JP6631335B2 - 地絡検出装置およびその制御方法、並びに制御プログラム - Google Patents

地絡検出装置およびその制御方法、並びに制御プログラム Download PDF

Info

Publication number
JP6631335B2
JP6631335B2 JP2016048953A JP2016048953A JP6631335B2 JP 6631335 B2 JP6631335 B2 JP 6631335B2 JP 2016048953 A JP2016048953 A JP 2016048953A JP 2016048953 A JP2016048953 A JP 2016048953A JP 6631335 B2 JP6631335 B2 JP 6631335B2
Authority
JP
Japan
Prior art keywords
ground fault
value
resistance
ground
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016048953A
Other languages
English (en)
Other versions
JP2017161483A (ja
Inventor
彰彦 佐野
彰彦 佐野
康介 森田
康介 森田
修一 三角
修一 三角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2016048953A priority Critical patent/JP6631335B2/ja
Publication of JP2017161483A publication Critical patent/JP2017161483A/ja
Application granted granted Critical
Publication of JP6631335B2 publication Critical patent/JP6631335B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、例えば太陽電池ストリングなどの発電システムにおける地絡を検出する地絡検出装置に関する。
太陽光発電システムは、太陽電池アレイを備え、該太陽電池アレイは、複数の太陽電池ストリングが並列接続されて構成され、各太陽電池ストリングは、複数の太陽電池モジュールが直列接続されて構成されている。一例として、各太陽電池ストリングにおいて発電された直流電力は、パワーコンディショニングシステム(Power Conditioning System,PCS)にて適当な直流電力および/または適当な交流電力に変換される。
太陽電池ストリングの電路は、任意の封止材で電気的に絶縁(以下単に「絶縁」と称する。)されている。しかしながら、何らかの原因で、太陽電池ストリングの電路における或る箇所と大地との間の絶縁抵抗が低下すると、当該箇所において地絡が生じる。
そこで、従来、太陽光発電システムには、特許文献1に開示されているように、地絡を検出する地絡検出装置が設けられている。具体的には、特許文献1の地絡検出装置は、太陽電池ストリングと地絡抵抗と地絡検出装置とによって形成された閉回路において、電圧変化または電流変化を測定することにより、地絡の有無を判定している。
特開2012−119382号公報(2012年6月21日公開)
一般に、太陽光発電システムが有する対地静電容量(以下、「対地容量」と省略する。)により、地絡を検出するための測定値は、過渡値を経由して定常値となり、この間、地絡の検出を待機する必要がある。特に、太陽電池モジュールの数を増やしたり、太陽電池ストリングの数を増やしたりする等により太陽電池アレイを大規模に構成する場合、太陽電池ストリングを接続する導線が長くなったり、太陽電池アレイに含まれる太陽電池モジュールの総面積が広くなったりする。これにより、太陽光発電システムにおける対地容量が増加することになり、地絡の検出を待機する待機時間が長くなる。
この問題点に対し、特許文献1では、地絡検出される太陽電池ストリングを太陽光発電システムから解列(分離)している。これにより、地絡検出に影響をおよぼす対地容量は、太陽電池ストリングに関するものに限定されるので、上記待機時間を短縮することができる。
しかしながら、特許文献1の場合、或る太陽電池ストリングに対し地絡の検出を行い、これを太陽光発電システムに含まれる全ての太陽電池ストリングについて行うことになる。従って、太陽光発電システムにおける上記待機時間の合計値は、依然として長いままである。
従って、本発明の目的は、太陽電池ストリングなどの発電システムにおいて地絡の検出を待機する待機時間を従来よりも短縮することができる地絡検出装置および地絡検出方法などを提供することにある。
上記の課題を解決するために、本発明に係る地絡検出装置は、発電または充放電する直流電源を備えた電源システムにおける地絡を検出する地絡検出装置であって、前記電源システムの対地容量の値を取得する容量取得部と、地絡が発生していない状態における前記電源システムの地絡抵抗の基準値を設定する抵抗基準値設定部と、前記対地容量の値と前記地絡抵抗の基準値とを用いて、基準の時定数を推定する時定数推定部と、前記地絡を検出するための測定値であって、前記電源システムの時定数により過渡的に変化する測定値の過渡値および測定時間を測定して取得する測定部と、前記基準の時定数、前記測定値の過渡値、および前記測定時間に基づき、前記地絡の有無を判定する地絡判定部とを備えることを特徴としている。
上記の構成によれば、電源システムにおける対地容量の値と、地絡が発生していない状態における地絡抵抗の基準値とを用いて、基準の時定数を算出する。これにより、前記基準の時定数、前記測定値の過渡値、および前記測定時間から前記測定値の基準値に対する判定値を推定し、推定した前記判定値と、前記測定値に対応する所定の閾値とを比較することにより、前記地絡の有無を判定することができる。或いは、前記基準の時定数、前記測定値に対応する所定の閾値、および前記測定時間から、前記測定時間における閾値を取得し、前記測定時間における閾値と前記測定値の過渡値とを比較することにより、前記地絡の有無を判定してもよい。
従って、前記地絡の有無を判定するために、前記測定値の定常値を取得するまで待機する必要が無く、その結果、前記地絡の検出を待機する待機時間を従来よりも短縮することができる。
ところで、地絡が発生していない状態における前記地絡抵抗の基準値としては、当該状態にて過去に測定された測定値、前記電源システムと大地との位置関係から算出される算出値、地絡の有無を判定するための閾値、などの所定値が挙げられる。
一方、前記対地容量の基準値は、前記電源システムの内部構造、前記電源システムと大地との位置関係などから推定できる。しかしながら、前記対地容量は、湿度、温度など、前記電源システムの環境によって変化する。
そこで、前記容量取得部は、測定により前記対地容量の値を取得してもよい。具体的には、前記電源システムの開放電圧、電流などを測定することにより、前記対地容量の値を取得することができる。
或いは、前記電源システムの環境の情報を取得する情報取得部をさらに備えており、前記容量取得部は、前記対地容量の基準値を、前記情報取得部が取得した情報に基づいて補正することにより、前記対地容量の値を取得してもよい。この場合、前記環境に対応する前記対地容量の値が取得されるので、前記地絡を精度良く検出することができる。
本発明に係る地絡検出装置の制御方法は、発電または充放電する直流電源を備えた電源システムにおける地絡を検出する地絡検出装置の制御方法であって、前記電源システムの対地容量の値を取得する容量取得工程と、地絡が発生していない状態における前記電源システムの地絡抵抗の基準値を設定する抵抗基準値設定工程と、前記対地容量の値と前記地絡抵抗の基準値とを用いて、基準の時定数を推定する時定数推定工程と、前記地絡を検出するための測定値であって、前記電源システムの時定数により過渡的に変化する測定値の過渡値および測定時間を測定して取得する測定工程と、前記基準の時定数、前記測定値の過渡値、および前記測定時間に基づき、前記地絡の有無を判定する地絡判定工程とを含むことを特徴としている。
上記の方法によれば、前記地絡検出装置と同様の作用効果を奏する。
本発明に係る地絡検出装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記地絡検出装置が備える各部として動作させることにより上記地絡検出装置をコンピュータにて実現させる地絡検出装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
本発明に係る地絡検出装置は、電源システムにおける対地容量の値と、地絡が発生していない状態における地絡抵抗の基準値とを用いて、基準の時定数を算出するので、前記地絡の検出するための測定値の定常値を取得するまで待機する必要が無く、その結果、前記地絡の検出を待機する待機時間を従来よりも短縮できるという効果を奏する。
本発明の実施形態1に係る太陽光発電システムの概略的な構成を示すブロック図である。 地絡抵抗の測定値と測定時間との間の関係を例示するグラフである。 地絡抵抗の測定値の時間変化の様子を示すグラフである。 本発明の実施形態2に係る太陽光発電システムの概略的な構成を示すブロック図である。
〔実施形態1〕
以下、本発明の実施形態1について、図1〜図3に基づいて説明する。図1は、実施形態1の太陽光発電システム100の概略的な構成を示すブロック図である。はじめに、図1を参照して、太陽光発電システム100の構成について述べる。
(太陽光発電システム100)
図1に示されるように、太陽光発電システム100は、太陽電池ストリング10、地絡検出装置20、ブレーカ30、およびPCS40を備えている。そして、太陽電池ストリング10は、地絡検出装置20およびブレーカ30を介して、PCS40に接続されている。
太陽電池ストリング10は、複数(例えば10〜20枚)の太陽電池モジュール11が直列接続されて構成されている。そして、各太陽電池モジュール11は、直列接続された複数の太陽電池セルを備え、パネル状に形成されている。このように、太陽電池ストリング10は、光(例えば太陽光)を受光して、直流電力を発電する発電装置である。
太陽電池ストリング10は電路15a・15bを介して地絡検出装置20と接続されている。地絡抵抗90は、太陽電池ストリング10の電路15a・15bと大地との間に形成される抵抗である。また、寄生容量95は、太陽電池ストリング10と大地との間に形成された対地容量である。
なお、図1では、簡単のために、一部の地絡抵抗90および寄生容量95のみが例示されている。図1に示されるように、太陽電池ストリング10は、地絡抵抗90および寄生容量95のそれぞれを介して大地に接続されている。図1では、地絡抵抗90の抵抗値がRz、寄生容量95が静電容量をCgとしてそれぞれ示されている。
また、図1では、簡単のために、1つの太陽電池ストリング10のみが例示されている。しかしながら、実際の太陽光発電システム100では、複数の太陽電池ストリング10からなる太陽電池アレイを備えており、太陽電池ストリング10ごとにブレーカ30が設けられている。なお、ブレーカ30の代わりにヒューズが設けられていてもよい。
また、地絡検出装置20は、図1に示されるように、太陽電池ストリング10とブレーカ30との間に設けられる構成であってもよいし、太陽電池ストリング10の2本の電路15a・15bに2本のプローブをそれぞれ取り付ける構成であってもよい。前者の場合、太陽電池ストリング10の本数だけ地絡検出装置20の台数が必要となるが、上記プローブをユーザが取り付ける手間を省略できる。後者の場合、地絡検出装置20は1台で済むが、上記プローブをユーザが取り付ける手間が必要となる。
なお、地絡検出装置20およびブレーカ30を、PCS40の直流回路部に内蔵してもよい。特に、複数の太陽電池ストリング10からの電力が個別に入力可能なPCSの場合、地絡検出装置20およびブレーカ30を当該PCSに内蔵することにより、太陽電池ストリング10ごとの検査を行うことができる。
地絡検出装置20は、寄生容量測定部21(容量取得部)、抵抗測定部22(測定部)、時定数推定部23(抵抗基準値設定部、時定数推定部)、および地絡判定部24を備えている。以下に述べるように、地絡検出装置20は、太陽電池ストリング10を検査する検査装置として機能する。地絡検出装置20の具体的な動作については、後述する。
ブレーカ30は、太陽電池ストリング10からPCS40への電流を手動で遮断する遮断器である。
PCS40は、太陽電池ストリング10から供給された直流電力を変換する電力変換装置である。一例として、PCS40は、不図示のDC/DCコンバータおよびDC/ACコンバータを備えている。DC/DCコンバータは、直流電力を所定の直流電力に変換(DC/DC変換)する回路であり、例えば昇圧チョッパである。
一例として、DC/DCコンバータは、太陽電池ストリング10から供給された直流電力を、電圧がより高い直流電力に変換する。そして、DC/DCコンバータにおいて変換された直流電力は、DC/ACコンバータに供給される。
DC/ACコンバータは、DC/DCコンバータから供給された直流電力を交流電力に変換(DC/AC変換)する回路であり、例えばインバータである。一例として、DC/ACコンバータは、直流電力を、周波数60Hzの交流電力に変換する。そして、DC/ACコンバータにおいて変換された交流電力は、太陽光発電システム100の外部の負荷装置(不図示)に供給される。
このように、PCS40が設けられることにより、太陽電池ストリング10において発電された直流電力を、負荷装置の仕様に応じた所定の電圧および周波数を有する交流電力に変換することができる。なお、PCS40において変換された交流電力の電圧および周波数が電力系統(不図示)と同じである場合には、当該交流電力は電力系統に供給されてもよい。
なお、上述の負荷装置が直流電力を受電可能なものである場合には、DC/AC変換を行う必要はない。また、DC/DC変換も不要である場合には、PCS40に替えて、負荷装置を太陽光発電システム100内に設けてもよい。
(地絡抵抗の測定値の過渡的な時間変化)
図1に示されるように、太陽電池ストリング10に地絡が発生した場合には、太陽電池ストリング10と地絡抵抗90と地絡検出装置20とによって形成された閉回路に、地絡電流Iが流れる。従って、地絡抵抗90に所定の直流電圧(定電圧)Vを印加した状態で地絡電流Iを測定することにより、Rz=V/Iを測定することが可能となる。
但し、寄生容量95が充電完了されるまでは、寄生容量95には充電電流が流れる。以下、充電電流をIgと表す。ここで、地絡抵抗90を流れる電流をIzとすると、地絡電流Iは、I=Iz+Igとして表される。
寄生容量95では、電圧が印加されると、まず大きな充電電流Igが流れ、その後徐々に(過渡的に)充電電流Igが減少し、寄生容量95が充電完了されると、充電電流Igが0となる。具体的には、充電電流Igは、時定数τ=Cg×R0のもとで指数関数的に減少する。
なお、後述するように、R0は、抵抗値Rzの真の値である。一例として、Cg=0.3μF、R0=100MΩの場合には、τ=0.3μF×100MΩ=30sである。
また、一例として、地絡電流I=I(t)は、以下の式(1)、
I(t)=I0×{1+exp(−t/τ)}… (1)
によって表される。ここで、I0は定数である。また、tは測定時間である。具体的には、tは、地絡抵抗90に電圧Vを印加してからの経過時間(すなわち、地絡抵抗90の測定開始からの経過時間)である。
式(1)を参照すれば、地絡電流Iの定常値I0(換言すれば、抵抗値Rzの真の値R0)を高精度に測定するためには、測定時間を時定数τsに比べて十分に長く確保することが必要となることが理解される。
また、抵抗値Rzの測定値R=R(t)は、以下の式(2)、
R(t)=V÷[I0×{1+exp(−t/τ)}]… (2)
によって表される。式(2)を参照すれば、測定値R(t)の過渡的な時間変化も、地絡電流I(t)と同様に、時定数τによって規定されていることが理解される。ここで、抵抗値Rzの定常値R0は、R0=V/I0である。このR0が、抵抗値Rzの真の値である。
なお、厳密には、R0は、地絡抵抗と、地絡検出装置20内の内部抵抗とを含んでいる。また、実際には、太陽電池ストリング10、地絡検出装置20、および大地からなる太陽光発電システムの回路(PVシステム回路)は、単純なCR回路ではない。そこで、上記指数関数に適当な係数を追加して、実際の上記PVシステム回路にフィッティングすることにより、上記係数を算出することが望ましい。
図2は、測定値Rと測定時間との間の関係を例示するグラフである。図2のグラフにおいて、縦軸は測定値であり、横軸は測定日である。図2には、測定時間(すなわちt)が、「50ms」、「1s」、「4s」、「10s」である場合のグラフがそれぞれ示されている。
図2を参照すれば、測定時間が短い場合(測定時間が10s以外の場合)には、測定値R(過渡値)が真の値R0(定常値)よりも十分に低い値として測定されることが理解される。これは、測定時間が、測定値Rがほぼ定常値に至るまでの時間に比べて短いためである。
また、図2を参照すれば、測定時間が同じである場合にも、測定日によって測定値が変化することが理解される。これは、寄生容量95の静電容量Cgは、太陽電池ストリング10が配置されているサイトの周囲環境(特に湿度)によって変化するためである。
例えば、湿度が高い場合には、太陽電池ストリング10と大地との間に含まれる水分量が多いので、静電容量Cgが増加する。また、太陽電池モジュール11の表面に水分が付着すると、当該水分の影響を受けて静電容量Cgが増加する。このため、時定数τの増加に伴い、真の値R0を測定するための測定時間がさらに長くなる。
なお、静電容量Cgは、太陽電池ストリング10に接続されている電力ケーブル(電路15a・15b)の種類および配置状態によっても変化する。また、静電容量Cgは、太陽電池ストリング10のサイズ、太陽電池セルの種類、および周囲温度等によっても変化する。
図3は、測定値Rの時間変化の様子を示すグラフである。図3のグラフにおいて、縦軸は測定値Rであり、横軸は時刻tである。図3に示されるように、t=0において、R(0)=Riであり、t=τにおいて、R(τ)=Rτである。なお、上述の式(2)によれば、Ri=R0/2であり、Rτ=R0/{1+exp(−1)}≒0.73R0である。但し、実際の測定では、RiおよびRτは、太陽光発電システム100の電気的な特性によっても左右される。
(地絡検出装置20における地絡抵抗の推定)
上述のように、太陽光発電システム100において、真の値R0を測定するためには、比較的長い測定時間が必要となる。そこで、本願の発明者は、真の値R0そのものを測定するのではなく、基準の時定数τを推定することにより、地絡抵抗の測定時間を短縮化するという技術的思想を新たに想到した。
続いて、地絡検出装置20の具体的な構成を説明し、基準の時定数τを推定する方法について述べる。以下に述べるように、本実施形態では、静電容量Cgを予め測定し、当該測定結果に基づいて、基準の時定数τ0を推定する。
地絡検出装置20において、寄生容量測定部21は、静電容量Cgを測定する。また、抵抗測定部22は、測定値Rを測定する。なお、寄生容量測定部21および抵抗測定部22は、例えば公知のLCRメータによって実装されてよい。また、寄生容量測定部21および抵抗測定部22における測定は、例えば、断線測定の方法を用いて実現することができる。なお、上記断線測定の方法は、特許第4604250号などに記載のように、公知であるから、その説明を省略する。
はじめに、寄生容量測定部21は、抵抗測定部22、時定数推定部23、および地絡判定部24の動作に先立ち、静電容量Cgを予め測定する。なお、静電容量Cgは、測定値、設計値、過去のデータ、それらの組み合わせ、およびシステムの等価回路から、当該過去のデータを補正したものであってもよい。
時定数推定部23は、基準の時定数τ0を推定する。なお、時定数推定部23には、所定の基準値Rstが予め設定されている。基準値Rstは、地絡抵抗90が十分な絶縁性能を満たすために(地絡電流Iが過大とならないために)必要な値として、太陽光発電システム100の設計者によって、適宜設定されてよい。なお、所定の基準値Rstの例としては、地絡の有無を判定するための閾値、地絡が発生していない過去の状態における真の値R0の測定値、太陽電池ストリング10と大地との位置関係から算出された算出値、などが挙げられる。
具体的には、時定数推定部23は、τs=Cg×Rstとして、基準の時定数τsを算出する。この時定数τsは、静電容量Cgと基準値Rstとを用いて設定された暫定的な時定数(時定数τの暫定値)であると理解されてよい。本実施形態では、Rst=5MΩである場合を考える。この場合、τs=0.3μF×5MΩ=1.5sである。
このように、寄生容量測定部21によって静電容量Cgを測定しておけば、静電容量Cgと基準値Rstとを用いて、基準の時定数τsを算出することができる。すなわち、真の値R0が既知でなくとも、地絡の有無の判定に利用可能な時定数を推定することができる。
続いて、時定数推定部23は、基準値Rstと、基準の時定数τsと、抵抗測定部22からの地絡抵抗90の測定時間Tと、式(2)とを用いて、t=Tにおける過渡的な基準値Rst(T)を算出する。
地絡判定部24は、太陽電池ストリング10における地絡を検出する。具体的には、地絡判定部24は、時定数推定部23によって算出された、t=Tにおける過渡的な基準値Rst(T)(閾値)と、t=Tにおける地絡抵抗90の測定値R(T)との大小関係を比較することにより、地絡の発生の有無を判定する。より具体的には、地絡判定部24は、測定値R(T)が過渡的な基準値Rst(T)以上である場合(すなわち、R(T)≧Rst(T)である場合)には、地絡が発生していないと判定する。他方、地絡判定部24は、測定値R(T)が過渡的な基準値Rst(T)よりも小さい場合(すなわち、R(T)<Rst(T)である場合)には、地絡が発生していると判定する。
(太陽光発電システム100の効果)
本実施形態の太陽光発電システム100によれば、比較的短時間における地絡抵抗90の過渡的な基準値を推定することができる。従って、上述の時定数τよりも十分に長い時間に亘って地絡抵抗90の測定を継続することが不要となるため、地絡抵抗90の測定時間を短縮することが可能となる。
また、地絡抵抗90の過渡的な基準値に基づいて、太陽電池ストリング10における地絡の発生の有無を判定することができるため、地絡検出に要する時間を短縮することも可能となる。さらに、太陽電池ストリング10の環境が変化しても、該変化に応じて静電容量Cgの測定値が変化するので、前記地絡の発生の有無を精度良く判定することができる。
ところで、PCS40の交流側には、PCS40から外部の負荷装置(または系統)への漏電を防止する漏電ブレーカ(図示せず)が設けられていることがある。具体的には、上記漏電ブレーカは、所定の時間(例えば0.1秒)に亘り、所定値以上の電流が流れた場合に漏電が発生していると判断して遮断動作を行う(トリップする)。すなわち、上記漏電ブレーカは、所定の時間に亘り、所定値以上の電流が流れた場合には、PCS40から外部の負荷装置(または系統)への電気出力を停止する。
そこで、地絡判定部24は、I0st(T)=V/Rst(T)によって、地絡電流Iの過渡的な基準値I0st(T)を推定してもよい。ここで、電圧Vの例としては、太陽電池ストリング10の対地電圧が挙げられる。また、抵抗の基準値Rstの例としては、上記漏電ブレーカの上記所定の時間に許容される抵抗値が挙げられる。
そして、地絡判定部24は、地絡電流Iの過渡的な基準値I0st(T)が上記漏電ブレーカの上記所定値以上であるかを判定してもよい。このように、地絡電流Iの過渡的な基準値I0st(T)に基づいて、上記漏電ブレーカがトリップするかを推定する機能を、地絡判定部24に付与することもできる。
(付記事項)
なお、上記実施形態では、地絡検出装置20は、予め設定された所定の基準値Rstを用いて地絡の有無を判定しているが、上記所定の基準値Rstに、地絡検出装置20の内部抵抗を加算する補正を行い、補正された基準値Rstを用いて地絡の有無を判定してもよい。
また、上記実施形態では、t=Tにおける過渡的な基準値Rst(T)を、地絡判定部24において地絡の発生の有無を判定するための閾値Rth(T)としているが、これに限定されるものではない。例えば、上記閾値Rth(T)は、上記過渡的な基準値Rst(T)に対し、安全や測定誤差などを考慮した任意のマージンを加算したものであってもよい。
また、上記実施形態では、地絡抵抗90の過渡的な基準値Rst(T)を算出し、算出した過渡的な基準値Rst(T)と測定値R(T)とを比較することにより地絡の有無を判定しているが、これに限定されるものではない。例えば、基準の時定数τsと、抵抗測定部22からの地絡抵抗90の測定時間Tおよび測定値R(T)と、式(2)とを用いて、地絡有無を判定するための値である地絡抵抗90の判定値Resを算出し、算出した判定値Resと基準値Rstとを比較することにより地絡の有無を判定してもよい。
〔実施形態2〕
本発明の実施形態2について、図4に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(太陽光発電システム200)
図4は、実施形態2の太陽光発電システム200の概略的な構成を示すブロック図である。太陽光発電システム200は、実施形態1の太陽光発電システム100において、地絡検出装置20を地絡検出装置20aに置き換えたものである。
また、地絡検出装置20aは、実施形態1の地絡検出装置20において、寄生容量測定部21を寄生容量推定部25(情報取得部、容量取得部)に置き換えたものである。以下に述べるように、寄生容量推定部25は、静電容量Cgを推定する機能を有する。
すなわち、本実施形態の太陽光発電システム200は、静電容量Cgを都度測定するのではなく、静電容量Cgを推定するという点において、実施形態1の太陽光発電システム100と異なる。
寄生容量推定部25には、静電容量Cgの初期値Cgi(基準値)が予め設定されている。一例として、この初期値Cgiは、太陽光発電システム200において静電容量Cgを予め測定した結果に基づいて設定されている。なお、初期値Cgiは、太陽電池ストリング10と大地との位置関係から算出してもよい。
また、初期値Cgiは、太陽光発電システム200と同タイプの太陽光発電システムにおいて静電容量Cgを予め測定した結果に基づいて設定されてもよい。また、初期値Cgiは、基準となる太陽光発電システムにおいて静電容量Cgを予め測定した結果に対し、太陽電池セルの種類、電力ケーブルの種類、および太陽電池ストリング10のサイズなど、太陽光発電システム200を構成する部材の情報に基づいて設定されてもよい。また、初期値Cgiは、太陽光発電システム200のユーザによって変更可能であってよい。
そして、寄生容量推定部25は、静電容量Cgの推定に用いられる情報である環境情報を取得する。環境情報は、例えば、太陽光発電システム200が設置されているサイトの気温または湿度の少なくともいずれかを示す情報であってよい。一例として、寄生容量推定部25は、当該サイトに設けられた温度計または湿度計(不図示)に接続されている。この場合、寄生容量推定部25は、温度計または湿度計のそれぞれから、気温または湿度の値を、環境情報として取得できる。
また、寄生容量推定部25は、インターネットに接続されていてもよい。この場合、寄生容量推定部25は、インターネット上にて提供されている天気情報から、当該サイトにおける気温または湿度の値を、環境情報として取得できる。
そして、寄生容量推定部25は、環境情報に基づいて、初期値Cgiを補正することにより、静電容量Cgの推定値Cgesを算出する。以下、簡単のため、サイトの湿度hのみに基づいて、推定値Cgesを算出する場合を例示して説明する。
まず、寄生容量推定部25には、湿度hの関数である補正関数f(h)が予め設定されている。一例として、補正関数f(h)は、太陽光発電システム200において予め測定された湿度と静電容量との間の関係を示すデータを、公知の補間手法を用いて補間することにより得られたものであってよい。また、補正関数f(h)は、湿度hに対する連続的な関数であってもよいし、離散的な関数(例:階段関数)であってもよい。また、樹脂の静電容量は、通常、相対湿度にほぼ比例して上昇するので、一例として、補正関数f(h)は、f(h)=khであってもよい。ここで、kは定数である。
そして、寄生容量推定部25は、以下の式(3)、
Cges=Cgi×f(h)… (3)
によって推定値Cgesを算出する。式(3)によれば、湿度hの変化に応じて推定値Cgesを算出することが可能となる。
なお、本実施形態において、時定数推定部23は、τs=Cges×Rstとして、基準の時定数τsを算出する。すなわち、時定数推定部23は、上述の静電容量Cgの測定値に替えて、推定値Cgesを用いて、基準の時定数τsを算出する。以降、時定数推定部23および地絡判定部24は、上述の実施形態1と同様の処理を行う。
ところで、太陽電池パネルに付着した水分によって寄生容量が変化することが知られている。そこで、降水量を上記環境情報に追加することもできる。
また、各種の材料は、静電容量が温度変化に応じて変化する特性(温度特性)を有しているが、当該温度特性は材料ごとに異なることが知られている。従って、気温を環境情報に含める場合には、太陽電池パネルの材料の温度特性のデータを当該環境情報に追加してもよい。すなわち、太陽電池パネルの材料の温度特性のデータをさらに用いて、静電容量Cgの値を補正してもよい。
(太陽光発電システム200の効果)
本実施形態の太陽光発電システム200によれば、太陽電池ストリング10の環境が変化しても、該変化に応じて環境情報が変化し、変化した環境情報に応じて静電容量Cgの値を補正するので、前記地絡の発生の有無を精度良く判定することができる。また、静電容量Cgの値を都度測定することが不要となるため、地絡抵抗90の過渡的な基準値Rst(T)をより簡便に推定することができる。それゆえ、ユーザの利便性を向上させることが可能である。
〔ソフトウェアによる実現例〕
太陽光発電システム100・200の制御ブロック(特に地絡検出装置20・20a)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
後者の場合、太陽光発電システム100・200は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、前記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、前記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が前記プログラムを前記記録媒体から読み取って実行することにより、本発明の目的が達成される。前記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、前記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して前記コンピュータに供給されてもよい。なお、本発明は、前記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
また、上記実施形態では、太陽光発電システムに本発明を適用しているが、これに限定されるものではなく、直流電源を備えた任意の電源システムに本発明を適用することができる。上記直流電源としては、太陽光発電装置の他に、水素燃料と空気中の酸素との電気化学反応により、水素燃料を利用して電気エネルギー(直流電力)を得ることが可能な燃料電池装置、電気エネルギーを蓄積(充放電)する蓄電池、キャパシタなどの蓄電器、などが挙げられる。
10 太陽電池ストリング
20,20a 地絡検出装置
21 寄生容量測定部(容量取得部)
22 抵抗測定部(測定部)
23 時定数推定部(抵抗基準値設定部、時定数推定部)
24 地絡判定部
25 寄生容量推定部(情報取得部、容量取得部)
90 地絡抵抗
95 寄生容量
100,200 太陽光発電システム

Claims (5)

  1. 発電または充放電する直流電源を備えた電源システムにおける地絡を検出する地絡検出装置であって、
    前記電源システムの対地容量の値を取得する容量取得部と、
    地絡が発生していない状態における前記電源システムの地絡抵抗の基準値を設定する抵抗基準値設定部と、
    前記対地容量の値と前記地絡抵抗の基準値とを用いて、基準の時定数を推定する時定数推定部と、
    前記地絡を検出するための抵抗値であって、前記電源システムの時定数により過渡的に変化する抵抗値、および前記地絡抵抗の測定開始から前記抵抗値を測定するまでの経過時間である測定時間を測定して取得する測定部と、
    前記基準の時定数、前記抵抗値、および前記測定時間に基づき、前記地絡の有無を判定する地絡判定部とを備え、
    前記地絡判定部は、前記基準の時定数、前記地絡抵抗の基準値、および前記測定時間から、過渡的な基準値を取得し、前記過渡的な基準値と前記抵抗値とを比較することにより、前記地絡の有無を判定することを特徴とする地絡検出装置。
  2. 前記容量取得部は、測定により前記対地容量の値を取得することを特徴とする請求項1に記載の地絡検出装置。
  3. 前記電源システムの環境の情報を取得する情報取得部をさらに備えており、
    前記容量取得部は、前記対地容量の基準値を、前記情報取得部が取得した情報に基づいて補正することにより、前記対地容量の値を取得することを特徴とする請求項1に記載の地絡検出装置。
  4. 請求項1からまでの何れか1項に記載の地絡検出装置としてコンピュータを機能させるための制御プログラムであって、前記各部としてコンピュータを機能させるための制御プログラム。
  5. 発電または充放電する直流電源を備えた電源システムにおける地絡を検出する地絡検出装置の制御方法であって、
    前記電源システムの対地容量の値を取得する容量取得工程と、
    地絡が発生していない状態における前記電源システムの地絡抵抗の基準値を設定する抵抗基準値設定工程と、
    前記対地容量の値と前記地絡抵抗の基準値とを用いて、基準の時定数を推定する時定数推定工程と、
    前記地絡を検出するための抵抗値であって、前記電源システムの時定数により過渡的に変化する抵抗値、および前記地絡抵抗の測定開始から前記抵抗値を測定するまでの経過時間である測定時間を測定して取得する測定工程と、
    前記基準の時定数、前記抵抗値、および前記測定時間に基づき、前記地絡の有無を判定する地絡判定工程とを含み、
    前記地絡判定工程では、前記基準の時定数、前記地絡抵抗の基準値、および前記測定時間から、過渡的な基準値を取得し、前記過渡的な基準値と前記抵抗値とを比較することにより、前記地絡の有無を判定することを特徴とする地絡検出装置の制御方法。
JP2016048953A 2016-03-11 2016-03-11 地絡検出装置およびその制御方法、並びに制御プログラム Expired - Fee Related JP6631335B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048953A JP6631335B2 (ja) 2016-03-11 2016-03-11 地絡検出装置およびその制御方法、並びに制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048953A JP6631335B2 (ja) 2016-03-11 2016-03-11 地絡検出装置およびその制御方法、並びに制御プログラム

Publications (2)

Publication Number Publication Date
JP2017161483A JP2017161483A (ja) 2017-09-14
JP6631335B2 true JP6631335B2 (ja) 2020-01-15

Family

ID=59857499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048953A Expired - Fee Related JP6631335B2 (ja) 2016-03-11 2016-03-11 地絡検出装置およびその制御方法、並びに制御プログラム

Country Status (1)

Country Link
JP (1) JP6631335B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6747607B2 (ja) * 2017-12-04 2020-08-26 東芝三菱電機産業システム株式会社 パワーコンディショナシステムおよびこれを備えた電力システム、並びに事故点標定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956790B2 (ja) * 2002-07-18 2007-08-08 日産自動車株式会社 地絡検出装置
JP4989205B2 (ja) * 2006-12-05 2012-08-01 三洋電機株式会社 電動車両用の漏電検出方法
JP2010256023A (ja) * 2009-04-21 2010-11-11 Pues Corp 漏電検出装置
JP4961045B1 (ja) * 2011-02-24 2012-06-27 株式会社安川電機 モータ駆動装置

Also Published As

Publication number Publication date
JP2017161483A (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6209412B2 (ja) 太陽光発電システムの故障診断システム及び故障診断方法
KR101369435B1 (ko) 태양 전지의 특성 평가 장치
US9129510B2 (en) Monitoring operating condition of electrical component
US9304161B2 (en) Solar power generation system, abnormality detection method, and abnormality detection system
US10742166B2 (en) Method for the electrical characterization of a photovoltaic cell
TW200812192A (en) Change control circuit
KR100909978B1 (ko) 태양광발전시스템의 출력 보정 및 성능 검증 장치 및 그 방법
WO2017212757A1 (ja) 太陽電池ストリングの故障診断方法及び故障診断装置
CN104052400A (zh) 一种检测电路中的电弧的方法和装置
JP6012874B2 (ja) 太陽光発電検査システムおよび太陽光発電検査方法
Hocine et al. Automatic detection of faults in a photovoltaic power plant based on the observation of degradation indicators
CN107667470B (zh) 具有电气部件的系统的热管理
JP2022104930A (ja) 導体温度検出器
KR101499761B1 (ko) 태양광 모듈 실시간 발전량 예측 방법
CN110231108B (zh) 温度传感器的标定装置及标定方法
CN103595236A (zh) 光伏逆变器开机控制方法、装置及太阳能发电系统
CN115201700A (zh) 一种电池熵热系数的测定方法及系统
JP6631335B2 (ja) 地絡検出装置およびその制御方法、並びに制御プログラム
JPH1131829A (ja) 太陽電池の良否判定方法
KR101682929B1 (ko) 태양광 모듈의 절연저항 측정 방법
CN110556592A (zh) 电池包温度检测方法、装置及电动工具
CN111245364B (zh) 确定电气系统的校正的电流-电压特性曲线的方法
Muñoz et al. Design of a twin capacitive load and its application to the outdoor rating of photovoltaic modules
JP2016086573A (ja) 太陽光パネルの特性測定方法およびその装置
JP7073802B2 (ja) 太陽光発電システムの故障検査装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6631335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees