JP6212917B2 - 駆動力配分装置 - Google Patents

駆動力配分装置 Download PDF

Info

Publication number
JP6212917B2
JP6212917B2 JP2013084928A JP2013084928A JP6212917B2 JP 6212917 B2 JP6212917 B2 JP 6212917B2 JP 2013084928 A JP2013084928 A JP 2013084928A JP 2013084928 A JP2013084928 A JP 2013084928A JP 6212917 B2 JP6212917 B2 JP 6212917B2
Authority
JP
Japan
Prior art keywords
roller
driving force
force distribution
distribution device
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013084928A
Other languages
English (en)
Other versions
JP2014205453A (ja
Inventor
勝義 小川
勝義 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013084928A priority Critical patent/JP6212917B2/ja
Publication of JP2014205453A publication Critical patent/JP2014205453A/ja
Application granted granted Critical
Publication of JP6212917B2 publication Critical patent/JP6212917B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

本発明は、駆動力配分装置、特に四輪駆動車のトランスファとして有用な駆動力配分装置に関するものである。
従来の駆動力配分装置としては従来、例えば特許文献1に記載のようなものが知られている。この文献には、主駆動輪伝達系と共に回転する第一ローラと、従駆動輪伝達系と共に回転する第二ローラと、第二ローラをその回転軸線からオフセットした偏心軸線周りに回動自在に支持するクランクシャフトと、クランクシャフトを回転駆動する電動モータとを備えた駆動力配分装置が開示されている。
そして、電動モータの作動によりクランクシャフトを回転駆動して第二ローラを偏心軸線周りに旋回させることにより、第二ローラを第一ローラに対し径方向へ相対変位させ、これにより両ローラ間の径方向押し付け力、つまり、主駆動輪および従駆動輪間の駆動力配分を制御している。
特開2009-173261号公報
従来のクラッチ式の駆動力配分装置においては、主駆動輪のスリップを抑えるように、変速機から出力される駆動力を所定の配分量で主駆動輪と従駆動輪とに配分させるようにしている。車両発進直後には変速機の出力トルクが小さいため、主駆動輪のスリップ量も小さく、従駆動輪への駆動力分量が小さくなる。
しかし、特許文献1に記載の技術では、第一ローラと第二ローラとの押し付け力によって駆動力の配分量を制御しているため、ローラ間に油膜が形成されていない車両発進直後においては、ローラが接触した状態でスリップが生じるため、ローラ表面の温度が上昇し、耐久性を低下させてしまうおそれがあった。
本発明は、上記問題に着目されたもので、その目的とするところは、車両発進直後のローラ表面の温度上昇を抑制し、耐久性を向上させることができる駆動力配分装置を提供することである。
上記課題を解決するために本発明では、主駆動輪のスリップ量に応じて、第一ローラの外周面に対する第二ローラの外周面の押圧力を制御して、従駆動輪への駆動力配分率を制御する駆動力配分制御手段を備え、駆動力配分制御手段は、車両発進時に主駆動輪のスリップ量に関わらず、押圧力が所定値よりも高くなるように設定し、車両発進後、所定時間経過したのちに前記押圧力を徐々に低下させるようにする。
よって、車両発進直後のローラ表面の温度上昇を抑制し、駆動力配分装置の耐久性を向上させることができる。
実施例1のシステム図である。 実施例1の駆動力配分装置の断面図である。 実施例1のクランクシャフトを示す模式断面図である。 実施例1の駆動力配分装置の動作説明図である。 実施例1のトランスファコントローラにおける電磁ブレーキの電流指令値演算制御処理の流れを示すフローチャートである。 実施例1のクランクシャフト回転角に応じた電磁ブレーキの電流指令値の演算マップである。 実施例1のトランスファコントローラにおけるローラ間径方向押圧力の設定処理の流れを示すフローチャートである。 実施例1の車両発進時の各要素のタイムチャートである。 実施例1の車両発進の各要素のタイムチャートである。
以下、本発明の実施の形態を、図示の実施例に基づき詳細に説明する。
〔実施例1〕
図1は、実施例1の駆動力配分装置1をトランスファとして備えた四輪駆動車両のパワートレーンを、車両上方から見て示す概略平面図である。
図1の四輪駆動車両は、エンジン2からの回転を変速機3による変速後、リヤプロペラシャフト4およびリヤファイナルドライブユニット5を順次経て左右後輪6L,6Rに伝達するようにした後輪駆動車をベース車両とする。そして、左右後輪(主駆動輪)6L,6Rへのトルクの一部を、駆動力配分装置1により、フロントプロペラシャフト7およびフロントファイナルドライブユニット8を順次経て左右前輪(従駆動輪)9L,9Rへ伝達することにより、四輪駆動走行が可能となるようにした車両である。
駆動力配分装置1は、上記のように左右後輪6L,6Rへのトルクの一部を左右前輪9L,9Rへ分配して出力することにより、左右後輪6L,6Rおよび左右前輪9L,9R間の駆動力配分比を決定するもので、実施例1においては、この駆動力配分装置1を図2に示すように構成する。
図2において11は、駆動力配分装置1のハウジングを示し、このハウジング11内に入力軸12および出力軸13を、それぞれの第一ローラ回転軸線O1およびO2が交差するよう相互に傾斜させて横架する。入力軸12は、その両端におけるボールベアリング14,15によりハウジング11に対し回転自在に支承する。ここで、ボールベアリングに代えてニードルローラベアリングを用いても良い。入力軸12の両端をそれぞれ、シールリング25,26による液密封止下でハウジング11から突出させる。図2において入力軸12の左端を変速機3(図1参照)の出力軸に駆動結合し、右端はリヤプロペラシャフト4(図1参照)を介してリヤファイナルドライブユニット5に駆動結合する。
入力軸12および出力軸13の両端近くにそれぞれ配して、これら入出力軸12,13間に一対のベアリングサポート16,17を架設し、これらベアリングサポート16,17をそれぞれの中程で、ボルト(図示せず)によりハウジング11の軸線方向対向内壁に取着する。ここで、ベアリングサポート16,17はハウジング11に固定しなくても良い。このベアリングサポート16,17は、入力軸12が貫通する入力軸貫通孔16a,17aと、出力軸13及びクランクシャフト51L,51Rが貫通する出力軸貫通孔16c,17cと、入力軸貫通孔16a,17aと出力軸貫通孔16c,17cとの間をつなぐ縦壁16b,17bとを有し、軸方向正面視において略メガネ形状である。ベアリングサポート16,17と入力軸12との間にはローラベアリング21,22を介在させ、これにより入力軸12をベアリングサポート16,17に対し回転自在となすことで、ベアリングサポート16,17を介しても入力軸12をハウジング11内に回転自在に支持する。
ベアリングサポート16,17間(ローラベアリング21,22間)における入力軸12の軸線方向中程位置に第一ローラ31を同軸に一体成形し、この第一ローラ31に動力伝達可能に作動油を介して摩擦接触し得るよう配して出力軸13の軸線方向中程位置に第二ローラ32を同軸に一体成形する。
第一ローラ31の外周面31aは軸方向に向かってクラウニングによる曲面処理されている。つまり、第一ローラ31は全体として樽状に形成されており、軸心部には貫通孔が形成されている。第二ローラ32の外周面32aは円錐テーパ面状に形成されており、第二ローラ32の軸心部に貫通孔を有する。
第一ローラ31及び第二ローラ32の径方向延在部の両側にはスラストベアリング31cL,31cR及び32cL,32cRと当接し、このスラストベアリング31cL,31cR及び32cL,32cRを径方向に保持する保持溝31b,32bが形成されている。スラストベアリング31cL,31cRはベアリングサポート16,17の側壁16a1,17a1と当接することで第一ローラ31の軸方向位置決めを行う。一方、スラストベアリング32cL,32cRは、後述するクランクシャフト51L,51Rのローラ側当接部51Ld,51Rdと当接することで第二ローラ32の軸方向位置決めを行う。
出力軸13は、両端13L,13Rの近くにおける前記のベアリングサポート16,17に対し旋回可能に支承することで、これらベアリングサポート16,17を介してハウジング11内に旋回可能に支持する。
このように出力軸13(13L,13R)をベアリングサポート16,17に対し旋回可能に支承するに当たっては、以下のような偏心支承構造を用いる。
出力軸13(13L,13R)と、出力軸13が貫通するベアリングサポート16,17との間にそれぞれ、中空アウターシャフト型式のクランクシャフト51L,51Rを遊嵌する。
クランクシャフト51Lおよび出力軸13(13L)をそれぞれ図2の左端においてハウジング11から突出させ、該突出部においてハウジング11およびクランクシャフト51L間にシールリング27を介在させると共に、クランクシャフト51Lおよび出力軸13(13L)間にシールリング28を介在させることにより、ハウジング11から突出するクランクシャフト51Lおよび出力軸13(13L)の突出部をそれぞれ液密封止する。
図2においてハウジング11から吐出する出力軸13の左端13Lは、フロントプロペラシャフト7(図1参照)およびフロントファイナルドライブユニット8を介して左右前輪9L,9Rに駆動結合する。
クランクシャフト51L,51Rの中空孔51La,51Ra(半径Ri)と、出力軸13の対応端部13L,13Rとの間にそれぞれローラベアリング52L,52Rを介在させて、出力軸13(13L,13R)をクランクシャフト51L,51Rの中空孔51La,51Ra内で、これらの第二ローラ回転軸線O2の周りに自由に回転し得るよう支持する。
クランクシャフト51L,51Rの中空孔51La,51Ra(第二ローラ回転軸線O2)は図3に明示するように、外周部51Lb,51Rb(クランクシャフト回転軸線O3、半径Ro)に対し偏心させた偏心中空孔とし、これら偏心中空孔51La,51Raの第二ローラ回転軸線O2は外周部51Lb,51Rbのクランクシャフト回転軸線O3から、両者間の偏心量εだけオフセットしている。
クランクシャフト51L,51Rの外周部51Lb,51Rbはそれぞれ、ラジアルベアリングであるローラベアリング53L,53Rを介して対応する側におけるベアリングサポート16,17の出力軸貫通孔16c,17cの内周に回転自在に支持する。また、クランクシャフト51L,51Rのローラ側当接部51Ld,51Rdがスラストベアリング32cL,32cRにより回転自在に支持される。さらに、このスラストベアリング32cL,32cRと軸方向外側に配置されたスラストベアリング54L,54Rを有し、このスラストベアリング54L,54Rはスペーサ60L,60Rと回転自在に当接すると共に後述するリングギヤ51Lc,51Rcと回転自在に当接し、これによりクランクシャフト51L,51Rを回転自在に支持する。
スペーサ60L,60Rは、縦壁16b,17bの第二ローラ32側に面した壁面16b1,17b1と当接すると共に出力軸貫通孔16c,17cの内周面よりも内径側であってクランクシャフト51L,51Rに接触しない位置まで延在された第一スペーサ部61L,61Rと、出力軸貫通孔16c,17c内に挿入可能に延在された第二スペーサ部62L,62Rとを有する。
そして、この第二スペーサ部62L,62Rの外周と、出力軸貫通孔16c,17cの内周面との間で当接させてスペーサ60L,60Rの径方向位置決めを行うと共に、ローラベアリング53L,53Rとスラストベアリング54R,54Lとの相互干渉を回避する。
クランクシャフト51L,51Rの相互に向き合う隣接端にそれぞれ、同仕様のリングギヤ51Lc,51Rcを一体に設け、これらリングギヤ51Lc,51Rcにそれぞれ、共通なクランクシャフト駆動ピニオン55を噛合させ、これらクランクシャフト駆動ピニオン55をピニオンシャフト56に結合する。
なお、上記のようにリングギヤ51Lc,51Rcにクランクシャフト駆動ピニオン55を噛合させるにあたっては、クランクシャフト51L,51Rを両者の外周部51Lb,51Rbが円周方向において相互に整列して同位相となる回転位置にした状態で、当該リングギヤ51Lc,51Rcに対するクランクシャフト駆動ピニオン55の噛合を行わせる。
ピニオンシャフト56は、その両端を軸受56a,56bによりハウジング11に対し回転自在に支持する。図2におけるピニオンシャフト56の右端側には、大径出力ギヤ(減速ギヤ)57bが固定されている。この大径出力ギヤ57bの外径側には、矢視Aに示すように、大径出力ギヤ57bの歯面の凹凸57b1,57b2を検知して大径出力ギヤ57bの回転角を検出するクランクシャフト回転角センサ115が設けられている。このクランクシャフト回転角センサ115は磁気式センサであって、大径出力ギヤ57bの歯面の凹凸変化による磁束密度変化を検出し、ピニオンシャフト56の回転角ひいてはクランクシャフト51L,51Rの回転角を検知する。
このように、大径出力ギヤ57bの歯面の凹凸を検出する回転角センサの場合、モータ回転角を検知するロータリエンコーダのように回転体側とステータ側との両方に部品を必要とするような高価な構成に比べて、スペース的にもコンパクト化を図りつつ、安価に回転角を検出できる。また、大径出力ギヤ57bの外周スペースのいずれか余裕のある箇所のハウジング11外周側から取り付けることができるため、スペース的にも有利な配置が可能である。
また、大径出力ギヤ57bの外周には大径出力ギヤ57bと噛合する小径出力ギヤ(減速ギヤ)57aが設けられている。この小径出力ギヤ57aは、小径出力ギヤシャフト57a1と一体形成され、さらに、図2の左端側においてローラ間径方向押し付け力制御モータ(電動モータ)35のモータ駆動軸58aに組み付けられ、電動モータ35と一体回転する。
小径出力ギヤシャフト57a1の右端側には、この小径出力ギヤシャフト57a1に対し制動力を付与することで小径出力ギヤシャフト57a1の回転を固定可能な電磁ブレーキ59が設けられている。電磁ブレーキ59は、電磁力を発生させるコイル59aと、小径出力ギヤシャフト57a1の右端において軸方向にストローク可能にスプライン嵌合されたクラッチプレート59bとを有する。
小径出力ギヤ57aの軸方向左右には、電動モータ35および電磁ブレーキ59をハウジング11の内部に対してシールするためのシールリング63およびシールリング64が設けられている。
クラッチプレート59bにはアーマチュアが設けられ、コイル59aに通電することでクラッチプレート59bが電磁吸引力により軸方向に移動してコイル59a外周のヨークに吸引固定される。コイル59aへの電流供給により電磁ブレーキ59がオン(締結状態)の場合は、電流値に応じた制動トルクがピニオンシャフト56に付与され、この制動トルクを第二ローラ32側からピニオンシャフト56に作用するトルク以上とすることで、ピニオンシャフト56を固定し、所望のローラ軸間距離を維持できる。一方、コイル59aへの電流供給を停止して電磁ブレーキ59がオフ(解放状態)の場合は、電動モータ35の回転動作をピニオンシャフト56に伝達できるため、所望のローラ軸間距離を達成できる。
なお、電動モータ35によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御するとき、出力軸13および第二ローラ32の第二ローラ回転軸線O2が、図3に破線で示す軌跡円αに沿ってクランクシャフト回転軸線O3の周りに旋回する。
図3の軌跡円αに沿った第二ローラ回転軸線O2(第二ローラ32)の旋回により第二ローラ32は、後で詳述するが図4(a)〜(c)に示すように第一ローラ31に対し径方向へ接近し、これら第一ローラ31および第二ローラ32のローラ軸間距離L1をクランクシャフト51L,51Rの回転角θの増大につれ、第一ローラ31の半径と第二ローラ32の半径との和値よりも小さくすることができる。ローラ軸間距離L1の低下により、第一ローラ31に対する第二ローラ32の径方向押圧力(以下、ローラ間径方向押圧力)が大きくなる。すなわち、ローラ軸間距離L1の低下度合いに応じ第一ローラ31および第二ローラ32間のトラクション伝動容量(以下、ローラ間トラクション伝達容量)、つまり駆動力配分比を任意に制御することができる。
なお図4(a)に示すように実施例1では、第二ローラ回転軸線O2がクランクシャフト回転軸線O3の直下に位置し、第一ローラ31および第二ローラ32の軸間距離L1が最大となる下死点でのローラ軸間距離L1を、第一ローラ31の半径と第二ローラ32の半径との和値よりも大きくする。これにより当該クランクシャフト回転角θ=0°の下死点においては、第一ローラ31および第二ローラ32が相互に径方向へ押し付けられることがなく、ローラ31,32間でトラクション伝動が行われないトラクション伝動容量=0の状態を得ることができ、トラクション伝動容量を下死点での0と、図4(c)に示す上死点(θ=180°)で得られる最大値との間で任意に制御することができる。なお実施例1では、クランクシャフト51L,51Rの回転角基準点をクランクシャフト回転角θ=0°の下死点であることとして説明を展開する。
[駆動力配分作用]
図1〜図4につき上述した駆動力配分装置1の駆動力配分作用を以下に説明する。
変速機3(図1参照)から駆動力配分装置1の入力軸12に達したトルクは、この入力軸12からそのままリヤプロペラシャフト4およびリヤファイナルドライブユニット5(図1参照)を経て左右後輪6L,6Rへ伝達される。
また駆動力配分装置1は、電動モータ35によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御して、ローラ軸間距離L1(図4参照)を第一ローラ31および第二ローラ32の半径の和値よりも小さくする。このとき、第一ローラ31と第二ローラ32の外周面を互いに作動油を介したトラクション接触させることにより、ローラ間径方向押圧力に応じたローラ間伝達トルク容量を持つ。このトルク容量に応じて、左右後輪6L,6Rへのトルクの一部を、第一ローラ31から第二ローラ32を経て出力軸13に向かわせ、左右前輪9L,9Rを駆動することができる。そして車両は、左右後輪6L,6Rおよび左右前輪9L,9Rの全てを駆動しての四輪駆動走行が可能となる。
この伝動中におけるローラ間径方向押圧力の反力は、これらに共通な回転支持板であるベアリングサポート16,17で受け止められ、ハウジング11に達することがない。そしてローラ間径方向押圧力は、クランクシャフト回転角θが0°〜90°である間は0となり、クランクシャフト回転角θが90°〜180°である間、θの増大に応じて増加し、クランクシャフト回転角θが180°になるとき最大値となる。なお、これらの角度の割り付けは自由に設定可能である。
このような四輪駆動走行中、クランクシャフト51L,51Rの回転角θが図4(b)に示すように基準位置の90°であって、第一ローラ31および第二ローラ32が相互に、この時のオフセット量OSに対応した径方向押圧力で押し付けられてトラクション接触している場合、これらローラ間のオフセット量OSに対応したトラクション伝動容量で左右前輪9L,9Rへの動力伝達が行われる。
そして、クランクシャフト51L,51Rを図4(b)の基準位置から、図4(c)に示すクランクシャフト回転角θ=180°の上死点に向け回転操作してクランクシャフト回転角θを増大させるにつれ、ローラ軸間距離L1がさらに減少して第一ローラ31および第二ローラ32の相互オーバーラップ量OLが増大する結果、ローラ間径方向押圧力を増大され、これらローラ間トラクション伝動容量を増大させることができる。
クランクシャフト51L,51Rが図4(c)の上死点位置に達すると、第一ローラ31および第二ローラ32は相互に、最大のオーバーラップ量OLに対応した最大の径方向押圧力で径方向へ押し付けられて、これらの間のトラクション伝動容量を最大にすることができる。なお最大のオーバーラップ量OLは、第二ローラ回転軸線O2およびクランクシャフト回転軸線O3間の偏心量εと、図4(b)につき上記したオフセット量OSとの和値である。
以上の説明から明らかなように、クランクシャフト51L,51Rをクランクシャフト回転角θ=0°の回転位置から、クランクシャフト回転角θ=180°の回転位置まで回転操作することにより、クランクシャフト回転角θの増大につれ、ローラ間トラクション伝動容量を0から最大値まで連続変化させることができる。また逆に、クランクシャフト51L,51Rをクランクシャフト回転角θ=180°の回転位置から、θ=0°の回転位置まで回転操作することにより、クランクシャフト回転角θの低下につれ、ローラ間トラクション伝動容量を最大値から0まで連続変化させることができ、ローラ間トラクション伝動容量をクランクシャフト51L,51Rの回転操作により自在に制御し得る。
[走行時のトラクション伝動容量制御]
上記した四輪駆動走行中は駆動力配分装置1が、上記のように左右後輪6L,6Rへのトルクの一部を左右前輪9L,9Rへ分配して出力するため、ローラ間トラクション伝動容量を、左右後輪6L,6Rの駆動力および前後輪目標駆動力配分比から求め得る、左右前輪9L,9Rへ分配すべき目標前輪駆動力に対応させる必要がある。
この要求にかなうトラクション伝動容量制御のために実施例1においては、図1に示すようにトランスファコントローラ111を設け、これにより電動モータ35の回転位置制御(クランクシャフト回転角θの制御)を行うものとする。
そのためトランスファコントローラ111には、エンジン2の出力を加減するアクセルペダル踏み込み量(アクセル開度)APOを検出すアクセル開度センサ112からの信号と、車輪速Vwを検出する車輪速センサ113からの信号と、車両の重心を通る鉛直軸線周りにおけるヨーレートφを検出するヨーレートセンサ114からの信号と、クランクシャフト51L,51Rの回転角θを検出するクランクシャフト回転角センサ115からの信号と、駆動力配分装置1(ハウジング11)内における作動油の温度TEMPを検出する油温センサ116からの信号を入力する。
トランスファコントローラ111は、上記した各センサ112〜116の検出情報を基に、駆動力配分装置1のトラクション伝動容量制御(四輪駆動車両の前後輪駆動力配分制御)を概略以下のように行う。
まず車輪速Vwのうち、主駆動輪である左右後輪6L,6Rの車輪速(後輪速Vwf)と、従駆動輪である左右前輪9L,9Rの車輪速(前輪速Vwr)とを対比して、左右後輪6L,6Rの駆動スリップ状態を逐一チェックし、この左右後輪6L,6Rのスリップ量が許容範囲内に収まるようにするのに必要な目標駆動力配分比を、エンジントルクTeおよびアクセル開度APOならびに変速機ギヤ比γから求める。そして、この目標駆動力配分比のために必要なローラ間径方向押圧力をマップ検索などにより求める。
さらにトランスファコントローラ111は、このローラ間径方向押圧力を実現するのに必要なクランクシャフト51L,51R(図2,3参照)の回転角目標値tθ、つまり第二ローラ回転軸線O2の目標旋回位置を演算する。
そしてトランスファコントローラ111は、クランクシャフト回転角センサ115で検出したクランクシャフト回転角θおよび上記のクランクシャフト回転角目標値tθ間におけるクランクシャフト回転角偏差に応じ、クランクシャフト回転角θがクランクシャフト回転角目標値tθに一致するよう、電動モータ35を駆動制御する。当該電動モータ35の駆動制御によりクランクシャフト51L,51Rの回転角θが目標値tθに一致することで、第一ローラ31および第二ローラ32は上記の目標前輪駆動力を伝達可能な程度だけ相互に径方向に押圧接触され、ローラ間トラクション伝動容量を前後輪目標駆動力配分比となるよう制御することができる。
トランスファコントローラ111は、クランクシャフト51L,51Rの回転角θが目標値tθに一致したとき、電磁ブレーキ59をオンして回転角θを維持すると共に、電動モータ35を非作動とする。
このとき、電磁ブレーキ59に供給する電流値を、クランクシャフト51L,51Rの回転角保持に必要となる最小電流値とすることで、消費電力の抑制を図る。
図5は、実施例1のトランスファコントローラ111における電磁ブレーキ59の電流指令値演算制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。
ステップS1では、クランクシャフト回転角θを入力する。
ステップS2では、クランクシャフト回転角θがクランクシャフト回転角目標値tθと一致しているか否かを判定し、YESの場合はステップS3へ進み、NOの場合はリターンへ進む。
ステップS3では、図6に示すマップを参照し、クランクシャフト回転角θに応じた電流指令値を演算する。
ステップS4では、電磁ブレーキ59への供給電流がステップS3で演算した電流指令値となるよう、電磁ブレーキ59への供給電流を増減する。
図6は、クランクシャフト回転角θに応じた電磁ブレーキ59の電流指令値の演算マップである。電流指令値は、クランクシャフト回転角θ=0°〜90°である間は最小値(>0)、θ=90°〜135°である間はθが大きくなるほど大きくなり、θ=135°〜180°である間はθが大きくなるほど小さくなるようにしている。
[発進時のトラクション伝動容量制御]
通常走行時には、左右後輪6L,6Rのスリップ量が許容範囲内に収まるようにするのに必要な目標駆動力配分比を演算し、目標駆動力配分比に応じたローラ間径方向押圧力となるようにクランクシャフト51L,51Rの回転角目標値tθを設定している。
しかし、車両発進時には左右後輪6L,6Rのスリップ状態に関わらず、ローラ間径方向押圧力が所定値以上となるように制御している。
図7は、車両発進時にトランスファコントローラ111において行われるトラクション伝達容量制御の流れを示すフローチャートである。
ステップS11では、車両発進から所定時間経過したか否かを判定する。車両発進から所定時間経過していないときにはステップS2へ移行し、所定時間経過しているときにはステップS3へ移行する。この所定時間は、車両が発進し駆動力配分装置1の入力軸12などが回転することによって作動油がかき上げられて、第一ローラ31および第二ローラ32の外周面に作動油が付着した状態となるのに十分な時間に設定されている。
ステップS12では、第一ローラ31と第二ローラ32との間でスリップ(以下、ローラ間スリップ)が生じないようなローラ間径方向押圧力を演算し、ステップS19へ移行する。ここで演算されるローラ間径方向押圧力は、エンジントルクTeおよびアクセル開度APOならびに変速機ギヤ比γに応じて、ローラ間スリップが生じないような値を所定値として設定し、この所定値より大きな値として演算される。なお、ローラ間径方向押圧力をエンジントルクTeおよびアクセル開度APOならびに変速機ギヤ比γに応じて可変に設定しても良いし、最大のローラ間径方向押圧力に設定しても良い。
ステップS13では、左右後輪6L,6Rのスリップ量を演算し、ステップS15へ移行する。スリップ量は前述したように、主駆動輪である左右後輪6L,6Rの車輪速である後輪速Vwfと、従駆動輪である左右前輪9L,9Rの車輪速である前輪速Vwrとの対比により求める。このとき左右後輪6L,6Rの径と左右前輪9L,9Rの径との差を考慮してスリップ量を演算する。
ステップS14では、車両旋回中であるか否かを判定する。車両旋回中であるときにはステップS15へ移行し、車両旋回中でないときにはステップS16へ移行する。
ステップS15では、左右後輪6L,6Rのスリップ量を補正してステップS16へ移行する。車両旋回中の左右前輪9L,9Rの旋回軌跡の半径に対して、左右後輪6L,6Rの旋回軌跡の半径は小さくなり、左右前輪9L,9Rの車輪速は左右後輪6L,6Rの車輪速よりも高くなる。そのため、車両旋回時には旋回による前後輪の車輪速差を考慮して、旋回半径に応じて左右後輪6L,6Rのスリップ量を補正している。
ステップS16では、左右後輪6L,6Rに駆動スリップが発生しているか否かを判定し、駆動スリップが発生していないときにはステップS17へ移行し、駆動スリップが発生しているときにはステップS18へ移行する。左右後輪6L,6Rに駆動スリップが発生していることは、左右後輪6L,6Rのスリップ量が所定値以上であることにより判定している。
ステップS17では、ローラ間径方向押圧力をゼロに設定し、ステップS19に移行する。
ステップS18では、左右後輪6L,6Rのスリップ量に応じてローラ間径方向押圧力の低下勾配を設定する。すなわち、スリップ量が大きいときには低下勾配を小さく、スリップ量が小さいときには低下勾配を大きく設定する。
ステップS19では、設定したローラ間径方向押圧力に応じてクランクシャフト51L,51Rの回転角目標値tθを設定し、処理を終了する。
なお、図7に示す制御の処理は車両発進時にのみ行われ、車両発進後、ローラ間径方向押圧力をゼロに設定したのちには、前述のように左右後輪6L,6Rのスリップ量が許容範囲内に収まるようにするのに必要な目標駆動力配分比に応じてローラ間径方向押圧力を設定する。
[発進時のトラクション伝動容量制御動作]
発進直後には、図7のフローチャートにおいて、ステップS11→ステップS12→ステップS19へと進む。これにより、ローラ間スリップが生じないように、ローラ間径方向押圧力を設定することができる。
発進から所定時間経過後、左右後輪6L,6Rにスリップが発生していないときには、ステップS11→ステップS13→ステップS14→(ステップS15→)ステップS16→ステップS17→ステップS19へと進む。これにより、左右後輪6L,6Rによる二輪駆動走行とすることができる。
発進から所定時間経過後、左右後輪6L,6Rにスリップが発生しているときには、ステップS11→ステップS13→ステップS14→(ステップS15→)ステップS16→ステップS18→ステップS19へと進む。これにより、左右前輪9L,9Rにも駆動力を配分し、左右後輪6L,6Rの駆動スリップを抑制することができる。
[作用]
走行時には、前述のように左右後輪6L,6Rのスリップ量が許容範囲内に収まるようにするのに必要な目標駆動力配分比を、エンジントルクTeおよびアクセル開度APOならびに変速機ギヤ比γから求める。そして、この目標駆動力配分比のために必要なローラ間径方向押圧力をマップ検索などにより求める。このため、変速機3から出力されるトルクが小さいときには、目標駆動力配分比に関わらずローラ間径方向押圧力は小さく設定されることとなる。
駆動力配分装置1では、第一ローラ31と第二ローラ32の外周面を互いに作動油を介したトラクション接触させることにより、ローラ間径方向押圧力に応じたローラ間伝達トルク容量を持つ。しかし、車両停車中はローラ31,32間から作動油が抜けており、車両発進直後にはローラ31,32間に油膜が形成されていないため、車両発進直後に左右前輪9L,9Rに駆動力を配分しようとすると、ローラ31,32の表面が直接接触することとなる。
ローラ間径方向押圧力が小さいときにはローラ間スリップが生じやすく、ローラ31,32の表面が直接接触した状態でローラ間スリップが生じてしまうと、ローラ31,32表面の温度が上昇し、駆動力配分装置1の耐久性を低下させてしまうおそれがある。
そこで実施例1では、車両発進時には主駆動輪である左右後輪6L,6Rのスリップ量に関わらず、ローラ間径方向押圧力が所定値よりも高くなるように設定した。そしてその所定値をローラ間スリップが生じないローラ間径方向押圧力に基づいて設定した。
図8は、車両発進時の各要素のタイムチャートであり、図8(a)はアクセル開度、図8(b)はローラ間径方向押圧力、図8(c)は車体速度、図8(d)は左右後輪6L,6Rのスリップ量を示す。
図8に示すように、時間t1においてアクセル開度が立ちあがると、左右後輪6L,6Rのスリップ量はゼロであるにも関わらずローラ間径方向押圧力も立ち上がるようにしている。これにより、ローラ31,32間に油膜が形成されていない状態でローラ間スリップが生じることを抑制し、ローラ31,32の表面温度上昇を抑制し、駆動力配分装置1の耐久性を向上させることができる。
また、車両発進(時間t1)から所定時間Δt経過した時間t2以降は、ローラ間径方向押圧力をゼロになるように設定している。このとき、ローラ間径方向押圧力を急激に低下させると四輪駆動走行から急に二輪駆動走行に移行することとなり、車両挙動が不安定になるため、徐々に低下させるようにしている。車両発進から所定時間経過する間に、駆動力配分装置1の入力軸12などが回転することによって作動油がかき上げられて、第一ローラ31および第二ローラ32の外周面に作動油が付着した状態となる。ローラ31,32間に油膜が形成されれば、多少ローラ間スリップが生じたとしても急激に温度が上昇することはない。そのため、できるだけ二輪駆動走行を行うことにより燃費を向上させることができる。
また、車両発進後、主駆動輪である左右後輪6L,6Rが駆動スリップしているときには、車両発進から所定時間経過後のローラ間径方向押圧力を低下させる際に、スリップ量が大きいほど、低下変化量を小さくするようにした。
図9は、車両発進後、左右後輪6L,6Rが駆動スリップをしているときの各要素のタイムチャートであり、図9(a)はアクセル開度、図9(b)はローラ間径方向押圧力、図9(c)は車体速度、図9(d)は左右後輪6L,6Rのスリップ量を示す。
図9に示すように、時間t1においてアクセル開度が立ちあがると、左右後輪6L,6Rのスリップ量に関わらずローラ間径方向押圧力も立ち上がるようにしている。また車両発進(時間t1)から所定時間Δt経過した時間t2以降は、スリップ量が大きいほどローラ間径方向押圧力の低下変化率が小さくなるようにして、徐々に低下させている。これにより、左右後輪6L,6Rの駆動スリップを抑制することができる。
また、左右後輪6L,6Rのスリップ量を車両旋回半径に応じて補正するようにした。車両旋回中の左右前輪9L,9Rの旋回軌跡の半径に対して、左右後輪6L,6Rの旋回軌跡の半径は小さくなり、左右前輪9L,9Rの車輪速は左右後輪6L,6Rの車輪速よりも高くなる。車両旋回時には旋回による前後輪の車輪速差を考慮して、旋回半径に応じて左右後輪6L,6Rのスリップ量を補正することで、正確なスリップ量を求めることができる。
また、左右後輪6L,6Rのスリップ量を左右後輪6L,6Rの径と左右前輪9L,9Rの径との差に応じて補正するようにした。駆動スリップが生じていない状態であっても、前後輪の径に差により車輪速差が生じる。前後輪の径に差による前後輪の車輪速差を考慮して、径の差に応じて左右後輪6L,6Rのスリップ量を補正することで、正確なスリップ量を求めることができる。
[効果]
実施例1の効果を以下に列記する。
(1) 主駆動輪伝達系である左右後輪6L,6Rと共に回転する入力軸12と、入力軸12上に設けた第一ローラ31と、従駆動輪伝達系である左右前輪9L,9Rと共に回転する出力軸13と、出力軸13上に設けた第二ローラ32と、出力軸13を、第二ローラ32の回転軸上で回転自在に支持するとともに、第二ローラ32の回転軸を該第二ローラ32の回転軸からオフセットした偏心軸線周りに回動可能に支持するクランクシャフト51L,51Rと、クランクシャフト51L,51Rを回転させて、第二ローラ32の回転軸を偏心軸線周りに旋回させ、第一ローラ31の外周面に第二ローラ32の外周面を押し付けることにより、第一ローラ31と第二ローラ32の外周面に互いに作動油を介して接触させて左右前輪9L,9R(従駆動輪)への駆動力配分を行う電動モータ35(アクチュエータ)と、左右後輪6L,6R(主駆動輪)のスリップ量に応じて、第一ローラ31の外周面に対する第二ローラ32の外周面の押圧力を制御して、左右前輪9L,9Rへの駆動力配分率を制御するトランスファコントローラ111(駆動力配分制御手段)と、を設け、トランスファコントローラ111は、車両発進時には左右後輪6L,6Rのスリップ量に関わらず、押圧力が所定値よりも高くなるように設定するようにした。
よって、ローラ31,32間に油膜が形成されていない状態でローラ間スリップが生じることを抑制し、ローラ31,32の表面温度上昇を抑制し、駆動力配分装置1の耐久性を向上させることができる。
(2) トランスファコントローラ111は、第一ローラ31と第二ローラ32との間でスリップが生じないように所定値を設定することを特徴とするようにした。
よって、ローラ31,32間に油膜が形成されていない状態でローラ間スリップが生じることを抑制し、ローラ31,32の表面温度上昇を抑制し、駆動力配分装置1の耐久性を向上させることができる。
(3) トランスファコントローラ111は、車両発進後、所定時間経過したのちに押圧力を徐々に低下させるようにした。
よって、二輪駆動走行を行うことにより燃費を向上させることができる。
(4) トランスファコントローラ111は、左右後輪6L,6Rのスリップ量が大きいほど、押圧力の低下変化量を小さく設定するようにした。
よって、左右後輪6L,6Rの駆動スリップを抑制することができる。
(5) 左右後輪6L,6Rのスリップ量を、車両の旋回半径に応じて補正するようにした。
よって、正確なスリップ量を求めることができる。
(6) 左右後輪6L,6Rのスリップ量を、車両の前後輪の径の差に応じて補正するようにした。
よって、正確なスリップ量を求めることができる。
以上、本発明は上記実施例の構成に限らず、他の構成であっても構わない。例えば、実施例1では第一ローラ31の外周面31aは曲面処理されているが、円錐テーパ面状に形成するようにしても良い。また、実施例1,2では、入力軸12および出力軸13を、それぞれの第一ローラ回転軸線O1およびO2が交差するよう相互に傾斜させてハウジング11に横架させているが、第一ローラ回転軸線O1およびO2が平行となるように横架させるようにしても良い。
1 駆動力配分装置
12 入力軸
13 出力軸
31 第一ローラ
32 第二ローラ
35 電動モータ(アクチュエータ)
51L,51R クランクシャフト
59 電磁ブレーキ
111 トランスファコントローラ(故障時制御手段)
115 クランクシャフト回転角センサ(クランクシャフト回転角検出手段)

Claims (5)

  1. 主駆動輪伝達系と共に回転する入力軸と、
    前記入力軸上に設けた第一ローラと、
    従駆動輪伝達系と共に回転する出力軸と、
    前記出力軸上に設けた第二ローラと、
    前記出力軸を、前記第二ローラの回転軸上で回転自在に支持するとともに、前記第二ローラの回転軸を該第二ローラの回転軸からオフセットした偏心軸周りに回動可能に支持するクランクシャフトと、
    前記クランクシャフトを回転させて、前記第二ローラの回転軸を前記偏心軸周りに旋回させ、前記第一ローラの外周面に前記第二ローラの外周面を押し付けることにより、前記第一ローラと前記第二ローラの外周面に互いにトラクション接触をさせるための作動油を介して接触させて従駆動輪への駆動力配分を行うアクチュエータと、
    主駆動輪のスリップ量に応じて、前記第一ローラの外周面に対する前記第二ローラの外周面の押圧力を制御して、前記従駆動輪への駆動力配分率を制御する駆動力配分制御手段と、
    を設け、
    前記駆動力配分制御手段は、車両発進時に前記主駆動輪のスリップ量に関わらず、前記押圧力が所定値よりも高くなるように設定し、車両発進後、所定時間経過したのちに前記押圧力を徐々に低下させるようにすることを特徴とする駆動力配分装置。
  2. 請求項1に記載の駆動力配分装置において、
    前記駆動力配分制御手段は、前記第一ローラと前記第二ローラとの間でスリップが生じないように前記所定値を設定することを特徴とする駆動力配分装置。
  3. 請求項1または請求項2に記載の駆動力配分装置において、
    前記駆動力配分制御手段は、前記主駆動輪のスリップ量が大きいほど、前記押圧力の低下変化量を小さく設定することを特徴とする駆動力配分装置。
  4. 請求項1ないし請求項3のいずれか1項に記載の駆動力配分装置において、
    前記主駆動輪のスリップ量を、車両の旋回半径に応じて補正することを特徴とする駆動力配分装置。
  5. 請求項1ないし請求項4のいずれか1項に記載の駆動力配分装置において、
    前記主駆動輪のスリップ量を、車両の前後輪の径の差に応じて補正することを特徴とする駆動力配分装置。
JP2013084928A 2013-04-15 2013-04-15 駆動力配分装置 Expired - Fee Related JP6212917B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084928A JP6212917B2 (ja) 2013-04-15 2013-04-15 駆動力配分装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013084928A JP6212917B2 (ja) 2013-04-15 2013-04-15 駆動力配分装置

Publications (2)

Publication Number Publication Date
JP2014205453A JP2014205453A (ja) 2014-10-30
JP6212917B2 true JP6212917B2 (ja) 2017-10-18

Family

ID=52119393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084928A Expired - Fee Related JP6212917B2 (ja) 2013-04-15 2013-04-15 駆動力配分装置

Country Status (1)

Country Link
JP (1) JP6212917B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376477B2 (ja) * 2016-11-24 2018-08-22 マツダ株式会社 駆動力制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794207B2 (ja) * 1989-04-19 1995-10-11 日産自動車株式会社 四輪駆動車の駆動力配分制御装置
JPH03125061A (ja) * 1989-10-05 1991-05-28 Mitsubishi Motors Corp 自動車の動力伝達装置
JP5112890B2 (ja) * 2008-01-17 2013-01-09 株式会社ユニバンス 四輪駆動車用駆動力伝達システム
JP2010091059A (ja) * 2008-10-10 2010-04-22 Nissan Motor Co Ltd 摩擦伝動装置
JP5195511B2 (ja) * 2009-02-25 2013-05-08 日産自動車株式会社 駆動力配分装置
JP5533344B2 (ja) * 2010-06-29 2014-06-25 日産自動車株式会社 駆動力配分装置

Also Published As

Publication number Publication date
JP2014205453A (ja) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5131384B2 (ja) トラクション伝動式パートタイム四輪駆動車両の二輪・四輪駆動切り替え制御装置および制御方法
JP5262588B2 (ja) 駆動力配分装置
JP6787060B2 (ja) 駆動力制御装置及び車両の制御方法
EP2450218B1 (en) Drive force distribution device with traction transmission capacity control device
US8903613B2 (en) Traction transmission capacity control device
JP5195511B2 (ja) 駆動力配分装置
JP2014019169A (ja) 駆動力配分装置
JP6212917B2 (ja) 駆動力配分装置
JP5958255B2 (ja) 駆動力配分装置
JP5910406B2 (ja) 駆動力配分装置
JP6069973B2 (ja) 車両用駆動装置
JP5176977B2 (ja) 駆動力配分装置
JP2014024496A (ja) 車両の制御装置
JP6060598B2 (ja) 駆動力配分装置
JP2013151246A (ja) 不可逆回転伝動系のロックオフ制御装置
JP2014015141A (ja) 駆動力配分装置
JP2014037168A (ja) 駆動力配分装置
JP2014019168A (ja) 駆動力配分装置
JP2014024495A (ja) 駆動力配分装置
JP2014019192A (ja) 駆動力配分装置
JP6028451B2 (ja) 駆動力配分装置
WO2013183447A1 (ja) 駆動力配分装置
JP2015206372A (ja) 駆動力配分装置
WO2013183413A1 (ja) 駆動力配分装置
WO2014024540A1 (ja) 駆動力配分装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R151 Written notification of patent or utility model registration

Ref document number: 6212917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees