィルタを使用する必要がない程度に利得の波長依存性が小さくかつ利得が変化しても平坦度を保つことのできる光増幅器を提供することができ、伝送路の損失と波長分散を補償する光中継器として応用することが可能である。EDFAとの組み合わせで構成される中継器においては、中継器の入力変動やDCF 損失変動によるEDFAの利得変動を抑え、利得平坦度の劣化を回避することができ、様々なシステムに適応することができる。
(ラマン増幅器の実施形態1)
図1は本発明のラマン増幅器の第1の実施形態であり、信号光入力ファイバ12と、増幅用ファイバ(光ファイバ)2、WDM カプラ13、励起光発生手段1、モニタ光分配用カプラ14、モニタ信号検出及びLD制御信号発生回路15、信号光出力ファイバ16、偏波無依存アイソレータ25から構成されている。ここでモニタ光分配用カプラ14とモニタ信号検出及びLD制御信号発生回路15は出力光パワー制御手段4を構成している。
励起光発生手段1は、ファブリペロー型の半導体レーザ3(31 、32 、33 、34 )と、波長安定化用のファイバグレーティング(外部共振器)5(51 、52 、53 、54 )と、偏波合成カプラ(偏波合成器)6(61 、62 )と、WDM カプラ11とから構成されている。ここで半導体レーザ31 、32 の発振波長と、ファイバグレーティング51 、52 の透過波長は共に同じ波長λ1 であり、半導体レーザ33 、34 の中心波長と、ファイバグレーティング53 、54 の透過波長は共に同じ波長λ2 であり、半導体レーザ31 、32 、33 、34 の発振波長は波長安定化用ファイバグレーティング51 、52 、53 、54 の作用により中心波長がλ1 、λ2 に安定化されるようにしてある。また前記波長λ1 とλ2 の波長間隔は6nm 以上35nm以下としてある。
前記半導体レーザ31 、32 、33 、34 で発生される励起光はその波長λ1 、λ2 ごとに偏波合成カプラ6で偏波合成され、各偏波合成カプラ6の出力光がWDM カプラ11で合波されて励起光発生手段1の出力光となるようにしてある。半導体レーザ3から偏波合成カプラ6の間は偏波面保存ファイバ17で接続され、偏波面が異なる2つの励起光が得られる様にしてある。励起光発生手段1の出力光はWDM カプラ13により増幅用ファイバ2に結合され、一方、信号光(波長分割多重光)は信号光入力ファイバ12より増幅用ファイバ2に入射され、同増幅用ファイバ2で励起光発生手段1の励起光と合波されてラマン増幅され、WDMカプラ13を通過し、モニタ光分岐用カプラ14において、その一部はモニタ信号として分岐され、残りは信号光出力ファイバ16へ出力される。前記モニタ信号はモニタ信号検出及びLD制御信号発生回路15において監視され、同回路15は信号波長帯域内の利得偏差が小さくなるように各半導体レーザ3の駆動電流を制御する信号を発生する。
前記増幅用ファイバ2はラマン増幅に適した特殊ファイバ、例えば非線形屈折率n2が3.5 E ‐20 [m2 / W]以上であるものを用いても良いし、信号光が入力される信号入力ファイバ12をそのまま延長して用いても良い。また、km当たり-20ps/nm未満の分散を持つRDF (Reverse Dispersion Fiber)をSMF につなぎ、伝送路を兼ねた増幅用ファイバとして使用してもよい。(一般にRDF は-20ps/nm未満の分散を持つためにSMF の長さと同程度から2倍の長さで使用すると良い。)このような場合には、ラマン増幅用の励起光がRDF からSMF へ向って伝播するような構成とするのが好都合である。このラマン増幅器は増幅用ファイバ2を信号光が伝送される図示されていない伝送用ファイバに接続・挿入可能な構成とし、増幅用ファイバ2や励起光発生手段1、WDM カプラ13、モニタ光分岐用カプラ14、モニタ信号検出及びLD制御信号発生回路15を一式組み込んで集中型ラマン増幅器を構成することもできる。
図22は図1のラマン増幅器における出力スペクトルを測定したものである。この測定で用いた励起光波長λ1 、λ2 は1435nmと1465nm、信号光は-20dBm/ch 1540nmから1560nmの間に等間隔に8波入力した。増幅用ファイバ2は約6km の分散補償用ファイバで、チャンネル間偏差を0.5dB 以内に保ちつつ、分散補償用ファイバの損失を補償するように励起光のパワーが調整されている。
(ラマン増幅器の実施形態2)
図2は本発明のラマン増幅器の第2の実施形態であり、励起光発生手段1からの励起光が増幅用ファイバ2を信号光と同じ向きに進行されるように構成されたものである。具体的には増幅用ファイバ2の前端側にWDM カプラ13が設けられ、励起光発生手段1からの励起光がWDM カプラ13を介して増幅用ファイバ2の前端(入力端)側から後端(出力端)側へと伝送されるようにしたものである。この構成では、信号の減衰が起こる前に増幅されるため、実施形態1の構成と比較して、信号光の雑音特性が良いことがわかっている。また、実施形態1の構成と比較すると利得が小さいこともわかっている。
(ラマン増幅器の実施形態3)
図3は本発明のラマン増幅器の第3の実施形態であり、励起光発生手段1からの励起光が増幅用ファイバ2を双方向に進行されるように構成されたものである。具体的には、増幅用ファイバ2の前端側と後端側とに夫々WDM カプラ13が設けられ、2つのグループに分けられた励起光発生手段1からの励起光が夫々のWDM カプラ13を通じて増幅用ファイバ2に結合され、前端側のWDM カプラ13に入力された励起光が増幅用ファイバ2の後端側に進行され、後端側のWDM カプラ13に入力された励起光が増幅用ファイバ2の前端側に進行されるようにしたものである。
前記励起光発生手段1のうち第1のグループAに属する半導体レーザ31 、32 と第2のグループBに属する半導体レーザ35 、36 の中心波長はいずれも同じであり、第1のグループAに属する半導体レーザ33 、34 と第2のグループBに属する半導体レーザ37 、38 の中心波長はいずれも同じである。また、ファイバグレーティング51 〜58 は夫々が接続される半導体レーザ3の中心波長に合わされている。
(ラマン増幅器の実施形態4)
前記図3の実施形態において、第1のグループAに属する半導体レーザ31 、32 の中心波長をλ1 、同グループAに属する半導体レーザ33 、34 中心波長をλ3、第2のグループBに属する半導体レーザ35 、36 の中心波長をλ2 、同グループBに属する半導体レーザ37 、38 の中心波長をλ4 とし、λ1 、λ2 、λ3 、λ4 を互いに隣り合う波長として構成することもできる。この場合も、中心波長の間隔は10nm以上30nm以下であり、最大の中心波長λ4 と最小の中心波長λ1 との差は100nm 以下である。このような構成では同一グループ内で合波する励起光の波長間隔に余裕を持たすことができ、WDM カプラ4に要求される性能を甘くすることができる。
(ラマン増幅器の実施形態5)
図40は本発明のラマン増幅器の第5の実施形態であり、前記各実施形態で説明したラマン増幅器9の中から適当なものを選び、それらを多段接続したものである。所望の増幅特性や雑音特性に合わせて、特徴の異なるラマン増幅器9を適切に選択することで、単一のラマン増幅器9では得られない特性を得ることができる。
前記各実施形態において、出力光パワー制御手段4は図4又は図5に示す構成とすることができる。図4の構成は、図1又は図2又は図3に示したモニタ光分岐用カプラ14に、波長分波器18とホトダイオード等の光/電変換手段19と、LD制御回路20とからなるモニタ信号検出及びLD制御信号発生回路15が接続されたものである。波長分波器18はモニタ光分岐用カプラ14で分岐された出力光を複数の波長光に分波し、この場合、個々の励起光による最大増幅波長(励起光波長に100nm を加えた波長)付近の光を分波し、具体的には、励起波長が1430nmと1460nmとならば、1530nmと1560nm付近の波長光を分波する。光/電変換手段19は受光した波長光を電気信号に変換するもので、受光レベルの大小に応じて出力電圧が変化される。LD制御回路20は光/電変換手段19からの出力電圧に応じて半導体レーザ3の駆動電流を変化するものであり、光/電変換手段19からの出力電圧を演算処理して、前記各波長光の光パワーを揃える様に半導体レーザ3を制御する。即ち、出力光パワー制御手段4はラマン利得の波長依存を解消して利得を平坦化する働きをする。
図5の構成は、図1又は図2又は図3に示したモニタ光分岐用カプラ14に、分岐カプラ21と、バンドパスフィルタ22と、ホトダイオード等の光/電変換手段19と、LD制御回路20とからなるモニタ信号検出及びLD制御信号発生回路15が接続されたものである。分岐カプラ21はモニタ光分岐用カプラ14で分岐された出力光を励起光の数と同数に分岐するものである。バンドパスフィルタ22は夫々透過中心波長が異なり、この場合、個々の励起光による最大増幅波長(励起光波長に100nm を加えた波長)付近の光を透過し、具体的には、励起波長が1430nmと1460nmとならば、1530nmと1560nm付近の波長光を透過する。光/電変換手段19は受光した波長光を電気信号に変換するもので、受光レベルの大小に応じて出力電圧が変化される。LD制御回路20は光/電変換手段19からの出力電圧に応じて半導体レーザ3の駆動電流を変化するものであり、光/電変換手段19からの出力電圧を演算処理して、前記各波長光の光パワーを揃える様に半導体レーザ3を制御する。即ち、出力光パワー制御手段4はラマン利得の波長依存を解消して利得を平坦化する働きをする。図4、5は図27に示す様に出力光をモニタして励起光発生手段1を制御する構成であるが、図26に示す様に入力光をモニタして励起光発生手段1を制御する構成とすることもでき、或いは図28に示す様に出力光と入力光とを共にモニタして励起光発生手段1を制御する構成とすることもできる。
前記各構成のラマン増幅器においては、励起光を偏波合成カプラ6で合成する代わりに、図6(a)、(b)に示す様に励起光の偏波面を90度回転する偏波面回転手段7を設け、増幅用ファイバ2に励起光発生手段1で発生された複数の励起光とそれらと偏波面が直交される励起光とが同時に存在する様にすることもできる。図6(a)は増幅用ファイバ2の一端にファラデーロータ31 と全反射ミラー32 を設けて、増幅用ファイバ2に伝播された励起光を偏波面を90度回転し、再び増幅用ファイバ2に戻す様にしたものであるのである。同図には増幅用ファイバ2に伝播されてラマン増幅された信号光を同ファイバ2から取り出すための手段は示していない。図6(b)は増幅用ファイバ2の一端にPBS 33と偏波面保持ファイバ34とを設け、増幅用ファイバ2の一端から出力される励起光を主軸が90度捩られて接続された偏波面保持ファイバ34により偏波面を90度回転し、再びPBS 33を通じて増幅用ファイバ2の一端に入力するようにしたものである。
(光中継器の実施形態1)
図7は本発明のラマン増幅器を用いて構成された光中継器の第1の実施形態であり、光ファイバ伝送路8中に挿入されて同光ファイバ伝送路8における損失を補償する光中継器の例である。この光中継器は図1、2、3に示した様なラマン増幅器9の後段に希土類添加ファイバ増幅器(以下、EDFAと記載する)10が接続されており、光ファイバ伝送路8に伝送される信号光がラマン増幅器9に入力されて増幅され、更にEDFA10に入力されて増幅され、光ファイバ伝送路8に出力される様にしたものである。利得調整はラマン増幅器9側で調整しても、EDFA10側で調整しても、その両方で調整しても良いが、全体で光ファイバ伝送路8の損失が補償される様にする。また、EDFA10が持つ利得の波長依存性と、ラマン増幅器9の波長依存性との違いをうまく合わせて、EDFA10が持つ利得の波長依存性をラマン増幅器9の波長依存性により低減することも可能である。
(光中継器の実施形態2)
図8は本発明のラマン増幅器を用いて構成された光中継器の第2の実施形態であり、図7の光中継器において、ラマン増幅器9の前段にもEDFA10を設けたものである。
(光中継器の実施形態3)
図9は本発明のラマン増幅器を用いて構成された光中継器の第3の実施形態であり、2つのEDFA10の間に分散補償ファイバ(DCF )を増幅ファイバ2として用いるラマン増幅器9が設けられたものである。ラマン増幅器9とその後段のEDFA10との間には、ラマン増幅器9からの出力光を分岐する分岐カプラ23と、その分岐光をモニタしてラマン増幅器9の利得を制御するモニタ信号検出及びLD制御信号発生回路24とが設けられている。モニタ信号検出及びLD制御信号発生回路24はラマン増幅器9の出力パワーを所定値に保つことができるような制御回路である。なお、ラマン増幅器9自体が図4や図5に示す出力光パワー制御手段4を備える場合は、出力光のパワーが所定値になるように制御されると同時に、複数の出力信号間のレベル偏差が小さくなるようにも励起光のパワーが制御される。
図9の光中継器では、ラマン増幅器9の出力光レベル、即ち第2のEDFA10への入力光レベルがDCF の損失や第1のEDFA10の出力レベルに影響されることなく、常に一定に保たれる。これは、中継器の出力が規定されている場合に、第2のEDFA10の利得が一定に保たれるということを保証する。これにより、DCF の損失変動などに起因する第2のEDFA10の利得平坦度劣化が回避される。また、第1のEDFA10が利得一定となるように制御するならば、中継器への入力の変動はラマン増幅器9の利得の変動で補償される。つまり、中継器利得の調整はラマン増幅器9の利得のみで行われることとなり、EDFA10の利得変動による平坦度の劣化を完全に回避することができる。
(光中継器の実施形態4)
図10は図9の実施形態において、第1のEDFA10とラマン増幅器9との間にも光レベルをモニタしてラマン増幅器9の利得を調整する制御手段を付加したものである。これを用いて、ラマン増幅器9の入力と出力のレベル差を一定に保つように励起光を制御することができ、これはDCF の損失ばらつきのみを補償することができる。
(光中継器の実施形態5)
図11は上記実施形態において、ラマン増幅器9内に設けられている利得平坦化モニタ機構を中継器の出力端に移し、中継器全体の利得を平坦化するモニタとして利用する例である。この場合、第1のEDFA10及び第2のEDFA10は利得一定制御と出力一定制御のどちらでも構わない。中継器出力における出力信号間のレベル偏差が小さくなるように各励起光のパワーが個別に制御される。
(光中継器の実施形態6)
本件発明の光中継器は図1〜図3に示す構成のラマン増幅器の増幅用ファイバ2に分散補償ファイバを使用して、光ファイバ伝送路8の波長分散を補償し、光ファイバ伝送路8及び増幅用ファイバ2における損失の一部又は全てを補償する光中継器を構成することもできる。
(光中継器の実施形態7)
前記光中継器の各実施形態において、図41から図44に示す様な励起光発生手段1を使用したラマン増幅器9を備えた光中継器を構成することもできる。
(光中継器の実施形態8)
図29〜図32に示す様にラマン増幅器9の増幅用ファイバ2の途中にWDM カプラ13を挿入し、増幅用ファイバ2に伝播される励起光発生手段1からの残留励起光をラマン増幅器9の入力側又は出力側の光ファイバ伝送路8に設けたWDMカプラ27を通じて同伝送路8に入射し、光ファイバ伝送路8においてもラマン利得を生じさせることができる。なお、図29〜図32において26は光アイソレータである。
(光中継器の実施形態9)
図33〜図36に示す様に、光中継器がラマン増幅器9とEDFA10とからなる場合、ラマン増幅器9の増幅用ファイバ2の途中にWDM カプラ13を挿入し、増幅用ファイバ2に伝播される励起光発生手段1からの残留励起光をEDFA10に入射し、同EDFA10の励起光/補助励起光とすることができる。なお、図33〜図36において26は光アイソレータである。
本発明のラマン増幅器の第1の実施形態を示すブロック図。 本発明のラマン増幅器の第2の実施形態を示すブロック図。 本発明のラマン増幅器の第3の実施形態を示すブロック図。 本発明のラマン増幅器における出力光パワー制御手段の第1の例を示すブロック図。 本発明のラマン増幅器における出力光パワー制御手段の第2の例を示すブロック図。 本発明のラマン増幅器における偏波面回転手段の異なる例を示すブロック図。 本発明の光中継器の第1の実施形態を示すブロック図。 本発明の光中継器の第2の実施形態を示すブロック図。 本発明の光中継器の第3の実施形態を示すブロック図。 本発明の光中継器の第4の実施形態を示すブロック図。 本発明の光中継器の第5の実施形態を示すブロック図。 励起光の波長間隔を6nm 以上にする理由を示した説明図。 励起光の波長間隔を35nm以下にする理由を示した説明図。 励起光の最大波長と最小波長との差を100nm 以下にする理由を示した説明図。 双方向励起における励起光の波長配列の例を示した説明図。 励起光パワーを一定とする場合の帯域利得を示すと共に励起光パワーを制御して帯域利得を平坦化する様子を示した説明図。 光中継器の設計に関係する特性を示した説明図。 EDFAの利得変動と平坦度劣化の関係を示した説明図。 可変減衰器による入力レベル変動の補償の様子を示すと共に可変減衰器によるDCF 損失変動の補償の様子を示した説明図。 DCF ラマン増幅効果を利用した光中継器の設計に関係する特性を示した説明図。 ラマン増幅効果による入力レベル変動の補償の様子を示すと共にラマン増幅効果によるDCF 損失変動の補償の様子を示した説明図。 ラマン増幅器による出力スペクトルの異なる例を示した説明図。 EDFAによる利得の波長依存性を示した説明図。 EDFAによる利得の変動を示した説明図。 ラマン増幅による利得の波長依存性を示した説明図。 入力光をモニタして出力光パワーを制御する制御方法のブロック図。 出力光をモニタして出力光パワーを制御する制御方法のブロック図。 入力光と出力光とをモニタして出力光パワーを制御する制御方法のブロック図。 ラマン増幅器の残留励起光を光ファイバ伝送路に伝送してラマン利得を得る方法の第1例を示したブロック図。 ラマン増幅器の残留励起光を光ファイバ伝送路に伝送してラマン利得を得る方法の第2例を示したブロック図。 ラマン増幅器の残留励起光を光ファイバ伝送路に伝送してラマン利得を得る方法の第3例を示したブロック図。 ラマン増幅器の残留励起光を光ファイバ伝送路に伝送してラマン利得を得る方法の第4例を示したブロック図。 ラマン増幅器の残留励起光をEDFAの励起光として活用する方法の第1例を示したブロック図。 ラマン増幅器の残留励起光をEDFAの励起光として活用する方法の第2例を示したブロック図。 ラマン増幅器の残留励起光をEDFAの励起光として活用する方法の第3例を示したブロック図。 ラマン増幅器の残留励起光をEDFAの励起光として活用する方法の第4例を示したブロック図。 分散補償用ファイバ挿入による雑音指数の劣化を示した説明図。 ラマン増幅器の励起波長数と中継器の特性を示した説明図。 ラマン増幅器の励起波長数と中継器の特性を示した説明図。 複数のラマン増幅器を多段接続してなる光中継器のブロック図。 単一の励起光光源を有する励起光発生手段の一例を示したブロック図。 単一の励起光光源を有する励起光発生手段の他の例を示したブロック図。 2つの励起光光源を有する励起光発生手段の一例を示したブロック図。 2つの励起光光源を有する励起光発生手段の他の例を示したブロック図。 分散補償用ファイバを増幅用ファイバとするラマン増幅器のブロック図。 従来の光中継器の一例を示したブロック図。 図46の光中継器における光レベルダイアグラムを示した説明図。
符号の説明
1 励起光発生手段
2 光ファイバ
3 ファブリペロー型の半導体レーザ
4 出力光パワー制御手段
5 外部共振器
6 偏波合成器
7 偏波面回転手段
8 光ファイバ伝送路
9 ラマン増幅器
10 希土類添加ファイバ増幅器

Claims (10)

  1. 希土類元素を添加した光ファイバを含んで形成される増幅用の光ファイバを備え、ほぼ固定された増幅利得特性を有する希土類添加ファイバ増幅器と、
    前記希土類添加ファイバ増幅器の前段に接続し、増幅用の光ファイバと、該増幅用の光ファイバに1以上の中心波長を有する励起光を供給する励起光発生手段とを備え、該励起光発生手段から出力される励起光の強度を制御することによって変動可能な利得プロファイルを有するラマン増幅器と、
    前記ラマン増幅器の利得プロファイルを調整することによって、該ラマン増幅器に入力する入力光の強度変動を補償して、前記希土類添加ファイバ増幅器に出力する出力光の強度をほぼ一定に制御する制御手段と、
    を備えたことを特徴とする光中継器。
  2. 前記ラマン増幅器は、さらに該ラマン増幅器を構成する増幅用の光ファイバ中における入力光の損失補償してほぼ一定強度の光を出力するように前記制御手段によって制御されることを特徴とする請求項1に記載の光中継器。
  3. 前記希土類添加ファイバ増幅器は複数配置され、前記ラマン増幅器は、該複数の希土類添加ファイバ増幅器の間に配置されることを特徴とする請求項1または2に記載の光中継器。
  4. 前記ラマン増幅器を形成する励起光発生手段は、
    1以上の励起光源と、
    該励起光源に対応して配置され、前記励起光源から出射されるレーザ光の強度変動に関わらず中心波長をほぼ一定の値に保持する外部共振器と、
    を備えたことを特徴とする請求項1〜3のいずれか一つに記載の光中継器。
  5. 前記ラマン増幅器における増幅用の光ファイバは、分散補償用ファイバを含んで形成され、入力光の波長分散を補償する機能を有することを特徴とする請求項1〜4のいずれか一つに記載の光中継器。
  6. 前記ラマン増幅器における増幅用の光ファイバに供給される励起光のうちラマン増幅に寄与しない残留光は、前記信号光を伝送する光伝送路に供給されて前記光伝送路においてラマン増幅が行われることを特徴とする請求項1〜5のいずれか一つに記載の光中継器。
  7. 前記励起光発生手段は、
    所定の中心波長を有するレーザ光を出射する半導体レーザを備えた励起光源と、
    該励起光源から出射されるレーザ光について、前記半導体レーザの駆動電流の変化に関わらず中心波長をほぼ一定の値に保持する外部共振器と、
    中心波長がほぼ一定の値に保持された前記レーザ光の強度を、前記駆動電流を調整することによって制御してラマン増幅器における利得プロファイルを調整するレーザ光強度制御手段と、
    を備えたことを特徴とする請求項1〜のいずれか一つに記載の光中継器。
  8. 前記励起光発生手段は、それぞれ所定の中心波長を有するレーザ光を出射する複数の励起光源を備え、
    それぞれの前記励起光源は、異なる波長を有するレーザ光の中心波長の差分値が、隣接する波長間において6nm以上、35nm以下となるよう形成されることを特徴とする請求項1〜のいずれか一つに記載の光中継器。
  9. 前記励起光発生手段は、
    所定の中心波長を有するレーザ光を出射する励起光源と、
    前記励起光源に対応して配置され、ファイバグレーティングを有する外部共振器と、
    を備えたことを特徴とする請求項1〜のいずれか一つに記載の光中継器。
  10. 前記励起光発生手段として、
    増幅用の光ファイバと、該増幅用の光ファイバに対して、所定の合波器を介して複数の中心波長を有する励起光を供給する第1励起光発生手段と、
    1以上の中心波長を有し、前記第1励起光発生手段から供給される励起光において隣接する中心波長間に位置する中心波長が単数であり、前記第1励起光発生手段から供給される励起光と逆方向に進行する励起光を、前記所定の合波器と異なる合波器を介して前記増幅用の光ファイバに供給する第2励起光発生手段と、
    を備えたことを特徴とする請求項1〜のいずれか一つに記載の光中継器。
JP2004291889A 1998-07-23 2004-10-04 光中継器 Expired - Lifetime JP4205651B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291889A JP4205651B2 (ja) 1998-07-23 2004-10-04 光中継器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20845098 1998-07-23
JP2004291889A JP4205651B2 (ja) 1998-07-23 2004-10-04 光中継器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03483399A Division JP4115027B2 (ja) 1998-07-23 1999-02-12 励起光発生手段と、ラマン増幅器とそれを用いた光中継器

Publications (2)

Publication Number Publication Date
JP2005027355A JP2005027355A (ja) 2005-01-27
JP4205651B2 true JP4205651B2 (ja) 2009-01-07

Family

ID=34196338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291889A Expired - Lifetime JP4205651B2 (ja) 1998-07-23 2004-10-04 光中継器

Country Status (1)

Country Link
JP (1) JP4205651B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125080B2 (ja) * 2006-11-30 2013-01-23 富士通株式会社 光強度測定装置および光強度測定方法
JP2011242636A (ja) * 2010-05-19 2011-12-01 Nec Corp ラマン増幅器、ラマン増幅システム、及び、ラマン増幅方法
JP6161170B2 (ja) * 2015-08-28 2017-07-12 日本電信電話株式会社 光ファイバ増幅器

Also Published As

Publication number Publication date
JP2005027355A (ja) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4115027B2 (ja) 励起光発生手段と、ラマン増幅器とそれを用いた光中継器
US8437074B2 (en) Raman amplifier, optical repeater, and Raman amplification method
US6700696B2 (en) High order fiber Raman amplifiers
JP3527671B2 (ja) ラマン増幅による光伝送パワーの波長特性制御方法、並びに、それを用いた波長多重光通信システムおよび光増幅器
US6510000B1 (en) Optical amplifier for wide band raman amplification of wavelength division multiplexed (WDM) signal lights
JP2000098433A5 (ja)
US20020191277A1 (en) Method and apparatus for amplifying an optical signal
US7920793B2 (en) Inline repeater and optical fiber communication system
CN107533270B (zh) 拉曼放大用光源、拉曼放大用光源系统、拉曼放大器、拉曼放大系统
JP4205651B2 (ja) 光中継器
US6603896B1 (en) Power fiber amplifier with flat gain
WO2002013423A2 (en) High order fiber raman amplifiers
JPH11330593A (ja) 広帯域自然放出光光源
US20040032640A1 (en) Optical transmission system and optical amplification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term