JP6209412B2 - 太陽光発電システムの故障診断システム及び故障診断方法 - Google Patents

太陽光発電システムの故障診断システム及び故障診断方法 Download PDF

Info

Publication number
JP6209412B2
JP6209412B2 JP2013201812A JP2013201812A JP6209412B2 JP 6209412 B2 JP6209412 B2 JP 6209412B2 JP 2013201812 A JP2013201812 A JP 2013201812A JP 2013201812 A JP2013201812 A JP 2013201812A JP 6209412 B2 JP6209412 B2 JP 6209412B2
Authority
JP
Japan
Prior art keywords
solar cell
estimated
string
current
cell string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013201812A
Other languages
English (en)
Other versions
JP2015068690A (ja
Inventor
亨 河野
亨 河野
大屋 徹治
徹治 大屋
永山 祐一
祐一 永山
知治 中村
知治 中村
弘基 森川
弘基 森川
宮崎 聡
聡 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2013201812A priority Critical patent/JP6209412B2/ja
Priority to DE102014218165.8A priority patent/DE102014218165B4/de
Priority to US14/484,303 priority patent/US9998071B2/en
Publication of JP2015068690A publication Critical patent/JP2015068690A/ja
Application granted granted Critical
Publication of JP6209412B2 publication Critical patent/JP6209412B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、多数の太陽電池モジュールを含む太陽光発電システムにおいて故障を診断する故障診断技術に関する。
メガソーラに代表される大規模な太陽光発電システムでは、数千枚〜数+万枚におよぶ100〜200wクラスの太陽電池モジュールが一箇所の発電サイトに配置され,故障検出技術やメンテナンス技術が必要とされている。それぞれの太陽電池モジュールは、経年劣化により、同じ日射量、温度条件における出力が徐々に低下するが、一部のモジュールは、製造上の品質や物理的な損傷により、出力が急激に低下する。出力が急激に低下した状態を故障と呼ぶ。
太陽光発電システムの出力特性は日射量などの環境条件によって大きく変動する。このため、太陽電池パネルを構成する太陽電池モジュールの故障や劣化によって本来の出力が得られていない場合でも、出力低下を環境条件の影響によるものと区別することが困難である。太陽電池モジュールの故障を検出する方法として、目視による検査、サーモメーターによる発熱の検査、テスターによる電気的特性の検査が行われているが、太陽電池モジュール1つ1つに対して行われるので、モジュール数が数十万枚に及ぶメガソーラにおいては、検査に要する労力とコストが増大するという課題がある。
この課題に対し、太陽電池モジュール毎に計測手段と通信手段を設け、太陽電池モジュールに故障が生じたか否かの判断を自動で行うために、通信手段から送信された結果と閾値を比較する方法が、特許文献1に記されている。
特開2010−123880号公報
特許文献1には、太陽電池モジュール毎に計測手段と通信手段を設ける方法が記載されている。太陽電池モジュール一つ一つに搭載する計測手段や通信手段は、それらを設置するための手段を新たに用意する必要がある。この設置のための手段には、10〜20年といった耐用年数のものをする必要があり、非常に大きな設置コストになる。また、日射量などの環境条件によって太陽電池モジュールの出力特性が大きく変動するため、故障や劣化による太陽電池モジュールの出力低下を判断する閾値を設定することは困難であった。
本発明の目的の一つは、上記の事情に鑑み、太陽光発電システムにおいて、精度の高い故障検出を実現する故障診断方法を提供することにある。
本発明の一態様は、複数の太陽電池モジュールを直列接続することによって構成される太陽電池ストリングと、前記複数の太陽電池ストリングを並列接続することによって構成される太陽電池アレイと、を含む太陽光発電システムの故障診断システムである。前記故障診断システムは、前記太陽電池アレイの出力電圧及び出力電流を計測するアレイ計測装置と、前記複数の太陽電池ストリングのそれぞれの出力電流を計測するストリング電流計測装置と、監視装置と、を含む。前記監視装置は、前記複数の太陽電池ストリングに含まれる第1太陽電池ストリングの電流−電圧特性における短絡電流及び開放電圧と、前記アレイ計測装置で計測されたアレイ出力電圧値及びアレイ出力電流値と、に基づき、前記第1太陽電池ストリングの推定日射量と推定動作温度とを算出する。前記監視装置は、前記推定日射量、前記推定動作温度及び前記電流−電圧特性を使用して、前記第1太陽電池ストリングの推定電流値を算出する。前記監視装置は、前記ストリング電流計測装置において計測された前記第1太陽電池ストリングの計測電流値と前記推定電流値とを比較して、前記第1太陽電池ストリングの劣化を診断する。
本発明の一態様によれば、太陽光発電システムにおいて精度の高い故障検出を実現することができる。
各実施例に係る、メガソーラ発電サイトの構成の一例を示す図である。 各実施例に係る、太陽電池ストリングと配線の一構成例を示す図である。 各実施例に係る、太陽光発電システムの接続箱内において、太陽電池ストリング特性をモニターするための構成を示す図である。 各実施例に係る、太陽電池ストリングに流れる電流を検出するための構成の一例を示す図である。 各実施例に係る、太陽電池ストリングに流れる電流を検出するための構成の一例を示す図である。 各実施例に係る、太陽電池モジュールが故障した場合の電流経路を説明するための図である。 各実施例に係る、太陽電池モジュールが故障した場合の電流経路を説明するための図である。 各実施例に係る、太陽電池モジュールが故障した場合の電流経路を説明するための図である。 各実施例に係る、太陽電池モジュールが故障した場合の特性変化を説明するための図である。 各実施例に係る、短絡電流と動作電流の相関関係を説明するための図である。 各実施例に係る、短絡電流と動作電流の相関関係を説明するための図である。 各実施例に係る、太陽電池ストリング内の1部の太陽電池モジュールが故障した場合の太陽電池ストリングの特性変化を説明するための図である。 各実施例に係る、監視装置の構成例を模式的に示す図である。 実施例1に係る、太陽電池ストリングの故障を判定するアルゴリズム例の主要部の詳細を示したフローチャートである。 実施例1に係る、太陽電池アレイに照射される日射量と動作温度を算出する処理例の詳細を示したフローチャートである。 実施例2に係る、太陽電池ストリング内の太陽電池モジュールの故障数を算出する処理例を示したフローチャートである。 実施例3に係る、高い日射量の条件下において、太陽電池モジュールの太陽電池セルが劣化した場合の特性変化を説明するための図である。 実施例3に係る、低い日射量の条件下において、太陽電池モジュールの太陽電池セルが劣化した場合の特性変化を説明するための図である。 実施例3に係る、太陽電池モジュールの太陽電池セルが劣化した場合において、太陽光発電システムの太陽電池アレイ動作電圧の時間変化を説明するための図である。 実施例3に係る、太陽電池モジュールの太陽電池セルが劣化した場合において、太陽光発電システムの太陽電池アレイ動作電流の時間変化を説明するための図である。 実施例3に係る、太陽電池アレイの動作温度から気温を引いた値と日射量の相関関係を説明するための図である。 実施例3に係る、太陽電池ストリングの故障を判定する処理例を示したフローチャートである。
以下、添付図面を参照して本発明の実施例を説明する。以下の実施例は本発明を実現するためのいくつかの例に過ぎず、本発明の技術的範囲を限定するものではないことに注意すべきである。各図において共通の構成については同一の参照符号が付されている。
以下に説明する実施例は、太陽電池アレイの動作電流から所定の係数を用いて太陽電池アレイに照射される日射量を求め、動作電圧と日射量を用いて太陽電池アレイの動作温度を算出し、算出した動作温度と日射量を用いて、太陽電池ストリングの故障診断を行う。実施例の説明に先立ち、実施例が適用されるメガソーラ発電サイトにおける太陽光発電システムについて説明する。
図1は、メガソーラサイトに設置されているメガソーラ発電システムの構成を示す図である。メガソーラ発電システム(太陽光発電システム)1は、太陽電池アレイ16、複数の接続箱12及びパワーコンディショナシステム(PCS)13を含む。太陽電池アレイ16は、複数の太陽電池ストリング群11で構成されている。各太陽電池ストリング群11は、対応する接続箱12に接続されている。太陽電池ストリング群11は、対応する接続箱12において並列接続されている。接続箱12は、太陽電池ストリング群11からの配線を集約し、直流電力をパワーコンディショナシステム13へ送る。
パワーコンディショナ(PCS)13は、集電を兼ねるDC/DCコンバータ14とAC/DCインバータ15とを含む。DC/DCコンバータ14に接続された太陽電池アレイ16から最大電力を取り出せるよう太陽電池アレイ16の動作点を制御することを、MPPT制御(Maximum Power Point Tracking)と呼ぶ。
MPPT制御は、DC/DCコンバータ14内部の電流計と電圧計において計測された直流電力を用い、太陽電池アレイ16の電流又はで電圧を制御することによって達成されるものである。パワーコンディショナシステム13は、直流昇圧コンバータであるDC/DCコンバータ14によって太陽電池アレイ16からの直流電圧を昇圧し、昇圧した電圧をAC/DCインバータ15に供給する。パワーコンディショナシステム13は、AC/DCインバータ15により変換された交流電圧、交流電流を電力系統に出力する。
メガソーラサイトには、日射計101及び気温計102が配置されている。インタフェース103は、日射計101及び気温計102からの信号を4〜20mAの電流信号に変換し、DC/DCコンバータ14に送信する。
DC/DCコンバータ14は、同期化された、太陽電池アレイ16の直流電流値及び直流電圧値、日射量及び気温、の情報を、監視装置110に送信する。また、各接続箱12は計測装置を含み、太陽電池ストリング毎に計測された直流電流値と直流電圧値とを、伝送経路を介して、監視装置110に送信する。つまり、監視装置110は、メガソーラサイトの日射量と気温、太陽電池アレイ16の直流電圧値と直流電流値、各太陽電池ストリングの直流電流値と直流電圧値、の情報を取得する。
図2は、太陽電池セル26、太陽電池モジュール27及び太陽電池ストリング28の構成例を模式的に示す。太陽電池モジュール27は太陽電池ストリング28の構成要素であり、複数の太陽電池モジュール27が太陽電池ストリング28において直列に接続されている。
図2に示すように、太陽電池モジュール27は、直列接続された太陽電池セル26群と、当該太陽電池セル26群の両端において並列接続されたバイパスダイオード25とを含む。バイパスダイオード25は、太陽電池モジュール27に逆バイアスが掛かった時、逆方向電流が流れるのを防止する。
太陽電池セル26は、電流源21、pn接合ダイオード22、シャント抵抗23、直列抵抗24から成る等価回路で表すことができる。電流源21は、日射量に比例した電流を供給する。
図3は、接続箱12及び当該接続箱12に接続されている複数の太陽電池ストリング28の構成例を模式的に示している。複数の太陽電池ストリング28は、接続箱12において並列接続されている。太陽電池ストリング28には、逆方向に電流が流れ込むのを防止するための逆流防止ダイオード32が取り付けられている。
接続箱12は、ストリング計測装置34を含む。ストリング計測装置34は、複数のストリング電流計測装置35と、電圧計測装置36と、を含む。各ストリング電流計測装置35は、対応する太陽電池ストリング28に流れる直流電流を計測する。電圧計測装置36は、太陽電池ストリング28の直流電圧を測定する。複数太陽電池ストリング28の直流電圧は同一である。
接続箱12は、さらに、サンプリング処理部37及び信号変換伝送装置38を含む。サンプリング処理部37は、ストリング計測装置34で計測された直流電圧値及び各太陽電池ストリング28の直流電流値を、標本化処理する。信号変換伝送装置38は、サンプリング処理部37からの出力を、パラレルーシリアル変換し、監視装置110に送信する。
図4Aは、ストリング電流計測装置35の構成例を模式的に示す。ストリング電流計測装置35は、シャント抵抗41にて太陽電池ストリング28に流れる電流を電圧に変換する。反転増幅回路43は、シャント抵抗41により変換された電圧を、AD変換器42で処理できるレベルまで電圧信号を増幅する。AD変換器42の入力にはローパスフィルタが配置されており、リップル成分やシャント抵抗41の熱雑音の高周波成分を除去する。
図4Bは、ストリング電流計測装置35の他の構成例を模式的に示す。ストリング電流計測装置35は、CTセンサ51にて、太陽電池ストリング28に流れる電流を電圧に変換し、バッファ52によりインピーダンス変換を行う。非反転増幅回路53は、バッファ52からの電圧信号を、AD変換器54で処理できるレベルまで増幅する。
サイトに設置される日射計101及び気温計102の数は、通常1つであり、3から4個のこともある。大規模な太陽光発電システムは広大な面積の土地に配置されるため、日射分布が発生する。そのため、日射計101が計測した日射量が、ある区画の太陽電池アレイ16に照射されている日射量が同じになるとは限らない。また、日射計101は、日射の変化に対して数秒間の応答時間を要する。この応答時間の長さは、日射量の測定誤差の原因となる。
気温計102が測定する気温と太陽電池アレイ16が実際に動作している温度(太陽電池アレイの動作温度)とは、異なる。例えば、JISC8907は、架台設置型の太陽電池アレイ16の温度を、気温計102で測定された気温に18.4℃を加算した温度と推定する方法を記載している。しかし、この推定方法は精度が低いため、気温の測定誤差の原因となる。
以上のことから、太陽光発電システム、特に大規模な太陽光発電システムの正確な故障診断を実現するためには、日射計101及び気温計102を用いた測定とは異なる方法により、高精度に太陽電池アレイ16の日射量及び動作温度を決定することが重要である。その方法として、計測された太陽電池アレイ16の直流電圧値及び直流電流値から、日射量及び太陽電池アレイ温度を推定することが有効である。
次に、図2、図5A〜図5C、図6を用いて、太陽電池モジュール27が故障に至るケースを説明する。太陽電池モジュール27の故障は、図5A〜図5Cに示すようなメカニズムで進行する。
図5Aに示すように、太陽電池モジュール27は、直列に接続された複数個の太陽電池セル26を含む。太陽電池セル26間の接続のために、半田付けが使用される。太陽電池セル26間の半田が剥がれてくると、太陽電池セル26における配線抵抗成分24(図2参照)が増加する。つまり、太陽電池モジュール27の配線抵抗成分が増加する。これにより、太陽電池モジュール27は、図5Aに示す正常状態から、図5Bに示すホットスポット61を有する状態に移行する。
ホットスポットを有する状態とは、太陽電池セル26等が半田剥がれを起こしており、周囲に比べて高温である状態である。ホットスポットの検出のためには、サーモカメラ等を用いた故障診断が一般的な手法として用いられている。
さらに多くの半田が剥がれると、太陽電池セル26の配線抵抗成分24の値もさらに増加する。これにより、ホットスポット61を有する太陽電池モジュール27の電流駆動能力が著しく低下し、バイパスダイオード25が動作する。図5Cは、バイパスダイオード25が動作している状態を示している。
この状態は、バイパスダイオード25が搭載されているジャンクションボックスの発熱を観測することによって診断されるのが一般的である。つまり、故障した太陽電池モジュール27の配線抵抗が増加すると、ある時点から電流はバイパスダイオード25を経由して流れる。
図6は、図5A〜図5Cに示す太陽電池モジュール27の状態変化に対応する、電流−電圧特性(出力電流と出力電圧との関係)の変化を示す。日射量及び動作温度は一定であるとする。太陽電池モジュール27の電流−電圧特性は、配線抵抗成分が増加するにつれて、曲線71から曲線72に変化する。
さらに太陽電池モジュール27の配線抵抗成分が増加して、バイパスダイオード25が動作する場合、太陽電池モジュール27の電流−電圧特性は、曲線72から曲線73に変化する。曲線73は、正常の状態及び最大動作電流を保ちながら電圧をシフトしたような、電流−電圧特性を示している。電流−電圧特性が曲線71から曲線72を介して曲線73に変化していく課程において、最大電力点79は、矢印74、75が示すように変化する。
以下において、パワーコンディショナシステム13での計測値から、太陽電池ストリング28に照射されている日射量及び太陽電池ストリング28の動作温度を算出する(推定する)方法を説明する。算出される日射量は、単位面積当たりの日射量である。また、全ての太陽電池ストリング28の構成が同一である場合は、推定日射量及び推定動作温度は、太陽電池アレイ16の全ての太陽電池ストリング28に共通である。
図7Aの曲線8は、太陽電池モジュール27の静特性を示している。太陽電池モジュール27の出力電圧が0、つまり太陽電池モジュール27の両端が短絡されるときの電流を短絡電流と呼ぶ。太陽電池モジュール27の出力電流が0、つまり、太陽電池モジュール27の両端が開放される時の電圧を開放電圧と呼ぶ。太陽電池モジュール27の最大電力を取り出すことができる動作点81の出力電流及び出力電圧を、それぞれ最大動作電流及び最大動作電圧と呼ぶ。
発明者らは、大規模な太陽光発電システムを構成する数万枚におよぶ100〜200wクラスの太陽電池モジュールを評価した。その結果、発明者らは、図7Bに示すように、太陽電池モジュール27において、その種類や製造ばらつきによらず、最大動作電流と短絡電流の相関が非常に高いことを見出した。
さらに、発明者らは、太陽電池モジュール27の最大動作電流と短絡電流の比J(最大動作電流/短絡電流)は、MPPT制御が行われる日射量0.1〜1.0kW/m2の範囲や実使用上の温度範囲において、ほぼ一定に保たれることを見出した。最大動作電流と短絡電流の比JがMPPT制御において一定に保たれることは、太陽電池ストリング28及び太陽電池アレイ16においても成立する。なお、本明細書において、太陽電池モジュール27の最大動作電流と短絡電流の比Jを、所定の係数と呼ぶ場合がある。
上述のように、太陽電池モジュール27の最大動作電流と短絡電流の比Jは、日射量及び動作温度によらず、ほぼ一定である。しかし、図6に示したように太陽電池モジュール27において故障・劣化、又は光照射効果が発生した場合、当該太陽電池モジュール27の比Jが変化する。これは、故障した太陽電池モジュール27を有する太陽電池ストリング28についても同様である。
図8は、例として、14個の太陽電池モジュール27からなる太陽電池ストリング28において、1つの太陽電池モジュール27が断線した場合における、太陽電池ストリング28の電流−電圧特性の変化を示す。太陽電池ストリング28の電流−電圧特性は、1つの太陽電池モジュール27の断線により、曲線91から曲線92に変化する。
このため、当該太陽電池ストリング28の最大動作電流と短絡電流の比Jは変化する。太陽電池アレイ16の動作電圧が、曲線91の最大電力点95における電圧値から変化しない場合、当該太陽電池ストリング28の出力電流は低下する。
しかし、パワーコンディショナシステム13に集約される太陽電池アレイ16のレベルで考えると、太陽電池モジュール27の出力低下が太陽電池アレイ16の出力に及ぼす影響は小さい。さらに、故障した太陽電池モジュール27を含む太陽電池ストリング28は、早期に見つけられる。これらの観点から、太陽電池アレイ16の最大動作電流と短絡電流の比Jは、一定に保たれると考えて問題ない。
以上の関係から、監視装置110は、パワーコンディショナシステム13で計測される太陽電池アレイ16の最大動作電流から、太陽電池ストリング28の推定日射量を算出する。算出される推定日射量は単位面積当たりの値を示す。
下記の例は、太陽電池アレイ16の最大動作電流の計測値から、太陽電池ストリング28の最大動作電流の平均値を算出し、当該太陽電池ストリング28の最大動作電流値から、太陽電池ストリング28の日射量を推定する。
さらに、監視装置110は、パワーコンディショナシステム13で計測される太陽電池アレイ16の最大動作電圧を用いて、太陽電池ストリング28(太陽電池アレイ16)の推定動作温度を算出する。太陽電池アレイ16の最大動作電圧は、太陽電池ストリング28に印加される動作電圧と一致する。監視装置110は、算出された推定日射量と推定動作温度を使用して、各太陽電池ストリング28の故障診断を行う。
パワーコンディショナシステム13で計測される太陽電池アレイ16の最大動作電流から算出された太陽電池ストリング28の最大動作電流を、Ipmax_bと定義する。この値は、太陽電池アレイ16の最大動作電流の計測値を、太陽電池ストリング28の数で割ること出られる。
標準状態における太陽電池ストリング28の短絡電流及び最大動作電流を、それぞれ、Isc_0及びIpmax_0と定義する。標準状態は、日射量1.0kW/m2、動作温度25℃の状態である。Isc_0及びIpmax_0は予め設定された定格値である。
さらに、最大動作電流Ipmax_bの計測時の推定動作温度及び推定日射量を、それぞれ、Tb、pbと定義する。推定日射量pbは、式(1)、(2)を使用することで、適切に算出することができる。
J=Ipmax_0/Isc_0 ・・・(1)
pb=(Ipmax_b/J)/Isc_0 ・・・(2)
推定動作温度Tbの算出方法は後述する。式(1)、(2)は、太陽電池モジュール27及び太陽電池アレイ16においても成立する。式(2)において、Isc_0は、日射量1.0kW/m2及び推定動作温度Tbにおける短絡電流の近似値として使用されている。
ここで、セル数がNcellである太陽電池モジュール27の出力電流Iと出力電圧Vとの関係は、式(3)で表すことができる。
I=Isc_0・p−Is・{exp(q・(V/(Ncell)+Rs・I)/
(nf・k・T))}−(V/(Ncell)+Rs・I)/Rsh・・・(3)
Iは出力電流[A]、Isc_0は標準状態での短絡電流[A]、pは日射量[kW/m2]、Isは逆方向飽和電流[A]であり動作温度Tの関数である。Vは出力電圧[V]、Tは動作温度[K]、kはボルツマン定数[J/K]である。Rsは太陽電池セル26の配線抵抗[Ω]、qは電子の電荷量[C]、Rshは太陽電池セル26のシャント抵抗[Ω]、nfは接合定数、である。なお、式(3)は、セル数Ncellを太陽電池ストリング28のセル数変更することで、太陽電池ストリング28にも適用することができる。
次に、太陽電池アレイ16の電流−電圧特性を計算する方法を説明する。本明細書において、太陽電池アレイ16の電流−電圧特性の計算をアレイ演算と呼ぶ。アレイ演算は、ストリング解析とアレイ解析の組み合わせによって実現される。
ストリング解析は、太陽電池ストリング28の解析である。ストリング解析において、それに含まれる複数の太陽電池モジュール27に流れる電流Iは共通である。監視装置110は、太陽電池ストリング28に電流Iが流れている場合、各太陽電池モジュール27の電圧V[1]、V[2]、V[3]、・・・V[N−1]、V[N]を、それぞれ、式(4)から求めることができる。
全て太陽電池モジュール27の電圧Vの総和が、太陽電池ストリング28の電圧Vstringである。監視装置110は、太陽電池モジュール27に流れる電流Iの値を変化させることで、太陽電池ストリング28の電流−電圧特性を計算することができる。
式(3)は、出力電圧Vの逆関数である。監視装置110は、繰り返し演算、例えばニュートン法を使用して、出力電圧Vを式(3)から簡単に求めることができる。図6を参照して説明したように、太陽電池モジュール27に、はんだ剥がれや断線が掛かると、太陽電池モジュール27の出力電圧(モジュール電圧)は、正常状態でのモジュール電圧から低下する。太陽電池モジュール27において断線が発生している場合、バイパスダイオード25が動作するため、当該モジュール電圧を0と近似できる。
アレイ解析は、太陽電池アレイ16の解析である。アレイ解析において、それに含まれる複数の太陽電池ストリング28に係る電圧は共通である。監視装置110は、太陽電池アレイ16(各太陽電池ストリング28)に電圧Vが掛かっている場合、各太陽電池ストリング28から取り出される電流I[1]、I[2]・・・I[N]を、それぞれ、上記ストリング解析で得られる電流−電圧特性から求めることができる。
監視装置110は、算出する。全ての太陽電池ストリング28の出力電流Iの総和が、太陽電池アレイ16の電流Iarrayである。このように、アレイ演算は、ストリング解析とアレイ解析の組み合わせにより、太陽電池アレイ16の電流−電圧特性を求めることができる。監視装置110は、太陽電池ストリング28を表す式(3)から、太陽電池ストリング28の電流を計算してもよい。
温度センサとして多く使用される熱電対は、一般に計測精度が低い。監視装置110は、パワーコンディショナシステム13で計測される、太陽電池アレイ16の最大動作電流から算出される太陽電池ストリング28の最大動作電流Ipmax_b、及び、太陽電池ストリング28の最大動作電圧Vpmax_bから、太陽電池ストリング28の推定動作温度を算出する。パワーコンディショナシステム13で計測される太陽電池アレイ16の最大動作電流及び最大電圧を、それぞれ、PCS電流及びPCS電圧と呼ぶことがある。
推定日射量pb、推定動作温度Tbにおける太陽電池ストリング28の開放電圧Voc_bは、推定日射量pb、基準温度である常温Taにおける開放電圧をVoc_a、開放電圧の温度係数β[V/℃]を用いて、式(4)で表すことができる。開放電圧の基準温度は常温でなくてもよい。
Voc_b=Voc_a+β・(Tb−Ta)・・・(4)
前述の係数Jを用いると、同様に推定動作温度Tbにおいて、式(5)が成立する。
Ipmax_b=J・Isc_0・pb・・・(5)
最大動作電圧Vpmax_b、開放電圧Voc_bは、それぞれ式(6)式(7)で表される。Ncellは、太陽電池ストリング28のセル数である。
Vpmax_b=Ncell・(nf・k・Tb)/q・ln{(Isc_0・pb−Ipmax_b)/Is}・・・(6)
Voc_b=Ncell・(nf・k・Tb)/q・ln{(Isc_0・pb)/Is}・・・(7)
前述の係数Jを用いて式(6)と式(7)を纏めると、式(8)が成立する。
Vpmax_b‐Voc_b=Ncell・((nf・k・Tb)/q)・ln(1−J)・・・(8)
式(8)に式(4)を代入して、式(9)を得ることができる。
Tb=(Vpmax_b−Voc_a−β・Ta)/(Ncell・(nf・k/q)・ln(1‐J)+β)・・・(9)
つまり、式(9)を使用して、パワーコンディショナシステム13で計測された最大動作電圧Vpmax_b及び推定日射量pbかつ常温時の開放電圧Voc_aから、太陽電池ストリング28の推定動作温度Tbを算出することができる。開放電圧Voc_aは、例えば、式(3)において、推定日射量pb、常温Ta、出力電流0を代入して得られるモジュール電圧の総和を計算することで得ることができる。
図9は、本実施形態の監視装置110の構成例を模式的に示している。監視装置110は、一般的な計算機の構成を有している。具体的には、監視装置110は、プロセッサ111、メモリ112、インタフェース113、入出力デバイス114及び二次記憶デバイス115を含む。これらは、バスにより通信可能に接続されている。入出力デバイス114は、入力デバイス及び出力デバイスを含む。
プロセッサ111は、メモリ112に記憶されているプログラムを実行することによって、監視装置110の所定の機能を実現する。メモリ112は、プロセッサ111によって実行されるプログラム、及び、プログラムの実行に必要な情報を記憶する。図9に示すように、メモリ112は、不図示のOS(Operating System)の他、太陽光発電システム故障診断プログラム170及び太陽光発電システム故障診断プログラム170が使用する情報180を保持している。
太陽光発電システム故障診断プログラム170は、ストリング故障診断プログラム171及びPID(Potential Induced Degradation)故障診断プログラム172を含む。太陽光発電システム故障診断プログラム170の動作については後述する。情報180は、PCS電圧値及びPCS電流値181、日射量及び気温情報182を含む。日射量及び気温情報182は、日射計101及び気温計102による計測値を示す。
情報180は、さらに、各太陽電池ストリング28の計測電流値及び計測電圧値184_1〜184_n、そして太陽電池アレイ16の構成情報183を含む。
監視装置110は、インタフェース113を介して、パワーコンディショナシステム13から、PCS電圧値及びPCS電流値181並びに日射量及び気温情報182を受信する。監視装置110は、インタフェース113を介して、各接続箱12から、各太陽電池ストリング28の計測電流値及び計測電圧値184_1〜184_nを受信する。
太陽電池アレイ構成情報183は、予め設定された太陽電池アレイ16についての情報を含む。具体的には、太陽電池アレイ16に含まれる各太陽電池ストリング28の構成情報を含む。太陽電池ストリング28の構成情報は、太陽電池ストリング28及びその各太陽電池モジュール27の定格値の情報及び式(1)〜(9)で使用される定数パラメータの情報を含む。太陽電池アレイ構成情報183は、さらに、各太陽電池ストリング28の故障について情報や有効セル数の情報等を含んでいてもよい。
図9において、説明の便宜上、プログラム170及び情報180はメモリ112内に示されているが、典型的には、プログラム170及び情報180は、二次記憶デバイス115からメモリ112にロードされる。二次記憶デバイス115は、監視装置110の所定の機能を実現するために必要なプログラム及び情報を格納する、不揮発性の非一時的記憶媒体を備える記憶デバイスである。二次記憶デバイス115及び入出力デバイス114は、ネットワークを介して接続されたデバイスでもよい。
プログラムはプロセッサによって実行されることで、定められた処理を記憶デバイス及びインタフェースを用いながら行う。従って、本明細書においてプログラムを主語とする説明は、プロセッサを主語とした説明でもよい。若しくは、プログラムが実行する処理は、そのプログラムが動作する計算機及び計算機システムが行う処理である。
<実施例1>
以下において、ストリング故障診断プログラム171による、太陽電池ストリング28の故障診断の例を説明する。図10Aは、ストリング故障診断プログラム171が、各太陽電池ストリング28の故障の有無を判定するフローチャート例を示す。図10Bは、図10AにおけるステップS101の詳細を示す。
図10Aは、一つの太陽電池ストリング28についての診断を示しており、具体的には、ストリングkで同定される太陽電池ストリング28についての診断の例を示している。ストリング故障診断プログラム171は、太陽電池アレイ16の太陽電池ストリング28のそれぞれについて、図10Aのフローを実行する。ストリング故障診断プログラム171は、太陽電池アレイ16の故障を監視し、各太陽電池ストリング28について、例えば定期的に、図10Aのフローを繰り返す。
図10Aに示すように、ストリング故障診断プログラム171は、太陽電池ストリング28に照射されている推定日射量pbと太陽電池ストリング28の推定動作温度Tbを算出する(S101)。
式(1)〜(9)を参照して説明したように、ストリング故障診断プログラム171は、パワーコンディショナシステム13で計測されたPCS電流値及びPCS電圧値から、推定日射量pb及び推定動作温度Tbを算出することができる。上述のように、PCS電流値及びPCS電圧値は、それぞれ、太陽電池アレイ16の最大動作電流及び最大動作電圧である。
また、以下に説明する例において、監視装置110は、推定日射量pb及び推定動作温度Tbの算出において、式(1)〜式(9)のパラメータとして、太陽電池アレイ16内における平均値を使用する。したがって、太陽電池ストリング28について算出される推定日射量pb及び推定動作温度Tbは、全太陽電池ストリング28及び太陽電池アレイ16に共通である。ステップS101の詳細は、図10Bを参照して後述する。
次に、ストリング故障診断プログラム171は、算出した推定日射量pb及び推定動作温度Tbを使用して、診断対象の太陽電池ストリング28であるストリングkの推定電流値(ストリング推定電流値k)を算出する(S102)。
例えば、ストリング故障診断プログラム171は、推定日射量pb及び推定動作温度Tbを式(3)に代入し、上記ストリング解析を行うことで、ストリング推定電流値kを算出する。式(3)におけるp及びT以外のパラメータは、太陽電池アレイ構成情報183に格納されており、使用されるパラメータは、ストリングkのパラメータである。
これにより、ストリング故障診断プログラム171は、推定日射量pb及び推定動作温度Tbにおける、ストリングkの電流−電圧特性を取得することができる。ストリング故障診断プログラム171は、当該電流−電圧特性とPCS電圧値とから、ストリング推定電流値kを算出する。ストリングkについて式(3)で表される電流−電圧特性が予め与えられている場合には、その式を使用できる。この点は、以下において式(3)を使用する場合において同様である。
次に、ストリング故障診断プログラム171は、ストリングkの計測電流値(ストリング電流値k)とストリング推定電流値kとを比較して、ストリング推定電流値kの状態を決定する(S103)。ストリングkの計測電流値は、ストリングkのストリング電流計測装置35により計測されたストリング電流の値である。本例において、ストリング故障診断プログラム171は、ストリングkの計測電流値と推定電流値との比により、ストリングkの劣化率を算出する。
次に、ストリング故障診断プログラム171は、算出した劣化率と所定の故障閾値とを比較して、ストリングkが故障しているか否かを判定する(S104)。例えば、故障閾値の値は2.0%であり、劣化率が故障閾値より大きい場合、ストリング故障診断プログラム171は、ストリングkが故障であると判定する(S106)。劣化率が故障閾値以下である場合、ストリング故障診断プログラム171は、ストリングkが正常であると判定する(S105)。
ストリングkが故障であると判定した場合、ストリング故障診断プログラム171は、ストリングkの故障を提示するための画像を生成し、入出力デバイス114に出力する。例えば、当該画像は、ストリングkの識別子、故障が生じていることを示す情報及び劣化率を含んでいてもよい。
図10Bを参照して、図10AにおけるステップS101の詳細を説明する。上述のように、ステップS101は、太陽電池ストリング28に照射されている推定日射量pbと太陽電池ストリング28の推定動作温度Tbを算出する。上述のように、各式で使用されるパラメータは、太陽電池アレイ16内における平均値である。監視装置110は、太陽電離アレイ16内で共通の他のパラメータを使用してもよい。
図10Bに示すように、ストリング故障診断プログラム171は、推定日射量pbを、PCS電流値から算出する(S111)。ストリング故障診断プログラム171は、PCS電流値を太陽電池ストリング数で割り、太陽電池ストリング28の平均最大動作電流値を算出する。ストリング故障診断プログラム171は、式(2)のIpmax_bに算出した平均最大動作電流値を代入し、各太陽電池ストリング28の推定日射量pbを算出する。
次に、ストリング故障診断プログラム171は、推定日射量pb、常温における、各太陽電池ストリング28の開放電圧Voc_aを算出する(S112)。ストリング故障診断プログラム171は、推定日射量pb、常温Taを式(3)に代入することで、I=0における太陽電池モジュール27の開放電圧を算出し、それらの値から太陽電池ストリング28の開放電圧Voc_aを算出することができる。
次に、ストリング故障診断プログラム171は、式(9)から、各太陽電池ストリング28の推定動作温度Tbを算出する(S113)。ストリング故障診断プログラム171は、PCS電圧値をVpmax_bとして使用し、PCS電圧値並びに算出した推定日射量pb及び開放電圧Voc_aを、式(9)に代入する。
次に、ストリング故障診断プログラム171は、式(3)及び上記アレイ演算により、PCS推定電流値を算出する(S114)。ストリング故障診断プログラム171は、太陽電池ストリング28のストリング推定電流値を算出し、その値とストリング数の積とを計算することでPCS推定電流値を算出する。
上述のように、ストリング故障診断プログラム171は、式(3)及びストリング解析から、推定日射量pb及び推定動作温度Tbにおける、太陽電池ストリング28のストリングの電流−電圧特性を取得することができる。ストリング故障診断プログラム171は、当該電流−電圧特性とPCS電圧値とから、ストリング推定電流値を算出できる。
ストリング故障診断プログラム171は、算出したPCS推定電流値と計測されたPCS電流値とを比較する(S115)。計測されたPCS電流がPCS推定電流値以上である場合(S115:Yes)、ストリング故障診断プログラム171は、ステップS111及びステップS113でそれぞれ算出したストリングkの推定日射量pb及び推定動作温度Tbを保持して、次のステップS102に進む。
計測されたPCS電流がPCS推定電流値よりも低い場合(S115:No)、ストリング故障診断プログラム171は、太陽電池アレイ16内に多数の断線故障した太陽電池モジュール27が存在すると判定し、太陽電池アレイ16(太陽電池ストリング28)内の有効セル数を調整する(S116)。ストリング故障診断プログラム171は、調整後の結果を太陽電池アレイ構成情報183に格納してもよい。
ストリング故障診断プログラム171は、太陽電池アレイ16内の有効セル数を、所定数だけ減少させる。推定日射量Pb、推定動作温度Tb及びPCS推定電流値の再計算において、太陽電池ストリング28の有効セル数の減少値は、当該所定数をストリング数で割った値を使用することができる。
ストリング故障診断プログラム171は、ステップS112に戻り、調整後の有効セル数でステップS112からステップS115を実行する。ストリング故障診断プログラム171は、PCS電流値がPCS推定電流値以上となるまで、ステップS112からステップS116を繰り返す。
ストリング故障診断プログラム171は、調整後の有効セル数を、推定日射量pb及び推定動作温度Tbの算出において使用し、ステップS102においては使用しない。ストリング故障診断プログラム171は、ステップS102におけるストリング推定電流値kの算出においては、当該ストリングkの構成情報における、調整されていないセル数を使用する。
前述のように、式(1)から式(9)は、パワーコンディショナシステム13に集約される太陽電池アレイ16に対して、太陽電池モジュール27の出力低下が及ぼす影響が低いことを前提としている。しかし、太陽電池モジュール27が断線故障した場合などは、図5C、図6に示すように、多数の太陽電池セル26の動作が無効になり、太陽電池モジュール27の特性の変化が大きくなる。有効セル数を調整することで、推定動作温度Tbをより正確に算出することができる。ステップS114からステップS116を省略してもよい。
上記PCS電流値についての判定は、PCS電流値のストリング当たりの値を使用してもよい。監視装置110は、推定日射量pb及び推定動作温度Tbの算出において、各太陽電池ストリング28の固有パラメータを使用して各太陽電池ストリング28の日射量及び動作温度を算出し、それらの平均値を算出してもよい。この場合、監視装置110は、太陽電池ストリング毎に有効セル数を調整してもよい。
以上説明した処理フローから、本実施例は、太陽電池に照射されている日射量と動作温度を精度よく推定することができ、太陽電池ストリングの劣化や故障を高い精度で把握することができる。
<実施例2>
次に、太陽電池ストリング28における太陽電池モジュール27の故障数を判定する例を説明する。図11は、太陽電池ストリング28内の太陽電池モジュール故障数を算出する方法のフローチャートを示す。ストリング故障診断プログラム171は、図11のフローチャートに従って動作する。ストリング故障診断プログラム171は、例えば、図10Aにおいて故障と判定した太陽電池ストリング28について、図11のフローチャートの処理を実行する。
図11に示すように、ストリング故障診断プログラム171は、診断対象の太陽電池ストリング28(ストリングk)について、推定日射量pbと推定動作温度Tbとを算出する(S201)。ステップS201は、図10A及び図10BにおけるステップS101と同様である。
次に、ストリング故障診断プログラム171は、推定日射量pbと推定動作温度Tbから、ストリングkの推定電流値(ストリング推定電流値k)を算出する(S202)。ステップS202は、図10AにおけるステップS102と同様である。
次に、第1段階として、ストリング故障診断プログラム171は、断線が発生している太陽電池モジュール数を算出する。まず、ストリング故障診断プログラム171は、ストリング電流計測装置35で計測されたストリング電流値kと、ストリング推定電流値kと、を比較し、それらの差分ΔIkを算出する(S203)。
計測されたストリング電流値kが推定ストリング電流値kよりも小さい場合、つまり、ΔIkが0よりも小さい場合(S204:NO)、ストリング故障診断プログラム171は、ストリングkの有効セル数を、選択した所定数の太陽電池モジュール27を構成する太陽電池セル数ほど、小さくする(S205)。例えば、ストリングkの有効セル数は、一つの太陽電池モジュール27を構成する太陽電池セル数だけ小さくされる。上記所定数が、断線した太陽電池モジュール27の数(断線数)を示す。なお、太陽電池ストリング28内に、異なるセル数の太陽電池モジュールが存在していてもよい。
ストリング故障診断プログラム171は、再設定した有効セル数により、ステップS202からステップS204を実行する。計測されたストリング電流値kがストリング推定電流値k以上になるまで、ストリング故障診断プログラム171は、ステップS202からステップS205を繰り返す。
次に、計測されたストリング電流値kとストリング推定電流値kとが一致する場合、つまり、ΔIkが0である場合(S204:Yes、S206:YES)、ストリング故障診断プログラム171は、当該フローを終了する。
計測されたストリング電流値kがストリング推定電流値k以上である場合、つまり、ΔIkが0以上である場合(S204Yes、S206:No)、ストリング故障診断プログラム171は、設定されている断線数を1だけ小さくする(S207)。ストリング故障診断プログラム171は、断線と設定した太陽電池モジュール27から一つを選択し、選択した太陽電池モジュール27のセル数だけ、ストリングkの有効セル数を増加させる。
ストリング故障診断プログラム171は、再設定した有効セル数(有効モジュール数)により、ステップS208からステップS210を実行する。ステップS208からステップS210は、それぞれ、ステップS202からステップ204と同様である。
ステップS210において、計測されたストリング電流値kがストリング推定電流値k以上である場合(S210:Yes)、ストリング故障診断プログラム171は、当該フローを終了する。ステップS210において、計測されたストリング電流値kがストリング推定電流値k未満である場合(S210:No)、ストリング故障診断プログラム171は、第2段階として、半田剥がれ数を設定する(S211)。
ストリング故障診断プログラム171は、断線数の設定において選択された有効な太陽電池モジュール27において、半田剥がれが発生していると推定する太陽電池モジュール27の数をインクリメントし、ステップS208に戻る。
ここで、ストリング故障診断プログラム171は、式(3)から太陽電池モジュール27の出力電流が所定割合、例えば10%、ダウンする直列抵抗Rs(図2における直列抵抗24)の値Rs1を予め有している。ストリング故障診断プログラム171は、半田剥がれが発生していると推定する太陽電池モジュール27の直列抵抗Rsを、Rs1に設定する。ストリング故障診断プログラム171は、式(3)の計算において、半田剥がれが発生していると推定した太陽電池モジュール27の直列抵抗Rsとして、Rs1を使用する。
ストリング故障診断プログラム171は、計測されたストリング電流値kがストリング推定電流値k以上になるまで、ステップS208からステップS211を繰り返す。
以上説明した処理フローから、本実施例は、太陽電池に照射されている日射量と動作温度を精度よく推定することができ、太陽電池ストリング28内に存在する太陽電池モジュール27の故障数を推定することができる。
<実施例3>
太陽光発電システム1の故障診断方法の第3の実施例を説明する。本実施例は、PIDと呼ばれる太陽電池セル26の劣化により、太陽電池アレイ16を構成する太陽電池モジュール27の多くの動作点が正常時の動作点から大きく変化する場合を説明する。PIDの発生要因として多くの説がある。しかし、いずれにせよ、太陽電池セル26を構成するpn接合部において再結合が発生した場合、太陽電池セル26のシャント抵抗23の値が減少し、太陽電池セル26がオーミック化していく。
日射量が高い場合において、シャント抵抗が減少すると、図12Aに示すように、太陽電池モジュール27の電流−電圧特性は、曲線121から曲線122、曲線122から曲線123へと変化する。日射量が低いと、曲線124から曲線125、曲線125から曲線126へと変化する。したがって、日射量が低い方が、動作点の変動が大きくなる。
図13Aは太陽電池セル26の劣化により、オーミック化に向かっている場合のPCS電圧の時間変化を示し、図13BはPCS電流の時間変化を示す。曲線131は、正常時のPCS電圧を示し、曲線132は、太陽電池セル劣化時のPCS電圧を示す。同様に、曲線133は、正常時のPCS電流を示し、曲線134は、太陽電池セル劣化時のPCS電圧を示す。これらの変化から分かるように、最大動作電圧も最大動作電流も正常時に比べ大きく変化するので、式(1)で示すJの値が一定ではなくなる。
このように、太陽電池アレイ16の特性変化が大きい場合は、監視装置110は、日射計101、気温計102で計測される日射量と気温をリファレンス値として用いる。前述のように、JISC8907において、架台設置型の太陽電池アレイ16については、気温計102で計測された気温に18.4℃を加算したものを太陽電池アレイ温度と推定する方法が記載されているが、精度が低い。
発明者らは、大規模な太陽光発電システム1の発電量評価から、太陽電池アレイ温度から気温を引いた値は、日射量との相関が非常に高いことを見出した。この関係は、例として、式(10)で表される。
Tb−T1=26*p1+0.8・・・(10)
T1は気温である。このように、太陽電池アレイ温度から気温を引いた値は、日射量の一次式で近似される。
つまり、日射計101で計測された日射量をp1、気温計102で計測される気温をT1とすれば、式(10)より、太陽電池アレイ16(各太陽電池ストリング28)の推定動作温度Tbを、ある程度の精度で算出することができる。PIDのように、太陽電池アレイ16を構成する太陽電池モジュール27の多くの動作点が、正常時の動作点から大きく変化する場合においては、高い精度ではなく、ある程度の精度で推定できれば、正常状態と出力低下状態を区別することができる。
図15は、PIDといった太陽電池アレイ16の特性が大きく変化する場合を鑑みた太陽電池ストリング28の故障診断の一例のフローチャートを示す。PID故障診断プログラム172及びストリング故障診断プログラム171は、図15のフローチャートに従って動作する。当該フローチャートは、例えば、定期的に実行される。
図15に示すように、PID故障診断プログラム172は、日射計101、気温計102により計測される日射量と気温の情報を取得し、式(10)を用いて、太陽電池ストリング28の推定動作温度Tbを算出する(S301)。
PID故障診断プログラム172は、さらに、計測日射量、推定動作温度Tb、ストリング電流計測装置35で計測されたストリング電流値、PCS電圧値、式(3)を用いて、太陽電池モジュール27における太陽電池セル26のシャント抵抗Rshを求める(S302)。ここでは、太陽電池ストリング28における全ての太陽電池モジュール27のシャント抵抗値は同一であるとする。
PID故障診断プログラム172は、PIDの判定に使用するシャント抵抗の閾値を保持している。PID故障診断プログラム172は、シャント抵抗Rshと閾値とを比較する(S303)。
シャント抵抗Rshが閾値よりも小さい場合(S303:Yes)、PID故障診断プログラム172は、当該太陽電池ストリング28においてPIDが発生していると判定する(S310)。
シャント抵抗Rshが閾値以上である場合(S303:No)、PID故障診断プログラム172は、ストリング故障診断プログラム171を呼び出す。ストリング故障診断プログラム171ステップS304からS309を実行する。ステップS304からステップS309は、それぞれ、図10Aにおけるステップ101からステップS106と同様である。
以上説明した本実施形態によれば、計測手段や通信手段を付加しない低コスト故障診断が、大規模太陽電池システムにおいて実現できる。
なお、本発明は上記例に限定されるものではなく、様々な変形例が含まれる。例えば、上記例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある例の構成の一部を他の例の構成に置き換えることが可能であり、また、ある例の構成に他の例の構成を加えることも可能である。また、各例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の各構成・機能・処理部等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード等の記録媒体に置くことができる。
1 太陽光発電システム、11 太陽電池ストリング群、12 接続箱、13 パワーコンディショナシステム(PCS)、16 太陽電池アレイ、21 電流源、22 pn接合ダイオード、23 シャント抵抗、24 直列抵抗、25 バイパスダイオード、26 太陽電池セル、27 太陽電池モジュール、28 太陽電池ストリング、35 ストリング電流計測装置、36 電圧計測装置、101 日射計、102 気温計、111 プロセッサ、112 メモリ、113 インタフェース、114 入出力デバイス、115 二次記憶デバイス、170 太陽光発電システム故障診断プログラム、171 ストリング故障診断プログラム、172 PID故障診断プログラム情報、180、182 日射量及び気温情報、181 PCS電圧値及びPCS電流値、183 太陽電池アレイ構成情報、184_1〜184_n 太陽電池ストリングの計測電流値及び計測電圧値

Claims (14)

  1. 複数の太陽電池モジュールを直列接続することによって構成される太陽電池ストリングと、複数の前記太陽電池ストリングを並列接続することによって構成される太陽電池アレイと、を含む太陽光発電システムの故障診断システムであって、
    前記太陽電池アレイの出力電圧及び出力電流を計測するアレイ計測装置と、
    前記複数の太陽電池ストリングのそれぞれの出力電流を計測するストリング電流計測装置と、
    監視装置と、を含み、
    前記監視装置は、
    前記アレイ計測装置で計測された最大動作電圧値を、前記太陽電池アレイにおける太陽電池ストリング当たりの最大動作電圧値と決定し、
    前記アレイ計測装置で計測された最大動作電流値を前記複数の前記太陽電池ストリングの数で割った値を、前記太陽電池アレイにおける太陽電池ストリング当たりの最大動作電流値と決定し、
    前記複数の太陽電池ストリングに含まれる第1太陽電池ストリングの電流−電圧特性における短絡電流及び開放電圧と、前記太陽電池ストリング当たりの最大動作電圧値及び最大動作電流値と、に基づき、前記第1太陽電池ストリングの推定日射量と推定動作温度とを算出し、
    前記推定日射量、前記推定動作温度及び前記電流−電圧特性を使用して、前記第1太陽電池ストリングの推定電流値を算出し、
    前記ストリング電流計測装置において計測された前記第1太陽電池ストリングの計測電流値と前記推定電流値とを比較して、前記第1太陽電池ストリングの劣化を診断する、故障診断システム。
  2. 請求項1に記載の故障診断システムであって、
    前記監視装置は、
    前記推定電流値と前記計測電流値との差に基づき、前記第1太陽電池ストリングにおける故障モジュール数を推定し、
    前記故障モジュール数を含む前記第1太陽電池ストリングの診断の結果を出力デバイスに出力する、故障診断システム。
  3. 請求項1に記載の故障診断システムであって、
    前記監視装置は、前記太陽電池ストリング当たりの最大動作電流値と、前記第1太陽電池ストリングの予め定められた標準状態における最大動作電流と短絡電流との比と、を用いて、前記推定日射量を算出する、故障診断システム。
  4. 請求項3に記載の故障診断システムであって、
    前記監視装置は、前記太陽電池ストリング当たりの最大動作電圧値と、前記推定日射量及び基準温度における前記第1太陽電池ストリングの開放電圧と、前記開放電圧の温度特性と、前記比と、を用いて、前記推定動作温度を算出する、故障診断システム。
  5. 複数の太陽電池モジュールを直列接続することによって構成される太陽電池ストリングと、複数の前記太陽電池ストリングを並列接続することによって構成される太陽電池アレイと、を含む太陽光発電システムの故障診断システムであって、
    前記太陽電池アレイの出力電圧を計測するアレイ計測装置と、
    前記複数の太陽電池ストリングのそれぞれの出力電流を計測するストリング電流計測装置と、
    日射量を計測する日射量計測装置と、
    気温を計測する気温計測装置と、
    監視装置と、を含み、
    前記監視装置は、
    前記日射量計測装置で計測された日射量及び前記気温計測装置で計測された気温の情報と、予め定められている、前記日射量と前記複数の太陽電池ストリングの動作温度と気温の差分の線形関係式と、に基づき推定動作温度を算出し、
    前記ストリング電流計測装置において計測された前記複数の太陽電池ストリングに含まれる第1太陽電池ストリングの出力電流値と、前記アレイ計測装置で計測された出力電圧値と、前記計測された日射量と、前記推定動作温度と、を使用して、前記第1太陽電池ストリングの電流−電圧特性から、前記第1太陽電池ストリングの推定シャント抵抗値を算出し、
    前記推定シャント抵抗値と閾値とを比較して、前記第1太陽電池ストリングの劣化を診断する、故障診断システム。
  6. 請求項5に記載の故障診断システムであって、
    前記アレイ計測装置は、前記太陽電池アレイの出力電流を計測し、
    前記監視装置は、前記推定シャント抵抗値と前記閾値との比較において、前記第1太陽電池ストリングが劣化していないと判定した場合に、
    前記第1太陽電池ストリングの電流−電圧特性における短絡電流及び開放電圧と、前記アレイ計測装置で計測されたアレイ出力電圧値及びアレイ出力電流値と、に基づき、前記第1太陽電池ストリングの推定日射量と第2推定動作温度とを算出し、
    前記推定日射量、前記第2推定動作温度及び前記電流−電圧特性を使用して、前記第1太陽電池ストリングの推定電流値を算出し、
    前記ストリング電流計測装置において計測された前記第1太陽電池ストリングの計測電流値と前記推定電流値とを比較して、前記第1太陽電池ストリングの劣化を診断する、故障診断システム。
  7. 請求項6に記載の故障診断システムであって、
    前記監視装置は、
    前記推定電流値と前記計測電流値との差に基づき、前記第1太陽電池ストリングにおける故障モジュール数を推定し、
    前記故障モジュール数を含む前記第1太陽電池ストリングの診断の結果を出力デバイスに出力する、故障診断システム。
  8. 複数の太陽電池モジュールを直列接続することによって構成される太陽電池ストリングと、複数の前記太陽電池ストリングを並列接続することによって構成される太陽電池アレイと、を含む太陽光発電システムの故障診断方法であって、
    前記太陽電池アレイの出力電圧及び出力電流を計測するアレイ計測装置で計測された前記太陽電池アレイの最大動作電圧値を、前記太陽電池アレイにおける太陽電池ストリング当たりの最大動作電圧値と決定し、
    前記アレイ計測装置で計測された前記太陽電池アレイの最大動作電流値を前記複数の前記太陽電池ストリングの数で割った値を、前記太陽電池アレイにおける太陽電池ストリング当たりの最大動作電流値と決定し、
    前記複数の太陽電池ストリングに含まれる第1太陽電池ストリングの電流−電圧特性における短絡電流及び開放電圧と、前記太陽電池ストリング当たりの最大動作電圧値及び最大動作電流値と、に基づき、前記第1太陽電池ストリングの推定日射量と推定動作温度とを算出し、
    前記推定日射量、前記推定動作温度及び前記電流−電圧特性を使用して、前記第1太陽電池ストリングの推定電流値を算出し、
    トリング電流計測装置において計測された前記第1太陽電池ストリングの計測電流値と前記推定電流値とを比較して、前記第1太陽電池ストリングの劣化を診断する、故障診断方法。
  9. 請求項8に記載の故障診断方法であって、
    前記推定電流値と前記計測電流値との差に基づき、前記第1太陽電池ストリングにおける故障モジュール数を推定し、
    前記故障モジュール数を含む前記第1太陽電池ストリングの診断の結果を出力デバイスに出力する、故障診断方法。
  10. 請求項8に記載の故障診断方法であって、
    前記太陽電池ストリング当たりの最大動作電流値と、前記第1太陽電池ストリングの予め定められた標準状態における最大動作電流と短絡電流との比と、を用いて、前記推定日射量を算出する、故障診断方法。
  11. 請求項10に記載の故障診断方法であって、
    前記太陽電池ストリング当たりの最大動作電圧値と、前記推定日射量及び基準温度における前記第1太陽電池ストリングの開放電圧と、前記開放電圧の温度特性と、前記比と、を用いて、前記推定動作温度を算出する、故障診断方法。
  12. 複数の太陽電池モジュールを直列接続することによって構成される太陽電池ストリングと、複数の前記太陽電池ストリングを並列接続することによって構成される太陽電池アレイと、を含む太陽光発電システムの故障診断方法であって、
    日射計測器で計測された日射量及び気温計測器で計測された気温の情報と、予め定められている、前記日射量と前記複数の太陽電池ストリングの動作温度と気温の差分の線形関係式と、に基づき推定動作温度を算出し、
    ストリング電流計測装置において計測された前記複数の太陽電池ストリングに含まれる第1太陽電池ストリングの出力電流値と、アレイ計測装置で計測された出力電圧値と、前記計測された日射量と、前記推定動作温度と、を使用して、前記第1太陽電池ストリングの電流−電圧特性から、前記第1太陽電池ストリングの推定シャント抵抗値を算出し、
    前記推定シャント抵抗値と閾値とを比較して、前記第1太陽電池ストリングの劣化を診断する、故障診断方法。
  13. 請求項12に記載の故障診断方法であって、
    前記推定シャント抵抗値と前記閾値との比較において、前記第1太陽電池ストリングが劣化していないと判定した場合に、
    前記第1太陽電池ストリングの電流−電圧特性における短絡電流及び開放電圧と、前記アレイ計測装置で計測されたアレイ出力電圧値及びアレイ出力電流値と、に基づき、前記第1太陽電池ストリングの推定日射量と第2推定動作温度とを算出し、
    前記推定日射量、前記第2推定動作温度及び前記電流−電圧特性を使用して、前記第1太陽電池ストリングの推定電流値を算出し、
    前記ストリング電流計測装置において計測された前記第1太陽電池ストリングの計測電流値と前記推定電流値とを比較して、前記第1太陽電池ストリングの劣化を診断する、故障診断方法。
  14. 請求項13に記載の故障診断方法であって、
    前記推定電流値と前記計測電流値との差に基づき、前記第1太陽電池ストリングにおける故障モジュール数を推定し、
    前記故障モジュール数を含む前記第1太陽電池ストリングの診断の結果を出力デバイスに出力する、故障診断方法。
JP2013201812A 2013-09-27 2013-09-27 太陽光発電システムの故障診断システム及び故障診断方法 Active JP6209412B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013201812A JP6209412B2 (ja) 2013-09-27 2013-09-27 太陽光発電システムの故障診断システム及び故障診断方法
DE102014218165.8A DE102014218165B4 (de) 2013-09-27 2014-09-11 Störungsdiagnoseverfahren und störungsdiagnosesystem für eine photovoltaik-anlage
US14/484,303 US9998071B2 (en) 2013-09-27 2014-09-12 Failure diagnosis method and failure diagnosis system for photovoltaic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201812A JP6209412B2 (ja) 2013-09-27 2013-09-27 太陽光発電システムの故障診断システム及び故障診断方法

Publications (2)

Publication Number Publication Date
JP2015068690A JP2015068690A (ja) 2015-04-13
JP6209412B2 true JP6209412B2 (ja) 2017-10-04

Family

ID=52673349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201812A Active JP6209412B2 (ja) 2013-09-27 2013-09-27 太陽光発電システムの故障診断システム及び故障診断方法

Country Status (3)

Country Link
US (1) US9998071B2 (ja)
JP (1) JP6209412B2 (ja)
DE (1) DE102014218165B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102000190B1 (ko) * 2018-03-23 2019-07-15 영남대학교 산학협력단 태양광 모듈의 실외 작동 온도 모델링 방법

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753461B (zh) * 2015-04-10 2017-04-12 福州大学 基于粒子群优化支持向量机的光伏发电阵列故障诊断与分类方法
WO2017009892A1 (ja) 2015-07-10 2017-01-19 株式会社日立システムズ 太陽光発電検査システムおよび太陽光発電検査方法
ITUB20152461A1 (it) * 2015-07-24 2017-01-24 Equipaggiamenti Elettronici Ind S P A Metodo per la determinazione del punto assoluto di massima potenza erogata da una stringa di pannelli fotovoltaici e dispositivo configurato per eseguire detto metodo
DE102015115485A1 (de) * 2015-09-14 2017-03-16 Skytron Energy Gmbh Verfahren zum Bestimmen der Degradation von PV-Modulen
JP6513002B2 (ja) * 2015-09-18 2019-05-15 シャープ株式会社 太陽光発電システム
DE102015119846A1 (de) * 2015-11-17 2017-06-01 Sma Solar Technology Ag Verfahren und Vorrichtung zur Erkennung von Fehlern in einem Photovoltaik(PV)-Generator
JP6479645B2 (ja) * 2015-12-15 2019-03-06 株式会社日立製作所 太陽光発電システムの診断システム及び診断方法
CN105827200B (zh) * 2016-03-01 2019-05-03 华为技术有限公司 光电系统中电池组串故障的识别方法、装置和设备
TWI595744B (zh) * 2016-04-08 2017-08-11 盈正豫順電子股份有限公司 太陽能板發電異常測試方法及其系統
CN107294492A (zh) * 2016-04-13 2017-10-24 苏州瑞得恩光能科技有限公司 一种大型光伏阵列中电池面板的故障检测定位系统
JP6710868B2 (ja) * 2016-06-30 2020-06-17 国立大学法人 東京大学 送信装置、受信装置、監視装置および太陽光発電システム
CN106019117A (zh) * 2016-08-03 2016-10-12 盐城工学院 级联型statcom系统igbt的开路故障诊断方法
CN106160659B (zh) * 2016-08-24 2017-11-17 河海大学常州校区 一种光伏电站区域定向故障诊断方法
JP6865950B2 (ja) * 2016-10-12 2021-04-28 ネクストエナジー・アンド・リソース株式会社 太陽光発電システムおよび太陽光発電制御システム
JP6665767B2 (ja) * 2016-12-09 2020-03-13 オムロン株式会社 検査支援装置およびその制御方法、検査システム、並びに制御プログラム
CN106505626B (zh) * 2016-12-21 2019-04-09 阳光电源股份有限公司 一种光伏逆变系统及其pid效应补偿方法和装置
JP6575572B2 (ja) * 2017-09-01 2019-09-18 富士電機株式会社 太陽電池ストリング診断システム及び太陽電池ストリング診断方法
CN107483012B (zh) * 2017-09-21 2023-05-23 暨南大学 基于电压电流的光伏阵列故障检测装置与方法
FR3072838B1 (fr) * 2017-10-23 2019-11-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de caracterisation electrique d'une cellule photovoltaique
CN108306616B (zh) * 2018-01-11 2019-08-23 科华恒盛股份有限公司 一种光伏组件异常检测方法、系统及光伏系统
CN108694276B (zh) * 2018-04-27 2022-04-26 河海大学常州校区 一种计算串并联光伏组件输出特性的方法
JPWO2019244313A1 (ja) * 2018-06-21 2020-12-17 三菱電機株式会社 データ処理装置、データ処理方法および太陽電池モジュールの製造方法
CN110807531B (zh) * 2018-07-20 2022-11-18 华北电力大学(保定) 基于元件-系统分级优化的光伏电站维护策略
CN108879933A (zh) * 2018-08-06 2018-11-23 上海晶夏新能源科技有限公司 一种新型模块化光伏发电系统
CN109039281A (zh) * 2018-08-10 2018-12-18 江南大学 一种基于改进随机森林算法的光伏阵列故障诊断方法
CN109245709A (zh) * 2018-08-30 2019-01-18 河北机电职业技术学院 光伏发电系统及故障监控方法
CN109409420B (zh) * 2018-10-08 2022-05-03 西安热工研究院有限公司 一种在非均匀辐照度下的光伏组串故障诊断方法
US11387778B2 (en) 2018-10-17 2022-07-12 Solaredge Technologies Ltd. Photovoltaic system failure and alerting
EP3650869A1 (en) * 2018-11-12 2020-05-13 Pick Data, S.L. Device, installation and method for measuring electrical parameters in a photovoltaic string
FR3089015B1 (fr) 2018-11-28 2020-10-30 Commissariat Energie Atomique Procédé de détermination d'une courbe courant-tension corrigée caractéristique d'un système électrique
CN109670553B (zh) * 2018-12-25 2022-08-12 福州大学 基于自适应神经模糊推理系统的光伏阵列故障诊断方法
CN109766952B (zh) * 2019-01-21 2022-08-12 福州大学 基于偏最小二乘法和极限学习机的光伏阵列故障检测方法
CN109975613B (zh) * 2019-03-27 2021-08-20 国网山东省电力公司青岛供电公司 架空线路无源测量试验接线自动切换电路及切换方法
CN111082749B (zh) * 2020-01-09 2023-08-04 远景智能国际私人投资有限公司 光伏组串运行状态的识别方法、装置及存储介质
US11456698B2 (en) * 2020-02-28 2022-09-27 University Of Cyprus Early detection of potential induced degradation in photovoltaic systems
CN111555716B (zh) * 2020-03-13 2023-07-28 远景智能国际私人投资有限公司 光伏阵列工作状态的确定方法、装置、设备及存储介质
CN112039436B (zh) * 2020-09-03 2023-11-17 苏州奥维斯数字技术有限公司 综合光伏逆变器工作状态和实时数据分析电站状态的方法
CN112255567B (zh) * 2020-10-16 2023-05-09 西安石油大学 一种含光伏电源配电网的短路电流快速确定方法
FR3118364B1 (fr) * 2020-12-23 2022-12-09 Commissariat Energie Atomique Procede de diagnostic des installations photovoltaïques par analyse de courbes iv
WO2022231510A1 (en) * 2021-04-28 2022-11-03 Sembcorp Industries Ltd A system, computing device and method for estimating solar irradiance falling on a photovoltaic string
JP7432272B1 (ja) 2023-06-30 2024-02-16 株式会社 ソーラージャパン 太陽光ネットワーク発電所システム及びその運用方法
CN117235617A (zh) * 2023-11-10 2023-12-15 兰州理工大学 沙尘天气下基于ml-rfknn的光伏阵列故障诊断方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669987A (en) * 1994-04-13 1997-09-23 Canon Kabushiki Kaisha Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same
JP2000059986A (ja) * 1998-04-08 2000-02-25 Canon Inc 太陽電池モジュ―ルの故障検出方法および装置ならびに太陽電池モジュ―ル
US6876187B2 (en) * 2000-07-04 2005-04-05 Canon Kabushiki Kaisha Method and apparatus for measuring photoelectric conversion characteristics
DE10222621A1 (de) * 2002-05-17 2003-11-27 Josef Steger Verfahren und Schaltungsanordnung zur Steuer- und Regelung von Photovoltaikanlagen
US7158395B2 (en) * 2003-05-02 2007-01-02 Ballard Power Systems Corporation Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications
US8473250B2 (en) * 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
WO2008112080A1 (en) * 2007-03-07 2008-09-18 Greenray, Inc. Data acquisition apparatus and methodology for self-diagnosis of ac modules
JP2010123880A (ja) 2008-11-21 2010-06-03 Ntt Facilities Inc 故障判定システム、故障判定方法、コンピュータプログラム
US8239149B2 (en) * 2009-06-25 2012-08-07 Array Power, Inc. Method for determining the operating condition of a photovoltaic panel
US20110184583A1 (en) * 2010-01-22 2011-07-28 General Electric Company Model-based power estimation of photovoltaic power generation system
US20120056638A1 (en) * 2010-03-10 2012-03-08 Alion, Inc. Systems and methods for monitoring and diagnostics of photovoltaic solar modules in photovoltaic systems
US20110282600A1 (en) * 2010-05-12 2011-11-17 General Electric Company System and method for photovoltaic plant power curve measurement and health monitoring
JP5723611B2 (ja) * 2011-01-27 2015-05-27 株式会社日立製作所 太陽光発電システム、異常検出方法、及び異常検出システム
JP5732873B2 (ja) * 2011-01-31 2015-06-10 株式会社日立製作所 太陽電池の特性演算方法及び太陽光発電システム
JP5330438B2 (ja) 2011-03-17 2013-10-30 株式会社東芝 異常診断装置およびその方法、コンピュータプログラム
US8744791B1 (en) * 2011-03-22 2014-06-03 Sunpower Corporation Automatic generation and analysis of solar cell IV curves
GB201113519D0 (en) * 2011-08-04 2011-09-21 Control Tech Ltd Maximum power point tracker
JP5730716B2 (ja) * 2011-09-01 2015-06-10 株式会社日立製作所 太陽光発電システムの故障診断方法
JP5557820B2 (ja) * 2011-10-11 2014-07-23 株式会社コンテック 太陽光発電設備
US20130201027A1 (en) * 2012-02-03 2013-08-08 Charles E. Bucher Apparatus and Method for Detecting Faults in a Solar Module
JP5902521B2 (ja) 2012-03-23 2016-04-13 シャープ株式会社 圧縮機モータの制御装置およびこれを搭載した空気調和機
JP6075997B2 (ja) * 2012-08-27 2017-02-08 株式会社日立製作所 太陽光発電システムの故障診断方法
US9024640B2 (en) * 2012-09-10 2015-05-05 Eaton Corporation Active diagnostics and ground fault detection on photovoltaic strings
WO2015022728A1 (ja) * 2013-08-13 2015-02-19 株式会社日立システムズ 太陽光発電検査システムおよび太陽光発電検査方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102000190B1 (ko) * 2018-03-23 2019-07-15 영남대학교 산학협력단 태양광 모듈의 실외 작동 온도 모델링 방법

Also Published As

Publication number Publication date
JP2015068690A (ja) 2015-04-13
US9998071B2 (en) 2018-06-12
DE102014218165B4 (de) 2023-05-04
US20150094967A1 (en) 2015-04-02
DE102014218165A1 (de) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6209412B2 (ja) 太陽光発電システムの故障診断システム及び故障診断方法
JP6075997B2 (ja) 太陽光発電システムの故障診断方法
JP6278912B2 (ja) 太陽光発電システム、及びその故障診断方法
US10340849B2 (en) Diagnosis system and diagnosis method for photovoltaic power generation system
JP5723611B2 (ja) 太陽光発電システム、異常検出方法、及び異常検出システム
JP5730716B2 (ja) 太陽光発電システムの故障診断方法
US9837957B2 (en) Diagnostic method for solar power system and monitoring device
JP6012874B2 (ja) 太陽光発電検査システムおよび太陽光発電検査方法
US20120053867A1 (en) System and methods for high-precision string-level measurement of photovoltaic array performance
JP6310948B2 (ja) 太陽電池検査システムおよび太陽電池検査方法
JP6535738B2 (ja) 太陽光発電検査システムおよび太陽光発電検査方法
US10742166B2 (en) Method for the electrical characterization of a photovoltaic cell
JP2015080399A (ja) 太陽電池モジュールの劣化判別方法
JP6575572B2 (ja) 太陽電池ストリング診断システム及び太陽電池ストリング診断方法
CN111245364B (zh) 确定电气系统的校正的电流-电压特性曲线的方法
JP2014232770A (ja) 太陽光発電システム装置
JP6408864B2 (ja) 太陽光パネルの特性測定方法およびその装置
JP6631335B2 (ja) 地絡検出装置およびその制御方法、並びに制御プログラム
JP2021035098A (ja) 太陽電池ストリングの劣化検出方法、劣化検出システム及び劣化検出装置
JP2016025753A (ja) 太陽光発電システムの異常診断方法
JP2021035323A (ja) 太陽電池ストリングの劣化検出方法、劣化検出システム及び劣化検出装置
JPWO2016170558A1 (ja) 診断装置、診断システムおよび診断方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6209412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250