JP6218426B2 - 発光素子及び発光素子パッケージ - Google Patents

発光素子及び発光素子パッケージ Download PDF

Info

Publication number
JP6218426B2
JP6218426B2 JP2013096214A JP2013096214A JP6218426B2 JP 6218426 B2 JP6218426 B2 JP 6218426B2 JP 2013096214 A JP2013096214 A JP 2013096214A JP 2013096214 A JP2013096214 A JP 2013096214A JP 6218426 B2 JP6218426 B2 JP 6218426B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
buffer layer
electrode
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013096214A
Other languages
English (en)
Other versions
JP2013254939A (ja
JP2013254939A5 (ja
Inventor
クォン・オーミン
ウォン・ジョンハク
ベク・クァンスン
ソ・ソンジン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Innotek Co Ltd
Original Assignee
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Innotek Co Ltd filed Critical LG Innotek Co Ltd
Publication of JP2013254939A publication Critical patent/JP2013254939A/ja
Publication of JP2013254939A5 publication Critical patent/JP2013254939A5/ja
Application granted granted Critical
Publication of JP6218426B2 publication Critical patent/JP6218426B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光素子に関する。
本発明は、発光素子パッケージに関する。
発光ダイオード(Light-Emitting Diode:LED)は、電流を光に変換させる半導体発光素子(semiconductor light emitting device)である。
発光素子は、高輝度を有する光を得ることができるので、ディスプレイ用光源、自動車用光源、及び照明用光源に幅広く使われている。
発光素子は、多様な蛍光物質と多様な色の発光ダイオードを組み合わせることによって、光効率と色再現性に優れる白色光を得ることができる。このような白色光の発光素子は、照明分野、ディスプレイ分野、そして自動車分野に広く使用できる。
発光素子は、光効率、放熱性能、及び取扱の最適化のためにパッケージ化した発光素子パッケージに広く活用されている。
本発明の目的は、指向角を拡張することができる発光素子を提供することにある。
本発明の他の目的は、光出力を増加させることができる発光素子パッケージを提供することにある。
本発明の様々な実施形態によれば、発光素子は、基板、前記基板の上にバッファ層、及び前記バッファ層の上に発光構造物を含み、前記バッファ層の屈折率は前記発光構造物から前記基板に行くほど減少する。
本発明の様々な実施形態によれば、発光素子は、基板、前記基板の上にバッファ層、及び前記バッファ層の上に導電型半導体層を含み、前記バッファ層は多数のサブ層を含み、前記発光構造物から前記基板に行くほど前記各サブ層の屈折率は減少する。
本発明の第1実施形態に従う発光素子を示す断面図。 本発明の第2実施形態に従う発光素子を示す断面図。 本発明の第1及び第2実施形態のバッファ層の屈折率分布を示す第1例示図。 本発明の第1及び第2実施形態におけるバッファ層の屈折率分布を示す第2例示図。 本発明の第1及び第2実施形態におけるバッファ層の屈折率分布を示す第3例示図。 本発明の第1及び第2実施形態におけるバッファ層の屈折率分布を示す第4例示図。 本発明の第1及び第2実施形態におけるバッファ層の屈折率分布を示す第5例示図。 本発明の第1及び第2実施形態におけるバッファ層の屈折率分布を示す第6例示図。 本発明の第1及び第2実施形態におけるバッファ層の屈折率分布を示す第7例示図。 屈折率に従う光の進行経路を示す図。 屈折率に従う光の進行経路を示す図。 本発明の実施形態に従う水平型発光素子を示す断面図。 本発明の実施形態に従うフリップ型発光素子を示す断面図。 本発明の実施形態に従う垂直型発光素子を示す断面図。 本発明の実施形態に従う発光素子パッケージを示す断面図。
本発明を説明するに当たって、各層(膜)、領域、パターン、または構造物が、基板、各層(膜)、領域、パッド、またはパターンの“上(on)”に、または“下(under)”に形成されるという記載は、直接(directly)または他の層を介して形成されることを全て含む。また、各層の上または下に対する基準は、図面を基準として説明する。
以下、添付した図面を参照して実施形態を説明すると、次の通りである。図面において、各層の厚さやサイズは説明の便宜及び明確性のために誇張、省略、または概略的に図示された。また、各構成要素のサイズは実際のサイズを全的に反映するものではない。
図1は、本発明の第1実施形態に従う発光素子を示す断面図である。
図1を参照すると、第1実施形態に従う発光素子100Aは、基板1、バッファ層3、及び発光構造物10を含むことができる。
前記基板1は、前記発光構造物10を成長させるための部材として機能することができるが、これに対しては限定するものではない。
前記発光構造物10を安定的に成長させるために、前記基板1は前記発光構造物10との格子定数ができる限り小さい差を有する物質で形成できる。
前記基板1は、サファイア(Al)、SiC、Si、GaAs、GaN、ZnO、Si、GaP、InP、及びGeからなるグループから選択された少なくとも1つで形成できる。
前記基板1と前記発光構造物10との間にバッファ層3が配置できる。前記バッファ層3は、前記基板1と前記発光構造物10との間の格子定数差を緩和してくれるために形成できる。例えば、前記バッファ層3の格子定数は前記基板1と前記発光構造物10との間の値を有することができるが、これに対して限定するものではない。
したがって、前記バッファ層3により前記バッファ層3の上に形成される発光構造物10の結晶性が優れるになり、応力(strain)の生成が抑制され、格子欠陥のような不良が除去されるので、発光素子100Aの電気的特性だけでなく、光学的特性が向上できる。
前記バッファ層3と前記発光構造物10の各々はII-VI族またはIII-V族化合物半導体材料で形成できる。
前記発光構造物10は、例えば、第1導電型半導体層5、活性層7、及び第2導電型半導体層9を含むことができるが、これに対して限定するものではない。前記第1導電型半導体層5は前記バッファ層3の上に形成され、前記活性層7は前記第1導電型半導体層5の上に形成され、前記第2導電型半導体層9は前記活性層7の上に形成できる。
前記第1導電型半導体層5は、例えば、n型ドーパントを含むn型半導体層でありうる。前記第1導電型半導体層5は、InAlGa1−x−yN(0≦x≦1,0≦y≦1,0≦x+y≦1)の組成式を有する化合物半導体材料で形成できる。例えば、前記第1導電型半導体層5は、InAlGaN、GaN、AlGaN、InGaN、AlN、InN、及びAlInNからなるグループから選択された少なくとも1つを含むことができるが、これに対して限定するものではない。前記n型ドーパントは、Si、Ge、Snなどを含むことができるが、これに対して限定するものではない。
前記第1導電型半導体層5の上には前記活性層7が形成できる。
前記活性層7は、前記第1導電型半導体層5を通じて注入される第1キャリア、例えば電子と前記第2導電型半導体層9を通じて注入される第2キャリア、例えば正孔が互いに結合されて、前記活性層7の形成物質に従うエネルギーバンドギャップ(Energy bandgap)の差に相応する波長を有する光を放出することができる。
前記活性層7は単一量子井戸構造、多重量子井戸構造(MQW)、量子点構造、及び量子線構造のうち、いずれか1つを含むことができる。前記活性層7は、井戸層と障壁層とを1周期にするII-VI族またはIII-V族化合物半導体が繰り返して形成できる。
前記活性層7は、 InAlGa1−x−yN(0≦x≦1,0≦y≦1,0≦x+y≦1)の組成式を有する化合物半導体材料で形成できる。例えば、前記活性層7は、InGaN/GaNの周期、InGaN/AlGaNの周期、InGaN/InGaNの周期などで形成できる。前記障壁層のバンドギャップは前記井戸層のバンドギャップより大きく形成できる。
前記活性層7の上に前記第2導電型半導体層9が形成できる。前記第2導電型半導体層9は、例えば、p型ドーパントを含むp型半導体層でありうる。前記第2導電型半導体層9は、InAlGa1−x−yN(0≦x≦1,0≦y≦1,0≦x+y≦1)の組成式を有する化合物半導体材料で形成できる。前記第2導電型半導体層9は、例えば、InAlGaN、GaN、AlGaN、InGaN、AlN、InN、及びAlInNからなるグループから選択された少なくとも1つを含むことができるが、これに対して限定するものではない。前記p型ドーパントは、Mg、Zn、Ca、Sr、Baなどを含むが、これに対して限定するものではない。
前述したように、前記バッファ層3は前記基板1と前記発光構造物10との間の格子定数を緩和させてくれる役割をすることができる。
併せて、前記バッファ層3は前記活性層7で生成されてバッファ層3に進行された光がより広く広がって出射されるようにする役割をすることもできる。
ここで、光がより広く出射されるということは、指向角が拡張されるということを意味することができる。例えば、100゜の指向角が120゜の指向角になれば、20゜だけ指向角がより拡張されるということを意味する。
指向角とは、光の広がり程度を表す角度であって、垂直法線を基準として左右に広がる全体角度を指称することができる。
発光素子がディスプレイの光源として使われるためには、指向角が最大(例えば、180゜)に近接するほど好ましい。即ち、指向角の狭い場合、光は主に垂直法線の周辺に集中的に出射できる。ディスプレイの光源はディスプレイパネルの下に多数の発光素子が一列に配置できる。もし、発光素子の指向角の狭い場合、各発光素子に対応するディスプレイパネルの第1領域には比較的光輝度の大きい光が照射され、各発光素子の間に対応するディスプレイパネルの第2領域には比較的光輝度の小さな光が照射されるので、ディスプレイパネルに入射される光が位置によって均一な輝度を有することができなくなる。これは、画質不均一のような致命的な欠陥をもたらすことができる。
第1実施形態の発光素子100Aは、外部パッケージ段でない、発光素子100Aの内部のバッファ層3の光特性、例えば屈折率を調節することによって、前記のような外部光抽出調整、例えば指向角調節が可能である。
第1実施形態のバッファ層3は、活性層7で生成されてバッファ層3に進行された光の指向角を拡張させて、ディスプレイ光源などに採択される場合、ディスプレイパネルの全領域で均一な輝度を得るようにすることができる。
このために、前記バッファ層3は前記発光構造物10に隣接した第1領域から前記基板1に隣接した第2領域に行くほど屈折率が小さくなるように形成できる。前記第1及び第2領域の各々は多数のサブ層を含むことができるが、これに対して限定するものではない。
図10aに示すように、例えば第1層の屈折率がn1であり、第2層の屈折率がn2であり、n1<n2の関係式を有する場合、垂直法線に対して入射角がθ1の入射光が第1層と第2層の境界面に到達した場合、前記入射光は前記第1層と前記第2層との境界面で垂直法線に対して出射角θ2の出射光で出射できる。このような場合、前記出射角(θ2)は入射角(θ1)より小さい角度を有することができる。
言い換えると、光が入射される第1層の屈折率(n1)より光が出射される第2層の屈折率(n2)がより大きい場合、入射角(θ1)より小さい出射角(θ2)に光が出射されることが分かる。
図10bに示すように、例えば第1層の屈折率がn1であり、第2層の屈折率がn2であり、n1>n2の関係式を有する場合、垂直法線に対して入射角がθ1の入射光が第1層と第2層との境界面に到達した場合、前記入射光は前記第1層と前記第2層との境界面で垂直法線に対して出射角θ2の出射光で出射できる。このような場合、前記出射角(θ2)は入射角(θ1)より大きい角度を有することができる。
言い換えると、光が入射される第1層の屈折率(n1)が光が出射される第2層の屈折率(n2)より大きい場合、入射角(θ1)より大きい出射角(θ2)に光が出射されることが分かる。
したがって、第1実施形態では前記発光構造物10に隣接した前記バッファ層3の第1領域から前記基板1に隣接した前記バッファ層3の第2領域に行くほど屈折率が小さくなるようにすることによって、前記活性層7で生成されて前記バッファ層3に進行された光がより広く広がって前記基板1に入射されるようにすることができる。このように、バッファ層3によりさらに広く広がった光が出射されることによって、光指向角が拡張されて窮極的には光出力が増加できる。
図3乃至図9には、前記バッファ層3で発光構造物10に隣接した第1領域から前記基板1に隣接した第2領域に行くほど屈折率が小さくなるようにするための多様な実施形態が図示されている。
図3の第1例示図に示すように、前記バッファ層3は互いに相異する屈折率を有し、互いに同一な厚さ(S1乃至S5)を有する多数のサブ層を含むことができる。前記バッファ層3の厚さはT1と定義できる。
例えば、図面には5個のサブ層からなるバッファ層3が図示されているが、これに対して限定するものではない。
例えば、前記バッファ層3は2つのサブ層乃至30個のサブ層を含むことができる。サブ層を複数層で構成するために、2つ以上でなければならない。併せて、サブ層が30個以上の場合、前記バッファ層3の厚さが厚くなるようになって、窮極的に発光素子の厚さも厚くなることができる。
図面に示すように、前記基板1の屈折率(A)は1.77であり、前記発光構造物10の屈折率(C)は2.43でありうる。例えば、前記基板1はサファイアであり、前記発光構造物の第1導電型半導体層5はGaNでありうる。
したがって、前記バッファ層3の屈折率は前記基板1よりは大きく、前記発光構造物10よりは小さな屈折率を有することができる。
屈折率(A)1.77と屈折率(C)2.43との間に該当する屈折率を有するIII−V族化合物半導体材質にはAlNがあるが、これに対して限定するものではない。AlNの屈折率(B)は2.15でありうる。
したがって、前記バッファ層3はAlGa(1−x)N(但し、0≦x≦1)のII-VI族またはIII−V族化合物半導体材質で形成できる。例えば、x=0であればGaNであり、x=1であればAlNでありうる。
前記バッファ層3は、前記基板1から前記第1導電型半導体層5の間の厚さ方向に沿ってAlN、AlGaN、及びGaNが形成できる。
例えば、前記基板1に隣接する前記バッファ層3はAlNを含み、その以後からはAlGaNを含んでから、最後にはGaNを含むことができる。
一方、前記バッファ層3は、AlGa(1−x)N(但し、0<x≦1)の2族乃至6族化合物半導体材質で形成できる。このような場合、前記バッファ層3はAlN及びAlGaNのみを含み、GaNは含まないようになる。
前記バッファ層3はAl含有量が前記基板1から前記第1導電型半導体層5の間の厚さ方向に沿って可変されるように調節できる。即ち、前記基板1に隣接する前記バッファ層3の第2領域でAl含有量が最大になるようにし、前記第2領域で前記発光構造物10に隣接する前記バッファ層3の第1領域に行くほどAl含有量が減ることができる。
例えば、前記基板1に隣接してAl含有量が最大(x=1)のAlNを含む第1サブ層が形成できる。
前記第1サブ層に隣接してAl含有量がx1のAl(x1)Ga(1−x1)Nを含む第2サブ層が形成できる。x1は1より小さいことがあるが、これに対して限定するものではない。
前記第2サブ層に隣接してAl含有量がx2に減ったAl(x2)Ga(1−x2)Nを含む第3サブ層が形成できる。x2はx1より小さいことがある。
前記第3サブ層に隣接してAl含有量がx3に減ったAl(x3)Ga(1−x3)Nを含む第4サブ層が形成できる。x3はx2より小さいことがある。
前記第4サブ層に隣接してAl含有量がx4に減ったAl(x4)Ga(1−x4)Nを含む第5サブ層が形成できる。x4はx3より小さいことがある。
図3の第1例示図に示すように、第1乃至第5サブ層の間の屈折率の差は一定になるが、これはAl含有量の減少幅を一定にすることにより得られるが、これに対して限定するものではない。
前記Al含有量が減少幅により隣接するサブ層の間の屈折率の差が決定できる。したがって、第1乃至第5サブ層の間の屈折率の差を一定にするためには、前記Al含有量の減少幅も一定にすることができる。
前記第1サブ層から前記第5サブ層に行くほど一定の屈折率差を有して屈折率が増加できる。
Al含有量が小さくなるほど屈折率は大きくなる。
例えば、図面に示すように、GaNの屈折率(C)が2.43であり、AlNの屈折率(B)は2.15であるので、GaNの屈折率とAlNの屈折率との差は0.28である。
例えば、前記前記バッファ層3に5個のサブ層が含まれる場合、各サブ層の間には0.28/5=0.056の一定の屈折率の差が存在することができる。
即ち、前記第2サブ層はAlNの前記第1サブ層の屈折率より0.056高い2.206の屈折率を有することができる。前記第3サブ層は前記第2サブ層の屈折率より0.056高い2.262の屈折率を有することができる。前記第4サブ層は前記第3サブ層の屈折率より0.056高い2.318の屈折率を有することができる。前記第5サブ層は前記第4サブ層の屈折率より0.056高い2.374の屈折率を有することができる。GaNの第1導電型半導体層5は、前記第5サブ層の屈折率より0.056高い2.43の屈折率(C)を有することができる。
GaNの屈折率は前記バッファ層3の第5サブ層の屈折率より大きく、前記第5サブ層の屈折率は前記第4サブ層の屈折率より大きく、前記第4サブ層の屈折率は前記第3サブ層の屈折率より大きく、前記第3サブ層の屈折率は前記第2サブ層の屈折率より大きく、前記第2サブ層の屈折率は前記第1サブ層の屈折率より大きいことがある。
一方、前記第1サブ層から前記第5サブ層に行くほど、前記各サブ層の間の屈折率の差が増加または減少することもあるが、これに対して限定するものではない。前記屈折率の差は線形的にまたは非線形的に増加または減少することができる。
前記活性層7で生成された光は前記第1導電型半導体層5に進行できる。前記第1導電型半導体層5の屈折率が前記バッファ層3の前記第5サブ層の屈折率より大きいので、前記第1導電型半導体層5に進行された光は前記第1導電型半導体層5と前記第5サブ層との間の第1境界面で垂直法線に対して入射角より大きい出射角を有する光が出射できる。即ち、前記第1境界面から出射された出射光は前記第1境界面に入射された入射光の入射角より大きい出射角でより広く広がることができる。
前記第5サブ層の屈折率が前記第4サブ層の屈折率より大きいので、前記第5サブ層に進行された光は前記第5サブ層と前記第4サブ層との間の第2境界面で垂直法線に対して入射角より大きい出射角を有する光が出射できる。即ち、前記第2境界面から出射された出射光は前記第2境界面に入射された入射光の入射角より大きい出射角でより広く広がることができる。
前記第4サブ層の屈折率が前記第3サブ層の屈折率より大きいので、前記第4サブ層に進行された光は前記第4サブ層と前記第3サブ層との間の第3境界面で垂直法線に対して入射角より大きい出射角を有する光が出射できる。即ち、前記第3境界面から出射された出射光は前記第3境界面に入射された入射光の入射角より大きい出射角でより広く広がることができる。
前記第3サブ層の屈折率が前記第2サブ層の屈折率より大きいので、前記第3サブ層に進行された光は前記第3サブ層と前記第2サブ層との間の第4境界面で垂直法線に対して入射角より大きい出射角を有する光が出射できる。即ち、前記第4境界面から出射された出射光は前記第4境界面に入射された入射光の入射角より大きい出射角でより広く広がることができる。
前記2サブ層の屈折率は前記第1サブ層の屈折率より大きいので、前記第2サブ層に進行された光は前記第2サブ層と前記第1サブ層との間の第5境界面で垂直法線に対して入射角より大きい出射角を有する光が出射できる。即ち、前記第5境界面から出射された出射光は前記第5境界面に入射された入射光の入射角より大きい出射角でより広く広がることができる。
前記第1サブ層の屈折率は前記基板1の屈折率より大きいので、前記第1サブ層に進行された光は前記第1サブ層と前記基板1との間の第6境界面で垂直法線に対して入射角より大きい出射角を有する光が出射できる。即ち、前記第6境界面から出射された出射光は前記第6境界面に入射された入射光の入射角より大きい出射角でより広く広がることができる。
このように、前記バッファ層3の各サブ層の間の境界面でより広く広がった出射光が出射されるので、前記バッファ層3の全厚さ(T1)に亘って光の広がりはより増加できる。このような光の広がりの増加によって指向角がより拡張されて光出力が増加できる。
図4の第2例示図に示すように、前記バッファ層3は互いに相異する屈折率を有する多数のサブ層を含むことができる。
併せて、図4の第2例示図では図3の第1例示図とは異なり、各サブ層の厚さ(S1乃至S5)が可変できる。
即ち、前記基板1から前記第1導電型半導体層5に行くほど、前記バッファ層3の各サブ層の厚さ(S1乃至S5)が徐々に厚くなるように形成できる。
例えば、前記第2サブ層の厚さ(S2)は前記第1サブ層の厚さ(S1)より厚く、前記第3サブ層の厚さ(S3)は前記第2サブ層の厚さ(S2)より厚く、前記第4サブ層の厚さ(S4)は前記第3サブ層の厚さ(S3)より厚く、前記第5サブ層の厚さ(S5)は前記第4サブ層の厚さ(S4)より厚く形成できる。
また、前記各サブ層の厚さ(S1乃至S5)が線形的または非線形的に厚くなることができる。前記各サブ層の厚さ(S1乃至S5)の厚さの割合は一定であるか、相異することができる。
例えば、前記各サブ層の厚さ(S1乃至S5)が5%ずつ一定に厚くなることができるが、これに対して限定するものではない。
一方、前記各サブ層の厚さ(S1乃至S5)が線形的または非線形的に厚くなることができる。例えば、第2サブ層の厚さ(S2)は第1サブ層の厚さ(S1)より1%厚くなり、前記第3サブ層の厚さ(S3)は前記第2サブ層の厚さ(S2)より2%厚くなり、前記第4サブ層の厚さ(S4)は前記第3サブ層の厚さ(S3)より4%厚くなり、前記第5サブ層の厚さ(S5)は前記第4サブ層の厚さ(S4)より8%厚くなることができるが、これに対して限定するものではない。
例えば、第2サブ層の厚さ(S2)は第1サブ層の厚さ(S1)より1%厚くなり、前記第3サブ層の厚さ(S3)は前記第2サブ層の厚さ(S2)より3%厚くなり、前記第4サブ層の厚さ(S4)は前記第3サブ層の厚さ(S3)より8%厚くなり、前記第5サブ層の厚さ(S5)は前記第4サブ層の厚さ(S4)より18%厚くなることができるが、これに対して限定するものではない。
このように、各サブ層の厚さ(S1乃至S5)が互いに異なっても、前記各サブ層の屈折率が互いに異なるので、前記活性層7で生成されてバッファ層3に進行された光は、例えば第1乃至第5サブ層の間の境界面により、さらに広く広がって出射されるので、出射光の指向角がより拡張できる。
図5の第3例示図に示すように、前記バッファ層3は互いに相異する屈折率を有する多数のサブ層を含むことができる。
併せて、図5の第3例示図は、図3の第1例示図とは異なり、各サブ層の厚さ(S1乃至S5)が可変できる。
図5の第3例示図は図4の第2例示図と類似している。
しかしながら、図5の第3例示図は図4の第2例示図とは異なり、前記基板1から前記第1導電型半導体層5に行くほど前記バッファ層3の各サブ層の厚さ(S1乃至S5)が徐々に薄くなるように形成できる。
例えば、前記第2サブ層の厚さ(S2)は前記第1サブ層の厚さ(S1)より薄く、前記第3サブ層の厚さ(S3)は前記第2サブ層の厚さ(S2)より薄く、前記第4サブ層の厚さ(S4)は前記第3サブ層の厚さ(S3)より薄く、前記第5サブ層の厚さ(S5)は前記第4サブ層の厚さ(S4)より薄く形成できる。
前記各サブ層の厚さ(S1乃至S5)の薄くなる割合は一定であるか、相異することができる。
また、前記各サブ層の厚さ(S1乃至S5)が線形的または非線形的に薄くなることができる。
図6の第4例示図に示すように、前記バッファ層3は互いに相異する屈折率を有する多数のサブ層を含むことができる。
併せて、図6の第4例示図は図3の第1例示図とは異なり、各サブ層の厚さ(S1乃至S5)が可変できる。
図6の第4例示図は図4の第2例示図または図5の第3例示図と類似している。
しかしながら、図6の第4例示図は図4の第2例示図とは異なり、前記バッファ層3の中心層、例えば第3サブ層から前記基板1または前記第1導電型半導体層5に行くほど前記バッファ層3の各サブ層の厚さ(S1乃至S5)が徐々に厚くなるように形成できる。例えば、前記バッファ層3で含まれた第1乃至第5サブ層のうち、前記第3サブ層の厚さ(S3)が最も薄く形成できる。
前記第2サブ層の厚さ(S2)は前記第3サブ層の厚さ(S3)より厚く、前記第1サブ層の厚さ(S1)は前記第2サブ層の厚さ(S2)より厚くなることができる。同様に、前記第4サブ層の厚さ(S4)は前記第3サブ層の厚さ(S3)より厚く、前記第5サブ層の厚さ(S5)は前記第4サブ層の厚さ(S4)より厚くなることができる。
前記第3サブ層から前記第1サブ層または前記第5サブ層に行くほど厚くなる前記各サブ層の厚さ(S1乃至S5)の割合は一定であるか、相異することができる。
前記第3サブ層を基準として前記第3サブ層と前記基板1との間、そして前記第3サブ層と前記第1導電型半導体層5との間の各サブ層の厚さ(S1、S2、S4、S5)は互いに対称的であることがあるが、これに対して限定するものではない。
例えば、前記第2サブ層と前記第4サブ層とは同一な厚さ(S2、S4)を有することができる。また、前記第1サブ層と前記第5サブ層とは同一な厚さ(S1、S5)を有することができる。
また、前記各サブ層の厚さ(S1乃至S5)が線形的または非線形的に厚くなることができる。
一方、図面に図示してはいないが、図6の第4例示図とは異なり、前記バッファ層3の中心層、例えば第3サブ層から前記基板1または前記第1導電型半導体層5に行くほど、前記バッファ層3の各サブ層の厚さ(S1乃至S5)が徐々に薄くなるように形成できる。
図7の第5例示図に示すように、前記バッファ層3は線形的に増加する屈折率を有することができるが、これに対して限定するものではない。
即ち、前記バッファ層3は前記基板1から前記第1導電型半導体層5に行くほど線形的に屈折率が増加できる。
前記基板1と接する前記バッファ層3はAlNを含み、AlNを含む層を除外した残りのバッファ層3はAlGa(1−x)N(0≦x<1)を含むことができる。
AlNは、AlGa(1−x)Nでx=1の時を意味する。したがって、前記バッファ層3の全ての領域はAlGa(1−x)Nを含むということができる。
図8の第6例示図に示すように、前記バッファ層3は非線形の屈折率を有することができる。具体的に、前記バッファ層3の屈折率は前記基板1から前記バッファ層3の厚さ(T1)の中間(T1/2)までは増加してから、前記バッファ層3の厚さ(T1)の中間(T1/2)から前記第1導電型半導体層5までは急激に増加することができる。前記バッファ層3の屈折率は凹な曲線形状を有することができる。
図9の第7例示図に示すように、前記バッファ層3は非線形の屈折率を有することができる。具体的に、前記バッファ層3の屈折率は前記基板1から前記バッファ層3の厚さ(T1)の中間(T1/2)までは急激に増加してから、前記バッファ層3の厚さ(T1)の中間(T1/2)から前記第1導電型半導体層5までは増加することができる。前記バッファ層3の屈折率は凸な曲線形状を有することができる。
以上、説明したように、図3の第1例示図乃至図9の第7例示図に示すように、前記基板1から前記第1導電型半導体層5に行くほど、前記バッファ層3の屈折率が階段型(図3乃至図6)、線形(図7)、非線形(図8、図9)、凹な曲線(図8)、及び凸な曲線(図9)に増加するように形成できる。このような場合、前記活性層7で生成されて前記バッファ層3に進行された光はより拡張された指向角を有して出射されることで、このようなバッファ層3を有する発光素子100Aが発光素子パッケージに採用される場合、光出力を向上させることができる。
図2は、本発明の第2実施形態に従う発光素子を示す断面図である。
第2実施形態(図2)に従う発光素子100Bは第1実施形態(図1)とは異なり、基板1の上に多数の突起部2が形成できる。前記突起部2は上方に突出した凸な半球形状を有することができるが、これに対して限定するものではない。側方向から見た時、前記突起部2は上方に突出した四角形状、円形状、楕円形状、三角形状などを有することができる。
前記多数の突起部2は互いに離隔したドット形状を有することができる。前記多数の突起部2は一方向に沿って長く形成されたラインストライプ形状(line stripe shape)を有することができる。その他にも、前記多数の突起部2は多様な実施形態を有することができるが、これに対して限定するものではない。
前記突起部2は前記基板1の上面から上方に延長されて形成できる。このような場合、前記突起部2は前記基板1と同一な物質で形成できるが、これに対して限定するものではない。前記突起部2は基板1の上面を部分的にまたは選択的にエッチングして形成することもできるが、これに対して限定するものではない。
または、前記突起部2は前記基板1とは別に形成できる。即ち、多数の突起部2が予め加工されて前記基板1の上に付着できる。
前記突起部2は前記活性層7で生成されて基板1に進行される光を乱反射させて光をより多く抽出させることができる。
前記多数の突起部2は、前記基板1の上で互いに離隔するように配置できる。
前記隣接する突起部2の間の前記基板1の上にはバッファ層3が形成できる。
前記バッファ層3の厚さをT1とし、前記突起部2の厚さをT2とすれば、前記バッファ層3の厚さ(T1)は前記突起部2の厚さ(T2)より薄く形成できるが、これに対して限定するものではない。したがって、前記突起部2は前記バッファ層3の上面から上方に突出して露出できる。
前記突出した突起部2は前記第1導電型半導体層5によりカバーできる。即ち、前記第1導電型半導体層5は前記突起部2及び前記バッファ層の間に形成できる。
前記バッファ層3の構造は前述したような多様な例示図(図3乃至図9)のように変形できるが、これに対して限定するものではない。
前記バッファ層3に進行された光は図1の第1実施形態で説明したように、より広がるようになることができる。
前記活性層7で生成されて基板1に進行する光の一部は、前記基板1の上に形成された多数の突起部2により乱反射されて光抽出効率が向上できる。
前記活性層7で生成されて基板1に進行する光の他の一部は、前記突起部2の間の前記基板1の上に配置されたバッファ層3により、さらに広がって出射されるので、結局、光指向角が拡張できる。
図示してはいないが、第1実施形態(図1)及び第2実施形態(図2)の基板1の背面には前記バッファ層3によりさらに広がって進行された光を反射させることができる反射層が形成できるが、これに対して限定するものではない。
もし、第1実施形態(図1)及び第2実施形態(図2)の発光素子100A、100Bが反射特性を有する電極層の上に実装される場合、前記基板1の背面に反射層が形成されないこともある。
図1の第1実施形態及び図2の実施形態は、水平型発光素子200A、フリップ型発光素子200B、及び垂直型発光素子200Cに採用できる。
図11は、本発明の実施形態に従う水平型発光素子を示す断面図である。
図11を参照すると、実施形態に従う水平型発光素子200Aは、基板1、バッファ層3、発光構造物10、透明電極層11、及び第1及び第2電極13、15を含むことができる。
前記基板1、前記バッファ層3、及び前記発光構造物10は、先の図1の第1実施形態と図2の第2実施形態で詳細に説明されたので、これ以上の説明は省略する。
前記発光構造物10は、第1導電型半導体層5、活性層7、及び第2導電型半導体層9を含むことができる。
前記第1導電型半導体層5は、図1の第1実施形態のように前記基板1の上に形成されるか、図2の第2実施形態のように前記基板1の上に形成された多数の突起部2と、前記多数の突起部2の間に形成されたバッファ層3の上に形成できる。
前記活性層7は、前記第1導電型半導体層5の上に形成できる。
前記第2導電型半導体層9は、前記活性層7の上に形成できる。
前記第1導電型半導体層5で生成された第1キャリア、即ち電子は前記活性層7に供給され、前記第2導電型半導体層9で生成された第2キャリア、即ち正孔は前記活性層7に供給できる。
前記活性層7は、前記電子と前記正孔との再結合により前記活性層7のバンドギャップに相応する波長を有する光が生成できる。
前記発光構造物10の一部はエッチング工程により除去できる。即ち、エッチング工程により前記第2導電型半導体層9と前記活性層7とが除去されて前記第1導電型半導体層5が露出できる。
前記第1導電型半導体層5の上面の一部はエッチングにより除去できるが、これに対して限定するものではない。
前記露出された第1導電型半導体層5の上に第1電極13が形成され、前記第2導電型半導体層9の上に第2電極15が形成できる。
前記第1及び第2電極13、15は、伝導性に優れる金属物質で形成できる。前記金属物質には、例えばAl、Ti、Cr、Ni、Pt、Au、W、Cu、及びMoからなるグループから選択された1つまたはこれらの積層を含むことができるが、これに対して限定するものではない。
前記第2電極15に使われた金属物質は不透明であるので光を遮断させることができる。したがって、前記第2電極15により光が遮断されるので、光効率が低下することがある。
したがって、前記第2電極15はできる限り小さな面積を有することが好ましいが、前記第2電極15の面積を減らすことには限界がある。
一方、前記第2電極15の面積が小さい場合、前記第2電極15に印加された電流は前記第2電極15に対応する第2導電型半導体層9を通じて活性層7に印加できる。言い換えると、前記第2電極15に印加された電極は前記第2電極15に対応する第2導電型半導体層9を除外した大部分の第2導電型半導体層9には電流が流れないので、正孔の生成が充分でなくなって光効率が低下し、光が均一に生成できない。
このような短所を解決するために、前記第2導電型半導体層9の上に透明電極層11が形成できる。
前記透明電極層11は前記第2導電型半導体層9とオーミックコンタクトを形成してくれて、前記第2電極15に印加された電流が円滑に第2導電型半導体層9に流れるようにしてくれることができる。
併せて、前記透明電極層11は前記第2電極15に印加された電流を透明電極層11の全領域に速かに流れるようになることができる。このように、前記透明電極層11の全領域に流れた電流は前記透明電極層11の全領域に接する第2導電型半導体層9にそのまま流れるようになるので、前記第2導電型半導体層9の全領域で電流が均一に活性層7に印加できる。したがって、前記活性層7の全領域で均一な光を得ることができ、光効率が向上できる。
前記透明電極層11は、光が透過される透明な導電物質で形成できる。前記透明な導電物質には、ITO、IZO(In−ZnO)、GZO(Ga−ZnO)、AZO(Al−ZnO)、AGZO(Al−Ga ZnO)、IGZO(In−Ga ZnO)、IrOx、RuOx、RuOx/ITO、Ni/IrOx/Au、及びNi/IrOx/Au/ITOからなるグループから選択された少なくとも1つが含まれることができるが、これに対して限定するものではない。
図12は、本発明の実施形態に従うフリップ型発光素子を示す断面図である。
図12を参照すると、実施形態に従うフリップ型発光素子200Bは、基板1、バッファ層3、発光構造物10、反射電極層21、及び第1及び第2電極23、25を含むことができる。
実施形態に従うフリップ型発光素子200Bは、実施形態に従う水平型発光素子200Aとほとんど類似している。即ち、実施形態に従う水平型発光素子200Aの第2導電型半導体層9と第2電極25との間に配置された透明電極層11が反射電極層21に取り替えられ、前記水平型発光素子200Aが180度覆ることによって、実施形態に従うフリップ型発光素子200Bが製造できる。
前記基板1、前記バッファ層3、前記発光構造物10、及び前記第1及び第2電極23、25は、実施形態に従う水平型発光素子200Aで詳細に説明されたので、これ以上の説明は省略する。
前記反射電極層21は、前記第2導電型半導体層9の上に形成できる。前記反射電極層21は、光を反射させるための反射機能と、前記第2導電型半導体層9に電流を円滑に供給するようにするオーミックコンタクト機能と、電流を前記第2導電型半導体層9に供給してくれるための電極機能を有することができるが、これに対して限定するものではない。
前記反射電極層21は、反射特性とオーミック特性に優れる導電物質で形成できる。例えば、前記反射電極層21は、Ag、Ni、Rh、Pd、Ru、Pt、及びAuからなるグループから選択された1つまたはこれらの積層を含むことができるが、これに対して限定するものではない。
図13は、本発明の実施形態に従う垂直型発光素子を示す断面図である。
図13を参照すると、実施形態に従う垂直型発光素子200Cは、バッファ層3、発光構造物10、電流遮断層31、電極層35、第1保護層33、接合層37、伝導性支持部材39、第2保護層41、及び電極43を含むことができる。
実施形態に従う垂直型発光素子200Cは、図1の第1実施形態の発光素子100Aや図2の第2実施形態の発光素子100Bに基づいて製造できる。
したがって、前記バッファ層3及び前記発光構造物10は、図1の第1実施形態や図2の第2実施形態で既に詳細に説明されたので、詳細な説明は省略する。
前記電流遮断層31は、電流の垂直方向への集中を防止するために、前記電極43と少なくとも一部が重畳されるように形成できる。
前記電流遮断層31は、前記発光構造物10とショットキーコンタクト(Schottky contact)できる。これによって、前記電流遮断層31とショットキーコンタクトされる前記発光構造物10に電流は前記電流遮断層31を通じて完全に流れなかったり、前記電流遮断層31を通じて相対的に小さく流れることがある。これに反して、電流は前記第2導電型半導体層9と接する前記電極層35を通じては完全に流れるので、電流が前記発光構造物10の全領域に均一に流れるようになって発光効率が向上できる。
前記電流遮断層31は、前記電極層35より小さな電気伝導性を有するか、前記電極層35より大きい電気絶縁性を有するか、前記発光構造物10とショットキー接触を形成する材質を用いて形成できる。前記電流遮断層31は、例えば、ITO、IZO、IZTO、IAZO、IGZO、IGTO、AZO、ATO、ZnO、SiO、SiO、SiO、Si、Al、TiO、Ti、Al、及びCrからなるグループから選択された少なくとも1つを含むことができる。ここで、前記SiO、SiO、SiO、Si、Alは絶縁物質でありうる。
前記発光構造物10の第2導電型半導体層9の下に電極層35が形成できる。
前記電極層35は前記発光構造物10から入射される光を反射させてくれて、光抽出効率を改善させることができる。
前記電極層35は、前記発光構造物10とオーミックコンタクトされて、電流が発光構造物10に流れるようにすることができる。
前記電極層35は、前記接合層37の上面に接触して形成された反射層と前記反射層の上面と前記発光構造物10の下面との間に形成されたオーミックコンタクト層を含むことができる。
前記電極層35は、前記反射物質とオーミックコンタクト物質とが混合された単一層に形成できる。
前記反射物質には、例えば、Ag、Ni、Al、Rh、Pd、Ir、Ru、Mg、Zn、Pt、Au、及びHfからなるグループから選択された少なくとも1つまたは2つ以上の合金が使われるが、これに対して限定するものではない。前記オーミックコンタクト物質には、伝導性物質と金属物質を選択的に使用することができる。即ち、前記オーミックコンタクト物質には、ITO(indium tin oxide)、IZO(indium zinc oxide)、IZTO(indium zinc tin oxide)、IAZO(indium aluminum zinc oxide)、IGZO(indium gallium zinc oxide)、IGTO(indium gallium tin oxide)、AZO(aluminum zinc oxide)、ATO(antimony tin oxide)、GZO(gallium zinc oxide)、IrOx、RuOx、RuOx/ITO、Ni、Ag、Ni/IrOx/Au、及びNi/IrOx/Au/ITOからなるグループから選択された少なくとも1つが使用できる。
前記電極層35は、例えば、IZO/Ni、AZO/Ag、IZO/Ag/Ni、及びAZO/Ag/Niのうち、いずれか1つを含む多層に構成できる。
前記電極層35は、少なくとも前記発光構造物10とオーミックコンタクトできる。したがって、前記電極層35とオーミックコンタクトされる前記発光構造物10に円滑に電流が供給されて発光効率が向上できる。
前記電極層35の下に接合層37が形成できる。前記接合層37はボンディング層であって、前記電極層35と前記導電性支持部材との間に形成できる。前記接合層37は、電極層35と前記導電性支持部材との間の接着力を強化させる媒介体の役割をすることができる。
前記接合層37は、バリアー金属またはボンディング金属などを含むことができる。前記接合層37は、接合性と熱伝導性の高い金属物質で形成できる。前記接合層37は、例えば、Ti、Au、Sn、Ni、Nb、Cr、Ga、In、Bi、Cu、Ag、及びTaからなるグループから選択された少なくとも1つを含むことができる。
前記伝導性支持部材39は、金属物質または半導体物質で形成できる。前記伝導性支持部材39は、電気伝導性と熱伝導性の高い物質で形成できる。前記伝導性支持部材39は、例えば、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)、白金(Pt)、金(Au)、タングステン(W)、銅(Cu)、銅合金(Cu Alloy)、モリブデン(Mo)、及び銅−タングステン(Cu−W)のうち、少なくとも1つを含むことができる。
前記伝導性支持部材39は、前記発光構造物10の下にメッキまたは/及び蒸着されるか、シート(sheet)形態に付着され、これに対して限定するものではない。
前記電極層35の上に第1保護層33が形成できる。例えば、前記電極層35のエッジ領域の周りに沿って前記第1保護層33が形成できる。即ち、前記第1保護層33は、前記発光構造物10と前記電極層35との間の周り領域に形成できる。具体的に、前記第1保護層33は、前記電極層35及び前記発光構造物10に少なくとも一部が囲まれるように形成できる。例えば、前記第1保護層33の上面の一部領域は第1導電型半導体層5と接触され、前記第1保護層33の内側面及び下面は前記電極層35と接触できるが、これに対して限定するものではない。
前記第1保護層33により外部の異質物による前記電極層35の側面と前記発光構造物10の側面との間の電気的なショートを防止することができる。
前記第1保護層33が前記発光構造物10と接触する面積を確保して複数個のチップを個別チップ単位で分離するレーザースクライビング(Laser Scribing)工程と、基板1を除去するレーザーリフトオフ(LLO)工程の時、前記発光構造物10が前記電極層35から剥離されることを効果的に防止することができる。
前記第1保護層33は絶縁物質、例えば、SiO、SiO、SiO、Si、Alからなるグループから選択された少なくとも1つを含むことができる。また、前記第1保護層33は金属物質で形成されることができるが、これに対して限定するものではない。
前記第1保護層33は前記電流遮断層31と同一物質で形成されることもでき、異なる物質で形成されることもできる。即ち、第1保護層33と前記電流遮断層31とは前記絶縁物質で形成できる。
前記発光構造物10の上に第2保護層41が形成できる。例えば、前記発光構造物10の少なくとも側面の上には第2保護層41が形成できる。具体的には、前記第2保護層41は一端が前記第2導電型半導体層9の上面の周り領域に形成され、前記第2導電型半導体層9の側面、前記活性層7の側面、及び第1導電型半導体層5の側面を経由したり横切って他端が前記第1保護層33の上面の一部領域に形成できるが、これに対して限定するものではない。
前記第2保護層41は、前記発光構造物10と支持基板1との間の電気的ショートを防止する役割をすることができる。前記第2保護層41は、透明性と絶縁性に優れる材質で形成できる。前記第1保護層33は、例えば、SiO、SiO、SiO、Si、TiO、及びAlからなるグループから選択された1つを含むことができるが、これに対して限定するものではない。
前記第2保護層41は、前記第1保護層33と前記電流遮断層31と同一な物質を含むことができるが、これに対して限定するものではない。
前記発光構造物10の上には電極43が形成できる。前記電極43は、前記発光構造物10の全体面積をカバーせず、局部的に形成されたパターン形状を有することができる。
図示してはいないが、前記電極43はワイヤーがボンディングされる少なくとも1つ以上の電極パッド(図示せず)と、前記電極パッドから少なくとも一側以上に分岐されて前記発光構造物10の全領域に均等に電流を供給するための多数の電極ライン(図示せず)を含むことができる。
前記電極パッドは、上面視して、四角形、円形、楕円形、多角形を有することができるが、これに対して限定するものではない。
前記電極43はV、W、Au、Ti、Ni、Pd、Ru、Cu、Al、Cr、Ag、及びPtからなるグループから選択された少なくとも1つを含む単層または多層構造で形成できる。
一方、前記電極ラインは透光性及び電気伝導性を有する材質、例えば、ITO、IZO、IZTO、IAZO、IGZO、IGTO、AZO、ATO、ZnOのうち、少なくとも1つで形成されることもできる。
図14は、本発明の実施形態に従う発光素子パッケージを示す断面図である。
図14を参照すると、実施形態に従う発光素子パッケージ300は、パッケージ胴体301と、前記パッケージ胴体301に設置された第1リード電極303、及び第2リード電極305と、前記パッケージ胴体301に設置されて前記第1リード電極303及び第2リード電極305から電源の供給を受ける水平型発光素子200Aと、フリップ型発光素子200B及び垂直型発光素子200Cのうちのいずれか1つの発光素子と、前記発光素子200A、200B、200Cを囲むモールディング部材307とを含む。
図面では説明の便宜上、水平型発光素子200Aのみを図示しているが、実施形態に従う発光素子パッケージ300にはフリップ型200Bまたは垂直型発光素子200Cも採択できる。
前記パッケージ胴体301は、シリコン材質、合成樹脂材質、または金属材質を含んで形成されることができ、前記発光素子200A、200B、200Cの周囲に傾斜面が形成できる。
前記第1リード電極303及び第2リード電極305は互いに電気的に分離され、前記発光素子200A、200B、200Cに電源を提供する。
また、前記第1及び第2リード電極303、305は、前記発光素子200A、200B、200Cで生成された光を反射させて光効率を増加させることができ、前記発光素子200A、200B、200Cで生成された熱を外部に排出させる役割をすることもできる。
前記発光素子200A、200B、200Cは、前記第1リード電極303、第2リード電極305、及び前記パッケージ胴体301のうち、いずれか1つの上に設置されることができ、ワイヤー方式、ダイボンディング方式などにより前記第1及び第2リード電極303、305に電気的に連結できるが、これに対して限定するものではない。
実施形態では水平型発光素子200Aが例示されており、2つのワイヤー311、315を介して前記第1及び第2リード電極303、305と電気的に連結されたものが例示されている。
もし、フリップ型発光素子200Bが採択される場合、前記ワイヤー311、315は不要であり、前記フリップ型発光素子200Bの第1及び第2電極23、25が前記第1及び2リード電極303、305と直接接触するように形成されることができ、垂直型発光素子200Cが採択される場合、前記垂直型発光素子200Cの導電型支持部材39は、例えば第2リード電極305の上に設置され、前記垂直型発光素子200Cの電極43はワイヤー311を用いて前記第1リード電極303と電気的に連結できる。
前記モールディング部材307は、前記発光素子200A、200B、200Cを囲んで前記発光素子200A、200B、200Cを保護することができる。
一方、前記モールディング部材307は、前記発光素子200A、200B、200Cで生成された光の波長を変化させることができる蛍光体309を含むことができるが、これに対して限定するものではない。
実施形態に従う発光素子パッケージ300は、COB(Chip On Board)タイプを含み、前記パッケージ胴体301の上面は平らで、前記パッケージ胴体301には複数の発光素子、例えば赤色発光素子、緑色発光素子、及び青色発光素子が設置できるが、これに対して限定するものではない。
実施形態に従う発光素子パッケージ300は、指向角が拡張された水平型発光素子200A、フリップ型発光素子200B、または垂直型発光素子200Cの採用により光出力が向上できるが、これに対して限定するものではない。
一方、図14に示すように、実施形態に従う発光素子パッケージでは光の広がりを増加させることができるバッファ層を含む発光素子200A、200B、200Cが採用されることによって、光の広がりにより光抽出が向上し、これによって、指向角が比較例に比べて格段に拡張できる。
実施形態は、基板、バッファ層、及び発光構造物を含む発光素子で発光構造物から基板に行くほどバッファ層の屈折率が減少するように形成されることによって、発光素子の光指向角が拡張できる。このように光指向角が拡張された発光素子を発光素子パッケージに採択することによって、発光素子パッケージの光出力が増加できる。

Claims (8)

  1. 発光構造物と、
    前記発光構造物の下に配置される電極層と、
    前記発光構造物の上に配置される電極と、
    前記発光構造物と前記電極の間に配置されるバッファ層と、
    前記電極と少なくとも一部領域が重畳されて前記発光構造物と前記電極層の間に配置される電流遮断層と、を含み、
    前記電極は、前記バッファ層の一部領域上に配置されて前記バッファ層の他の領域は外部に露出し、
    前記バッファ層の屈折率は前記発光構造物から前記電極に行くほど非線形的に減少し、
    前記発光構造物から前記バッファ層の厚さの中間までの非線形的に減少される前記バッファ層の屈折率の可変幅前記バッファ層の厚さの中間から前記電極までの非線形的に減少される前記バッファ層の屈折率の可変幅より大きことを特徴とする、垂直型発光素子。
  2. 前記発光構造物から前記電極に行くほど前記バッファ層のAl含有量は増加することを特徴とする、請求項に記載の垂直型発光素子。
  3. 前記バッファ層は前記発光構造物よりは低い屈折率を有する化合物半導体材質を含むことを特徴とする、請求項1または2に記載の垂直型発光素子。
  4. 前記バッファ層は、AlGa(1−x)N(但し、0≦x≦1)であることを特徴とする、請求項乃至のうち、いずれか1項に記載の垂直型発光素子。
  5. 前記バッファ層は、AlGa(1−x)N(但し、0<x≦1)であることを特徴とする、請求項乃至のうち、いずれか1項に記載の垂直型発光素子。
  6. 発光構造物と、
    前記発光構造物の下に配置される電極層と、
    前記発光構造物の上に配置される電極と、
    前記発光構造物と前記電極の間に配置されるバッファ層と、
    前記電極と少なくとも一部領域が重畳されて前記発光構造物と前記電極層の間に配置される電流遮断層と、を含み、
    前記電極は、前記バッファ層の一部領域上に配置されて前記バッファ層の他の領域は外部に露出し
    前記発光構造物から前記電極に行くほど前記バッファ層の屈折率は、非線形的に減少し、
    前記発光構造物から前記バッファ層の厚さの中間までの非線形的に減少される前記バッファ層の屈折率の可変幅前記バッファ層の厚さの中間から前記電極までの非線形的に減少される前記バッファ層の屈折率の可変幅より小さことを特徴とする、垂直型発光素子。
  7. 前記バッファ層は、AlGa(1−x)N(但し、0≦x≦1)であることを特徴とする、請求項に記載の垂直型発光素子。
  8. 前記電極に隣接するバッファ層は最大のAl含有量を含むことを特徴とする、請求項またはに記載の垂直型発光素子。
JP2013096214A 2012-06-07 2013-05-01 発光素子及び発光素子パッケージ Active JP6218426B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120060751A KR20130137295A (ko) 2012-06-07 2012-06-07 발광 소자 및 발광 소자 패키지
KR10-2012-0060751 2012-06-07

Publications (3)

Publication Number Publication Date
JP2013254939A JP2013254939A (ja) 2013-12-19
JP2013254939A5 JP2013254939A5 (ja) 2016-06-16
JP6218426B2 true JP6218426B2 (ja) 2017-10-25

Family

ID=48537897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096214A Active JP6218426B2 (ja) 2012-06-07 2013-05-01 発光素子及び発光素子パッケージ

Country Status (4)

Country Link
US (1) US9082929B2 (ja)
EP (1) EP2672530B1 (ja)
JP (1) JP6218426B2 (ja)
KR (1) KR20130137295A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102015907B1 (ko) * 2013-01-24 2019-08-29 삼성전자주식회사 반도체 발광소자
JP2015119108A (ja) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 紫外線発光素子
CN103700739B (zh) * 2014-01-03 2016-11-16 合肥彩虹蓝光科技有限公司 一种避免大尺寸外延片裂片的外延生长方法
CN108916688B (zh) * 2017-04-24 2020-08-18 京东方科技集团股份有限公司 光源和照明装置
US11271141B2 (en) * 2018-11-26 2022-03-08 Osram Opto Semiconductors Gmbh Light-emitting device with wavelenght conversion layer having quantum dots
CN114342094A (zh) * 2021-11-22 2022-04-12 厦门市三安光电科技有限公司 发光二极管及制备方法和显示面板

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751752A (en) * 1994-09-14 1998-05-12 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JPH08288544A (ja) * 1995-04-14 1996-11-01 Toshiba Corp 半導体発光素子
JP3505357B2 (ja) * 1997-07-16 2004-03-08 株式会社東芝 窒化ガリウム系半導体素子およびその製造方法
KR100753147B1 (ko) * 1998-03-12 2007-08-30 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자
JP2000228535A (ja) * 1999-02-08 2000-08-15 Nippon Telegr & Teleph Corp <Ntt> 半導体素子およびその製造方法
JP3626423B2 (ja) * 2000-05-22 2005-03-09 日本碍子株式会社 フォトニックデバイスの製造方法
US6586762B2 (en) * 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
KR100639026B1 (ko) * 2005-11-25 2006-10-25 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조 방법
JP2008288397A (ja) * 2007-05-17 2008-11-27 Eudyna Devices Inc 半導体発光装置
EP2020691A2 (en) * 2007-07-31 2009-02-04 Epivalley Co., Ltd. III-Nitride semiconductor light emitting device
KR20100064383A (ko) * 2007-09-19 2010-06-14 더 리전츠 오브 더 유니버시티 오브 캘리포니아 패터닝 된 기판 상의 (Al,In,GA,B)N 장치구조
JP2010161354A (ja) * 2008-12-08 2010-07-22 Showa Denko Kk 半導体発光素子用テンプレート基板、半導体発光素子用テンプレート基板の製造方法、半導体発光素子の製造方法及び半導体発光素子
TWI399871B (zh) * 2009-02-03 2013-06-21 Huga Optotech Inc 光電元件及其形成方法
JP5139519B2 (ja) * 2009-09-01 2013-02-06 株式会社東芝 半導体発光素子及び半導体発光装置
WO2011108422A1 (ja) * 2010-03-01 2011-09-09 シャープ株式会社 窒化物半導体素子の製造方法、窒化物半導体発光素子および発光装置
CN102244168A (zh) * 2010-05-14 2011-11-16 展晶科技(深圳)有限公司 发光二极管及其制造方法
KR20120032329A (ko) * 2010-09-28 2012-04-05 삼성전자주식회사 반도체 소자

Also Published As

Publication number Publication date
US9082929B2 (en) 2015-07-14
US20130328056A1 (en) 2013-12-12
JP2013254939A (ja) 2013-12-19
EP2672530A3 (en) 2015-12-23
KR20130137295A (ko) 2013-12-17
EP2672530A2 (en) 2013-12-11
EP2672530B1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6218426B2 (ja) 発光素子及び発光素子パッケージ
US9786814B2 (en) Ultraviolet light emitting device
JP5816243B2 (ja) 発光素子及び発光素子パッケージ
JP5736479B2 (ja) 発光素子、発光素子製造方法
US20170114979A1 (en) Lens and light-emitting device module comprising the same
US9349914B2 (en) Light emitting device and light emitting device package
KR20110096680A (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20220012215A (ko) 발광 다이오드 칩들을 위한 상호접속부들
CN107851688B (zh) 发光二极管及发光二极管封装
KR102378952B1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
KR102042171B1 (ko) 발광 소자 및 발광 소자 패키지
KR20130119616A (ko) 발광 소자
KR102175346B1 (ko) 발광소자 및 발광 소자 패키지
KR102342713B1 (ko) 발광 소자
US20230047372A1 (en) Semiconductor light emitting device
EP2722898B1 (en) Electrode for Light Emitting Diode
KR102346649B1 (ko) 발광 소자 및 이를 구비한 발광 소자 패키지
KR102249637B1 (ko) 발광소자 및 이를 구비한 발광소자 패키지
KR102404655B1 (ko) 발광소자 및 이를 구비한 발광 소자 패키지
KR102376672B1 (ko) 발광소자 및 발광소자 패키지
KR102336432B1 (ko) 발광소자 및 발광소자 패키지
KR102181503B1 (ko) 발광소자 및 이를 구비한 발광소자 패키지
KR102353844B1 (ko) 자외선 발광소자 및 발광소자 패키지
KR101189429B1 (ko) 발광소자, 발광소자 제조방법 및 발광소자 패키지
KR101148189B1 (ko) 핑거를 갖는 발광 다이오드 및 발광 다이오드 패키지

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170926

R150 Certificate of patent or registration of utility model

Ref document number: 6218426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250