WO2015022728A1 - 太陽光発電検査システムおよび太陽光発電検査方法 - Google Patents

太陽光発電検査システムおよび太陽光発電検査方法 Download PDF

Info

Publication number
WO2015022728A1
WO2015022728A1 PCT/JP2013/071860 JP2013071860W WO2015022728A1 WO 2015022728 A1 WO2015022728 A1 WO 2015022728A1 JP 2013071860 W JP2013071860 W JP 2013071860W WO 2015022728 A1 WO2015022728 A1 WO 2015022728A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
solar
power generation
cell string
temperature characteristic
Prior art date
Application number
PCT/JP2013/071860
Other languages
English (en)
French (fr)
Inventor
亨 河野
賀仁 成田
健太郎 大西
実 金子
大介 勝又
Original Assignee
株式会社日立システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立システムズ filed Critical 株式会社日立システムズ
Priority to JP2015531694A priority Critical patent/JP6012874B2/ja
Priority to EP13891559.0A priority patent/EP3035393B1/en
Priority to US14/911,787 priority patent/US9831827B2/en
Priority to PCT/JP2013/071860 priority patent/WO2015022728A1/ja
Publication of WO2015022728A1 publication Critical patent/WO2015022728A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic power generation technique, and more particularly to a technique effective when applied to a photovoltaic power generation inspection system and a photovoltaic power generation inspection method for detecting a failure of a solar cell module or a string.
  • a method for detecting a failure of a solar cell module for example, a method of inspecting cell deterioration visually, a method of detecting the presence or absence of abnormal heat generation of a cell by a thermometer, and an electric current-voltage characteristic by a tester, etc.
  • Techniques for inspecting characteristics are taken. These inspections are usually performed for each of the solar cell modules or solar cell strings (hereinafter sometimes simply referred to as “solar cell modules”).
  • Patent Document 1 a measurement unit and a communication unit are provided for each solar cell module or string, and the measured characteristic value and identification of the solar cell module are provided.
  • Patent Document 1 A technique for determining whether or not a failure has occurred in a solar cell module by transmitting a signal to a control device and comparing the transmitted result with a preset threshold value is described.
  • Patent Document 2 discloses an infrared imaging using an imaging device that performs infrared imaging on the surface of a solar cell array, a moving mechanism that moves the imaging device, and an imaging device that is moved by the moving mechanism. Technology for determining a high-temperature portion on the surface of a solar cell array as a failure by a monitor for displaying an image obtained in this manner and a control device that controls infrared imaging of the image pickup device and movement of the moving mechanism is described. .
  • Patent Document 1 it is necessary to provide a measurement unit and a communication unit for each solar cell module or string, which has a problem of high cost. It is possible to measure by connecting the measurement means and communication means manually to the solar cell module to be measured, and then switching to another solar cell module and measuring sequentially. In such a large-scale system, the efficiency is low, and there is a risk of switching omission of switching on and off at the time of connection switching.
  • the threshold setting method is not particularly mentioned, but if the threshold setting is too large, a failure may not be detected. Conversely, if the threshold setting is too small, there is a false detection that determines that the failure is normal. The possibility of occurrence increases, and the accuracy of failure detection decreases. Therefore, although it is necessary to set an appropriate threshold value, it is very difficult to set an appropriate threshold value because the characteristics of the solar cell module change depending on the amount of solar radiation and temperature.
  • the object of the present invention is to eliminate as much as possible the on / off operation of the switch and the like during inspection and inspection, reduce the influence of the overall temperature distribution with a small amount of labor, and localize the solar cell modules and strings.
  • An object of the present invention is to provide a photovoltaic power generation inspection system and a photovoltaic power generation inspection method for detecting deterioration by detecting deterioration.
  • a photovoltaic power generation inspection system is a photovoltaic power generation system having a configuration in which a plurality of solar cell strings made of one or a plurality of solar cell modules connected in series are arranged in parallel.
  • the first output current of the first solar cell string and the second output current of the second solar cell string are respectively measured.
  • a second temperature characteristic of the second solar cell string is calculated based on a current detector, a value of the first output current, and a value of the second output current, and the second temperature characteristic
  • a monitoring unit that determines the presence or absence of a failure of the second solar cell string.
  • the on / off operation of the switch and the like during inspection and inspection is eliminated as much as possible, the number of measurement parameters is reduced, and the overall temperature is reduced with less labor.
  • the influence of distribution it becomes possible to detect a failure by detecting local deterioration of a solar cell module or a string.
  • FIG. 13 is a diagram showing an outline of a configuration example of a general photovoltaic power generation system.
  • one or more solar cell strings 31 in which a plurality of solar cell modules 310 are connected in series are connected in parallel via the connection in the connection box 20, and are further integrated to form a DC / DC converter 41 and inverter 42, or a PCS (Power Conditioning System) (not shown) including these components is connected to power system 43.
  • the electric power generated by each solar cell string 31 can be output to the electric power system 43.
  • a plurality of solar cell strings 31 connected in parallel may be arranged side by side to form a solar cell array 30, and a connection box 20 may be provided for each solar cell array 30.
  • the backflow prevention diode 21 is connected.
  • FIG. 14 is a diagram showing an outline of a configuration example of a general solar cell string 31.
  • the solar cell string 31 shown on the right side of the figure has a configuration in which a plurality of solar cell modules 310 are connected in series as described above.
  • Each solar cell module 310 has a configuration in which a plurality of solar cells 311 are connected in series, and a bypass diode 312 is connected in parallel with this in order to prevent a failure.
  • Each solar cell 311 is composed of a semiconductor element or the like that converts sunlight into electric power, and is represented by an equivalent circuit as shown on the left side of the drawing as a so-called PV (PhotoVoltaic) cell model.
  • PV PhotoVoltaic
  • FIG. 15 is a diagram showing an outline of an example of a mechanism for detecting a failure of each solar cell string 31 in a general photovoltaic power generation system 1 ′ in the prior art.
  • a current-voltage characteristic measuring device 50 in which an electronic load, an ammeter, and a voltmeter are connected as shown in the figure is sequentially connected to terminals corresponding to the solar cell strings 31 in the connection box 20.
  • 3 shows a configuration for measuring current-voltage characteristics for each solar cell string 31.
  • a mechanism is adopted in which a current-voltage characteristic is obtained by measuring current and voltage for each solar cell string 31 and a failure is detected based on a deviation state from the normal state.
  • FIG. 16 is a diagram showing an outline of an example of current-voltage characteristics of the solar cell string 31 in a general photovoltaic power generation system 1 ′.
  • a plurality of characteristic curves in the figure indicate the difference in characteristics due to temperature.
  • the vertical line shown on the voltage axis indicates the voltage of the measurement reference.
  • This reference voltage can be, for example, an operating voltage in the solar cell string 31.
  • the solid curve in which the intersection with the vertical line indicating the reference voltage is indicated by white circles 1 to 3 indicates a current-voltage characteristic pattern in a normal state. In this case, it can be considered that the current value in the range indicated by white circles 1 to 3 in the reference voltage is the current value in the normal range.
  • the dotted curve in which the intersection with the vertical line indicating the reference voltage is indicated by black circles a to c is failure, abnormality, deterioration, etc. (hereinafter, these may be collectively referred to as “failure”). 2 shows a current-voltage characteristic pattern.
  • the current value at the reference voltage is greatly deviated from the current value in the normal range indicated by the white circles 1 to 3 described above. In such an obvious case, a failure can be easily detected by simply comparing current values.
  • the photovoltaic power generation inspection system obtains a difference in temperature characteristics between adjacent or adjacent solar cell strings 31 of the photovoltaic power generation system, for example, and based on this.
  • a temperature characteristic of each solar cell string 31 is calculated, and a failure is determined by comparing this with an assumed temperature characteristic.
  • the temperature difference between adjacent or adjacent solar cell strings 31 is small, and the difference can be ignored. Therefore, even in a large-scale system such as a mega solar, the influence of the temperature distribution difference depending on the location is affected. Can be canceled.
  • the temperature characteristic difference between adjacent or adjacent solar cell strings 31 can be calculated from only the current of each solar cell string 31, so that no voltage measurement is required and measurement is easy. Thus, the accuracy of failure detection can be improved while reducing the cost.
  • FIG. 1 is a diagram showing an outline of a configuration example of a photovoltaic power generation system having the photovoltaic power generation inspection system according to Embodiment 1 of the present invention.
  • the photovoltaic power generation system 1 measures and collects the current of each solar cell string 31 inside the connection box 20.
  • a string monitor 10 is provided.
  • the string monitor 10 is a device that constitutes a part or the whole of the photovoltaic power generation inspection system, and may be fixedly installed inside the connection box 20, or may be portable and connected during failure detection processing. You may comprise so that attachment to the inside of the box 20 is possible.
  • the string monitor 10 includes a current detector 11 that measures the output current of each solar cell string 31, a sampling processing unit 12 that acquires the output current measured by each current detector 11 at regular intervals, and a sampling processing unit 12.
  • a signal conversion transmission device 13 that converts the signal indicating the acquired current value into predetermined output information and outputs the signal, and a memory 14 that records information on the current value transmitted from the signal conversion transmission device 13 are provided.
  • Information on the current value of each solar cell string 31 recorded in the memory 14 is transferred to an external storage device such as a USB memory via an external terminal (not shown) such as a USB (Universal Serial Bus) terminal included in the string monitor 10. It can be taken out. Thereafter, data is taken from the external storage device to a monitoring device or monitoring unit (not shown) constituted by a PC (Personal Computer), a server device, etc., and the presence / absence of a failure can be determined by a method described later. it can. It is also possible to configure such that data is directly transmitted to the monitoring device or the monitoring unit by the communication means without using the memory 14. Further, for example, a monitoring unit (not shown) having a CPU (Central Processing Unit) and a program on the string monitor 10 or a microcomputer or the like is configured, and a failure or the like is determined on the string monitor 10. It is also possible.
  • a monitoring unit having a CPU (Central Processing Unit) and a program on the string monitor 10 or a microcomputer or the like is configured, and
  • FIG. 2 is a diagram showing an outline of a configuration example of the current detector 11.
  • the current detector 11 can be configured using a clamp-type ammeter such as a general CT (Current Transformer) sensor having a circuit as shown in the figure, for example, and a line from each solar cell string 31 is opened. Current can be measured without the need to connect.
  • a clamp-type ammeter such as a general CT (Current Transformer) sensor having a circuit as shown in the figure, for example, and a line from each solar cell string 31 is opened. Current can be measured without the need to connect.
  • CT Current Transformer
  • FIG. 3 is a diagram schematically showing an outline of a specific example of a configuration at the time of inspection.
  • a backflow prevention diode 21 and an MCCB (wiring circuit breaker) 22 are installed in the wiring from each solar cell string 31, and the output from each solar cell string 31.
  • current detector 11, such as a CT sensor for measuring the current I 1 ⁇ I n are respectively installed.
  • An MCCB 23 for the solar cell array 30 is also installed.
  • the string monitor 10 collects current values respectively measured by the current detectors 11 and outputs data to a monitoring device 17 such as a PC. In the monitoring device 17, failure detection is performed by a method described later based on the captured data.
  • FIG. 4 is a diagram showing an example of obtaining temperature characteristics of current-voltage characteristics of a plurality of solar cell strings 31 arranged side by side.
  • the current values are I 1 , I 2 , I 3 ,...
  • the voltage values are V 1 , V 2 , V 3 ,.
  • T 1 , T 2 , T 3 ,... The temperature characteristics of the current-voltage characteristics for each solar cell string 31 and the i-th solar cell string 31 are generally expressed by the following equations. It is known that
  • V i , I i , T i , and I si are the voltage, current, temperature, and reverse saturation current of the i th solar cell string 31, respectively. It is. N cell is the number of solar cells 311 included in the solar cell string 31, and n, k, and q are constants. Also, I sc standard of the short-circuit current, the p a is the amount of solar radiation. Insolation p a can be estimated to calculate the following equation.
  • I op is an operating current
  • Isc is a short-circuit current
  • the ratio j thereof is constant. Therefore, as long obtained I Op_t a total current of the whole of each solar cell string 31, it is possible to calculate the solar radiation amount p a at supposed.
  • the difference of the temperature characteristic of the current-voltage characteristic shown in the equation 1 between the i-th solar cell string 31 and the adjacent i + 1-th solar cell string 31 will be considered.
  • the temperature distribution (T 1 , T 2 , T 3 ,...) For each solar cell string 31 is not uniform, the temperature difference between adjacent solar cell strings 31 (T 2 ⁇ T 1 , T 3 ⁇ T 2 , T 4 ⁇ T 3 ,... T i + 1 ⁇ T i ) is considered to be negligibly small.
  • T i + 1 ⁇ T i is considered to be negligibly small.
  • the expression shown on the right side of the above expression does not include voltage and temperature as parameters, and can be obtained only from the current values of the i-th and i + 1-th solar cell strings 31.
  • This value that is, the difference between the temperature characteristics shown on the left side of the above equation, is approximately 0 if the i-th and i + 1-th solar cell strings 31 are normal.
  • the temperature characteristics in units of solar cells 311 are calculated for each of the i-th and i + 1-th solar cell strings 31 by a method as described later,
  • the degree of deviation of the temperature characteristic is calculated by comparing with the assumed temperature characteristic of the cell 311 unit.
  • the degree of this divergence is equal to or greater than a predetermined threshold, it can be estimated that a failure has occurred in any of the solar cell modules 310 or the solar cells 311 of the solar cell string 31.
  • the i + 1 th solar cell string 31 does not necessarily have to be adjacent to the i th solar cell string 31, and may be a plurality of adjacent solar cell strings 31 that are separated in a range in which the temperature difference can be ignored. .
  • FIG. 5 is a diagram showing an outline of an example of a technique for detecting the failure of the solar cell string 31 described above.
  • the six solar cell strings 31 from 1 to 6 are exemplarily illustrated. Of these, No. It is assumed that a failure has occurred in some of the solar cells 311 of the third solar cell string 31.
  • the difference in temperature characteristics as a reference value is set to 0 [V / ° C.], and the end No.
  • the temperature characteristic of one solar cell string 31 is provisionally set to a reference value (0 [V / ° C.]), and based on this, the value of the provisional temperature characteristic is sequentially obtained for the other solar cell strings 31. .
  • the provisional value of the temperature characteristic of the solar cell string 31 of No. 1 is 0 [V / ° C.]. 1 and No.
  • the difference in temperature characteristics between the two solar cell strings 31 is 0 [V / ° C.].
  • the provisional value of the temperature characteristic of the second solar cell string 31 is 0 [V / ° C.].
  • the difference in temperature characteristics between the three solar cell strings 31 is ⁇ 3 [V / ° C.].
  • the provisional value of the temperature characteristic of the solar cell string 31 of 3 is ⁇ 3 [V / ° C.].
  • No. No. 4 solar cell string 31 has no.
  • the provisional value of the temperature characteristic of the solar cell string 31 of No. 3 is ⁇ 3 [V / ° C.]. 3 and no. 4 is +3 [V / ° C.] because the difference in temperature characteristics between the solar cell strings 31 of No. 4 is +3 [V / ° C.].
  • the provisional value of the temperature characteristic of the solar cell string 31 of 4 is 0 [V / ° C.]. Thereafter, the provisional temperature characteristic value of each solar cell string 31 can be obtained in the same procedure.
  • the provisional temperature characteristic value for each solar cell string 31 obtained by such a procedure is divided by the number of solar cells 311 included in the solar cell string 31 and shown in the fourth row of the figure.
  • a provisional temperature characteristic value [mV / ° C.]
  • the assumed temperature characteristic in the solar cells 311 is calculated.
  • the assumed temperature characteristic in the photovoltaic cell 311 can be obtained by the following equation.
  • V oc is the open circuit voltage of the solar cell string 31
  • V oc / N cell is the open circuit voltage divided by the number of solar cells 311 included in the solar cell string 31.
  • E go / q is a bandgap reference voltage, which is about 1.25 V in this embodiment. Since the value of the open circuit voltage V oc at normal temperature (298 [K]) and the value of the number N cell of the solar cells 311 included in the solar cell string 31 can be known from the specifications of the solar cell module, etc.
  • the assumed temperature characteristic in the solar battery cell 311 can be calculated in advance and set as a constant. In the present embodiment, for example, a value such as ⁇ 2.0 [mV / ° C.] is obtained.
  • the solar cell string 31 can be detected as including a failed solar cell module 310.
  • a predetermined threshold value For example, values, such as 10% of the absolute value of the assumed temperature characteristic in the photovoltaic cell 311, can be set.
  • FIG. 6 is a flowchart showing an outline of an example of a flow of processing when the above-described failure detection method for the solar cell string 31 is implemented.
  • the current of each solar cell string 31 is measured by the current detector 11 of the string monitor 10 based on an instruction from the sampling processing unit 12 (S01).
  • the measured current value is recorded in the memory 14 via the signal conversion transmission device 13.
  • the current value recorded in the memory 14 is acquired via an external storage device or the like or by communication, and the presence or absence of a failure of the solar cell string 31 is determined based on the current value by a procedure described later.
  • the string monitor 10 instead of the monitoring device or the like, the string monitor 10 itself may perform processing by the CPU or the like.
  • the current values for the solar cell strings 31 are summed to calculate the total current (S02).
  • an expected amount of solar radiation is calculated based on the above-described equation (2) (S03).
  • Equation 3 Equation 3 (S04).
  • the calculation is not limited to those adjacent to each other. For example, the calculation may be performed for adjacent solar cell strings 31 extracted intermittently every few pieces.
  • the target solar cell string 31 here becomes the solar cell string 31 to which the string monitor 10 is connected, and all the solar cell strings 31 of the solar power generation system 1 may not be included.
  • the provisional temperature characteristic value for the solar cell string 31 to be processed is calculated.
  • the reference value value for the temporary temperature characteristic in this embodiment, 0 [V / ° C.]). Is set as the provisional temperature characteristic value of the first solar cell string 31.
  • step S ⁇ b> 05 for the solar cell string 31 to be processed is divided by the number of solar cells 311 included in the solar cell string 31 to be processed, and the solar cell string 311.
  • a temporary temperature characteristic value is calculated (S06).
  • the assumed temperature characteristic value of the solar battery cell 311 calculated based on the above-described equation 4 is added to the provisional temperature characteristic value per solar battery cell 311 ( ⁇ 2. 0 [mV / ° C.]) is added to calculate a temperature characteristic value per solar cell 311 that is not provisional (S07).
  • the value of the temperature characteristic per solar battery cell 311 calculated in step S07 and the value of the assumed temperature characteristic calculated based on the equation shown in the above equation 4 is calculated (S08), and it is determined whether the value of the difference is less than a predetermined threshold (S09). If it is less than the predetermined threshold value, the process proceeds to the process of the next solar cell string 31 in the loop process without doing anything.
  • an alarm to that effect is output (S10).
  • the output format of the alarm is not particularly limited. For example, a notification message can be displayed on the screen of the monitoring device, or the notification message can be transmitted to a predetermined e-mail address. Notification may be made by voice or the like.
  • the process proceeds to the next solar cell string 31 in the loop process.
  • the failure detection processing is terminated. Note that it is desirable that the above series of processing is periodically performed using, for example, an instruction from the sampling processing unit 12 of the string monitor 10 as a trigger.
  • the photovoltaic power generation inspection system having the string monitor 10 according to the first embodiment of the present invention has, for example, the temperature of the current-voltage characteristics between adjacent or adjacent solar cell strings 31. A difference in characteristics is obtained, the temperature characteristic of each solar cell string 31 is calculated based on the difference, and a failure is determined by comparing this with an assumed temperature characteristic. Thereby, even in a large-scale system such as a mega solar, it is possible to cancel the influence of the difference in temperature distribution depending on the location. In addition, since the difference value of the temperature characteristic can be calculated only from the current of each solar cell string 31, voltage measurement is not required, and the accuracy of failure detection is improved while facilitating measurement and reducing cost. Can be made.
  • the photovoltaic power generation inspection system reduces the influence of the difference in the distribution of the amount of solar radiation depending on the location on the mega solar, and further improves the accuracy of the failure determination. actually acquired by measuring the amount of solar radiation p a the like.
  • FIG. 7 is a diagram showing an outline of a configuration example of the solar power generation system 1 having the solar power generation inspection system according to the second embodiment of the present invention.
  • the string monitor 10 of the present embodiment further includes an I / O unit 15 that inputs and outputs signals to and from an external device. And a pyranometer 16 connected thereto. Thereby, the information of the solar radiation amount measured with the solar radiation meter 16 can be utilized at the time of a failure detection process.
  • FIG. 8 is a flowchart showing an example of the flow of processing when implementing the failure detection method for the solar cell string 31 in the present embodiment.
  • the processing of steps S02 and S03 in the processing procedure of the first embodiment shown in FIG. 6, that is, the processing of calculating the total current that is the sum of the currents of all the target solar cell strings 31, and the total current processing for calculating a solar radiation amount p a at supposed on the basis of is replaced by a process of acquiring the amount of solar radiation p a actually measured and (S20) by the solar radiation meter 16.
  • the other processes (S01 and S04 to S10) are the same as the processing procedure of the first embodiment shown in FIG.
  • the number of the pyranometers 16 is not limited to one, and a plurality of pyranometers 16 may be installed corresponding to each region of the solar cell string 31. In this case, the amount of solar radiation measured by the solar radiation meter 16 can be used as a solar radiation amount p a of the solar cell string 31 in the corresponding region.
  • the string monitor 10 is portable and has only two current detectors 11 such as CT sensors.
  • the current values of one set of adjacent or adjacent solar cell strings 31 are measured by the two current detectors 11 and the temperature characteristics of the current-voltage characteristics in the set are measured by the above-described method. Calculate the difference.
  • the worker shifts the pair of solar cell strings 31 to be measured by one and performs the same measurement.
  • FIGS. 9 and 10 are diagrams showing an outline of a configuration example of a photovoltaic power generation system having the photovoltaic power generation inspection system according to Embodiment 3 of the present invention.
  • the difference from the photovoltaic power generation system in FIG. 1 of the first embodiment described above is that the string monitor 10 has only two current measuring devices 11.
  • the example of FIG. 9 shows a state in which two current values (I 1 and I 2 ) are measured in order from the left side in the solar cell string 31 of the solar cell array 30.
  • the example of FIG. 10 shows a state where the current values (I 2 and I 3 ) are measured by shifting one pair of the solar cell strings 31 to be measured from the example of FIG.
  • FIGS. 11 and 12 are diagrams schematically showing an outline of a specific example of a configuration at the time of inspection corresponding to the examples of FIGS. 9 and 10 respectively.
  • the operator measures the current value by sequentially shifting the pair of solar cell strings 31 to be measured, and calculates the difference between the temperature characteristics of the current-voltage characteristics. Similar results to 1 and 2 can be obtained. Moreover, in this Embodiment, it is possible to reduce the installation space of the string monitor 10 by using the portable string monitor 10 which has only two current measuring devices 11, and to comprise a photovoltaic power generation system compactly. It becomes.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines on mounting are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • the present invention can be used for a photovoltaic power generation inspection system and a photovoltaic power generation inspection method for detecting a failure of a solar cell module or a string.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 検査、点検時のスイッチ等の入切操作を可能な限り排除し、少ない労力で、全体での温度分布の影響を低減させて、太陽電池モジュールやストリングの局所的な劣化を検出して故障を検出する太陽光発電検査システムである。代表的な実施の形態によれば、1つもしくは複数の太陽電池モジュールからなる太陽電池ストリングが複数並べて配置された太陽光発電システムにおいて、太陽電池ストリングの故障を検出する太陽光発電検査システムであって、第1の太陽電池ストリングの第1の出力電流と第2の太陽電池ストリングの第2の出力電流をそれぞれ測定する電流検出器と、第1の出力電流の値と第2の出力電流の値とに基づいて第2の太陽電池ストリングの第2の温度特性を算出し、第2の温度特性に基づいて第2の太陽電池ストリングの故障の有無を判定する監視部とを有する。

Description

太陽光発電検査システムおよび太陽光発電検査方法
 本発明は、太陽光発電の技術に関し、特に、太陽電池モジュールやストリングの故障を検出する太陽光発電検査システムおよび太陽光発電検査方法に適用して有効な技術に関するものである。
 近年、FIT(Feed-in Tariffs:固定価格全量買取制度)の導入などにより、出力1メガワット以上のいわゆるメガソーラーなどの大規模な太陽光発電システムの市場が拡大している。メガソーラーでは、数千枚~数万枚におよぶ100W~200Wクラスの太陽電池モジュールが一箇所の発電サイトに配置される。
 太陽電池モジュールの故障を検出する方法としては、例えば、目視によりセルの劣化を検査する手法や、サーモメーターによりセルの異常な発熱の有無を検出する手法、テスターにより電流-電圧特性などの電気的特性を検査する手法などがとられている。これらの検査は、通常、太陽電池モジュールもしくは太陽電池ストリング(以下では単に「太陽電池モジュール」と総称する場合がある)の1つ1つに対して行われている。
 これに関連する技術としては、例えば、特開2010-123880号公報(特許文献1)には、太陽電池モジュールやストリング毎に計測手段と通信手段を設け、計測した特性値と太陽電池モジュールの識別信号を制御装置へ送信し、送信されてきた結果を予め設定した閾値と比較することによって、太陽電池モジュールに故障が生じたか否かの判断を行う技術が記載されている。
 また、特開2011-146472号公報(特許文献2)には、太陽電池アレイの表面を赤外線撮影する撮像機と、撮像機を移動させる移動機構と、移動機構によって移動される撮像機で赤外線撮影して得られた画像を表示する監視用モニタと、撮像機の赤外線撮影および移動機構の移動を制御する制御装置により、太陽電池アレイの表面の高温部を故障として判定する技術が記載されている。
特開2010-123880号公報 特開2011-146472号公報
 従来技術によれば、太陽光発電システムにおける太陽電池モジュールの故障についてある程度効率的に検出することが可能である。
 しかしながら、例えば、特許文献1に記載されたような技術では、太陽電池モジュールやストリング毎に計測手段と通信手段を設ける必要があり、コスト高になるという課題を有する。計測手段や通信手段を、計測対象の太陽電池モジュールに手動で接続して計測し、その後、別の太陽電池モジュールに接続を切り替えて順次計測するという手法をとることも可能であるが、メガソーラーのような大規模システムでは効率が悪く、また、接続切替時にスイッチの入切の切り替え漏れなどのリスクも有する。
 また、閾値の設定方法については特に言及されていないが、閾値の設定が大きすぎると故障を検出できない場合が生じ、逆に閾値の設定が小さすぎると正常なのに故障と判断してしまう誤検出が発生する可能性が高くなり、故障検出の精度が低下する。従って、適切な閾値を設定することが必要となるが、太陽電池モジュールの特性は、日射量や温度の変動により変化するため、適切な閾値を設定することは非常に困難である。
 また、例えば、特許文献2に記載されたような技術では、赤外線カメラなどの撮像機を移動させる移動機構としてレール等をメガソーラーサイトに設置する必要があり、やはりコスト高になるという課題を有する。また、故障部分が高温部になるといっても、正常な部分との温度の差は5℃程度であり、局所的に観測した場合は5℃程度の温度差でも検出することは可能であるが、特許文献2に記載されたような技術では、この程度の温度差は、特にメガソーラーのように大規模な太陽電池モジュールの場合は、全体での温度分布(一般的には40℃~90℃程度)の中に埋もれてしまい、検出できない場合が生じ得る。
 そこで本発明の目的は、検査、点検時のスイッチ等の入切操作を可能な限り排除し、少ない労力で、全体での温度分布の影響を低減させて、太陽電池モジュールやストリングの局所的な劣化を検出して故障を検出する太陽光発電検査システムおよび太陽光発電検査方法を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
 本発明の代表的な実施の形態による太陽光発電検査システムは、1つもしくは直列接続された複数の太陽電池モジュールからなる太陽電池ストリングが並列接続により複数並べて配置された構成を有する太陽光発電システムにおいて、前記太陽電池ストリングの故障を検出する太陽光発電検査システムであって、第1の太陽電池ストリングの第1の出力電流と、第2の太陽電池ストリングの第2の出力電流をそれぞれ測定する電流検出器と、前記第1の出力電流の値と、前記第2の出力電流の値とに基づいて前記第2の太陽電池ストリングの第2の温度特性を算出し、前記第2の温度特性に基づいて前記第2の太陽電池ストリングの故障の有無を判定する監視部と、を有するものである。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 すなわち、本発明の代表的な実施の形態によれば、検査、点検時のスイッチ等の入切操作を可能な限り排除し、また、測定パラメータの数を減らし、少ない労力で、全体での温度分布の影響を低減させて、太陽電池モジュールやストリングの局所的な劣化を検出して故障を検出することが可能となる。
本発明の実施の形態1である太陽光発電検査システムを有する太陽光発電システムの構成例について概要を示した図である。 本発明の実施の形態1における電流検出器の構成例について概要を示した図である。 本発明の実施の形態1における検査時の構成の具体的な例について概要を模式的に示した図である。 本発明の実施の形態1における並べて配置された複数の太陽電池ストリング31の電流-電圧特性の温度特性を求める例について示した図である。 本発明の実施の形態1における太陽電池ストリングの故障を検出する手法の例について概要を示した図である。 本発明の実施の形態1における太陽電池ストリングの故障検出の手法を実装する際の処理の流れの例について概要を示したフローチャートである。 本発明の実施の形態2である太陽光発電検査システムを有する太陽光発電システムの構成例について概要を示した図である。 本発明の実施の形態2における太陽電池ストリングの故障検出の手法を実装する際の処理の流れの例を示したフローチャートである。 本発明の実施の形態3である太陽光発電検査システムを有する太陽光発電システムの構成例について概要を示した図である。 本発明の実施の形態3である太陽光発電検査システムを有する太陽光発電システムの構成例について概要を示した図である。 本発明の実施の形態3における検査時の構成の具体的な例について概要を模式的に示した図である。 本発明の実施の形態3における検査時の構成の具体的な例について概要を模式的に示した図である。 太陽光発電システムの構成例について概要を示した図である。 太陽電池ストリングの構成例について概要を示した図である。 従来技術における各太陽電池ストリングの故障を検出する仕組みの例について概要を示した図である。 太陽光発電システムにおける太陽電池ストリングの電流-電圧特性の例について概要を示した図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下においては、本発明の特徴を分かり易くするために、従来の技術と比較して説明する。
 <概要>
 図13は、一般的な太陽光発電システムの構成例について概要を示した図である。太陽光発電システム1’は、複数の太陽電池モジュール310が直列に接続された太陽電池ストリング31が、接続箱20内での結線を介して1つ以上並列に接続され、さらに集約されて、DC/DCコンバータ41およびインバータ42、もしくはこれらを含む図示しないPCS(Power Conditioning System)を介して電力系統43に接続される構成を有する。これにより、各太陽電池ストリング31が生成した電力を電力系統43に対して出力することができる。複数の並列接続された太陽電池ストリング31を並べて配置して太陽電池アレイ30を構成し、太陽電池アレイ30毎に接続箱20を設けるようにしてもよい。なお、接続箱20内には、各太陽電池ストリング31で生成された電流の逆流を防止するため、逆流防止ダイオード21が接続されている。
 図14は、一般的な太陽電池ストリング31の構成例について概要を示した図である。図の右側に示した太陽電池ストリング31は、上述したように、複数の太陽電池モジュール310が直列に接続された構成を有する。各太陽電池モジュール310は、複数の太陽電池セル311が直列に接続され、さらにこれと並列に故障時等のためのバイパスダイオード312が接続された構成を有する。各太陽電池セル311は、太陽光を電力に変換する半導体素子等からなり、いわゆるPV(PhotoVoltaic)セルモデルとして図の左側に示すような等価回路により表される。
 図15は、従来技術における一般的な太陽光発電システム1’において各太陽電池ストリング31の故障を検出する仕組みの例について概要を示した図である。図15の例では、接続箱20内における各太陽電池ストリング31に対応する端子に、電子負荷と電流計および電圧計が図示するように接続された電流-電圧特性測定器50を順次接続して、太陽電池ストリング31毎に電流-電圧特性を測定する構成を示している。従来技術では、このように、各太陽電池ストリング31について、電流と電圧を測定することで電流-電圧特性を求め、正常時との乖離状態に基づいて故障を検出するという仕組みがとられる。
 図16は、一般的な太陽光発電システム1’における太陽電池ストリング31の電流-電圧特性の例について概要を示した図である。図中の複数の特性曲線は、温度による特性の相違を示している。電圧軸に示された縦線は、測定基準の電圧を示している。この基準電圧は、例えば、太陽電池ストリング31における動作電圧とすることができる。ここで、基準電圧を示す縦線との交点が白丸1~3で示されている実線の曲線は、正常時の電流-電圧特性のパターンを示している。この場合、基準電圧における白丸1~3で示された範囲の電流値が正常な範囲の電流値であると考えることができる。
 一方で、基準電圧を示す縦線との交点が黒丸a~cで示されている点線の曲線は、故障や異常、劣化等(以下これらを総称して「故障」と記載する場合がある)における電流-電圧特性のパターンを示している。ここで、黒丸b、cに対応する曲線では、基準電圧における電流値が、上記の白丸1~3で示された正常な範囲の電流値から大きく乖離して低下している。このような明らかな場合には、単純な電流値の比較で故障であることを容易に検出することができる。しかしながら、黒丸aに対応する曲線では、故障であるにもかかわらず、基準電圧における電流値が、上記の白丸1~3で示された正常な範囲の電流値と乖離しておらず、電流-電圧特性の測定からは故障を検出するのが困難であることを示している。
 これは、電流-電圧特性に温度が影響する、すなわち電流-電圧特性が温度特性を有するためであり、メガソーラーのように広大な面積を持つ大規模なシステムでは、場所によって大きな温度分布の差があり得るため、温度分布の影響をキャンセルしなければ、的確に故障を検出できないことを示している。しかしながら、例えば、正常時の電流-電圧特性を温度毎に保持しておくというような手法では、処理が煩雑となり、必要なデータ量も多くなってしまう。
 そこで、本発明の一実施の形態である太陽光発電検査システムは、例えば、太陽光発電システムの各太陽電池ストリング31について、隣接もしくは近接するものの間で温度特性の差分を求め、これに基づいて各太陽電池ストリング31の温度特性を算出し、これと想定の温度特性との比較により故障を判断する。隣接もしくは近接している太陽電池ストリング31間では、温度差は小さく、差分を無視することができるため、メガソーラーのような大規模なシステムであっても、場所による温度分布の差の影響をキャンセルすることができる。また、後述するように、隣接もしくは近接する太陽電池ストリング31間での温度特性の差分は、各太陽電池ストリング31の電流のみから算出することができるため、電圧の測定が不要となり、測定を容易にしてコストを低減させつつ、故障検出の精度を向上させることができる。
 <実施の形態1>
 [システム構成]
 図1は、本発明の実施の形態1である太陽光発電検査システムを有する太陽光発電システムの構成例について概要を示した図である。本実施の形態の太陽光発電システム1は、図13に示した一般的な太陽光発電システム1’の構成において、例えば、接続箱20の内部に各太陽電池ストリング31の電流を測定して収集するストリングモニタ10を有している。このストリングモニタ10は、太陽光発電検査システムの一部もしくは全部を構成する装置であり、接続箱20の内部で固定的に設置されていてもよいし、可搬型として、故障検出の処理時に接続箱20の内部に取り付けることが可能なように構成してもよい。
 ストリングモニタ10は、各太陽電池ストリング31の出力電流を測定する電流検出器11と、各電流検出器11において測定される出力電流を一定時間毎に取得するサンプリング処理部12、サンプリング処理部12によって取得された電流値を示す信号を所定の出力情報に変換して出力する信号変換伝送装置13、および信号変換伝送装置13から伝送された電流値の情報を記録するメモリ14を有する。
 メモリ14に記録された各太陽電池ストリング31の電流値の情報は、例えば、ストリングモニタ10が有する図示しないUSB(Universal Serial Bus)端子等の外部端子を介して、USBメモリ等の外部記憶装置に取り出すことができる。その後、当該外部記憶装置から、PC(Personal Computer)やサーバ機器等により構成される図示しない監視装置や監視部にデータを取り込んで、後述するような手法により、故障の有無の判断を行うことができる。メモリ14を介さずに、通信手段により監視装置や監視部に直接データを送信するように構成することも可能である。また、例えば、ストリングモニタ10上にCPU(Central Processing Unit)とプログラムを有して、もしくはマイコン等を用いて図示しない監視部を構成し、ストリングモニタ10上で故障等の判断を行うようにすることも可能である。
 図2は、電流検出器11の構成例について概要を示した図である。電流検出器11は、例えば、図示するような回路からなる一般的なCT(Current Transformer)センサなどのクランプ型電流計を用いて構成することができ、各太陽電池ストリング31からの線路を開いて接続するという操作を要さずに電流を測定することができる。
 図3は、検査時の構成の具体的な例について概要を模式的に示した図である。接続箱20の内部には、各太陽電池ストリング31からの配線には、それぞれ逆流防止ダイオード21と、MCCB(配線用遮断器)22が設置されており、また、各太陽電池ストリング31からの出力電流I~Iを測定するCTセンサなどの電流検出器11がそれぞれ設置されている。また、太陽電池アレイ30に対するMCCB23も設置されている。ストリングモニタ10は、各電流検出器11によってそれぞれ測定された電流値を収集し、例えば、PC等の監視装置17にデータを出力する。監視装置17では、取り込んだデータに基づいて、後述する手法によって故障検出を行う。
 [故障検出手法]
 以下では、ストリングモニタ10により測定した各太陽電池ストリング31の電流値から故障を検出する手法について説明する。上述したように、本実施の形態では、並べて配置された複数の太陽電池ストリング31のうち、隣接するもしくは近接する太陽電池ストリング31間での温度特性の差分に基づいて各太陽電池ストリング31の温度特性を求め、これに基づいて故障の有無の判定を行う。
 図4は、並べて配置された複数の太陽電池ストリング31の電流-電圧特性の温度特性を求める例について示した図である。並べて配置された複数の太陽電池ストリング31について、図中の左端のものから順にそれぞれの電流値をI、I、I、…、電圧値をV、V、V、…、温度をT、T、T、…、とすると、各太陽電池ストリング31、およびi番目の太陽電池ストリング31についての電流-電圧特性の温度特性は、一般的に、以下の式で表されることが知られている。
Figure JPOXMLDOC01-appb-M000001
 上記のi番目の太陽電池ストリング31についての式において、V、I、T、およびIsiは、それぞれ、i番目の太陽電池ストリング31の電圧、電流、温度、および逆方向の飽和電流である。また、Ncellは、太陽電池ストリング31に含まれる太陽電池セル311の数であり、n、k、qは定数である。また、Iscは標準の短絡電流、pは日射量である。日射量pは、以下の式から推定的に算出することができる。
Figure JPOXMLDOC01-appb-M000002
 上記の式において、Iopは動作電流、Iscは短絡電流であり、これらの比jは一定となる。従って、各太陽電池ストリング31の全体での総電流であるIop_tが得られれば、想定での日射量pを算出することができる。
 ここで、i番目の太陽電池ストリング31と、隣接するi+1番目の太陽電池ストリング31との間における、数1の式に示された電流-電圧特性の温度特性の差分を考える。この場合、図4に示すように、各太陽電池ストリング31についての温度分布(T、T、T、…)は一様ではないものの、隣接する太陽電池ストリング31間では、その温度差(T-T、T-T、T-T、…Ti+1-T)は無視できる程度に小さいと考えられるため、これを0とみなすことで、温度特性の差分は近似的に以下の式で表される。
Figure JPOXMLDOC01-appb-M000003
 上記の式の右辺に示された式には、電圧および温度がパラメータとして含まれておらず、i番目とi+1番目の太陽電池ストリング31の電流値のみから求めることができる。この値、すなわち、上記の式の左辺に示された温度特性の差分は、i番目およびi+1番目の太陽電池ストリング31がそれぞれ正常であれば近似的に0となる。
 一方で、隣接する太陽電池ストリング31の一方が故障の太陽電池モジュール310を含む場合は、故障を有する太陽電池ストリング31では正常時よりも高い電圧が検出されることから、上記の式の左辺に示された温度特性の差分の値は0ではなくなる。すなわち、故障を有する太陽電池ストリング31において検出された電流値を数3の式に代入して得られる値は0ではなくなる。従って、数3の式により得られた値が0ではない場合は、i番目もしくはi+1番目の太陽電池ストリング31の少なくとも一方に故障が存在し、温度特性が異常になっているものと考えられる。
 従って、この温度特性の差分に基づいて、i番目およびi+1番目の太陽電池ストリング31のそれぞれについて、後述するような手法で、太陽電池セル311単位での温度特性を算出し、これを、太陽電池セル311単位での想定の温度特性と比較することで、温度特性の乖離の程度を算出する。この乖離の程度が所定の閾値以上である場合には、当該太陽電池ストリング31のいずれかの太陽電池モジュール310もしくは太陽電池セル311に故障が発生しているものと推定することができる。なお、i+1番目の太陽電池ストリング31は、i番目の太陽電池ストリング31と必ずしも隣接している必要はなく、温度差が無視できる程度の範囲で複数個離れた近接する太陽電池ストリング31としてもよい。
 図5は、上述した太陽電池ストリング31の故障を検出する手法の例について概要を示した図である。図の上から1段目には、複数の太陽電池ストリング31の配列のうち、端部から数えてNo.1~6までの6つの太陽電池ストリング31について例示的に図示している。このうち、No.3の太陽電池ストリング31の一部の太陽電池セル311に故障が発生しているものとする。
 ここで、i=1~6として、各太陽電池ストリング31において測定された電流値から、上記の数3に示された式に基づいて、隣接する各太陽電池ストリング31間の電流-電圧特性の温度特性の差分の値を算出した結果を2段目に示している。図5の例では、No.2とNo.3との間の差分(-3[V/℃])、およびNo.3とNo.4との間の差分(+3[V/℃])が0ではない状態となっていることを示している。
 ここで、図の3段目に示した各太陽電池ストリング31についての温度特性を求めるにあたり、基準値としての温度特性の差分を0[V/℃]として、端部のNo.1の太陽電池ストリング31の温度特性を暫定的に基準値(0[V/℃])とするとともに、これに基づいて、他の太陽電池ストリング31について順次、暫定的な温度特性の値を求める。例えば、図中のNo.2の太陽電池ストリング31については、No.1の太陽電池ストリング31の温度特性の暫定値が0[V/℃]であり、かつ、No.1とNo.2の太陽電池ストリング31の間の温度特性の差分が0[V/℃]であることから、No.2の太陽電池ストリング31の温度特性の暫定値は0[V/℃]であることになる。
 さらに、No.3の太陽電池ストリング31については、No.2の太陽電池ストリング31の温度特性の暫定値が0[V/℃]であり、かつ、No.2とNo.3の太陽電池ストリング31の間の温度特性の差分が-3[V/℃]であることから、No.3の太陽電池ストリング31の温度特性の暫定値は-3[V/℃]であることになる。また、No.4の太陽電池ストリング31については、No.3の太陽電池ストリング31の温度特性の暫定値が-3[V/℃]であり、かつ、No.3とNo.4の太陽電池ストリング31の間の温度特性の差分が+3[V/℃]であることから、No.4の太陽電池ストリング31の温度特性の暫定値は0[V/℃]であることになる。以下、同様の手順で各太陽電池ストリング31の暫定的な温度特性の値を求めることができる。
 このような手順により得られた各太陽電池ストリング31についての暫定的な温度特性の値を、当該太陽電池ストリング31に含まれる太陽電池セル311の数で除算して、図の4段目に示すように太陽電池セル311単位での暫定的な温度特性の値([mV/℃])を算出し、この値にさらに、太陽電池セル311での想定の温度特性の値を加えることで、図の5段目に示すように太陽電池セル311単位での温度特性の値を算出する。なお、太陽電池セル311での想定の温度特性は、以下の式により得ることができる。
Figure JPOXMLDOC01-appb-M000004
 上記の式において、Vocは太陽電池ストリング31の開放電圧であり、Voc/Ncellは、開放電圧を太陽電池ストリング31に含まれる太陽電池セル311の数で除算したものである。また、Ego/qは、バンドギャップリファレンス電圧であり、本実施の形態では約1.25Vとしている。常温(298[K])での開放電圧Vocの値と、太陽電池ストリング31に含まれる太陽電池セル311の数Ncellの値は、太陽電池モジュールの仕様書等から知ることができるため、太陽電池セル311での想定の温度特性は、予め算出しておいて定数とすることができ、本実施の形態では、例えば、-2.0[mV/℃]のような値となる。
 上記の手順により得られた、各太陽電池ストリング31についての温度特性の値と、太陽電池セル311での想定の温度特性の値とを比較し、乖離が所定の閾値以上である場合に、当該太陽電池ストリング31は故障の太陽電池モジュール310を含むものとして検出することができる。所定の閾値については、特に限定はされないが、例えば、太陽電池セル311での想定の温度特性の絶対値の10%などの値を設定することができる。
 このように、隣接もしくは近接する太陽電池ストリング31における電流-電圧特性の温度特性の差分をとることにより、メガソーラーのような大規模なシステムでの場所による温度分布の差異をキャンセルすることができる。また、電流の測定値のみから温度特性の差分を算出することができるため、電圧を測定する必要がなく、測定にかかる労力や設備のコストを低減させるとともに、多数のパラメータの測定を要することによる検出の精度の低下を抑止することができる。
 [処理の流れ]
 図6は、上述した太陽電池ストリング31の故障検出の手法を実装する際の処理の流れの例について概要を示したフローチャートである。まず、ストリングモニタ10の電流検出器11により、サンプリング処理部12からの指示に基づいて、各太陽電池ストリング31の電流をそれぞれ計測する(S01)。計測した電流値は、信号変換伝送装置13を介してメモリ14に記録される。
 その後、監視装置等では、メモリ14に記録された電流値を外部記憶装置等を介して、もしくは通信により取得し、電流値に基づいて後述する手順により太陽電池ストリング31の故障等の有無を判定する。上述したように、監視装置等ではなく、ストリングモニタ10自身がCPU等により処理を行うようにしてもよい。ここでは、まず、各太陽電池ストリング31についての電流値を合計して総電流を算出する(S02)。次に、当該総電流の値に基づいて、上述の数2に示した式に基づいて想定の日射量を算出する(S03)。
 その後、並べて配置された各太陽電池ストリング31について、上述の数3に示した式に基づいて、隣接する太陽電池ストリング31間での電流-電圧特性の温度特性の差分をそれぞれ算出する(S04)。上述したように、隣接しているものに限らず、例えば、数個おきに間欠的に抽出した近接する太陽電池ストリング31間について算出するようにしてもよい。
 その後、故障検出の対象の全ての太陽電池ストリング31について順次処理を繰り返すループ処理を開始する。ここでの対象の太陽電池ストリング31は、ストリングモニタ10が接続された太陽電池ストリング31となり、太陽光発電システム1の全ての太陽電池ストリング31が含まれていなくてもよい。
 ループ処理では、まず、処理対象の太陽電池ストリング31について、その直前の太陽電池ストリング31について後述するような処理により求められた暫定の温度特性の値と、直前の太陽電池ストリング31との間の温度特性の差分の値とに基づいて、暫定の温度特性の値を算出する(S05)。
 具体的には、図5に示したように、直前の太陽電池ストリング31についての暫定の温度特性の値に、直前の太陽電池ストリング31との間の温度特性の差分の値を加算することで、処理対象の太陽電池ストリング31についての暫定の温度特性の値を算出する。なお、処理対象の太陽電池ストリング31が先頭の太陽電池ストリング31である場合は、上述したように、暫定的な温度特性についての基準値の値(本実施の形態では0[V/℃])を、先頭の太陽電池ストリング31の暫定の温度特性の値として設定する。
 次に、処理対象の太陽電池ストリング31についてステップS05で算出した暫定の温度特性の値を、処理対象の太陽電池ストリング31に含まれる太陽電池セル311の数で除算し、太陽電池セル311あたりの暫定の温度特性の値を算出する(S06)。さらに、太陽電池セル311あたりの暫定の温度特性の値に、上述の数4に示した式に基づいて算出される太陽電池セル311の想定の温度特性の値(本実施の形態では-2.0[mV/℃])を加算して、暫定ではない太陽電池セル311あたりの温度特性の値を算出する(S07)。
 その後、ステップS07で算出した太陽電池セル311あたりの温度特性の値と、上述の数4に示した式に基づいて算出される想定の温度特性の値(本実施の形態では-2.0[mV/℃])との差分を算出し(S08)、当該差分の値が所定の閾値未満であるか否かを判定する(S09)。所定の閾値未満である場合は、何もせずにループ処理における次の太陽電池ストリング31の処理に移る。
 一方、所定の閾値以上である場合は、その旨を通知するアラームを出力する(S10)。アラームの出力形式は特に限定されず、例えば、通知メッセージを監視装置の画面上に表示したり、所定の電子メールアドレスに通知メッセージを送信したりすることができる。音声等により通知するものであってもよい。アラーム出力が完了すると、ループ処理における次の太陽電池ストリング31の処理に移る。ループ処理にて全ての太陽電池ストリング31についての処理を繰り返すと、故障検出の処理を終了する。なお、上記の一連の処理は、例えば、ストリングモニタ10のサンプリング処理部12からの指示等をトリガとして、定期的に行うのが望ましい。
 以上に説明したように、本発明の実施の形態1であるストリングモニタ10を有する太陽光発電検査システムは、例えば、各太陽電池ストリング31について、隣接もしくは近接するものの間で電流-電圧特性の温度特性の差分を求め、これに基づいて各太陽電池ストリング31の温度特性を算出し、これと想定の温度特性との比較により故障を判断する。これにより、メガソーラーのような大規模なシステムでも、場所による温度分布の差の影響をキャンセルすることができる。また、温度特性の差分の値は、各太陽電池ストリング31の電流のみから算出することができるため、電圧の測定が不要となり、測定を容易にしてコストを低減させつつ、故障検出の精度を向上させることができる。
 <実施の形態2>
 上述した実施の形態1の太陽光発電検査システムでは、隣接もしくは近接する太陽電池ストリング31間の電流-電圧特性の温度特性の差分を算出する際に必要なパラメータである日射量pを、上述の数2に示した式により、各太陽電池ストリング31の電流の合計である総電流Iop_tに基づいて算出した想定日射量として取得していた。
 これに対し、本発明の実施の形態2である太陽光発電検査システムは、メガソーラー上の場所による日射量の分布の差異の影響を低減し、より故障判定の精度を向上させるため、日射計等により実際に日射量pを測定して取得する。
 図7は、本発明の実施の形態2である太陽光発電検査システムを有する太陽光発電システム1の構成例について概要を示した図である。図1に示した実施の形態1の太陽光発電システム1の構成に加えて、本実施の形態のストリングモニタ10は、さらに、外部装置との間で信号の入出力を行うI/O部15と、これに接続された日射計16を有している。これにより、日射計16で測定した日射量の情報を故障検出の処理時に利用することができる。
 図8は、本実施の形態における太陽電池ストリング31の故障検出の手法を実装する際の処理の流れの例を示したフローチャートである。ここでは、図6に示した実施の形態1の処理手順におけるステップS02およびS03の処理、すなわち、対象の全ての太陽電池ストリング31の電流の合計である総電流を算出する処理、および当該総電流に基づいて想定での日射量pを算出する処理が、日射計16により日射量pを実際に測定して取得する処理(S20)に置き換えられている。他の処理(S01、およびS04~S10)については、図6に示した実施の形態1の処理手順と同様であるため、再度の説明は省略する。
 これにより、太陽電池ストリング31の総電流から算出された想定の日射量pの代わりに、日射計16により実際に測定された日射量を太陽電池ストリング31についての日射量pとして用いることで、故障検出の精度を向上させることができる。なお、日射計16の数は1つに限らず、太陽電池ストリング31の領域毎に複数の日射計16を対応させて設置するようにしてもよい。この場合は、各日射計16により測定された日射量を、対応する領域の太陽電池ストリング31の日射量pとして用いることができる。
 <実施の形態3>
 上述した実施の形態1および2の太陽光発電検査システムでは、固定もしくは可搬型のストリングモニタ10によって、各太陽電池ストリング31の電流値を測定し、測定結果に基づいて、隣接もしくは近接する太陽電池ストリング31間の電流-電圧特性の温度特性の差分を算出している。しかしながら、この場合は、対象の太陽電池アレイ30における全ての太陽電池ストリング31の電流値を測定するための電流検出器11が必要となり、接続箱20に固定的に設置する場合には、設置スペースを要する。また、可搬型とする場合でも、ストリングモニタ10が大きくなるとともに、測定時に多数の電流検出器11を同時に設置することから設置ミスも生じ易い。
 そこで、本発明の実施の形態3である太陽光発電検査システムは、ストリングモニタ10を可搬型とし、CTセンサなどの電流検出器11を2つのみ有するものとする。本実施の形態では、2つの電流検出器11により、1組の隣接もしくは近接する太陽電池ストリング31の電流値をそれぞれ測定して、上述した手法により、当該組における電流-電圧特性の温度特性の差分を算出する。その後、作業員が、測定対象の太陽電池ストリング31のペアを1つずらして、同様の測定を行う。これを、測定対象の全ての太陽電池ストリング31に対して順次行うことで、上述の図6もしくは図8におけるステップS04までの処理と同等の処理を行うことができ、その後は、図6もしくは図8のステップS05以降と同様の処理によって故障検出を行うことができる。
 図9、図10は、本発明の実施の形態3である太陽光発電検査システムを有する太陽光発電システムの構成例について概要を示した図である。上述の実施の形態1の図1における太陽光発電システムとの相違は、ストリングモニタ10が有する電流測定器11が2つのみである点である。図9の例では、太陽電池アレイ30の太陽電池ストリング31のうち、左側から順に2つの電流値(IおよびI)を測定している状態を示している。また、図10の例では、図9の例から測定対象の太陽電池ストリング31のペアを1つずらして電流値(IおよびI)を測定している状態を示している。図11および図12は、図9および図10の例にそれぞれ対応した、検査時の構成の具体的な例について概要を模式的に示した図である。
 このように、測定対象の太陽電池ストリング31のペアを作業員が順次ずらして電流値を測定し、電流-電圧特性の温度特性の差分を算出していくことで、機能的には実施の形態1および2と同様の結果を得ることができる。また、本実施の形態では、電流測定器11を2つのみ有する可搬型のストリングモニタ10を用いることで、ストリングモニタ10の設置スペースを削減し、太陽光発電システムをコンパクトに構成することが可能となる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記録装置、またはICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、上記の各図において、制御線や情報線は説明上必要と考えられるものを示しており、必ずしも実装上の全ての制御線や情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
 本発明は、太陽電池モジュールやストリングの故障を検出する太陽光発電検査システムおよび太陽光発電検査方法に利用可能である。
1、1’…太陽光発電システム、
10…ストリングモニタ、11…電流検出器、12…サンプリング処理部、13…信号変換伝送装置、14…メモリ、15…I/O部、16…日射計、17…監視装置、
20…接続箱、21…逆流防止ダイオード、22、23…MCCB、
30…太陽電池アレイ、31…太陽電池ストリング、
41…DC/DCコンバータ、42…インバータ、43…電力系統、
50…電流-電圧特性測定器、
310…太陽電池モジュール、311…太陽電池セル、312…バイパスダイオード。
 

Claims (10)

  1.  1つもしくは直列接続された複数の太陽電池モジュールからなる太陽電池ストリングが並列接続により複数並べて配置された構成を有する太陽光発電システムにおいて、前記太陽電池ストリングの故障を検出する太陽光発電検査システムであって、
     第1の太陽電池ストリングの第1の出力電流と、第2の太陽電池ストリングの第2の出力電流をそれぞれ測定する電流検出器と、
     前記第1の出力電流の値と、前記第2の出力電流の値とに基づいて前記第2の太陽電池ストリングの第2の温度特性を算出し、前記第2の温度特性に基づいて前記第2の太陽電池ストリングの故障の有無を判定する監視部と、
     を有する、太陽光発電検査システム。
  2.  請求項1に記載の太陽光発電検査システムにおいて、
     前記監視部は、前記第1の出力電流と、前記第2の出力電流と、前記太陽電池ストリングに対する日射量と、に基づいて、前記第1の太陽電池ストリングの電流-電圧特性の温度特性と、前記第2の太陽電池ストリングの電流-電圧特性の温度特性との差分を算出し、前記差分と、前記第1の太陽電池ストリングの第1の温度特性とに基づいて、前記第2の温度特性を算出する、太陽光発電検査システム。
  3.  請求項2に記載の太陽光発電検査システムにおいて、
     前記監視部は、検出対象の全ての前記太陽電池ストリングの出力電流の合計である総電流に基づいて前記日射量を算出する、太陽光発電検査システム。
  4.  請求項2に記載の太陽光発電検査システムにおいて、
     さらに、前記日射量を計測する日射計を有する、太陽光発電検査システム。
  5.  請求項1に記載の太陽光発電検査システムにおいて、
     前記監視部は、前記第2の太陽電池ストリングに含まれる太陽電池セルあたりの前記第2の温度特性と、太陽電池セルの想定での温度特性との乖離が所定の閾値以上である場合に、前記第2の太陽電池ストリングが故障を有すると判定する、太陽光発電検査システム。
  6.  請求項1に記載の太陽光発電検査システムにおいて、
     前記第1の太陽電池ストリングと、前記第2の太陽電池ストリングは、隣接して配置されている、太陽光発電検査システム。
  7.  1つもしくは直列接続された複数の太陽電池モジュールからなる太陽電池ストリングが並列接続により複数並べて配置された構成を有する太陽光発電システムにおいて、前記太陽電池ストリングの故障を検出する太陽光発電検査方法であって、
     第1の太陽電池ストリングの第1の出力電流と、第2の太陽電池ストリングの第2の出力電流をそれぞれ測定する工程と、
     前記第1の出力電流の値と前記第2の出力電流の値とに基づいて、前記第2の太陽電池ストリングの第2の温度特性を算出する工程と
     前記第2の温度特性に基づいて前記第2の太陽電池ストリングの故障の有無を判定する工程と、
     を有する、太陽光発電検査方法。
  8.  請求項7に記載の太陽光発電検査方法において、
     さらに、前記太陽電池ストリングに対する日射量を取得する工程を有し、
     前記第2の温度特性を算出する工程は、
     前記第1の出力電流と、前記第2の出力電流と、前記日射量と、に基づいて、前記第1の太陽電池ストリングの電流-電圧特性の温度特性と、前記第2の太陽電池ストリングの電流-電圧特性の温度特性との差分を算出する工程と、
     前記差分と、前記第1の太陽電池ストリングの第1の温度特性とに基づいて、前記第2の温度特性を算出する工程と、
     を有する、太陽光発電検査方法。
  9.  請求項8に記載の太陽光発電検査方法において、
     前記日射量を取得する工程は、検出対象の全ての前記太陽電池ストリングの出力電流の合計である総電流に基づいて前記日射量を算出する、太陽光発電検査方法。
  10.  請求項7に記載の太陽光発電検査方法において、
     前記判定する工程は、
     前記第2の太陽電池ストリングに含まれる太陽電池セル1個あたりの前記第2の温度特性を算出する工程と、
     太陽電池セルの想定での温度特性との乖離が所定の閾値以上である場合に、前記第2の太陽電池ストリングが故障を有すると判定する工程と、
     を有する、太陽光発電検査方法。
     
PCT/JP2013/071860 2013-08-13 2013-08-13 太陽光発電検査システムおよび太陽光発電検査方法 WO2015022728A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015531694A JP6012874B2 (ja) 2013-08-13 2013-08-13 太陽光発電検査システムおよび太陽光発電検査方法
EP13891559.0A EP3035393B1 (en) 2013-08-13 2013-08-13 Solar power generation inspection system and solar power generation inspection method
US14/911,787 US9831827B2 (en) 2013-08-13 2013-08-13 Photovoltaic inspection system and photovoltaic inspection method
PCT/JP2013/071860 WO2015022728A1 (ja) 2013-08-13 2013-08-13 太陽光発電検査システムおよび太陽光発電検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071860 WO2015022728A1 (ja) 2013-08-13 2013-08-13 太陽光発電検査システムおよび太陽光発電検査方法

Publications (1)

Publication Number Publication Date
WO2015022728A1 true WO2015022728A1 (ja) 2015-02-19

Family

ID=52468130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071860 WO2015022728A1 (ja) 2013-08-13 2013-08-13 太陽光発電検査システムおよび太陽光発電検査方法

Country Status (4)

Country Link
US (1) US9831827B2 (ja)
EP (1) EP3035393B1 (ja)
JP (1) JP6012874B2 (ja)
WO (1) WO2015022728A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068690A (ja) * 2013-09-27 2015-04-13 株式会社日立製作所 太陽光発電システムの故障診断システム及び故障診断方法
JP2018126006A (ja) * 2017-02-02 2018-08-09 宮崎県 電流センサおよび電流測定装置並びに太陽電池ストリング用電流測定システム
US10491154B2 (en) 2015-07-10 2019-11-26 Hitachi Systems, Ltd Solar power generation examination system and solar power generation examination method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450403B2 (ja) * 2015-01-28 2019-01-09 京セラ株式会社 電力制御装置、電力制御システム、および電力制御方法
CN105827200B (zh) * 2016-03-01 2019-05-03 华为技术有限公司 光电系统中电池组串故障的识别方法、装置和设备
US10691085B2 (en) * 2017-06-14 2020-06-23 Inventus Holdings, Llc Defect detection in power distribution system
KR101908120B1 (ko) * 2017-08-29 2018-10-18 경원솔라텍 주식회사 태양광 발전 접속반
US20230335651A1 (en) * 2022-04-15 2023-10-19 Northrop Grumman Systems Corporation Reconfigurable solar array for stable output voltage over a range of temperatures with high operational efficiency

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334767A (ja) * 1994-04-13 1995-12-22 Canon Inc 異常検知方法、異常検知装置及びそれを用いた発電システム
JP2010123880A (ja) 2008-11-21 2010-06-03 Ntt Facilities Inc 故障判定システム、故障判定方法、コンピュータプログラム
JP2011146472A (ja) 2010-01-13 2011-07-28 Toshiba Corp 太陽光発電システム
JP2011187807A (ja) * 2010-03-10 2011-09-22 Toshiba Corp 太陽光発電システム
JP2012191000A (ja) * 2011-03-10 2012-10-04 Mitsubishi Electric Corp 診断装置、太陽光発電システム及び診断方法
JP2013055132A (ja) * 2011-09-01 2013-03-21 Hitachi Ltd 太陽光発電システムの故障診断方法
JP2013065797A (ja) * 2011-09-20 2013-04-11 Tokyo Univ Of Science 太陽電池アレイの診断装置、パワーコンディショナ、太陽電池アレイの診断方法、及びプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669987A (en) 1994-04-13 1997-09-23 Canon Kabushiki Kaisha Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same
JP4326712B2 (ja) * 2001-03-19 2009-09-09 株式会社Nttファシリティーズ 太陽電池温度特性シミュレータ
JP2004022597A (ja) * 2002-06-12 2004-01-22 Canon Inc 光起電力素子特性の測定装置、それを用いる測定法、機能素子の測定方法および測定装置、それを用いる太陽電池の製造方法
DE102010009079B4 (de) * 2010-02-24 2018-02-22 Adensis Gmbh Verfahren und Vorrichtung zum Auffinden leistungsschwacher PV-Module in einer PV-Anlage mittels des Einsatzes von Trennschaltern
DE102010009080B4 (de) * 2010-02-24 2018-02-22 Adensis Gmbh Verfahren und Vorrichtung zum Auffinden leistungsschwacher PV-Module in einer PV-Anlage
US8659858B2 (en) * 2010-08-24 2014-02-25 Sanyo Electric Co., Ltd. Ground-fault detecting device, current collecting box using the ground-fault detecting device, and photovoltaic power generating device using the current collecting box
JP5819602B2 (ja) * 2010-11-29 2015-11-24 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
US9366714B2 (en) * 2011-01-21 2016-06-14 Ampt, Llc Abnormality detection architecture and methods for photovoltaic systems
US9269834B2 (en) * 2012-06-29 2016-02-23 Nxp B.V. Photovoltaic module monitoring and control
JP5841906B2 (ja) * 2012-07-03 2016-01-13 Jx日鉱日石エネルギー株式会社 故障検知装置、故障検知システム、及び故障検知方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334767A (ja) * 1994-04-13 1995-12-22 Canon Inc 異常検知方法、異常検知装置及びそれを用いた発電システム
JP2010123880A (ja) 2008-11-21 2010-06-03 Ntt Facilities Inc 故障判定システム、故障判定方法、コンピュータプログラム
JP2011146472A (ja) 2010-01-13 2011-07-28 Toshiba Corp 太陽光発電システム
JP2011187807A (ja) * 2010-03-10 2011-09-22 Toshiba Corp 太陽光発電システム
JP2012191000A (ja) * 2011-03-10 2012-10-04 Mitsubishi Electric Corp 診断装置、太陽光発電システム及び診断方法
JP2013055132A (ja) * 2011-09-01 2013-03-21 Hitachi Ltd 太陽光発電システムの故障診断方法
JP2013065797A (ja) * 2011-09-20 2013-04-11 Tokyo Univ Of Science 太陽電池アレイの診断装置、パワーコンディショナ、太陽電池アレイの診断方法、及びプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068690A (ja) * 2013-09-27 2015-04-13 株式会社日立製作所 太陽光発電システムの故障診断システム及び故障診断方法
US10491154B2 (en) 2015-07-10 2019-11-26 Hitachi Systems, Ltd Solar power generation examination system and solar power generation examination method
JP2018126006A (ja) * 2017-02-02 2018-08-09 宮崎県 電流センサおよび電流測定装置並びに太陽電池ストリング用電流測定システム

Also Published As

Publication number Publication date
US9831827B2 (en) 2017-11-28
JPWO2015022728A1 (ja) 2017-03-02
EP3035393B1 (en) 2018-06-27
EP3035393A1 (en) 2016-06-22
JP6012874B2 (ja) 2016-10-25
EP3035393A4 (en) 2017-03-01
US20160218668A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6012874B2 (ja) 太陽光発電検査システムおよび太陽光発電検査方法
JP6209412B2 (ja) 太陽光発電システムの故障診断システム及び故障診断方法
Bastidas-Rodríguez et al. Model-based degradation analysis of photovoltaic modules through series resistance estimation
US9506971B2 (en) Failure diagnosis method for photovoltaic power generation system
US10340849B2 (en) Diagnosis system and diagnosis method for photovoltaic power generation system
US10312858B2 (en) Solar power generation system and failure diagnosis method therefor
JP6310948B2 (ja) 太陽電池検査システムおよび太陽電池検査方法
US10491154B2 (en) Solar power generation examination system and solar power generation examination method
Li et al. A fast MPPT-based anomaly detection and accurate fault diagnosis technique for PV arrays
US9837957B2 (en) Diagnostic method for solar power system and monitoring device
Sarikh et al. Implementation of a plug and play IV curve tracer dedicated to characterization and diagnosis of PV modules under real operating conditions
US10742166B2 (en) Method for the electrical characterization of a photovoltaic cell
JP6172530B2 (ja) 太陽光発電システムの異常診断方法
JP6408864B2 (ja) 太陽光パネルの特性測定方法およびその装置
JP2015099858A (ja) 異常判定装置
JP6354946B2 (ja) 太陽光発電システムの異常診断方法
Navid et al. An Online Novel Two-Layered Photovoltaic Fault Monitoring Technique Based Upon The Hybrid Parameters
JP6277437B2 (ja) 太陽光発電システム
Gosumbonggot et al. Photovoltaic’s Hotspot and Partial Shading Detection Algorithm Using Characteristic Curve’s Analysis
Dalsass et al. Utilization of Inverter Operating Point Shifts as a Quality Assessment Tool for Photovoltaic Systems
JP2011187808A (ja) 太陽光発電システム
JP2024024953A (ja) 太陽光発電システムの検査装置、検査方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013891559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14911787

Country of ref document: US