JP6206687B2 - 光起電力装置及びその製造方法 - Google Patents

光起電力装置及びその製造方法 Download PDF

Info

Publication number
JP6206687B2
JP6206687B2 JP2016038578A JP2016038578A JP6206687B2 JP 6206687 B2 JP6206687 B2 JP 6206687B2 JP 2016038578 A JP2016038578 A JP 2016038578A JP 2016038578 A JP2016038578 A JP 2016038578A JP 6206687 B2 JP6206687 B2 JP 6206687B2
Authority
JP
Japan
Prior art keywords
type
interface
semiconductor substrate
oxygen
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016038578A
Other languages
English (en)
Other versions
JP2016105511A (ja
Inventor
歩 矢野
歩 矢野
章義 大鐘
章義 大鐘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016038578A priority Critical patent/JP6206687B2/ja
Publication of JP2016105511A publication Critical patent/JP2016105511A/ja
Application granted granted Critical
Publication of JP6206687B2 publication Critical patent/JP6206687B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、光起電力装置及びその製造方法に関する。
結晶系シリコン基板及びドープされた非晶質シリコン層との間に実質的に真性である非晶質シリコン層を形成した光起電力装置が知られている。
このような構造を有する光起電力装置の出力特性を向上させる手段として、シリコン基板と真性非晶質シリコン層との界面部分の酸素濃度を高くした構造が開示されている(特許文献1参照)。また、真性非晶質シリコン層中において酸素濃度に勾配を設け、ドープされた非晶質シリコン層側の酸素濃度を高くした構造が開示されている(特許文献2参照)。
一方、真性非晶質シリコン層によるシリコン基板の表面の不活性化技術において、真性非晶質シリコン層全体に適切な量の酸素を含有させ、層内に微小な非晶質酸化シリコン領域を形成することにより、不活性化が促進されると報告されている(非特許文献1参照)。さらに、真性非晶質シリコン層全体に適切な量の酸素を含有させると、光起電力装置の出力特性が向上すると報告されている(非特許文献2参照)。
特許第4070483号公報 特開2008−235400号公報
J.Appl.Phys. 107,014504(2010) Appl.Phys.Lett. 91,133508(2007)
ところで、非晶質シリコン層に過度な酸素が取り込まれると不純物として作用して欠陥を形成したり、高抵抗領域を形成したりするおそれがあり、含有される酸素濃度を最適化することが望まれる。しかしながら、真性非晶質シリコン層内における最適な酸素濃度プロファイル、特にシリコン基板と真性非晶質シリコン層との界面側における酸素濃度については十分に検討されていない。
また、半導体基板と接合される半導体層の導電型(p型,n型)によって、酸素による欠陥の不活性化の度合いが異なるので、導電型に応じた適切な酸素濃度プロファイルを実現することが望まれる。
本発明は、第一表面及び第二表面を備えた結晶系半導体基板と、前記結晶系半導体基板の前記第一表面上に形成され第1の導電型のドーパントを含む第1の非晶質半導体層と、前記結晶系半導体基板の前記第二表面上に形成され第2の導電型のドーパントを含む第2の非晶質半導体層と、を備える光電変換装置であって、前記結晶系半導体基板と前記第1の非晶質半導体層との界面は、10 21 cm 3 オーダーの酸素を含む第1の酸化界面であって、前記結晶系半導体基板と前記第2の非晶質半導体層との界面は、10 21 cm 3 オーダーの酸素を含む第2の酸化界面であって、前記第1の非晶質半導体層は、前記第1の酸化界面から膜厚方向に5nm以下の範囲に、膜厚方向に沿って対数の勾配プロファイルが少なくとも二つのピークを有するように濃度が減少する酸素濃度プロファイルを有し、前記対数の勾配プロファイルの少なくとも二つのピークよりも前記第1の酸化界面に近い第1の高濃度酸素領域を備え、前記第2の非晶質半導体層は、前記第2の酸化界面から膜厚方向に5nm以下の範囲に前記第1の高濃度酸素領域よりも酸素濃度が低い第2の高濃度酸素領域を備え、る光電変換装置である。
本発明は、上記の光電変換装置の製造方法であって、結晶系シリコンからなる半導体基板の表面にテクスチャ構造を形成する第1の工程と、前記半導体基板の第一表面を酸化処理して第1の酸化界面を形成する第2の工程と、前記第1の酸化界面上に第1の導電型のドーパントを含む第1の非晶質半導体層を形成する第3の工程と、前記半導体基板の第二表面を酸化処理して第2の酸化界面を形成する第4の工程と、前記第2の酸化界面上に第2の導電型のドーパントを含む第2の非晶質半導体層を形成する第5の工程と、を含む光電変換装置の製造方法であって、前記酸化処理は、大気雰囲気中に所定時間放置する方法、オゾン水処理、過酸化水素水処理、オゾナイザー処理から選択されるいずれかの方法を用いて実施される、光電変換装置の製造方法である。
本発明によれば、光起電力装置における光電変換効率を高めることができる。
本発明に係る実施の形態における光起電力装置の断面図である。 本発明に係る実施の形態における光起電力装置の酸素濃度プロファイルを示す図である。 本発明に係る実施の形態における光起電力装置の酸素濃度の対数表示の勾配プロファイルを示す図である。
本発明の実施の形態における光起電力装置100は、図1の断面図に示すように、半導体基板10、i型非晶質層12i、p型非晶質層12p、透明導電層14、i型非晶質層16i、n型非晶質層16n、透明導電層18及び集電極20,22を含んで構成される。
以下、光起電力装置100の製造方法を示しつつ、光起電力装置100の構造を説明する。なお、表1に光起電力装置100における各非晶質層の形成条件の例を示す。なお、本実施形態に用いた各種成膜条件は一例であり、使用する装置によって適宜変更し、最適化を行うべきものである。
Figure 0006206687
半導体基板10は、結晶系の半導体材料から構成される。半導体基板10は、n型又はp型の導電型の結晶性半導体基板とすることができる。半導体基板10は、例えば、単結晶シリコン基板、多結晶シリコン基板、砒化ガリウム基板(GaAs)、インジウム燐基板(InP)等を適用することができる。半導体基板10は、入射された光を吸収することで、光電変換により電子及び正孔のキャリア対を発生させる。以下では、半導体基板10としてn型のシリコン単結晶基板を用いた例を説明する。
半導体基板10は、洗浄後に成膜槽内に設置される。半導体基板10の洗浄は、フッ化水素酸水溶液(HF水溶液)やRCA洗浄液を用いて行うことができる。また、水酸化カリウム水溶液(KOH水溶液)等のアルカリ性エッチング液を用いて、半導体基板10の表面や裏面にテクスチャ構造を形成することも好適である。この場合、(100)面を有する半導体基板10をKOH水溶液で異方性エッチングすることによって、ピラミッド型の(111)面を有するテクスチャ構造を形成することができる。また、i型非晶質層12iの成膜前に所定の酸化処理をして、酸化界面を形成してもよい。所定の酸化処理としては、大気や湿度制御された雰囲気中に所定時間放置するか、オゾン水処理、過酸化水素水処理、オゾナイザー処理などを適宜使用することが出来る。
半導体基板10の表面上に非晶質の半導体層であるi型非晶質層12iが形成される。例えば、i型非晶質層12iは、水素を含むアモルファスの真性シリコン半導体層である。ここで、真性の半導体層とは、含有されるp型又はn型のドーパントの濃度が5×1018/cm以下である、または、p型及びn型のドーパントが同時に含まれる場合にはp型又はn型のドーパント濃度の差が5×1018/cm以下である半導体層をいう。i型非晶質層12iは、光の吸収をできるだけ抑えられるように薄くし、一方で半導体基板10の表面が十分にパッシベーションされる程度に厚くすることが好適である。i型非晶質層12iの膜厚は、1nm以上25nm以下とし、好ましくは5nm以上10nm以下とすることが好適である。
i型非晶質層12iは、プラズマ化学気相成長法(PECVD)、Cat−CVD(Catalytic Chemical Vapor Deposition)、スパッタリング法等により形成することができる。PECVDは、RFプラズマCVD法、周波数の高いVHFプラズマCVD法、さらにはマイクロ波プラズマCVD法などいずれの手法を用いても良い。本実施例では、RFプラズマCVD法を用いる場合について説明する。例えば、表1に示すように、シラン(SiH)等のケイ素含有ガスを水素で希釈して供給し、平行平板電極等にRF高周波電力を印加してプラズマ化して、加熱された半導体基板10の成膜面に供給することによって形成することができる。このとき、本実施の形態では、i型非晶質層12iの成膜初期において酸素(O)を含有するガスを同時に導入して、半導体基板10とi型非結晶層12iとの界面付近に酸素を導入する。酸素(O)を含有するガスは、例えば、炭酸(CO)ガスや酸素(O)が挙げられる。成膜時の基板温度は150℃以上250℃以下、RF電力密度は1mW/cm以上10mW/cm以下とすることができる。
ここで、図2に示すように、i型非晶質層12iの膜厚方向へ向けて半導体基板10とi型非晶質層12iとの界面近傍から階段状に濃度が減少する酸素濃度プロファイルとする。例えば、i型非晶質層12iの成膜時において、酸素含有ガスの流量を段階的に変化させることにより、半導体基板10との界面側にのみ酸素を多く含有させた高濃度酸素領域を形成する。高濃度酸素領域における酸素濃度は約2×1020/cm以上1×1021/cm以下とし、i型非晶質層12iの高濃度酸素領域以外の領域における酸素濃度は約1×1020/cm未満とすることが好適である。また、高濃度酸素領域において、膜厚方向に沿って酸素濃度が少なくとも1段階以上の階段状のプロファイルを有することが好適である。半導体基板10からこの酸素濃度プロファイルと光起電力装置の特性については後述する。
なお、半導体膜中の各元素の濃度は、二次イオン質量分析法(SIMS)等で測定することができる。半導体基板10にテクスチャ構造を設けた場合、テクスチャによる膜厚方向への分解能が低下しない方法で膜中の各元素の濃度を測定すればよい。
p型非晶質層12pは、p型の導電型のドーパントを含む非晶質半導体膜からなる層である。例えば、p型非晶質層12pは、水素を含有するアモルファスシリコンから形成される。p型非晶質層12pは、i型非晶質層12iよりも膜中のp型のドーパントの濃度が高くされる。例えば、p型非晶質層12pは、p型のドーパントの濃度を1×1020/cm以上とすることが好適である。p型非晶質層12pの膜厚は、光の吸収をできるだけ抑えられるように薄くすることが好適である一方、半導体基板10内で発生したキャリアがpn接合部で効果的に分離され、かつ、発生したキャリアが透明導電層14まで収集される程度に厚くすることが好適である。例えば、1nm以上10nm以下とすることが好適である。
p型非晶質層12pも、PECVD、Cat−CVD、スパッタリング法等により形成することができる。PECVDは、RFプラズマCVD法を適用することができる。例えば、表1に示すように、シラン(SiH)等のケイ素含有ガス及びジボラン(B)等のp型ドーパント含有ガスを水素で希釈して供給し、平行平板電極等にRF高周波電力を印加してプラズマ化して、加熱された半導体基板10のi型非晶質層12i上に供給することによって形成することができる。なお、表1では、ジボラン(B)は1%の水素希釈とした。成膜時の基板温度は150℃以上250℃以下、RF電力密度は1mW/cm以上10mW/cm以下とすることができる。
i型非晶質層16iは、半導体基板10の裏面上に形成される。すなわち、i型非晶質層12i及びp型非晶質層12pを形成後、半導体基板10の表裏を反転させ、半導体基板10の裏面上に形成される。例えば、i型非晶質層16iは、水素を含むアモルファスの真性シリコン半導体層とされる。i型非晶質層16iの膜厚は、i型非晶質層12iと同様に、1nm以上25nm以下であり、好ましくは5nm以上10nm以下である。
i型非晶質層16iは、PECVD、Cat−CVD、スパッタリング法等により形成することができる。PECVDは、RFプラズマCVD法を適用することできる。例えば、表1に示すように、シラン(SiH)等のケイ素含有ガスを水素で希釈して供給し、平行平板電極等にRF高周波電力を印加してプラズマ化して、加熱された半導体基板10の成膜面に供給することによって形成することができる。成膜時の基板温度は、i型非晶質層12iと同様に、150℃以上250℃以下、RF電力密度は1mW/cm以上10mW/cm以下とすることができる。
i型非晶質層16iにおいても、i型非晶質層12iと同様に、成膜初期において酸素(O)を含有するガスを同時に導入して、半導体基板10とi型非結晶層12iとの界面付近に酸素を導入することが好適である。
ここで、図2に示すように、i型非晶質層16iの膜厚方向へ向けて半導体基板10とi型非晶質層16iとの界面近傍から階段状に濃度が減少する酸素濃度プロファイルとする。例えば、i型非晶質層16iの成膜時において、酸素含有ガスの流量を段階的に変化させることにより、半導体基板10との界面側にのみ酸素を多く含有させた高濃度酸素領域を形成する。
i型非晶質層16iの高濃度酸素領域は、i型非晶質層12iの高濃度酸素領域より酸素濃度を低くする。具体的には、i型非晶質層16iの高濃度酸素領域における酸素濃度は約1×1020/cm以上9×1021/cm以下とする。また、i型非晶質層16iの高濃度酸素領域以外の領域における酸素濃度は約1×1020/cm未満とすることが好適である。また、高濃度酸素領域において、膜厚方向に沿って酸素濃度が少なくとも1段階以上の階段状のプロファイルを有することが好適である。半導体基板10からこの酸素濃度プロファイルと光起電力装置の特性については後述する。
n型非晶質層16nは、n型の導電型のドーパントを含む非晶質半導体膜からなる層である。例えば、n型非晶質層16nは、水素を含有するアモルファスシリコンから形成される。n型非晶質層16nは、i型非晶質層16iよりも膜中のn型のドーパントの濃度が高くされる。例えば、n型非晶質層16nは、n型のドーパントの濃度を1×1020/cm以上とすることが好適である。n型非晶質層16nの膜厚は、光の吸収をできるだけ抑えられるように薄くすることが好適である一方、半導体基板10内で発生したキャリアをBSF(Back Surface Field)構造により効果的に分離しつつ、発生したキャリアを透明導電層18で効率よく収集される程度に厚くすることが好適である。例えば、1nm以上10nm以下とすることが好適である。
n型非晶質層16nも、PECVD、Cat−CVD、スパッタリング法等により形成することができる。PECVDは、RFプラズマCVD法を適用することができる。例えば、表1に示すように、シラン(SiH)等のケイ素含有ガス及びホスフィン(PH)等のn型ドーパント含有ガスを水素で希釈して供給し、平行平板電極等にRF高周波電力を印加してプラズマ化して、加熱された半導体基板10のi型非晶質層16i上に供給することによって形成することができる。なお、表1では、ホスフィン(PH)は2%の水素希釈とした。成膜時の基板温度は150℃以上250℃以下、RF電力密度は1mW/cm以上10mW/cm以下とすることができる。
なお、半導体基板10の表面側を受光面(主として外部から光を導入する面)とする。また、前述の実施形態では表面側のi型非晶質層12iおよびp型非晶質層12pを形成した後、半導体基板10を反転させ、裏面側のi型非晶質層16iおよびn型非晶質層16nを形成するとしたが、これらの形成順序も任意である。
透明導電層14,18は、それぞれp型非晶質層12p及びn型非晶質層16n上に形成される。透明導電層14、18は、例えば、多結晶構造を有する酸化インジウム(In2O3)、酸化亜鉛(ZnO)、酸化錫(SnO2)、または酸化チタン(TiO2)などの金属酸化物を少なくとも一つを含んで構成され、これらの金属酸化物に、錫(Sn)、亜鉛(Zn)、タングステン(W)、アンチモン(Sb)、チタン(Ti)、セリウム(Ce)、ガリウム(Ga)などのドーパントがドープされていても良い。透明導電層14,18は、蒸着法、プラズマ化学気相成長法(PECVD)、スパッタリング法等の薄膜形成方法により形成することができる。透明導電層14,18の膜厚は、透明導電層14,18の屈折率により適宜調整され得るが、本実施形態では70nm以上100nm以下とした。
集電極20,22は、それぞれ透明導電層14,18上に形成される。集電極20,22は、櫛状のフィンガー電極構造とすることが好適である。集電極20,22は、スクリーン印刷法やメッキ法等により形成することができる。集電極20,22は、例えば、銀ペースト等を数10μm程度の厚みに塗布することにより形成される。
<実施例及び比較例1,2>
上記形成方法に沿って、表1に示した条件において、膜厚方向へ向けて半導体基板10とi型非晶質層12iとの界面近傍から階段状に濃度が減少する酸素濃度プロファイルを有するi型非晶質層12iと、膜厚方向へ向けて半導体基板10とi型非晶質層16iとの界面近傍から階段状に濃度が減少する酸素濃度プロファイルを有するi型非晶質層16iと、を有する光起電力装置を実施例とした。このとき、p型非晶質層12p側のi型非晶質層12iを形成する際に、n型非晶質層16n側のi型非晶質層16iを形成する際よりも酸素含有ガスの導入量を多くした。
また、n型非晶質層16n側のi型非晶質層16iの形成時に炭酸ガス等の酸素含有ガスを導入しなかったこと以外は、実施例と同様に形成した光起電力装置を比較例1とした。また、n型非晶質層16n側のi型非晶質層16iを形成する際に、p型非晶質層12p側のi型非晶質層12iを形成する際よりも酸素含有ガスの導入量を多くしたこと以外は、実施例と同様に形成した光起電力装置を比較例2とした。
図2は、実施例における半導体基板10、i型非晶質層12i及びp型非晶質層12pの膜中の酸素原子の濃度プロファイル(以下、p側濃度プロファイルと示す)、及び、実施例及び比較例1,2における半導体基板10、i型非晶質層16i及びn型非晶質層16nの膜中の酸素原子の濃度プロファイル(以下、n側濃度プロファイルと示す)を示す。図2中において、実施例のp側濃度プロファイルを実線で示し、実施例、比較例1,2に対するn側濃度プロファイルを破線、一点鎖線及び二点鎖線で示した。また、図3は、図2に示す酸素濃度プロファイルを膜厚方向について微分して得られた酸素濃度プロファイルの勾配を対数表示して示す。
実施例、比較例1及び2のいずれにおいてもi型非晶質層12i,16iと半導体基板10との界面部にはピーク濃度として、1021/cmオーダーの酸素原子が存在した。これは、洗浄からi型非晶質層12i及び16iの形成工程までの輸送期間や成膜装置内において半導体基板10の表面が自然酸化されるからである。また、前述の成膜前に所定の酸化処理を施した場合は、この処理にも起因する。このため、i型非晶質層12i及び16iの酸素濃度は、半導体基板10との界面においてピークを示し、i型非晶質層12i及び16iにおいてバックグラウンドレベルまで一度減少し、p型非晶質層12p,n型非晶質層16n及び表面に向けて再度上昇するというプロファイルを示した。p型非晶質層12p及びn型非晶質層16nにおいて酸素濃度が上昇するのは、ドーピングガスを導入することの影響及び測定における表面の影響であると考えられる。
ここで、実施例におけるp側濃度プロファイルでは、半導体基板10との界面付近に酸素を多く含有させた領域(高濃度酸素領域)が半導体基板10との界面から5nm以内の範囲に観測された。高濃度酸素領域における酸素濃度は約1×1020/cm以上1×1021/cm以下であった。また、i型非晶質層12iにおいて、高濃度酸素領域以外の領域における酸素濃度は約1×1020/cm未満であった。
さらに、高濃度酸素領域において、膜厚方向に沿って酸素濃度が1段階以上の階段状のプロファイルを有していた。換言すると、i型非晶質層12i中の半導体基板10の界面付近における酸素濃度プロファイルが1つ以上の変曲点をもち、傾き(スロープ)が異なる領域を有していた。より具体的には、半導体基板10とi型非晶質層12iとの界面であって1021/cmのオーダーの酸素濃度を有するA点、i型非晶質層12i内であって半導体基板10とi型非晶質層12iとの界面から1nm程度までの約1×1020/cm以上1×1021/cm以下の酸素濃度を有するB点、i型非晶質層12i内であって半導体基板10とi型非晶質層12iとの界面から1nm以上5nm以下程度までの約1×1020/cm以上1×1021/cm以下の酸素濃度を有するC点、及びi型非晶質層12i内であって半導体基板10とi型非晶質層12iとの界面から5nm程度離れた約1×1020/cm以下の酸素濃度を有するD点が変曲点として確認された。なお、このような酸素濃度プロファイルは、濃度軸を対数表示した場合により顕著に確認された。
また、図3の酸素濃度プロファイルの対数の勾配では、表面側から半導体基板10へ近づくにつれて、i型非晶質層12i内の浅い位置から勾配が増加してピークを示し、再び勾配がなだからになって0に近づいた後、半導体基板10とi型非晶質層12iとの界面から数nm離れた点から勾配が増した。このように、酸素濃度の勾配のプロファイルにおいて、i型非晶質層12i内にて少なくとも2つのピークを有するものとなった。
このような、酸素濃度プロファイルは、実施例、比較例1,2におけるp側濃度プロファイル及び実施例、比較例2におけるn側濃度プロファイルにおいて同様に得られた。
なお、約1×1020/cmの酸素濃度は、以下のように技術的な臨界的意義を有する。すなわち、i型非晶質層12i,16iにおけるシリコン原子の密度は約5×1022/cm程度であるので、酸素濃度が約1×1020/cmである場合にはシリコン原子に対する酸素原子の濃度比が0.002になる。この値近傍を境として、0.002よりも酸素濃度が低い場合には酸素原子はシリコン中で不純物として振る舞い、0.002よりも高い場合には酸素とシリコンが合金化して酸素とシリコンとの化合物としての性質を有するようになると考えられる。したがって、酸素濃度が約1×1020/cmを境として、i型非晶質層12i,16iの性質が変化するものと考えられる。なお、酸素原子は本実施形態の半導体層中において非常にキャリア活性率が低いため、本実施形態の濃度の酸素を含む非晶質層12i,16iは、実質的に真性である。
表2に、実施例及び比較例1,2の光起電力装置の出力特性を示す。測定データは、開放電圧(Voc)、短絡電流(Isc)、曲線因子(FF)及び出力電圧(Pmax)であり、表2では比較例1の各値を1として規格化した値を示す。
Figure 0006206687
n側のi型非晶質層16iに意図的な酸素導入を行わなかった比較例1の光起電力装置に対して、実施例及び比較例2では開放電圧の改善が確認できる。これは、比較例1に対して実施例及び比較例2ではi型非晶質層12i,16iにおける半導体基板10との界面近傍における酸素濃度が高いため、半導体基板10とi型非晶質層12i,16iとの界面における欠陥が効果的に不活性化(終端)され、欠陥を再結合中心とするキャリアの再結合が抑制されるためと考えられる。
また、短絡電流Iscは、実施例、比較例1,2で大きな差は見られなかった。
曲線因子FFは、実施例と比較例1とにおいて顕著な差はみられなかった。しかしながら、比較例2では実施例及び比較例1に対して曲線因子FFの低下がみられた。曲線因子FFは、主に抵抗及び表面の不活性化に依存する特性である。実施例では、半導体基板10とi型非晶質層12i,16iとの界面から5nmまでの範囲に酸素を含有させたことによる不活性化による曲線因子FFの向上と、酸素導入による抵抗の増加による曲線因子FFの低下とが打ち消し合って、比較例1と同等の値となったと考えられる。一方、比較例2では、n側のi型非晶質層16iに適量以上の酸素が導入されたため、i型非晶質層16iの高抵抗化が進むと共に、酸素による欠陥の不活性化の効果は飽和しており、曲線因子FFが悪化したものと考えられる。
p側のi型非晶質層12i及びn側のi型非晶質層16iの酸素濃度が同じであれば、半導体基板10とp側のi型非晶質層12iとのヘテロ界面の不活性化度より半導体基板10とn側のi型非晶質層16iとのヘテロ界面の不活性化度が高くなる。また、光起電力装置の特性は、ヘテロ界面の不活性化度が低い方の膜が支配的となるので、p側のi型非晶質層12iの酸素濃度をn側のi型非晶質層16iの酸素濃度より高くして、半導体基板10とi型非晶質層12iとのヘテロ界面及び半導体基板10とi型非晶質層16iとのヘテロ界面の不活性化度を同等程度にすることが好適となる。一方、i型非晶質層16iの酸素濃度がi型非晶質層12iの酸素濃度より高くなり過ぎると、半導体基板10とn側のi型非晶質層16iとのヘテロ界面の不活性化度の改善は光起電力装置100の特性にほとんど影響を及ぼさなくなる。しかし、膜の抵抗は高くなるため、光起電力装置の特性が低下する。すなわち、実施例のように、最適の酸素濃度の範囲内において、p側のi型非晶質層12iの半導体基板10との界面近傍(高濃度酸素領域)の酸素濃度は、n側のi型非晶質層16iの半導体基板10との界面近傍(高濃度酸素領域)の酸素濃度より高くすることが好ましい。言い換えると、図3の酸素濃度プロファイルの勾配における2つのピーク間の位置Xにおける酸素濃度がn側のi型非晶質層16iよりp側のi型非晶質層12iで高くなるようにすることが好適である。
これらの結果として、出力電力Pmaxは実施例において最大を示した。具体的には、比較例1を基準とすると、実施例の出力Pmaxは1.004となった。これは、半導体基板10との界面付近の欠陥低減、半導体基板10への効果的な光の取り込みによって開放電圧Vocと短絡電流Iscを向上させ、一方で曲線因子FFの低下を抑制することによって発電効率が向上したものと考えられる。
10 半導体基板、12i i型非晶質層、12p p型非晶質層、14 透明導電層、16i i型非晶質層、16n n型非晶質層、18 透明導電層、20,22 集電極、100 光起電力装置。

Claims (8)

  1. 第一表面及び第二表面を備えた結晶系半導体基板と、
    前記結晶系半導体基板の前記第一表面上に形成され第1の導電型のドーパントを含む第1の非晶質半導体層と、
    前記結晶系半導体基板の前記第二表面上に形成され第2の導電型のドーパントを含む第2の非晶質半導体層と、
    を備える光電変換装置であって、
    前記結晶系半導体基板と前記第1の非晶質半導体層との界面は、10 21 cm 3 オーダーの酸素を含む第1の酸化界面であって、
    前記結晶系半導体基板と前記第2の非晶質半導体層との界面は、10 21 cm 3 オーダーの酸素を含む第2の酸化界面であって、
    前記第1の非晶質半導体層は、前記第1の酸化界面から膜厚方向に5nm以下の範囲に、膜厚方向に沿って対数の勾配プロファイルが少なくとも二つのピークを有するように濃度が減少する酸素濃度プロファイルを有し、前記対数の勾配プロファイルの少なくとも二つのピークよりも前記第1の酸化界面に近い第1の高濃度酸素領域を備え、
    前記第2の非晶質半導体層は、前記第2の酸化界面から膜厚方向に5nm以下の範囲に前記第1の高濃度酸素領域よりも酸素濃度が低い第2の高濃度酸素領域を備える、光電変換装置。
  2. 前記第2の高濃度酸素領域において、前記第2の酸化界面から膜厚方向に沿って、対数の勾配プロファイルが少なくとも二つのピークを有するように濃度が減少する酸素濃度プロファイルを有する、請求項1に記載の光電変換装置。
  3. 前記第1の高濃度酸素領域は、前記第1の酸化界面から1nm以下の領域にあり、
    前記第2の高濃度酸素領域は、前記第2の酸化界面から1nm以下の領域にある、請求項1または2に記載の光電変換装置。
  4. 前記第1の非晶質半導体層上に集電極が形成されている、請求項1〜のいずれか一項に記載の光電変換装置。
  5. 請求項1〜4のいずれか一項に記載の光電変換装置の製造方法であって、
    結晶系シリコンからなる半導体基板の表面にテクスチャ構造を形成する第1の工程と、
    前記半導体基板の第一表面を酸化処理して第1の酸化界面を形成する第2の工程と、
    前記第1の酸化界面上に第1の導電型のドーパントを含む第1の非晶質半導体層を形成する第3の工程と、
    前記半導体基板の第二表面を酸化処理して第2の酸化界面を形成する第4の工程と、
    前記第2の酸化界面上に第2の導電型のドーパントを含む第2の非晶質半導体層を形成する第5の工程と、
    を含む光電変換装置の製造方法であって、
    前記酸化処理は、大気雰囲気中に所定時間放置する方法、オゾン水処理、過酸化水素水処理、オゾナイザー処理から選択されるいずれかの方法を用いて実施される、光電変換装置の製造方法。
  6. 前記非晶質半導体層は、ケイ素含有ガスと、炭酸ガス又は酸素ガスとを導入して形成される、請求項に記載の光電変化装置の製造方法。
  7. 前記第1の導電型はp型であって、前記第2の導電型はn型であって、
    前記第3の工程は、ケイ素含有ガスにp型のドーパントを導入してp型の非晶質半導体層を形成し、
    前記第5の工程は、ケイ素含有ガスにn型のドーパントを導入してn型の非晶質半導体層を形成する、請求項に記載の光電変換装置の製造方法。
  8. 前記第1の導電方はn型であって、前記第2の導電型はp型であって、
    前記第3の工程は、ケイ素含有ガスにn型のドーパントを導入してn型の非晶質半導体層を形成し、
    前記第5の工程は、ケイ素含有ガスにp型のドーパントを導入してp型の非晶質半導体層を形成する、請求項に記載の光電変換装置の製造方法。
JP2016038578A 2016-03-01 2016-03-01 光起電力装置及びその製造方法 Active JP6206687B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038578A JP6206687B2 (ja) 2016-03-01 2016-03-01 光起電力装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038578A JP6206687B2 (ja) 2016-03-01 2016-03-01 光起電力装置及びその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011145143A Division JP5919559B2 (ja) 2011-06-30 2011-06-30 光起電力装置

Publications (2)

Publication Number Publication Date
JP2016105511A JP2016105511A (ja) 2016-06-09
JP6206687B2 true JP6206687B2 (ja) 2017-10-04

Family

ID=56102524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038578A Active JP6206687B2 (ja) 2016-03-01 2016-03-01 光起電力装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP6206687B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061442A (ja) * 2018-10-09 2020-04-16 パナソニック株式会社 太陽電池セル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329878A (ja) * 2001-04-27 2002-11-15 Sharp Corp 薄膜太陽電池および薄膜太陽電池の作製方法
JP4070483B2 (ja) * 2002-03-05 2008-04-02 三洋電機株式会社 光起電力装置並びにその製造方法
JP5526461B2 (ja) * 2007-03-19 2014-06-18 三洋電機株式会社 光起電力装置

Also Published As

Publication number Publication date
JP2016105511A (ja) 2016-06-09

Similar Documents

Publication Publication Date Title
JP5824681B2 (ja) 光起電力装置
JP5919559B2 (ja) 光起電力装置
JP5456168B2 (ja) 光電変換装置の製造方法
WO2012020682A1 (ja) 結晶シリコン系太陽電池
WO2012050186A1 (ja) 結晶シリコン系太陽電池の製造方法
US9705022B2 (en) Photovoltaic device
JP6350979B2 (ja) 太陽電池
JP2011146528A (ja) 多結晶シリコン系太陽電池およびその製造方法
US20150162477A1 (en) Photoelectric conversion device
JP6206687B2 (ja) 光起電力装置及びその製造方法
JP2014072416A (ja) 太陽電池およびその製造方法、太陽電池モジュール
JP6021084B2 (ja) 光起電力装置及びその製造方法
JP6990764B2 (ja) 太陽電池およびその製造方法
JP2016219854A (ja) 光起電力装置及び光電変換装置の製造方法
JP2014007198A (ja) 結晶シリコン系光電変換装置およびその製造方法
TW201442267A (zh) 太陽能電池及其製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R151 Written notification of patent or utility model registration

Ref document number: 6206687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151