JP6213900B2 - 燃料電池システムの制御方法 - Google Patents

燃料電池システムの制御方法 Download PDF

Info

Publication number
JP6213900B2
JP6213900B2 JP2014232059A JP2014232059A JP6213900B2 JP 6213900 B2 JP6213900 B2 JP 6213900B2 JP 2014232059 A JP2014232059 A JP 2014232059A JP 2014232059 A JP2014232059 A JP 2014232059A JP 6213900 B2 JP6213900 B2 JP 6213900B2
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
heater
cooling system
electric heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014232059A
Other languages
English (en)
Other versions
JP2016096070A (ja
Inventor
山田 貴史
貴史 山田
今西 啓之
啓之 今西
灘 光博
光博 灘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014232059A priority Critical patent/JP6213900B2/ja
Priority to US14/925,493 priority patent/US10680257B2/en
Priority to KR1020150153641A priority patent/KR101835186B1/ko
Priority to DE102015118893.7A priority patent/DE102015118893B4/de
Priority to CA2911321A priority patent/CA2911321C/en
Priority to CN201510765768.2A priority patent/CN105609809B/zh
Publication of JP2016096070A publication Critical patent/JP2016096070A/ja
Application granted granted Critical
Publication of JP6213900B2 publication Critical patent/JP6213900B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04044Purification of heat exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、燃料電池の電力を消費するために電気ヒータを動作させる燃料電池システムの制御方法に関する。
燃料電池システムは、燃料を電気化学プロセスによって酸化させることにより、酸化反応に伴って放出されるエネルギーを電気エネルギーに直接変換する発電システムである。燃料電池スタックは、水素イオンを選択的に輸送するための高分子電解質膜の両側面を多孔質材料から成る一対の電極によって挟持してなる膜−電極アッセンブリを有する。一対の電極のそれぞれは、白金系の金属触媒を担持するカーボン粉末を主成分とし、高分子電解質膜に接する触媒層と、触媒層の表面に形成され、通気性と電子導電性とを併せ持つガス拡散層とを有する。
燃料電池システムを電力源として搭載する燃料電池車両は、燃料電池で発電した電気によってトラクションモータを駆動して走行する。燃料電池車両は電気ヒータを備えており、燃料電池の余剰電力を消費するために電気ヒータを動作させる。電気ヒータを備える燃料電池車両に関連する技術としては、例えば、燃料電池の余剰電力を消費するため、電気ヒータを動作させる燃料電池システムの制御方法であって、冷却水の熱分解温度以下になるように、電気ヒータに循環する冷却水流量を燃料電池の冷却水路からバイパスさせて増加させる制御方法が開示されている(特許文献1参照)。
特開2013−099081号公報
ところで、電気ヒータは、ヒータ温度が高温になると、温度が上昇するにつれて電気抵抗が大きくなり、それに連れて電力消費量が低下していく。しかし、冷却水の温度があまりに高くなると、関連部品(例えば、電気ヒータやヒータコア等)に好ましくない影響を与えるようになる。このような影響に対処するため、燃料電池システムによっては、関連部品を保護するために、所定の設定温度以上で電気ヒータへ供給する電力を積極的に抑制して電気ヒータの電力消費量を急激に低下させている。しかしながら、特許文献1に開示された燃料電池システムの制御方法では、冷却水の熱分解温度である100℃以下となるように冷却媒の温度が制御されるため、冷却水の温度が熱分解温度より低い温度領域で電気ヒータの消費電力量を積極的に低くするように制御されている場合には当該温度領域において回生動作による余剰電力や燃料電池の暖気運転時に発生する電力を電気ヒータで十分に消費することができず、電力の消費先を確保できないという虞があった。
本発明は、上記の事情に鑑みて創案されたものであり、電力消費量が急激に低下する温度領域で電気ヒータが駆動されることを抑制することにより燃料電池の電力の消費先を確保することができる燃料電池システムの制御方法の提供を目的とする。
上記目的を達成するために、本発明に係る燃料電池システムの制御方法は、燃料電池の余剰電力を消費するために電気ヒータを動作させる燃料電池システムの制御方法であって、燃料電池システムは、反応ガスの供給を受けて発電する燃料電池と、上記燃料電池に冷却媒を循環させて冷却する燃料電池冷却系と、上記燃料電池の電力を消費するために動作される、周囲の冷却媒の熱分解温度よりも低い温度で電力消費量が急激に低下するように駆動される電気ヒータと、冷却媒を上記電気ヒータの周囲に流通させて該電気ヒータを冷却するヒータ冷却系と、を備え、上記ヒータ冷却系の冷却媒が上記電気ヒータの少なくとも電力消費量が急激に低下する温度領域に含まれる場合に上記燃料電池冷却系の冷却媒を上記ヒータ冷却系に流通させて上記電気ヒータを冷却することを特徴とする。
ここで「電力消費量が急激に低下する温度領域」とは温度上昇に伴う電気ヒータの電力消費量の自然な低下の程度を超えて積極的に電力消費量を低減させるように制御する温度領域をいう。
上記燃料電池システムの制御方法において、上記燃料電池冷却系の冷却媒の温度に対して上記ヒータ冷却系の冷却媒の温度が所定値(例えば、電気ヒータの消費電力量低減制御を開始する設定温度Ts)以上高い場合に、上記燃料電池冷却系の冷却媒を上記ヒータ冷却系に流通させて上記電気ヒータを冷却することが好ましい。
上記燃料電池システムの制御方法において、上記記ヒータ冷却系の冷却媒の温度が所定値(例えば、下限温度TL1)以下となった場合に、上記燃料電池冷却系から上記ヒータ冷却系への冷却媒の流通を遮断することが好ましい。
また、上記燃料電池冷却系の冷却媒の温度に対して上記ヒータ冷却媒の温度が所定値の範囲(例えば、第1温度差ΔT1)外となった場合に、上記燃料電池冷却系の冷却媒を上記ヒータ冷却系に流通させて上記電気ヒータを冷却することが好ましい。
上記燃料電池システムの制御方法において、上記燃料電池冷却系の冷却媒の温度に対して上記ヒータ冷却系の冷却媒の温度が所定値の範囲(例えば、第2温度差ΔT2)内となった場合に、上記燃料電池冷却系から上記ヒータ冷却系への冷却媒の流通を遮断することが好ましい。
上記燃料電池システムの制御方法において、空調のために上記電気ヒータを駆動させており、かつ、上記ヒータ冷却系の冷却媒の温度が所定値(例えば、設定温度Ts)以上である場合に、上記燃料電池冷却系の冷却媒を上記ヒータ冷却系に流通させて上記電気ヒータを冷却するようにすることが好ましい。
本発明に係る燃料電池システムの制御方法によれば、電気ヒータの周囲の冷却媒が電気ヒータの少なくとも電力消費量が急激に低下する温度領域になる場合に、燃料電池の冷却系の冷却媒をヒータ冷却系に流通させて電気ヒータを冷却するので、電力消費量が急激に低下する温度領域で電気ヒータが駆動されることを抑制して燃料電池の電力の消費先を確保することができる。
本発明の実施の形態における燃料電池システムのブロック図である。 本発明の実施の形態に係る燃料電池システムの制御方法のフローチャートである。 本発明の実施の形態に係る燃料電池システムの制御方法の説明に供する図である。 本発明の実施の形態に係る燃料電池システムの制御方法の説明に供する図である。 電気ヒータの消費電力量と温度との関係の説明に供する図である。
以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
<システム構成>
まず、図1を参照して、本発明の実施の形態に係る制御方法を適用する燃料電池システムについて説明する。図1は本発明の実施の形態における燃料電池システムのブロック図である。図1に示すように、燃料電池システム10は、燃料電池車両に搭載される車載電源システムとして機能するものであり、主要素として、燃料電池20、燃料電池冷却系30、電気ヒータ40、ヒータ冷却系50、温度センサ61,62、および制御装置70を備える。
燃料電池20は、燃料ガスとしての水素を電気化学プロセスによって酸化させることにより、酸化反応に伴って放出されるエネルギーを電気エネルギーに直接変換する。燃料電池システム10を電力源として搭載する燃料電池車両(図示せず)は、燃料電池20で発電した電気によってトラクションモータを駆動して走行する。
燃料電池20は、燃料電池セルが複数積層された燃料電池スタックで構成される(以下、「燃料電池スタック」ともいう)。例えば、固体高分子型燃料電池の燃料電池セルは、少なくとも、イオン透過性の電解質膜と、該電解質膜を挟持するアノード側触媒層(電極層)およびカソード側触媒層(電極層)とからなる膜電極接合体(MEA:Membrane Electrode Assembly)と、膜電極接合体に燃料ガスもしくは酸化剤ガスを供給するためのガス拡散層を備えている。燃料電池セルは、一対のセパレータで挟持される。
燃料電池冷却系30は、燃料電池スタック20に冷却媒を循環させて燃料電池スタック20を冷却する循環系である。具体的に燃料電池冷却系30は、ラジエータ31、循環流路32、ポンプ33、短絡流路34、および三方弁35を備える。燃料電池スタック20の冷却媒の出口付近には温度センサ61が設けられており、燃料電池スタック20の内部温度(燃料電池水温Tf)を測定するようになっている。
冷却媒は、燃料電池スタック20や電気ヒータ40を冷却するための流通媒体であり、例えば、エチレングリコール水溶液である。冷却水として、エチレングリコール水溶液を用いた場合には、酸素存在下で熱分解温度以上になると分解してギ酸などの有機酸を生成する。これらの有機酸は、冷却水中でイオン化し冷却水の導電率を上昇させる。このため、少なくとも冷却媒の温度は熱分解温度以内で制御することが好ましい。
ラジエータ31は、概ねチューブ、放熱フィン、およびファン(いずれも図示せず)で構成され、チューブ内を冷却媒が流れて熱交換を行う放熱機器であり、当該ラジエータ31通過する冷却媒の温度を熱交換で下げる機能を有する。循環流路32は、ラジエータ31と燃料電池スタック20との間で冷却媒を循環させる環状流路である。ポンプ33は、循環流路32の燃料電池スタック20の入口側に介設され、燃料電池スタック20へ冷却媒を移送する駆動手段としての機能を有する。短絡流路34は、循環流路32の燃料電池スタック20の入口側と出口側とを結ぶ流路であり、冷却媒をラジエータ31により冷却しない場合に冷却媒を流す流路である。三方弁35は、循環流路32の燃料電池スタック20の出口側において、短絡流路34の分岐部に介設され、循環流路32と短絡流路34とを切り替える機能を有する。
電気ヒータ40は、燃料電池スタック20の電力を消費するために動作される。電気ヒータ40は、その性質上、周囲温度の上昇に伴って徐々に電気抵抗が大きくなり、それに連れて電力消費量が低下していく。しかし、冷却媒の温度があまりに高くなると、関連部品(例えば、電気ヒータ40やヒータコア41等)に好ましくない影響を与えるようになる。このような影響に対処するため、本実施形態の燃料電池システムでは、冷却媒の熱分解温度(例えば冷却媒が水である場合には100℃)よりも低い所定の設定温度(例えば冷却媒が水である場合には85℃)以上となる温度領域で電気ヒータ40へ供給する電力を積極的に抑制して電気ヒータ40の電力消費量を急激に低下させるように制御している。電気ヒータ40は、小さなラジエータとして機能する後述のヒータコア41を備える。ヒータコア41とエバポレータを組み合わせることにより、例えば車載エアコンを構成する。なお、電気ヒータ40を動作させて電力を消費する場合として、例えば回生動作により余剰電力が生じた場合や、燃料電池スタック20を暖気する際に電力が生じた場合等が挙げられる。
ヒータ冷却系50は、冷却媒を電気ヒータ40の周囲およびヒータコア41に流通させて電気ヒータ40を冷却する冷却系である。ヒータ冷却系50は、ヒータコア41、バイパス流路51、ポンプ52、短絡流路53、および三方弁54を備える。
ヒータコア41は、概ねチューブ、放熱フィン、およびファン(いずれも図示せず)で構成され、チューブ内を冷却媒が流れて熱交換を行う放熱機器である。バイパス流路51は、燃料電池スタック20の出口側において、電気ヒータ40の周囲およびヒータコア41へと冷却媒を迂回させる流路である。三方弁54を切り替えることにより燃料電池冷却系30が当該ヒータ冷却系に接続されると、冷却媒は電気ヒータ40の周囲を通過して、当該電気ヒータ40を間接的に冷却する。ポンプ52は、バイパス流路51のヒータコア41の出口側に介設され、ヒータ冷却系50の冷却媒を循環させる機能を有する。短絡流路53は、バイパス流路51のヒータコア41の入口側と出口側とを結ぶ流路である。三方弁54は、バイパス流路51のヒータコア41の入口側において、短絡流路53の分岐部に介設され、バイパス流路51と短絡流路53とを切り替える機能を有する。
温度センサ61は、循環流路32の燃料電池スタック20の出口側に設けられ、燃料電池スタック20の出口温度(燃料電池冷却系30の冷却媒温度であり、燃料電池スタック20の内部温度にほぼ等しく「燃料電池水温」と称する)を検出する。他方、温度センサ62は、電気ヒータ40の近傍のバイパス流路51に設けられ、電気ヒータ40の周囲を流通する冷却媒の温度(ヒータ冷却系50の冷却媒温度であり、電気ヒータ40の温度にほぼ等しく「ヒータ水温」と称する)を検出する。温度センサ61,62は制御装置70と電気的に接続され、当該温度センサ61,62の検出温度は電気信号として制御装置70に入力される。
制御装置70は、温度センサ61,62の検出信号に基づいて、バイパス流路51におけるポンプ52および三方弁54を制御する。制御装置70としては、例えば、電子制御ユニット(ECU:Electronic control Unit)が挙げられる。ECU70は、例えば、CPU、ROM、RAM、及び入出力インタフェースを備え、所定のソフトウェアプログラムが実行させることにより、当該燃料電池システムにおいて本発明に係る制御方法を実施する。
<制御方法>
次に、図1から図5を参照して、本発明の実施の形態に係る燃料電池システムの制御方法について説明する。
図1に示すように、燃料電池システム10が搭載された燃料電池車両は、燃料電池スタック20で発電した電気によってトラクションモータを駆動して走行する。燃料電池車両は電気ヒータ40を備えており、燃料電池スタック20の余剰電力を消費するために電気ヒータ40を動作させる。
図5に、電気ヒータ40の消費電力量と周囲の温度との関係を示す。図5に示すように、電気ヒータ40は高温になるに連れて電気ヒータ40の電気抵抗が徐々に大きくなるため、電気ヒータ40の電力消費量が徐々に低下する。電気ヒータ40がさらに高温になると、当該電気ヒータ40およびヒータコア41を保護するために、電気ヒータ40の消費電力を迅速に削減する必要がある。具体的には、電気ヒータ40およびヒータコア41を積極的に保護するために、ヒータ温度が所定の設定温度Ts(例えば85℃)に到達すると、電気ヒータ40の出力を急激に絞る必要がある。電気ヒータ40の出力を削減する変化率は、設定温度Tc以下の温度領域における変化率に比べて相当程度大きな変化率であり、例えば、数百W/℃程度の急激な変化率となる。そして、ヒータ温度が所定の限界温度Tb(例えば90℃)に達すると、電気ヒータ40およびヒータコア41を確実に保護するため、電気ヒータ40の出力が実質的にゼロとなるように電気ヒータ40への電力供給をシャットダウンさせる。即ち、電気ヒータ40の温度が設定温度Ts以上の制限温度領域に入ると、電気ヒータ40の出力が制限されるようになるため、この制限温度領域においては電気ヒータ40における燃料電池システムで発生した余剰電力を消費する能力が激減する。例えば、回生時の制動力の低下や、急速暖機・保温制御時の電力消費先の低下(=発電・発熱量の低下)等の電力消費量の低下に繋がるのである。
そこで、本実施の形態に係る燃料電池システムの制御方法は、反応ガスの供給を受けて発電する燃料電池スタック20と、燃料電池スタック20に冷却媒を循環させて冷却する燃料電池冷却系30と、燃料電池スタック20の電力を消費するために動作される、冷却媒の熱分解温度よりも低い温度で電力消費量が急激に低下するように駆動される電気ヒータ40と、冷却媒を電気ヒータ40の周囲に流通させて電気ヒータ40を冷却するヒータ冷却系50と、を備える燃料電池システム10において、ヒータ冷却系50の冷却媒の温度が該電気ヒータ40の電力消費量が急激に低下する温度領域(図5における制限温度領域)に含まれる場合に燃料電池冷却系30の冷却媒をヒータ冷却系50に流通させて燃料電池スタック20を冷却するように制御する。
<具体的動作>
以下、図1から図4を参照して、本実施の形態に係る燃料電池システムの制御方法を具体的に説明する。図2は本発明の実施の形態に係る燃料電池システムの制御方法のフローチャートである。図3および図4は本発明の実施の形態に係る燃料電池システムの制御方法の説明に供する図である。
まず、図2に示すように、燃料電池システム10の運転が開始されると(S110)、ECU70は燃料電池スタック20の出口の冷却媒温度(燃料電池水温Tf)および電気ヒータ40の周囲の温度(ヒータ水温Th)を監視する。次いで、ECU70は、電気ヒータ40の通電があるか否かを判定する(S120)。電気ヒータ40の通電がないと判定した場合(S120:NO)は、ECU70が電気ヒータ40の通電の監視を続行する。他方、電気ヒータ40の通電があると判定した場合(S120:YES)は、ECU70が電気ヒータ40の周囲の水温(ヒータ水温Th)が設定温度以上の温度領域に含まれるか否かを監視する(S130)。本実施の形態において当該設定温度は、図3に示す設定温度Ts(例えば85℃)であり、当該温度領域は温度上昇に伴う電気ヒータ40の電力消費量の自然な低下の程度を超えて積極的に電力消費量を低減させるように制御する温度領域であり、例えば、図3に示す制限温度領域である。
次に、電気ヒータ40の周囲の水温(ヒータ水温Th)が設定温度Ts上の温度領域に含まれると判定した場合(S130:YES)は、燃料電池冷却系30の冷却媒をヒータ冷却系50に流通させて、当該電気ヒータ40を冷却する。具体的には、ECU70が三方弁54を制御してバイパス流路51を開放するとともに、ポンプ52をオンさせる(S140)。なお、図2に図示していないが、ECU70は燃料電池スタック20の出口の冷却媒温度を監視しているため、燃料電池スタック20の水温が電気ヒータ40の周囲の水温よりも高いときは、三方弁54を閉鎖するとともに、ポンプ52をオフする。例えば、燃料電池スタック20の冷却媒の温度が熱分解温度に近い場合(例えば97℃)は、電気ヒータ40の冷却が不可能であるし、電気ヒータ40およびヒータコア41の保護のため、三方弁54を閉鎖し、ポンプ52をオフする。
次に、ECU70は、電気ヒータの通電が終了するか否か、または/および、電気ヒータ40の周囲を流通する冷却媒の温度(ヒータ水温Th)が下限温度TL1(例えば65℃)以下になるか否か、または/および、電気ヒータ40の周囲を流通する冷却媒の温度(ヒータ水温Th)と燃料電池スタック20の出口の冷却媒温度(燃料電池水温Tf)との差分が所定値の範囲(第2温度差ΔT2:例えば3℃)内であるか否かを監視する(S150)。電気ヒータの通電が終了していないと判定した場合、または/および、ヒータ水温Thが下限温度TL1より高いと判定した場合、または/および、ヒータ水温Thと燃料電池水温Tfとの差分が第2温度差ΔT2の範囲外であると判定した場合(S150:NO)は、ECU70がステップ150(S150)の監視を続行する。他方、電気ヒータの通電が終了と判定した場合、または/および、ヒータ水温Thが下限温度TL1以下であると判定した場合、または/および、ヒータ水温Thと燃料電池水温Tfとの差分が第2温度差ΔT2の範囲内であると判定した場合(S150:YES)は、三方弁54を閉鎖するとともに、ポンプ52をオフして、制御を終了する(S160)。電気ヒータ40の使用がされなくなった場合や電気ヒータ40の温度が設定温度Tsに比べて十分に低くなった場合には電気ヒータ40による電力消費量の急激な低下の虞はないからである。また、電気ヒータ40の温度と燃料電池スタック20の温度とに大きな温度差がなくなった場合には燃料電池冷却系30の冷却媒による冷却能力が低くなると判断され、燃料電池冷却系30の冷却媒をヒータ冷却系50へ供給する実効性が小さくなるからである。なお、ポンプ52が停止すればヒータ冷却系50における冷却は終了するので、必ずしも三方弁54を閉鎖する必要はなく開のまま維持してもよい。不要な弁操作をしなければ耐久性を向上することができるからである。
またステップS130において、電気ヒータ40の周囲の水温が所定値(設定温度Ts)未満であると判定した場合(S130:NO)は、ECU70が車内暖房等の空調で電気ヒータ40の使用があるか否かを監視する(S170)。空調で電気ヒータ40の使用があると判定した場合(S170:YES)は、ECU70がステップ130(S130)の監視を続行する。他方、空調で電気ヒータ40の使用がないと判定した場合(S170:NO)は、ECU70はさらに空調以外で電気ヒータの使用があるか否かを監視する(S172)。空調以外で電気ヒータ40の使用がないと判定した場合(S172:NO)は、ECU70がステップ120(S120)の監視を続行する。他方、空調以外で電気ヒータ40の使用ありと判定した場合(S172:YES)は、ECU70は、ヒータ冷却系50の冷却媒の温度(ヒータ水温Th)および燃料電池スタック20の冷却媒の温度(燃料電池水温Tf)に鑑みて、燃料電池冷却系30の冷却媒をヒータ冷却系50に流通させるか否かを判定する(S180)。
具体的には、図4に示すように、ヒータ水温Thと燃料電池水温Tfとの差分が所定値の範囲(第1温度差ΔT1:例えば10℃)外であるか否か、または/および、燃料電池水温Tfが下限温度TL2(例えば40℃)以上であるか否かを監視する(S180)。ヒータ水温Thと燃料電池水温Tfとの差分が第2温度差ΔT2より小さいと判定した場合、または/および、燃料電池水温Tfが下限温度TL2より小さいと判定した場合(S180:NO)、ECU70はステップ130(S130)の監視を続行する。他方、ヒータ水温Thと燃料電池水温Tfとの差分が第2温度差ΔT2以上となると判定した場合、または/および、燃料電池水温Tfが下限温度TL2以上であると判定した場合(S180:YES)、ECU70は、燃料電池冷却系30の冷却媒をヒータ冷却系50に流通させる。具体的には、ECU70が三方弁54を制御してバイパス流路51を開放するとともに、ポンプ52をオンさせる(S140)。燃料電池スタック20の水温が下限温度TL2以上である場合に、三方弁54を開放するとともに、ポンプ52をオンするのは、暖房性能の低下を抑制するためである。
その後、ECU70は、上述したステップ150の監視を行い、電気ヒータの通電が終了していないと判定した場合、または/および、ヒータ水温Thが下限温度TL1より大きいと判定した場合、または、ヒータ水温Thと燃料電池水温Thとの差が第2温度差ΔT2を超えると判定した場合(S150:NO)は、ECU70はステップ150(S150)の監視を続行する。他方、電気ヒータの通電が終了と判定した場合、または/および、ヒータ水温Thが下限温度TL1以下であると判定した場合、または/および、ヒータ水温Th燃料電池水温Tfとの差分が第2温度差ΔT2の範囲内、即ち、燃料電池水温Tfに対してヒータ水温Thがほぼ同等と考えられると判定した場合(S150:NO)は、三方弁54を閉鎖するとともに、ポンプ52をオフして、制御を終了する(S160)。電気ヒータ40の使用がされなくなった場合は電気ヒータ40による電力消費機能は無く、また電気ヒータ40の温度が十分に低い場合や電気ヒータ40の温度が燃料電池スタック20の温度と同等になった場合には、電気ヒータ40による電力消費量が急激に低下する虞がないからである。
<実施例の効果>
以上、説明したように、本実施の形態に係る燃料電池システムの制御方法によれば、電気ヒータ40の周囲の冷却媒が、電気ヒータ40の電力消費量が急激に低下するように駆動される温度領域に含まれる場合に、燃料電池スタック冷却系30の冷却媒を電気ヒータ40の周囲に流通させる。また、車内暖房等の空調で電気ヒータ40の使用がなく、空調以外で電気ヒータ40の使用がある場合は、燃料電池スタック20の冷却媒の温度に対し、電気ヒータ40の周囲の冷却媒の温度が所定値の範囲(第1温度差ΔT1)外になる場合に、燃料電池冷却系30の冷却媒をヒータ冷却系50に流通させて電気ヒータ40を冷却する。さらに、燃料電池スタック20の冷却媒の温度が所定値(下限温度TL2)以上の場合に、燃料電池冷却系30の冷却媒をヒータ冷却系50に流通させる。したがって、本実施の形態に係る燃料電池システムの制御方法は、電気ヒータ40が高温になることを抑制することにより、電気ヒータ40の電力消費量の急激な低下を抑制することができ、燃料電池スタック20の電力の消費先を確保することができるという優れた効果を奏する。
〔その他の実施の形態〕
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば、電気ヒータ40の水温が燃料電池スタック20の水温と同等(例えば、第2温度差ΔT2以内)であって、かつ、電気ヒータ40の水温が設定温度Ts以上の場合は、三方弁54の開度を中間に設定するように制御してもよい。暖房性能の低下を抑制するためであり、燃料電池冷却系30の水温とヒータ冷却系50の水温とに差がなく、冷却性能に余裕がないからである。このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
10 燃料電池システム
20 燃料電池
30 燃料電池冷却系
40 電気ヒータ
50 ヒータ冷却系

Claims (6)

  1. 燃料電池の余剰電力を消費するために電気ヒータを動作させる燃料電池システムの制御方法であって、
    燃料電池システムは、
    反応ガスの供給を受けて発電する燃料電池と、
    前記燃料電池に冷却媒を循環させて冷却する燃料電池冷却系と、
    前記燃料電池の電力を消費するために動作される、前記冷却媒の熱分解温度よりも低い温度で電力消費量が急激に低下するように駆動される電気ヒータと、
    前記冷却媒を前記電気ヒータの周囲に流通させて前記電気ヒータを冷却するヒータ冷却系と、
    を備え、
    前記ヒータ冷却系の前記冷却媒の温度が前記電気ヒータの少なくとも電力消費量が急激に低下する温度領域に含まれる場合に前記燃料電池冷却系の冷却媒を前記ヒータ冷却系に流通させて前記電気ヒータを冷却すること、を特徴とする燃料電池システムの制御方法。
  2. 前記ヒータ冷却系の冷却媒の温度が所定値以上である場合に、前記燃料電池冷却系の冷却媒を前記ヒータ冷却系に流通させて前記電気ヒータを冷却する、請求項1に記載の燃料電池システムの制御方法。
  3. 前記ヒータ冷却系の冷却媒の温度が所定値以下となった場合に、前記燃料電池冷却系から前記ヒータ冷却系への冷却媒の流通を遮断する、請求項2に記載の燃料電池システムの制御方法。
  4. 前記燃料電池冷却系の冷却媒の温度に対して前記ヒータ冷却系の冷却媒の温度が所定値の範囲外となった場合に、前記燃料電池冷却系の冷却媒を前記ヒータ冷却系に流通させて前記電気ヒータを冷却する、請求項1乃至3のいずれか一項に記載の燃料電池システムの制御方法。
  5. 前記燃料電池冷却系の冷却媒の温度に対して前記ヒータ冷却系の冷却媒の温度が所定値の範囲内となった場合に、前記燃料電池冷却系から前記ヒータ冷却系への冷却媒の流通を遮断する、請求項4に記載の燃料電池システムの制御方法。
  6. 空調のために前記電気ヒータを駆動させており、かつ、前記ヒータ冷却系の冷却媒の温度が所定値以上である場合に、前記燃料電池冷却系の冷却媒を前記ヒータ冷却系に流通させて前記電気ヒータを冷却する、請求項1乃至5のいずれか一項に記載の燃料電池システムの制御方法。
JP2014232059A 2014-11-14 2014-11-14 燃料電池システムの制御方法 Active JP6213900B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014232059A JP6213900B2 (ja) 2014-11-14 2014-11-14 燃料電池システムの制御方法
US14/925,493 US10680257B2 (en) 2014-11-14 2015-10-28 Fuel cell system and control method for fuel cell system
KR1020150153641A KR101835186B1 (ko) 2014-11-14 2015-11-03 연료 전지 시스템 및 연료 전지 시스템의 제어 방법
DE102015118893.7A DE102015118893B4 (de) 2014-11-14 2015-11-04 Brennstoffzellensystem und Steuerverfahren für ein Brennstoffzellensystem
CA2911321A CA2911321C (en) 2014-11-14 2015-11-05 Fuel cell system and control method for fuel cell system
CN201510765768.2A CN105609809B (zh) 2014-11-14 2015-11-11 燃料电池系统及燃料电池系统的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232059A JP6213900B2 (ja) 2014-11-14 2014-11-14 燃料電池システムの制御方法

Publications (2)

Publication Number Publication Date
JP2016096070A JP2016096070A (ja) 2016-05-26
JP6213900B2 true JP6213900B2 (ja) 2017-10-18

Family

ID=55855486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232059A Active JP6213900B2 (ja) 2014-11-14 2014-11-14 燃料電池システムの制御方法

Country Status (6)

Country Link
US (1) US10680257B2 (ja)
JP (1) JP6213900B2 (ja)
KR (1) KR101835186B1 (ja)
CN (1) CN105609809B (ja)
CA (1) CA2911321C (ja)
DE (1) DE102015118893B4 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102518235B1 (ko) * 2017-12-07 2023-04-06 현대자동차주식회사 연료전지 열관리 시스템 및 그 제어방법
JP2019140854A (ja) * 2018-02-15 2019-08-22 トヨタ自動車株式会社 燃料電池システム
CN110712496B (zh) * 2019-10-21 2020-12-11 上海捷氢科技有限公司 一种燃料电池车辆的热管理系统
KR20210062437A (ko) 2019-11-21 2021-05-31 현대자동차주식회사 연료전지 차량의 열 관리 시스템
KR20210070451A (ko) * 2019-12-04 2021-06-15 현대자동차주식회사 연료전지의 제어시스템 및 제어방법
CN110979102A (zh) * 2019-12-12 2020-04-10 武汉格罗夫氢能汽车有限公司 集成式电池热管理系统和氢能汽车
CN111177920B (zh) * 2019-12-27 2023-09-15 格罗夫氢能源科技集团有限公司 燃料电池流道的设计方法及终端
CN111244500A (zh) * 2020-02-14 2020-06-05 上海杰宁新能源科技发展有限公司 一种氢燃料电池汽车动力装置的控制系统
CN115214312B (zh) * 2022-02-21 2024-02-02 广州汽车集团股份有限公司 比例三通阀的控制方法、装置、车辆及存储介质
CN115842144B (zh) * 2022-10-27 2023-09-26 中汽创智科技有限公司 燃料电池热管理测试系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720623A (en) 1986-05-01 1988-01-19 E. I. Du Pont De Nemours And Company Power control device for a resistance heater in an oven
JP4061820B2 (ja) * 1999-10-20 2008-03-19 株式会社デンソー 冷凍サイクル装置
JP4341356B2 (ja) 2003-09-24 2009-10-07 株式会社デンソー 燃料電池システム
US9711808B2 (en) * 2008-03-24 2017-07-18 GM Global Technology Operations LLC Method for optimized execution of heating tasks in fuel cell vehicles
JP5501750B2 (ja) * 2009-12-22 2014-05-28 Jx日鉱日石エネルギー株式会社 燃料電池システム
JP5463982B2 (ja) 2010-03-16 2014-04-09 トヨタ自動車株式会社 冷媒回路調整装置
KR101189581B1 (ko) * 2010-11-17 2012-10-11 기아자동차주식회사 냉각수 폐열을 이용하는 연료전지 자동차의 난방 제어 방법
JP5673261B2 (ja) * 2011-03-18 2015-02-18 株式会社デンソー 燃料電池システム
JP5754346B2 (ja) * 2011-10-31 2015-07-29 株式会社デンソー 燃料電池システム
CN102610838B (zh) * 2012-03-22 2014-10-15 中国东方电气集团有限公司 燃料电池热管理系统、燃料电池系统及具有该系统的车辆
EP2905834B1 (en) 2012-10-01 2017-11-22 Nissan Motor Co., Ltd Fuel cell system and control method
JP6149475B2 (ja) * 2013-04-10 2017-06-21 日産自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
KR20160057997A (ko) 2016-05-24
US10680257B2 (en) 2020-06-09
CA2911321A1 (en) 2016-05-14
US20160141647A1 (en) 2016-05-19
CA2911321C (en) 2019-02-12
CN105609809B (zh) 2018-06-15
DE102015118893A1 (de) 2016-05-19
DE102015118893B4 (de) 2020-04-23
JP2016096070A (ja) 2016-05-26
CN105609809A (zh) 2016-05-25
KR101835186B1 (ko) 2018-03-06

Similar Documents

Publication Publication Date Title
JP6213900B2 (ja) 燃料電池システムの制御方法
JP6687895B2 (ja) 車両用燃料電池の暖機装置
KR101628514B1 (ko) 연료전지 스택의 온도 제어 방법
JP5673580B2 (ja) 燃料電池システム
KR102496804B1 (ko) 연료전지 차량의 열관리 시스템
JP2010067394A (ja) 車両用燃料電池冷却システム
JP2015128049A (ja) 燃料電池車両の熱管理システム及び方法
CN108172865B (zh) 一种车用燃料电池热管理系统及方法
JP2010003448A (ja) 燃料電池の冷却システム
JP2007328933A (ja) 燃料電池システム
JP5478669B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2007328972A (ja) 燃料電池システム
JP4114459B2 (ja) 燃料電池システム
JP2011178365A (ja) 空調装置および空調制御方法
JP2005322527A (ja) 燃料電池システム
JP2003331886A (ja) 燃料電池システム
JP4322040B2 (ja) 燃料電池システムおよびその制御方法
US11296335B2 (en) Fuel cell system and method of operating same
CN113054218B (zh) 燃料电池的热管理系统及控制方法
JP4984546B2 (ja) 燃料電池システム
US20240063412A1 (en) Fuel cell system and thermal management method thereof
KR102607329B1 (ko) 연료전지 시스템 및 그의 히터 제어 방법
CN209766555U (zh) 氢氧混合燃料电池系统及燃料电池汽车
JP2009176467A (ja) 燃料電池自動車
JP2007311314A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170828

R151 Written notification of patent or utility model registration

Ref document number: 6213900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170910