JP6208897B2 - 二硼化マグネシウム超電導薄膜線材およびその製造方法 - Google Patents

二硼化マグネシウム超電導薄膜線材およびその製造方法 Download PDF

Info

Publication number
JP6208897B2
JP6208897B2 JP2016561451A JP2016561451A JP6208897B2 JP 6208897 B2 JP6208897 B2 JP 6208897B2 JP 2016561451 A JP2016561451 A JP 2016561451A JP 2016561451 A JP2016561451 A JP 2016561451A JP 6208897 B2 JP6208897 B2 JP 6208897B2
Authority
JP
Japan
Prior art keywords
thin film
magnesium diboride
mgb
superconducting thin
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016561451A
Other languages
English (en)
Other versions
JPWO2016084513A1 (ja
Inventor
俊哉 土井
俊哉 土井
滋 堀井
堀井  滋
楠 敏明
敏明 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2016084513A1 publication Critical patent/JPWO2016084513A1/ja
Application granted granted Critical
Publication of JP6208897B2 publication Critical patent/JP6208897B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0856Manufacture or treatment of devices comprising metal borides, e.g. MgB2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/202Permanent superconducting devices comprising metal borides, e.g. MgB2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

本発明は、二硼化マグネシウム(MgB2)超電導線材に関し、特に超電導導体としてMgB2薄膜を用いたMgB2超電導薄膜線材およびその製造方法に関するものである。
MgB2超電導体は、金属系超電導体としては高い臨界温度(Tc=39 K)を有し、液体ヘリウムフリー(例えば10〜20 K)で運転する超電導電磁石を実現しうる超電導材料として期待されている。また、MgB2超電導体を4.2 K運転の超電導マグネットシステム(例えば、核磁気共鳴装置(NMR)、磁気共鳴画像装置(MRI)、磁気浮上式鉄道(Maglev Railway))の超電導電磁石に適用すれば、温度マージン(臨界温度と運転温度との差)を従来よりも大きくできるので、クエンチが生じにくく、熱的安定性の高い超電導マグネットシステムが実現可能となる。
超電導電磁石を構成するための超電導線材は、長尺線材(例えば1 km以上の長さ)であることと、超電導電磁石自身が発生する高磁場中でも高い電流密度を維持できることとの両立が求められる。この観点において、MgB2超電導体自体が比較的新しい材料であり未だ開発途上であることから、MgB2超電導線材は、長尺線材の製造方法と超電導特性の向上との両方で様々な研究開発が行われている。
MgB2超電導線材の研究開発は、従来から、長尺線材を製造することを前提としてパウダー・イン・チューブ法で作製する超電導線材を対象とすることが多かった。パウダー・イン・チューブ(PIT)法とは、原料粉末(Mg(マグネシウム)粉末とB(硼素)粉末との混合粉末またはMgB2粉末、更にはそれらに第三元素を添加した混合粉末)を金属管に充填し、伸線加工した後に、超電導相を生成・焼結するための熱処理(通常600℃以上)を施す方法である。PIT法は長尺線材の製造に有利であるが、PIT法で作製したMgB2超電導線材は一般的に超電導特性の観点で弱点を有する。
一方、ジョセフソン素子などの超電導デバイスの製造方法として、真空プロセス(薄膜プロセス)を利用した方法がある。真空プロセスで作製したMgB2超電導薄膜は、PIT法で作製したMgB2超電導線材に比して、4.2 K磁場中で1桁以上高い臨界電流密度特性を示すという利点を有するが、従来は、真空プロセスであるが故に長尺線材の製造は困難という弱点を有していた。ところが、近年、酸化物超電導体において真空プロセスを利用した長尺線材の製造技術が進展したことにより、MgB2超電導体においても高い臨界電流密度特性を有する薄膜線材が期待されるようになってきた。
MgB2超電導体の超電導特性(例えば、高磁場中の臨界電流密度)を向上させるためには、MgB2相結晶粒の微細化(すなわち結晶粒界の増加)や非超電導相微粒子の分散析出により、磁束ピンニングセンタの密度を向上させることが有効である。超電導特性の向上に関して、種々の技術が報告されている。
例えば、特許文献1(特開2007−314362)には、高真空中において、マグネシウム(Mg)蒸気とホウ素(B)蒸気を基板法線軸に対して傾いた方向から供給することで、MgB2の柱状結晶粒を基板法線に対して傾けて成長させる方法が開示されている。また、基板に対するマグネシウム(Mg)蒸気とホウ素(B)蒸気の供給角度を制御することで、粒界の傾き角度が互いに異なるMgB2柱状結晶粒を含んだ複数の層から成るMgB2超電導薄膜が開示されている。特許文献1によると、広い範囲の印加磁場角度に対して高い臨界電流密度を示すMgB2超電導薄膜を提供できるとされている。
また、特許文献2(特開2004−307256)には、Mg粉末と、B粉末と、元素M(但し、MはTi、Zr及びHfから選ばれた少なくとも1種)の粉末とを、原子比がMg:B:M=1:2:x(0.001≦x≦0.1)となるように混合して得た粉末混合物を成形し、焼結してなるMgB2系超電導体であって、MgB2の結晶粒界に沿って、Mが金属及び/又は硼化物として微細に分散して存在すると共に、その他の不可避的不純物が微細に分散して存在することを特徴とするMgB2系超電導体が開示されている。特許文献2によると、Ti、Zr及び又はHfの元素を添加することにより、従来のMgB2系超電導体よりも高い臨界電流密度を示し、また不可逆磁場も高くなるMgB2系超電導体を提供できるとされている。
特開2007−314362号公報 特開2004−307256号公報
前述したように、真空プロセスで作製したMgB2超電導薄膜は、PIT法で作製したMgB2超電導線材に比して、4.2 K磁場中で1桁以上高い臨界電流密度(Jc)特性を示すことから、20 K磁場中においても良好なJc特性を示すことが期待される。
しかしながら、本発明者等が調査・実験したところ、従来技術の組み合わせで作製したMgB2超電導薄膜は、その20 K磁場中でのJc特性が、4.2 K磁場中のJc特性から期待されるレベルを大きく下回るものであった(詳細は後述する)。すなわち、MgB2超電導薄膜を超電導電磁石用の超電導線材として利用するためには、MgB2超電導薄膜における超電導特性(特に、20 K磁場中でのJc特性)の更なる改善が必要であることが判った。
したがって、本発明の目的は、20 K磁場中においても良好なJc特性を示すMgB2超電導薄膜線材およびその製造方法を提供することにある。
(I)本発明の一態様は、上記目的を達成するため、長尺基材上に二硼化マグネシウム(MgB2)薄膜が形成されたMgB2超電導薄膜線材であって、
前記MgB2薄膜は、前記長尺基材の表面に対してMgB2柱状結晶粒が密接・林立する微細組織を有し、かつ30 K以上の臨界温度を示し、
前記MgB2柱状結晶粒の粒界領域には、所定の遷移金属元素が分散・偏析しており、
前記所定の遷移金属元素は、体心立方格子構造を有する元素であることを特徴とするMgB2超電導薄膜線材を提供する。
(II)本発明の他の一態様は、上記目的を達成するため、MgB2超電導薄膜線材の製造方法であって、
長尺基材上に、前記長尺基材の表面に対してMgB2柱状結晶粒が密接・林立する微細組織を有しかつ30 K以上の臨界温度を示すMgB2薄膜を形成するMgB2薄膜形成工程と、
前記MgB2薄膜の表面および/または前記長尺基材と前記MgB2薄膜との間に、所定の遷移金属元素の層を形成する遷移金属元素層形成工程と、
前記所定の遷移金属元素を前記MgB2柱状結晶粒の粒界領域に選択的に拡散させる遷移金属元素拡散熱処理工程とを有し、
前記所定の遷移金属元素が、体心立方格子構造を有する元素であることを特徴とするMgB2超電導薄膜線材の製造方法を提供する。
本発明によれば、20 K磁場中においても良好なJc特性を示すMgB2超電導薄膜線材およびその製造方法を提供することができる。
従来のMgB2超電導薄膜における臨界電流密度(Jc)と外部磁場(B)との関係の一例を示すグラフである。 臨界温度Tc=33.5 KのMgB2超電導薄膜における臨界電流密度(Jc)と外部磁場(B)との関係の一例を示すグラフである。 本発明に係るMgB2超電導薄膜線材の製造装置におけるMgB2薄膜形成機構の構成例を示す斜視模式図である。 MgB2薄膜形成工程後のMgB2薄膜の断面微細組織の一例を示した走査型電子顕微鏡(SEM)観察像である。 図4Aの模式図である。 MgB2薄膜の表面微細組織の一例を示した原子間力顕微鏡(AFM)位相像である。 遷移金属元素層形成工程後のMgB2薄膜の断面微細組織の一例を示した模式図である。 拡散熱処理工程におけるMgB2薄膜近傍の様子を示した拡大断面模式図である。 超電導安定化層形成工程後のMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。 本発明のMgB2超電導薄膜線材における臨界電流密度(Jc)と外部磁場(B)との関係の一例を示すグラフである。 本発明の第3実施形態に係るMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。 本発明の第4実施形態に係るMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。 本発明の第5実施形態に係るMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。 第5実施形態での拡散熱処理工程におけるMgB2薄膜近傍の様子を示した拡大断面模式図である。 第5実施形態での拡散熱処理工程後のMgB2薄膜の断面微細組織の一例を示した走査型電子顕微鏡(SEM)観察像である。 第5実施形態のMgB2超電導薄膜線材における臨界電流密度(Jc)と外部磁場(B)との関係の一例を示すグラフである。 本発明の第6実施形態に係るMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。
本発明は、前述した本発明に係るMgB2超電導薄膜線材(I)において、以下のような改良や変更を加えることができる。
(i)前記所定の遷移金属元素は、Fe(鉄)またはMn(マンガン)を少なくとも含む。
(ii)前記MgB2薄膜が、複数層の積層構造を有している。
(iii)前記MgB2薄膜の表面に前記遷移金属元素の層が形成されている。
(iv)前記長尺基材と前記MgB2薄膜との間に前記遷移金属元素の層が形成されている。
(v)前記複数層の層間に前記遷移金属元素の層が形成されている。
(vi)前記長尺基材が、Feを主成分とする基材である。
また、本発明は、前述した本発明に係るMgB2超電導薄膜線材の製造方法(II)において、以下のような改良や変更を加えることができる。
(vii)前記所定の遷移金属元素は、FeまたはMnを少なくとも含む。
(viii)前記MgB2薄膜形成工程は、MgB2薄膜の成膜を複数回繰り返して行うことにより、複数層の積層構造を形成する工程である。
(ix)前記MgB2薄膜形成工程における前記成膜の繰り返しの間に、前記遷移金属元素の中間層を形成する遷移金属元素中間層形成工程を更に含む。
(x)前記MgB2薄膜形成工程は、真空中250℃以上300℃以下の温度条件で行われ、前記遷
移金属元素拡散熱処理工程は、真空中300℃以上600℃未満の温度条件で行われる。
(従来技術における問題点、その要因調査および基礎検討)
はじめに、本発明者等は、従来技術の知見をベースにしてMgB2超電導薄膜を作製し、磁場中でのJc特性(Jc−B特性)を測定した。MgB2超電導薄膜の作製は、Mg蒸発源とB蒸発源とを用いた真空多元蒸着法(基材温度220℃)により行い、Jc−B測定は、薄膜表面に垂直方向に磁場を印加して通常の四端子通電法により行った。
図1は、従来のMgB2超電導薄膜における臨界電流密度(Jc)と外部磁場(B)との関係の一例を示すグラフである。図1に示したように、4.2 K中では、外部磁場の影響をほとんど受けず、外部磁場0〜10 Tにおいて106 A/cm2オーダーの高いJc特性を示すことが確認された。一方、20 K中では、外部磁場0 T(自己磁界のみ)においてもJcが約1桁低下しており、外部磁場の増加に伴ってJcが大きく劣化した。結果として、20 K磁場中でのJc特性は、4.2 K磁場中のJc特性から期待されるレベルを大きく下回るものであった。
この要因を調査するために、作製したMgB2超電導薄膜の臨界温度(Tc)を超電導量子干渉計(SQUID)により測定した。その結果、当該MgB2超電導薄膜のTcは、27.5 Kであり、MgB2本来のTc=39 Kよりも大きく低下していることが判った。MgB2超電導薄膜のTcが低下したことにより、測定温度とのマージンが小さくなってJc特性が劣化したものと考えられる。なお、薄膜でTcが低下したことの正確な要因は不明であるが、真空プロセスによる低温成膜や基材上成膜に起因したMgB2結晶構造の不完全性が、その要因の一つとして考えられる。
ここで、4.2 K磁場中で高いJc特性が得られたことを簡単に考察する。測定したMgB2超電導薄膜は、たとえTcが27.5 Kに低下したとしても、4.2 Kの測定温度とは依然として大きなマージンが確保されていたと言える。そのため、4.2 K中測定では、Tc低下の影響を実質的に受けなかったと考えられる。加えて、MgB2超電導薄膜は、真空プロセスの低温成膜に起因した微細結晶粒から構成されており、その結晶粒界密度の高さによって強い磁束ピンニング力が発揮されたものと考えられる。
そこで、MgB2超電導薄膜のTc低下を抑制するため、MgB2超電導薄膜のTcと各種成膜条件との関係を調査・検討したところ、成膜時の基材温度を上昇させることによりTc低下を抑制できることが判った。結果を表1に示す。
Figure 0006208897
次に、これらTcの異なるMgB2超電導薄膜のJc−B測定を行った。図2は、臨界温度Tc=33.5 KのMgB2超電導薄膜における臨界電流密度(Jc)と外部磁場(B)との関係の一例を示すグラフである。図2には、比較として図1のMgB2超電導薄膜のJc−B特性も併せて示した。
図2に示したように、Tc=33.5 Kを有するMgB2超電導薄膜は、4.2 K、20 Kのいずれの温度においても、比較的低い外部磁場側でTc=27.5 KのMgB2超電導薄膜よりも高いJc特性を示した。特に、20 K、外部磁場0 T中でJcが大きく向上しており、20 K中ではTcの影響が大きいことが確認された。一方、比較的高い外部磁場側では、いずれの温度においても、Tc=33.5 Kを有するMgB2超電導薄膜のJcが、Tc=27.5 KのMgB2超電導薄膜のそれを下回る結果になった。
図2の結果について考察する。高磁場側でJcが低下したということは、該超電導薄膜線材の磁束ピンニング力が不十分であったことを意味する。上記実験では、Tc低下の抑制を基材温度の上昇によって行っており、基材温度を高くすることによってMgB2薄膜の結晶粒がより大きく成長したと考えられる。言い換えると、MgB2結晶粒が大きくなって結晶粒界の密度が低下したため、磁束ピンニング力が低下したと考えられる。すなわち、MgB2超電導薄膜に対して更なる磁束ピンニングセンタの導入が必要と考えられた。
この実験結果を受けて、磁束ピンニングセンタを導入すべくMg、B以外の第三元素(従来技術でJc特性向上に効果があると言われているもの)を共蒸着法により添加したMgB2超電導薄膜を別途作製し、Jc−B測定を行った。その結果、得られたMgB2超電導薄膜は、試料によるばらつきが非常に大きく、四端子通電法による測定に適さないものであった。その要因としては、MgB2相の生成自体が阻害されたり(MgB2相の生成率が低下したり)、Tcが著しく低下したりした可能性が考えられた。Jc−B測定に供するような短尺試料(30 mm程度)でばらつきが大きかったことから、当該手法による長尺薄膜線材は、実現困難と思われた。
上記の調査・実験・考察から、20 K磁場中においても良好なJc特性を示すMgB2超電導薄膜線材を得るためには、MgB2薄膜のTc低下をできるだけ抑制すること、およびMgB2相生成を阻害せずに磁束ピンニングセンタの密度を向上させることが重要であるという指針を得た。また、磁束ピンニングセンタとして第三元素による非超電導相微粒子を導入しようとする場合、共蒸着法による第三元素の単純添加は好ましくないという指針を得た。
本発明者等は、超電導特性の向上に適した微細構造を有するMgB2超電導薄膜線材を実現するために鋭意検討を重ねた結果、MgB2薄膜を形成した後にMgB2結晶粒の粒界領域に第三元素を選択的に拡散させるという製造方法を見出し、本発明を完成させた。
以下、図面を参照しながら、本発明に係る実施形態を製造手順に沿って説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。また、同義の部材・部位については、同じ符号を付して重複する説明を省略する。
[第1の実施形態]
{MgB2超電導薄膜線材の製造方法}
(製造装置)
図3は、本発明に係るMgB2超電導薄膜線材の製造装置におけるMgB2薄膜形成機構の構成例を示す斜視模式図である。図3では、電子ビーム共蒸着法を利用する例を示した。図3に示したMgB2薄膜形成機構10は、電子銃アレイ11から発射される電子ビーム11aを偏向加速して2つのリニア型原料蒸発源12(Mg蒸発源12a、B蒸発源12b)に照射し、加熱蒸発した原料蒸気13を、リール14に複数ターン巻き回されたテープ状の長尺基材15の上に共蒸着するものである。長尺基材15は、図示しないヒータ(例えば、リール14内に仕込まれたヒータや、長尺基材15を背面から加熱するヒータ)によって所定の温度に加熱され、長尺基材15上に到達したMg原子とB原子とが化合してMgB2薄膜が形成される。MgB2薄膜形成機構10は、その全体が真空チャンバ(図示せず)に収容されている。
また、本発明に係るMgB2超電導薄膜線材の製造装置は、上記のMgB2薄膜形成機構10に加えて、磁束ピンニングセンタとなる遷移金属元素をMgB2薄膜に導入するための遷移金属元素層形成機構(図示せず)と、MgB2薄膜に超電導安定化層を形成するための超電導安定化層形成機構(図示せず)とが、それぞれ別の真空チャンバに収容され、MgB2薄膜形成機構10の真空チャンバと連結されている。
上記では、MgB2薄膜、遷移金属元素層、および超電導安定化層の形成が電子ビーム蒸着法の場合の例を示したが、本発明のMgB2超電導薄膜線材の製造方法は、それに限定されるものではなく、所望のMgB2薄膜、遷移金属元素層、および超電導安定化層が得られる限り、他の公知の成膜方法(例えば、ヒータ加熱による蒸着法、スパッタ法)で各層を形成してもよい。
(長尺基材準備工程)
本工程は、MgB2超電導薄膜線材のベースとなる長尺基材15を用意する工程である。長尺基材15は、超電導線材として利用される用途に応じた長さ、機械的特性(例えば、0.2%耐力)および超電導線材の製造プロセス中の熱処理に耐える耐熱性を有する限り、その材質に特段の限定はない。例えば、ステンレス鋼、ケイ素鋼、Ni(ニッケル)基超合金、Cu(銅)合金などを好ましく用いることができる。後工程の薄膜形成の障害とならないように、使用前には表面洗浄が行われることが望ましい。
(MgB2薄膜形成工程)
本工程は、真空プロセスにより長尺基材15上にMgB2薄膜を形成する工程である。MgB2薄膜形成工程は、真空中250℃以上300℃以下の基材温度条件で行われることが好ましく、280℃以上300℃以下がより好ましい。長尺基材15の温度が250℃未満であると、形成されるMgB2薄膜のTcが30 K未満になり易く、20 K磁場中での良好なJc特性が得られない。一方、長尺基材15の温度を300℃超にすると、蒸気圧の高いMg成分が飛散(再蒸発)し易く、MgB2相の生成率が低下する。
なお、超電導デバイスにおいては、超電導導体のJc特性が高いことが重要であり通電電流値自体は非常に小さいため、超電導薄膜の膜厚はnmオーダ(例えば、10〜500 nm)でもよい。一方、パワー応用(例えば、超電導電磁石、電力ケーブル)の超電導線材では、高いJc特性に加えて大電流通電が可能であることが重要であるため、導体断面積を大きくする必要がある。そのため、パワー応用の超電導薄膜線材の場合、MgB2薄膜の膜厚はμmオーダ(例えば、1〜50μm)とすることが好ましい。
図4Aは、MgB2薄膜形成工程後のMgB2薄膜の断面微細組織の一例を示した走査型電子顕微鏡(SEM)観察像であり、図4Bは、図4Aの模式図であり、図5は、MgB2薄膜の表面微細組織の一例を示した原子間力顕微鏡(AFM)位相像である。図4A、図4Bおよび図5に示したように、本発明におけるMgB2薄膜16は、長尺基材15の表面に対して多数のMgB2柱状結晶粒16aが密接・林立しており、その結果、MgB2柱状結晶粒16aの粒界領域16bが高密度で形成された微細組織を有している。
(遷移金属元素層形成工程)
本工程は、磁束ピンニングセンタとなる遷移金属元素をMgB2薄膜に導入するための前段階として、MgB2薄膜16と接するように遷移金属元素層を真空プロセスにより形成する工程である。図6は、遷移金属元素層形成工程後のMgB2薄膜の断面微細組織の一例を示した模式図である。図6に示したように、MgB2薄膜16の表面に遷移金属元素層17を形成する。
MgB2相に悪影響を及ぼさずに磁束ピンニングセンタとして好適に機能するようにするため、遷移金属元素層17を構成する遷移金属元素は、MgB2相と化学反応しにくく、かつ磁束を引きつけ易い元素であることが好ましい。具体的には、六方晶系のMgB2結晶と化学反応しにくくなるように体心立方格子構造(bcc構造)をとる遷移金属元素であることが好ましく、さらに磁束を引きつけ易くなるように磁性を有する元素であるとより好ましい。
より具体的には、V(バナジウム、融点1910℃)、Mn(マンガン、融点1246℃)、Fe(鉄、融点1538℃)、Nb(ニオブ、融点2477℃)、Mo(モリブデン、融点2623℃)、Ta(タンタル、融点3017℃)、W(タングステン、融点3422℃)が挙げられる。また、MgB2柱状結晶粒16aの粒界領域16bに、それら金属元素を拡散によって適切に分散・偏析させるためには、比較的低融点の金属元素の方が好ましく、この観点から、これらの中でMnとFeとが好ましく、特に磁性金属であるFeを含むことが好ましい。
遷移金属元素層17の厚さとしては、基本的に、粒界領域16bに磁束ピンニングセンタを拡散供給するのに十分な厚さ(例えば1〜10 nm程度)があればよい。ただし、MgB2相と化学反応しにくい性質を活かして、MgB2薄膜16と超電導安定化層などとの化学反応を防止するバリア層として兼用する場合には、後工程の拡散熱処理後に遷移金属元素層17が残存するように100 nm程度とする。よって、遷移金属元素層17の厚さは、1 nm以上100 nm以下が好ましい。
なお、遷移金属元素層17をバリア層として兼用する場合、主に磁束ピンニングセンタの供給層となるMn層やFe層と、主にバリア層となるNb層やMo層やTa層とを積層する構成としてもよい。
(拡散熱処理工程)
本工程は、磁束ピンニングセンタとなる遷移金属元素をMgB2薄膜16の粒界領域16bに導入するための拡散熱処理を行う工程である。図7は、拡散熱処理工程におけるMgB2薄膜近傍の様子を示した拡大断面模式図である。図7に示したように、遷移金属元素層17を構成する遷移金属元素は選択的に粒界領域16bを拡散して(粒界拡散して)、遷移金属元素が分散・偏析した粒界領域16b’が形成される。
拡散熱処理の条件としては、非酸化性雰囲気中(実質的に酸素がほとんど存在しない雰囲気、例えば、真空中や高純度アルゴン中)300℃以上600℃未満が好ましく、330℃以上580℃以下がより好ましく、350℃以上550℃以下が更に好ましい。熱処理温度が300℃未満では、温度が低過ぎて拡散現象自体が実質的に起こらない。一方、熱処理温度が600℃以上になると、MgB2柱状結晶粒16a同士が焼結し始めて粒径が大きくなる(すなわち、粒界密度が減少する)ことに加えて、遷移金属元素のバルク拡散が生じてMgB2相の生成率が低下する。言い換えると、300℃以上600℃未満の熱処理を施すことにより、粒界拡散が優先的に生じるため、MgB2相に悪影響を及ぼすことなく、結晶粒界に沿って遷移金属元素が分散・偏析した粒界領域16b’を形成することができる。
(超電導安定化層形成工程)
本工程は、真空プロセスにより遷移金属元素層17上に超電導安定化層を形成する工程である。図8は、超電導安定化層形成工程後のMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。図8に示したように、遷移金属元素層17の表面に超電導安定化層18を形成する。
超電導安定化層18の材質としては、低電気抵抗金属(例えば、無酸素銅や純アルミニウム)が好ましく用いられる。また、超電導安定化層18の厚さは、超電導線材の安定化設計に基づいて決定されるが、例えば、MgB2薄膜16と同じ厚さ以上とする。
なお、ここでは、拡散熱処理工程の後に超電導安定化層形成工程を行うように説明したが、本発明はそれに限定されるものではなく、遷移金属元素層形成工程と拡散熱処理工程との間に超電導安定化層形成工程を行ってもよい。
以上の工程により、本発明に係るMgB2超電導薄膜線材が完成する。
[第2の実施形態]
{MgB2超電導薄膜線材}
上記の製造方法により、次のようなMgB2超電導薄膜線材を作製した。まず、長尺基材15としてNi基超合金テープを用い、図3に示したような電子ビーム共蒸着法(基材温度280℃)により長尺基材15上にMgB2薄膜16(厚さ10μm)を成膜した。次に、MgB2薄膜16上に遷移金属元素層17としてFe層(厚さ100 nm)を成膜した。次に、真空中540℃で1時間保持する拡散熱処理を施した。最後に、MgB2薄膜16上(元遷移金属元素層17上)に超電導安定化層18としてCu層(厚さ10μm)を成膜した。
作製した本発明に係るMgB2超電導薄膜線材のJc−B測定を行った。図9は、本発明のMgB2超電導薄膜線材における臨界電流密度(Jc)と外部磁場(B)との関係の一例を示すグラフである。図9には、比較として図1〜2のMgB2超電導薄膜のJc−B特性も併せて示した。
図9に示したように、本発明のMgB2超電導薄膜線材は、4.2 K、20 Kのいずれの温度、外部磁場範囲(0〜6 T)において、図1〜2のMgB2超電導薄膜よりも高いJc特性を示した。特に、高い外部磁場側でのJc向上が顕著であり、結晶粒界以外の磁束ピンニングセンタが導入されたことが実証された。
また、当該MgB2超電導薄膜線材の臨界温度を測定したところ、Tc=34.7 Kとなっており、図2のMgB2超電導薄膜のそれ(Tc=33.5 K)よりも更に向上していた。これは、拡散熱処理を行うことによって、MgB2薄膜への磁束ピンニングセンタの導入に加えて、MgB2柱状結晶粒16aの結晶性が向上したためと考えられる。
これらの結果から、本発明のMgB2超電導薄膜線材は、Tc低下の抑制と、結晶粒界以外の磁束ピンニングセンタの導入とが同時に達成され、20 K磁場中においても良好なJc特性を示すことが確認された。
[第3の実施形態]
{MgB2超電導薄膜線材}
図10は、本発明の第3実施形態に係るMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。図10に示したように、第3実施形態のMgB2超電導薄膜線材は、長尺基材15’がFeを主成分とする基材(例えば、ケイ素鋼板)で構成されている。本実施形態では、長尺基材15’がFe成分を多く含むことから、拡散熱処理工程において長尺基材15’からFe成分が粒界領域16bに粒界拡散することができる。その結果、磁束ピンニングセンタとなる遷移金属元素の拡散距離が半分ですむことから、拡散熱処理時間を1/2〜1/4に短縮できる利点がある。
[第4の実施形態]
{MgB2超電導薄膜線材およびその製造方法}
図11は、本発明の第4実施形態に係るMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。図11に示したように、第4実施形態のMgB2超電導薄膜線材は、長尺基材15とMgB2薄膜16との間に遷移金属元素層17bを有する点において第2実施形態のMgB2超電導薄膜線材(図8参照)と異なり、他を同じとするものである。本実施形態は、長尺基材15がMgB2薄膜16と化学反応し易い成分(例えば、Cu成分やAl成分)を含有する場合に、好適な実施形態である。
本実施形態での製造方法は、第1実施形態の製造方法に対して、長尺基材準備工程とMgB2薄膜形成工程との間に遷移金属元素層形成工程を追加すればよい。また、第3実施形態と同様に、磁束ピンニングセンタとなる遷移金属元素の拡散距離が半分ですむことから、拡散熱処理時間を1/2〜1/4に短縮できる利点もある。
[第5の実施形態]
{MgB2超電導薄膜線材およびその製造方法}
前述したように、パワー応用(例えば、超電導電磁石、電力ケーブル)の超電導線材では、高いJc特性に加えて大電流通電が可能であることが重要であるため、導体断面積を大きくする必要がある。そのため、パワー応用の超電導薄膜線材の場合、MgB2薄膜の膜厚はμmオーダ(例えば、1〜50μm)とすることが好ましい。
しかしながら、真空プロセスにより作製した薄膜であっても、一般的に、膜厚が厚くなるにつれて結晶粒径が大きくなる傾向があるため(すなわち、結晶粒界密度が低下するため)、膜厚の厚いMgB2薄膜は、Jc特性が低下する傾向がある。また、パワー応用の超電導線材の場合、種々の方向から外部磁場が掛かることから、外部磁場方向によるJc特性の変動は小さいことが好ましい。第5実施形態に掛かるMgB2超電導薄膜線材は、そのような課題を解決するのに好適な実施形態である。
図12は、本発明の第5実施形態に係るMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。図12に示したように、第5実施形態のMgB2超電導薄膜線材は、MgB2薄膜16が複数層の積層構造(16-1〜16-4)を有し、その結果、各MgB2柱状結晶粒16aが、長尺基材15表面に垂直方向の粒界領域16bに加えて、長尺基材15表面に平行方向の粒界領域16cを有するという特徴がある。他は、第2実施形態のMgB2超電導薄膜線材(図8参照)と同様である。
本実施形態の製造方法は、MgB2薄膜形成工程において、MgB2薄膜の成膜を複数回繰り返して行うところに特徴がある。一例としては、図3のMgB2薄膜形成機構10において、まず、長尺基材15を一方向に走行させながら長尺基材15の全長に亘ってMgB2薄膜16-1を成膜する。次に、MgB2薄膜16-1を成膜した長尺基材15を先と反対方向に走行させて長尺基材15の全長に亘ってMgB2薄膜16-2を成膜する。以下、これを繰り返すことにより、複数層の積層構造(16-1〜16-4)を形成することができる。
なお、本方法により複数層の積層構造が形成できるメカニズムは、成膜の間欠期間中にMgB2薄膜形成機構10内にわずかに残留するO2(酸素)ガスとMgB2薄膜表面とが化合して極薄の酸化物皮膜(例えば、MgO皮膜)が形成されるためと考えられる。
図13は、第5実施形態での拡散熱処理工程におけるMgB2薄膜近傍の様子を示した拡大断面模式図である。図13に示したように、遷移金属元素層17を構成する遷移金属元素は粒界領域16b,16cを選択的に拡散して(粒界拡散して)、遷移金属元素が分散・偏析した粒界領域16b’,16c’が形成される。
図14は、第5実施形態での拡散熱処理工程後のMgB2薄膜の断面微細組織の一例を示した走査型電子顕微鏡(SEM)観察像である。図14に示したように、MgB2薄膜16における複数層の積層構造(16-1〜16-4)、MgB2柱状結晶粒16a、遷移金属元素が分散・偏析した粒界領域16b’,16c’が確認できる。図14のMgB2薄膜16は、積層構造各層16-1〜16-4の厚さを1.25μm(合計厚さ5μm)とした例である。
本実施形態のMgB2超電導薄膜線材のJc−B測定(通常の四端子通電法)を行った。ここのJc−B測定では、4.2 Kと20 Kのそれぞれにおいて、薄膜表面に垂直方向に磁場を印加した場合と薄膜表面に水平方向に磁場を印加した場合とで行った。図15は、第5実施形態のMgB2超電導薄膜線材における臨界電流密度(Jc)と外部磁場(B)との関係の一例を示すグラフである。
図15に示したように、本実施形態のMgB2超電導薄膜線材は、4.2 K、20 Kのいずれの温度においても、垂直磁場印加と水平磁場印加とでJc−B特性の差異が小さいことが確認された。これは、遷移金属元素が分散・偏析した粒界領域16b’に加えて、同じく遷移金属元素が分散・偏析した粒界領域16c’が形成されていることに起因すると考えられる。
[第6の実施形態]
{MgB2超電導薄膜線材およびその製造方法}
図16は、本発明の第6実施形態に係るMgB2超電導薄膜線材の断面微細組織の一例を示した模式図である。図16に示したように、第6実施形態のMgB2超電導薄膜線材は、MgB2薄膜16の複数層の積層構造16-1〜16-4の間に遷移金属元素中間層17cを有する点において第5実施形態のMgB2超電導薄膜線材(図12参照)と異なり、他を同じとするものである。
本実施形態での製造方法は、第5実施形態の製造方法に対して、MgB2薄膜形成工程におけるMgB2薄膜成膜の繰り返しの間に、遷移金属元素中間層17cを形成する遷移金属元素中間層形成工程を追加すればよい。本実施形態では、磁束ピンニングセンタとなる遷移金属元素の拡散距離が第3実施形態の場合よりも更に短くなることから、拡散熱処理時間を更に短縮できる利点もある。
以上説明したように、本発明に係るMgB2超電導薄膜線材は、4.2 K磁場中および20 K磁場中のいずれにおいても良好なJc特性を示すことから、NMR、MRI、Maglev Railway等の超電導マグネットシステムの超電導線材として好適に利用できる。
上述した実施形態は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。
10…MgB2薄膜形成機構、11…電子銃アレイ、11a…電子ビーム、
12…リニア型原料蒸発源、12a…Mg蒸発源、12b…B蒸発源、13…原料蒸気、
14…リール、15,15’…長尺基材、
16,16-1,16-2,16-3,16-4…MgB2薄膜、
16a…MgB2柱状結晶粒、16b,16b’,16c,16c’…粒界領域、
17,17b…遷移金属元素層、17c…遷移金属元素中間層、18…超電導安定化層。

Claims (12)

  1. 長尺基材上に二硼化マグネシウム薄膜が形成された二硼化マグネシウム超電導薄膜線材であって、
    前記二硼化マグネシウム薄膜は、前記長尺基材の表面に対して二硼化マグネシウム柱状結晶粒が密接・林立する微細組織を有し、かつ30 K以上の臨界温度を示し、
    前記二硼化マグネシウム柱状結晶粒の粒界領域には、所定の遷移金属元素が分散・偏析しており、
    前記所定の遷移金属元素は、体心立方格子構造を有する元素であることを特徴とする二硼化マグネシウム超電導薄膜線材。
  2. 請求項1に記載の二硼化マグネシウム超電導薄膜線材において、
    前記所定の遷移金属元素は、鉄またはマンガンを少なくとも含むことを特徴とする二硼化マグネシウム超電導薄膜線材。
  3. 請求項1又は請求項2に記載の二硼化マグネシウム超電導薄膜線材において、
    前記二硼化マグネシウム薄膜が、複数層の積層構造を有していることを特徴とする二硼化マグネシウム超電導薄膜線材。
  4. 請求項3に記載の二硼化マグネシウム超電導薄膜線材において、
    前記複数層の層間に前記遷移金属元素の層が形成されていることを特徴とする二硼化マグネシウム超電導薄膜線材。
  5. 請求項1乃至請求項のいずれかに記載の二硼化マグネシウム超電導薄膜線材において、
    前記二硼化マグネシウム薄膜の表面に前記遷移金属元素の層が形成されていることを特徴とする二硼化マグネシウム超電導薄膜線材。
  6. 請求項1乃至請求項のいずれかに記載の二硼化マグネシウム超電導薄膜線材において、
    前記長尺基材と前記二硼化マグネシウム薄膜との間に前記遷移金属元素の層が形成されていることを特徴とする二硼化マグネシウム超電導薄膜線材。
  7. 請求項乃至請求項6のいずれかに記載の二硼化マグネシウム超電導薄膜線材において、
    前記長尺基材が、鉄を主成分とする基材であることを特徴とする二硼化マグネシウム超電導薄膜線材。
  8. 二硼化マグネシウム超電導薄膜線材の製造方法であって、
    長尺基材上に、前記長尺基材の表面に対して二硼化マグネシウム柱状結晶粒が密接・林立する微細組織を有しかつ30 K以上の臨界温度を示す二硼化マグネシウム薄膜を形成する二硼化マグネシウム薄膜形成工程と、
    前記二硼化マグネシウム薄膜の表面および/または前記長尺基材と前記二硼化マグネシウム薄膜との間に、所定の遷移金属元素の層を形成する遷移金属元素層形成工程と、
    前記所定の遷移金属元素を前記二硼化マグネシウム柱状結晶粒の粒界領域に選択的に拡散させる遷移金属元素拡散熱処理工程とを有し、
    前記所定の遷移金属元素が、体心立方格子構造を有する元素であることを特徴とする二硼化マグネシウム超電導薄膜線材の製造方法。
  9. 請求項8に記載の二硼化マグネシウム超電導薄膜線材の製造方法において、
    前記所定の遷移金属元素は、鉄またはマンガンを少なくとも含むことを特徴とする二硼化マグネシウム超電導薄膜線材の製造方法。
  10. 請求項8又は請求項9に記載の二硼化マグネシウム超電導薄膜線材の製造方法において、
    前記二硼化マグネシウム薄膜形成工程は、二硼化マグネシウム薄膜の成膜を複数回繰り返して行うことにより、複数層の積層構造を形成する工程であることを特徴とする二硼化マグネシウム超電導薄膜線材の製造方法。
  11. 請求項10に記載の二硼化マグネシウム超電導薄膜線材の製造方法において、
    前記二硼化マグネシウム薄膜形成工程における前記成膜の繰り返しの間に、前記遷移金属元素の中間層を形成する遷移金属元素中間層形成工程を更に含むことを特徴とする二硼化マグネシウム超電導薄膜線材の製造方法。
  12. 請求項8乃至請求項11のいずれかに記載の二硼化マグネシウム超電導薄膜線材の製造方法において、
    前記二硼化マグネシウム薄膜形成工程は、真空中250℃以上300℃以下の温度条件で行われ、
    前記遷移金属元素拡散熱処理工程は、真空中300℃以上600℃未満の温度条件で行われることを特徴とする二硼化マグネシウム超電導薄膜線材の製造方法。
JP2016561451A 2014-11-28 2015-10-16 二硼化マグネシウム超電導薄膜線材およびその製造方法 Expired - Fee Related JP6208897B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014241631 2014-11-28
JP2014241631 2014-11-28
PCT/JP2015/079249 WO2016084513A1 (ja) 2014-11-28 2015-10-16 二硼化マグネシウム超電導薄膜線材およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2016084513A1 JPWO2016084513A1 (ja) 2017-08-31
JP6208897B2 true JP6208897B2 (ja) 2017-10-04

Family

ID=56074091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016561451A Expired - Fee Related JP6208897B2 (ja) 2014-11-28 2015-10-16 二硼化マグネシウム超電導薄膜線材およびその製造方法

Country Status (3)

Country Link
US (1) US10460862B2 (ja)
JP (1) JP6208897B2 (ja)
WO (1) WO2016084513A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021119554A (ja) * 2018-03-16 2021-08-12 株式会社日立製作所 超電導薄膜線材及び超電導薄膜線材の製造方法
CN111696721B (zh) * 2020-06-05 2021-08-20 上海超导科技股份有限公司 适用于大规模生产的钉扎中心引入结构、方法及超导带材
AU2022289736A1 (en) 2021-06-11 2024-02-01 Caleb JORDAN System and method of flux bias for superconducting quantum circuits
EP4407335A1 (en) 2023-01-24 2024-07-31 Koninklijke Philips N.V. Shimming a magnetic resonance imaging system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238913A (en) * 1992-03-30 1993-08-24 The United States Of America As Represented By The United States Department Of Energy Superconducting microcircuitry by the microlithgraphic patterning of superconducting compounds and related materials
US7018954B2 (en) * 2001-03-09 2006-03-28 American Superconductor Corporation Processing of magnesium-boride superconductors
US6946428B2 (en) * 2002-05-10 2005-09-20 Christopher M. Rey Magnesium -boride superconducting wires fabricated using thin high temperature fibers
JP4350407B2 (ja) 2003-04-07 2009-10-21 財団法人国際超電導産業技術研究センター 臨界電流密度及び不可逆磁界の高いMgB2系超電導体
JP4495426B2 (ja) * 2003-08-29 2010-07-07 独立行政法人科学技術振興機構 超伝導膜およびその製造方法
US20060093861A1 (en) * 2004-10-29 2006-05-04 The Penn State Research Foundation Method for producing doped, alloyed, and mixed-phase magnesium boride films
JP5041734B2 (ja) 2006-05-24 2012-10-03 株式会社日立製作所 二ホウ化マグネシウム超電導薄膜の作製方法および二ホウ化マグネシウム超電導薄膜
US20080017279A1 (en) * 2006-07-24 2008-01-24 Venkataramani Venkat Subramani Wires made of doped magnesium diboride powders and methods for making the same
US9356219B2 (en) * 2009-10-02 2016-05-31 Ambature, Inc. High temperature superconducting materials and methods for modifying and creating same

Also Published As

Publication number Publication date
WO2016084513A1 (ja) 2016-06-02
US10460862B2 (en) 2019-10-29
JPWO2016084513A1 (ja) 2017-08-31
US20170301444A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6208897B2 (ja) 二硼化マグネシウム超電導薄膜線材およびその製造方法
WO2013002372A1 (ja) Re123系超電導線材およびその製造方法
JP2013152784A (ja) MgB2超電導線材の前駆体及びその製造方法
Krinitsina et al. MgB 2-Based Superconductors: Structure and Properties
JP6751369B2 (ja) MgB2超電導薄膜線材およびその製造方法
JP2008066168A (ja) MgB2超伝導線材及びその製造法
JP6826344B2 (ja) 強磁性トンネル接合体の製造方法及び強磁性トンネル接合体
JP2008130255A (ja) 超電導線材、およびその製造方法
JP5736522B2 (ja) Re123系超電導線材およびその製造方法
JP2017107649A (ja) 二硼化マグネシウム超電導薄膜線材およびその製造方法
Ranot et al. A review on the understanding and fabrication advancement of MgB 2 thin and thick films by HPCVD
JP2011009106A (ja) 酸化物超電導導体用基材及び酸化物超電導導体
JP2012022882A (ja) 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
JP6155402B2 (ja) 超電導線材及びその製造方法
JP7398663B2 (ja) 超電導線材及び超電導線材の製造方法
JP6276523B2 (ja) 酸化物超電導導体及び酸化物超電導導体の製造方法
JP6187711B1 (ja) 酸化物超電導線材
JP2011214124A (ja) 合金超伝導体生成方法、及び合金超伝導体
JP2011249162A (ja) 超電導線材の製造方法
JP3883665B2 (ja) 金属基板上への中間挿入層の作製方法
JP5481180B2 (ja) 酸化物超電導導体用基材及び酸化物超電導導体
JPWO2016132522A1 (ja) 二ホウ化マグネシウム超伝導薄膜線材の製造方法および二ホウ化マグネシウム超伝導薄膜線材
Collings et al. Development and Properties of Advanced Internal Magnesium Infiltration (AIMI) Processed MgB2 Wires
Li Connectivity, Doping, and Anisotropy in Highly Dense Magnesium Diboride (MgB2)
JP2013012354A (ja) 超電導線の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170907

R150 Certificate of patent or registration of utility model

Ref document number: 6208897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees