JP6202135B2 - 水質管理装置 - Google Patents

水質管理装置 Download PDF

Info

Publication number
JP6202135B2
JP6202135B2 JP2016093228A JP2016093228A JP6202135B2 JP 6202135 B2 JP6202135 B2 JP 6202135B2 JP 2016093228 A JP2016093228 A JP 2016093228A JP 2016093228 A JP2016093228 A JP 2016093228A JP 6202135 B2 JP6202135 B2 JP 6202135B2
Authority
JP
Japan
Prior art keywords
water treatment
water
water quality
treatment facility
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016093228A
Other languages
English (en)
Other versions
JP2016179470A (ja
Inventor
信太郎 森
信太郎 森
幸祐 志村
幸祐 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016093228A priority Critical patent/JP6202135B2/ja
Publication of JP2016179470A publication Critical patent/JP2016179470A/ja
Application granted granted Critical
Publication of JP6202135B2 publication Critical patent/JP6202135B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、冷却水やボイラー水等の循環水系の水質管理装置、水質管理システム、及び水質管理方法に関する。
各種工場、ビル等では、冷凍機等の各種の熱交換器を含む水系が設けられ、循環水(冷却水)と被冷却体とを熱交換器を介して接触させて、被冷却体を冷却している。近年、循環水系においては、節水を図るために、循環水がより高濃縮で運転されるようになってきているが、このような運転条件下では、循環水の蒸発に伴ってイオン成分が濃縮し、スケールが析出して冷凍機内に付着することがある。
スケールが冷凍機内に付着すると、被冷却体から循環水への伝熱が阻害される。これにより、凝縮器において、被冷却体凝縮量が減少したり、圧力が上昇したり、被冷却体温度の上昇に伴い圧縮機の負荷が上昇して高圧カット(一定以上で圧縮機が停止する。)に至ったりする等の事態が生じ得る。また、スケールの付着により、冷凍機の冷凍能力が低下して消費電力量が増加し、エネルギー効率が低下する。このため、循環水系の濃縮管理及びスケール防止剤の濃度管理を適切に行い、スケールの析出を抑制する必要がある。
開放循環冷却水系では、水を蒸発させるためファンで大気を吸引しており、大気中に含まれる土砂や粉塵、有機溶媒等のBOD(Biochemical Oxygen Demand)成分が循環水系に溶け込んだり、日光により藻類やスライムが発生したりすることにより、熱交換器でのエネルギー効率の低下や腐食など、種々の障害が発生する。このため、開放循環冷却水系においては、スライムコントロール剤の濃度を適切に管理することが重要である。
例えば、循環水中に含まれる有機物濃度を測定し、測定値に基づいて水処理薬品の添加量を決定することで、循環水中に存在する水処理薬品の濃度を制御する方法が知られている(特許文献1参照)。また、冷却水の酸化還元電位を測定し、この測定値に基づいて冷却水中に浸漬した電極への通電を制御し、水中に含まれる塩化物イオンから塩素系酸化剤を生成させた電解処理水を冷却水系の冷却水に含有させることで、冷却水中の塩素系酸化剤濃度を適正範囲に制御し、冷却水系内のスライムの発生を防止する方法が知られている(特許文献2参照)。
特開2002−210454号公報 特許第3521896号公報
冷却水系で発生する障害を防止するには、水処理薬品注入量の調整だけでなく、殺菌剤やスケール防止剤等の消耗薬品の残留濃度など、多種多様な情報に応じた正確な対応が必要であり、特許文献1や2のように、有機物濃度や酸化還元電位等の水質の1項目だけに着目した制御では、誤った判断を行い、水処理設備を適切に管理できない場合があった。
そこで、現場で採取した水を持ち帰った後、複数の水質パラメータの分析を行い、これらの値に基づいて各種薬剤の注入量やブロー量を調整することが行われているが。しかし、この場合、分析から対応策の実行までのタイムラグが数日程度と長くなり、この間に障害が発生する状態へ移行するおそれがあった。また、実行する対応策の判断が個人の裁量や経験レベルに負うところが大きく、判断ミスが起こり得るという問題があった。
本発明は、以上の実情に鑑みてなされたものであり、冷却水やボイラー水等の循環水系の複数種の水質パラメータを現場で分析し、分析結果に基づいて適切な対策を速やかに提示できる水質管理装置、水質管理システム、及び水質管理方法を提供することを課題とする。
本発明の水質管理装置は、水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、複数の水質パラメータの変化と、前記水処理設備における水処理状況とを組み合わせた対策データを記憶する記憶部と、前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、前記演算部により選択された水処理状況を表示する表示部と、を備える。
本発明の一態様では、前記対策データは、複数の水質パラメータの変化と、前記水処理設備における水処理状況と、前記水処理設備に施す対策とが組み合わされており、前記演算部は、入力された複数の水質パラメータに対応する対策を選択し、前記表示部は、前記演算部により選択された対策を表示することを特徴とする。
本発明の一態様では、前記記憶部は、前記入力部を介して入力された水質パラメータを記憶し、前記演算部は、前記記憶部に記憶されている過去の水質パラメータを含むトレンドを用いて、水処理状況又は対策の選択を行うことを特徴とする。
本発明の一態様では、試料水の複数の水質パラメータを測定する複数の水質測定器をさらに備え、前記演算部は、前記対策データを参照し、前記複数の水質測定器により測定された複数の水質パラメータに対応する水処理状況を選択することを特徴とする。
本発明の一態様では、前記水質測定器として、透過率又は吸光度を測定するための光学的測定器、1種又は2種のイオン電極、及び電気伝導率計のうちの少なくとも2個を備えたことを特徴とする。
本発明の水質管理システムは、水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部、入力された複数の水質パラメータを送信する通信部、及び表示部を有するデータ通信装置と、複数の水質パラメータの変化と、前記水処理設備における水処理状況と、前記水処理設備に施す対策とが組み合わされた対策データを記憶したデータベースを有し、前記データベースを検索して前記データ通信装置から受信した複数の水質パラメータに対応する水処理状況及び対策を選択し、選択した水処理状況及び対策を前記データ通信装置に通知するサーバ装置と、を備え、前記データ通信装置は、前記サーバ装置から通知された水処理状況及び対策を前記表示部に表示することを特徴とする。
本発明の一態様では、前記データ通信装置は、試料水の複数の水質パラメータを測定する複数の水質測定器を有する分析計に設けられていることを特徴とする。
本発明の水質管理方法は、1又は複数の分析計を用いて、水処理設備から採取した水について複数の水質パラメータを測定し、複数の水質パラメータの変化と、前記水処理設備における水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する水質管理装置が、前記対策データを参照し、測定された水質パラメータに対応する水処理状況及び対策を選択し、表示部が、前記選択された水処理状況及び対策を表示することを特徴とする。
本発明の一態様では、pH、電気伝導率、塩化物イオン濃度、硫酸イオン濃度、酸消費量(pH4.8)、酸消費量(pH8.3)、マグネシウム硬度、カルシウム硬度、シリカ濃度、鉄濃度、銅濃度、アンモニウムイオン濃度、残留塩素濃度、酸化還元電位、TOC(全有機炭素)、COD(化学的酸素要求量)、ポリマー濃度、全りん酸濃度、亜鉛濃度、及び濁度からなる群より選ばれる2種以上の水質パラメータを測定することを特徴とする。
本発明によれば、複数の水質パラメータの変化と、水処理設備における水処理状況と、水処理設備へ施すべき対策とを組み合わせた対策データを参照し、分析計により現場で検出された2種以上の水質パラメータに対応する水処理状況及び対策を表示部に自動で表示するため、ユーザは、自身の裁量や経験レベルによらず、適切な対策を現場で速やかに確認し、実行することができる。また、2種以上の水質パラメータを用いることで、1種の水質パラメータの変化のみでは判断できない(見落としてしまう)障害の発生を検知することができ、水処理装置に対して適切な処置を速やかに実行し、循環水系に発生する障害を抑制することができる。
また、分析計が複数の水質測定器を有することで、1台の分析計で複数の水質パラメータの測定を行うことができる。さらに、この分析計に水質管理装置の機能を搭載することで、現場において、1台の分析計で、複数の水質パラメータの分析、水処理設備における水処理状況の判断、及び水処理設備へ施すべき対策の提示を行うことができる。
本発明の実施形態に係る水質管理システムの概略図である。 開放循環式冷却水系の構成図である。 本発明の実施形態に係る水質管理装置のブロック図である。 対策データの一例を示す図である。 複数の水質パラメータを測定可能な分析計の斜視図である。 図5の分析計を用いた測定方法を説明する斜視図である。 図5の分析計のブロック図である。 変形例による水質管理システムの概略図である。
以下に本発明の実施の形態を詳細に説明する。
図1は、本発明の実施形態に係る水質管理システムの概略図である。図1に示すように、水質管理システムは、水処理設備100、水処理装置102、複数の分析計104、及び水質管理装置110を備えている。
水処理設備100は、循環水(冷却水)と被冷却体とを熱交換器を介して接触させて、被冷却体を冷却させる循環式冷却水系である。図2に、循環式冷却水系の一例を示す。図2は、循環式冷却水系の1種である開放循環式冷却水系の模式図である。
図2に示すように、開放循環式冷却水系では、熱交換器61における熱交換により温度が上昇した水が冷却塔60に供給される。冷却塔60に供給された温水は充填材62を流下し、空気と向流接触して一部が蒸発する。蒸発潜熱によって冷却された水は冷却塔60の下部のピットに貯留され、ポンプ63により熱交換器61に供給される。ブロー水配管64のブロー弁(図示略)を開とすることによりブローが行われる。蒸発量とブロー水量との合計量に相当する補給水が補給水配管65からボールタップ(図示略)を介して冷却塔60に供給される。
図1に示す水処理装置102は、水処理設備100で使用される水にスケール防止剤、防食剤、スラッジ分散剤、殺菌剤、スライム防止剤等の水処理薬品を注入する。例えば、図2に示す冷却塔60に貯留されている水に水処理薬品が注入される。
分析計104は、水処理設備100の循環水又は補給水の水質パラメータの分析を行う。分析計104は複数設けられており、複数種類の水質パラメータの分析が行われる。分析対象の水質パラメータは、水処理設備100の用途や、水処理装置102が注入する水処理薬品の種類に応じたものであり、例えば、pH、電気伝導率、塩化物イオン濃度、硫酸イオン濃度、酸消費量(pH4.8)、酸消費量(pH8.3)、マグネシウム硬度、カルシウム硬度、シリカ濃度、鉄濃度、銅濃度、アンモニウムイオン濃度、残留塩素濃度、酸化還元電位、TOC(全有機炭素)、COD(化学的酸素要求量)、ポリマー濃度、全りん酸濃度、亜鉛濃度、及び濁度からなる群より選ばれる2種以上、より好ましくは3種以上である。各水質パラメータの分析は、公知の方法に従って行えばよく、詳細な説明を省略する。
分析計104は、水処理設備100から採取された試料水の水質パラメータの分析を行う。例えば、図2に示す冷却塔60のピット内の水、ポンプ63により熱交換器61に供給される水、又は熱交換器61から冷却塔60に供給される水、好ましくはピット内の水の一部を採取して、循環水の試料水とする。また、配管65から冷却塔60に供給される補給水の一部を採取して、補給水の試料水とする。
分析計104は、持ち運びが可能なものでもよいし、オンライン分析が可能な装置による常時分析計でもよい。
水質管理装置110は、分析計104の分析結果に基づき、水処理設備100における水処理状況を推定し、推定した状況に応じ、水処理設備100へ施すべき対策を提示する。また、提示された対策の実施履歴を記録することで、プラント管理のエビデンスとして残してもよい。
図3に水質管理装置110のブロック図を示す。水質管理装置110は、入力部112、表示部114、演算部116、及びメモリ118を備え、例えばノート型PC(パーソナルコンピュータ)やタブレット端末等の携帯可能な装置により構成することができる。入力部112は、例えばボタン、スイッチ、テンキー等により構成され、分析計104により求められた水質パラメータをユーザが入力できるようになっている。分析計104から水質管理装置110へ水質パラメータを無線/有線ネットワークを介して転送するようにしてもよい。入力された水質パラメータはメモリ118に記憶される。
また、演算部116が、入力された循環水の水質パラメータと補給水の水質パラメータとを用いて濃縮倍数を算出し、算出した濃縮倍数をメモリ118に記憶してもよい。また、演算部116は、ランゲリア指数、リズナー指数、マットソン比などを算出してメモリ118に記憶してもよい。
例えば、循環水系のランゲリア指数(飽和指数)は、酸消費量(pH4.8)、pH、カルシウム硬度、及び電気伝導率を用いて算出できる。ランゲリア指数は、循環水のpHと炭酸カルシウムの飽和pH(pHs)との差であり、水系における配管や熱交換器等の金属材料の腐食性を測る指標となる。pHsは、簡便計算法(ノーデル法)により、以下の数式1で求められる。
pHs=(9.3+A値+B値)−(C値+D値) …(1)
ここで、A値は、蒸発残留物の濃度により定まる値であり、電気伝導率から求まる。B値は循環水の水温から定まる値である。C値は、カルシウム硬度により定まる値である。D値は、酸消費量(pH4.8)により定まる値である。
また、水の腐食性とスケール生成の傾向の指標となるリズナー指数RSI(Ryznar Stability Index)は、循環水のpHと炭酸カルシウムの飽和pH(pHs)とを用いて、以下の数式2により算出できる。
RSI=2pHs−pH …(2)
RSIが6未満のとき水はスケール生成傾向にあることを示し、RSIが6以上7未満のとき水は安定状態にあることを示し、RSIが7以上のとき水は腐食傾向にあることを示す。
また、銅の孔食発生の指標となるマットソン比は、硫酸イオン濃度、酸消費量(pH4.8)、及び酸消費量(pH8.3)を用いて算出できる。マットソン比は水中の炭酸水素イオン濃度と硫酸イオン濃度の比([HCO ]/[SO 2−])であり、炭酸水素イオン濃度HCO (mgHCO /L)は以下の数式3により求めることができる。
HCO (mgHCO /L)=1.22×(酸消費量(pH4.8)−2×酸消費量(pH8.3)) …(3)
マットソン比が1以下で、残留塩素が存在するとき、60℃程度の温水で、銅に孔食が生じやすいと判断される(出展:JRA−GL02(1994) (社)日本冷凍空調工業会)。
水質管理装置110の表示部114は、例えば液晶ディスプレイであり、後述する演算部116により推定された水処理状況や、水処理設備100へ施すべき対策を表示する。
メモリ118は、入力部112を介して入力された水質パラメータや、演算部116により算出された濃縮倍数等を記憶する。また、メモリ118は、複数の水質パラメータの項目名と、水質パラメータの変化と、水処理設備100における推定される水処理状況と、水処理設備100へ施すべき対策とを組み合わせた対策データを記憶する。なお、水質パラメータの変化とは、測定値が変化することだけでなく、測定値が所定の基準値を維持し続けることも含むものとする。図4に対策データの例を示す。
[対策データD1、D2]
対策データD1、D2では、ポリマー濃度と亜鉛濃度/全りん酸濃度に着目し、ポリマー濃度が基準値濃度を維持していても、亜鉛濃度/全りん酸濃度が、ポリマー濃度及び水処理剤の配合率から算出される濃度より低い場合、水処理設備100において腐食が発生し始めている可能性があると推定され、防食剤の注入量増加が推定された状況への対策となる。
水処理設備100に亜鉛、りん酸、ポリマーが一剤で注入され、水処理薬品の注入をポリマー濃度のみで制御する場合、上述のように、亜鉛濃度/全りん酸濃度の低下が起きていても、ポリマー濃度が基準値濃度を維持していることで、問題が無いと判断し、腐食発生の検知が遅れる。しかし、ポリマー濃度とあわせて、亜鉛濃度/全りん酸濃度を監視することで、ポリマー濃度が基準値濃度を維持していても、亜鉛濃度/全りん酸濃度の低下により腐食発生を早期に検知し、適切な対処をとることができる。
[対策データD3]
対策データD3では、塩化物イオン濃度、硫酸イオン濃度、及びマットソン比に着目し、塩化物イオン濃度及び硫酸イオン濃度が基準値濃度を維持していても、マットソン比が1以下である場合、水処理設備100において銅材の腐食が発生し始めていると推定され、ブロー量増加による濃縮倍数の低減と防食剤の注入量増加が推定された状況への対策となる。
循環水中の腐食性アニオンを塩化物イオン濃度及び硫酸イオン濃度のみで監視する場合、上述のように、マットソン比が1以下となっても、塩化物イオン濃度及び硫酸イオン濃度が基準値濃度を維持していることで、問題が無いと判断し、銅材の腐食発生の検知が遅れる。しかし、塩化物イオン濃度及び硫酸イオン濃度とあわせて、マットソン比を監視することで、塩化物イオン濃度及び硫酸イオン濃度が基準値濃度を維持していても、マットソン比が1以下となることで銅材の腐食発生を早期に検知し、適切な対処をとることができる。
[対策データD4、D5]
対策データD4、D5では、濁度と鉄濃度/銅濃度に着目し、濁度及び鉄濃度/銅濃度が上昇した場合、水処理設備100において腐食、又は持込み鉄による二次腐食が発生し始めていると推定され、防食剤の注入量増加が推定された状況への対策となる。
水処理薬品の注入を濁度のみで制御する場合、上述のように、濁度が上昇しても、その原因には、補給水質の悪化、濃縮倍数の上昇、プロセスリーク等、様々なものがあり、原因を特定できず、腐食発生の検知が遅れる。しかし、濁度とあわせて、鉄濃度/銅濃度を監視することで、濁度の上昇原因が鉄/銅に起因するものと特定でき、腐食発生を早期に検知し、適切な対処をとることができる。
[対策データD6]
対策データD6では、ポリマー濃度及びCODに着目し、ポリマー濃度が基準値濃度を維持していても、循環水中のポリマー濃度に対するCODが上昇している場合、水処理設備100において外部からのCOD成分の混入によりスライムが発生し始めている可能性があると推定され、スライム防止剤の注入量増加が推定された状況への対策となる。
水処理薬品の注入をポリマー濃度のみで制御する場合、上述のように、循環水中のポリマー濃度に対するCODが上昇していても、ポリマー濃度が基準値濃度を維持していることで、問題が無いと判断し、スライム発生の検知が遅れる。しかし、ポリマー濃度とあわせて、CODを監視することで、ポリマー濃度が基準値濃度を維持していても、循環水中のポリマー濃度に対するCODが上昇することで、スライム発生を早期に検知し、適切な対処をとることができる。
[対策データD7]
対策データD7では、遊離残留塩素濃度及び補給水アンモニウムイオン濃度に着目し、遊離残留塩素濃度が低下した場合、スライムが発生している可能性があると推定され、補給水アンモニウムイオン濃度から循環水系に必要な次亜塩素酸量を求め、次亜塩素酸ナトリウムの添加を行う。
水処理薬品の注入を遊離残留塩素濃度のみで制御する場合、上述のように、遊離残留塩素濃度が低下し、次亜塩素酸ナトリウムの添加量を増やしても、遊離残留塩素濃度は上昇せず、遊離残留塩素濃度の調整が遅れ、スライム発生量が増加する。しかし、遊離残留塩素濃度とあわせて、補給水アンモニウムイオン濃度を監視し、補給水アンモニウムイオン濃度から循環水系に必要な次亜塩素酸量を求めることで、スライム発生量の増加を防止できる。
[対策データD8]
対策データD8では、シリカ濃度及びマグネシウム硬度に着目し、シリカ濃度及びマグネシウム硬度が低下した場合、水処理設備100においてケイ酸マグネシウムでのスケールが析出していると推定され、ケイ酸マグネシウムスケール防止剤の注入量増加又はブロー量増加による濃縮倍数の低減が推定された状況への対策となる。
水処理設備100の管理をシリカ濃度のみで行う場合、上述のように、シリカ濃度が低下すると、濃縮倍数が低下したと判断し、ブロー率を下げて濃縮倍数を上げるような対策をとり、スケール析出を検知できないばかりか、かえってスケール付着を悪化させるおそれがある。しかし、シリカ濃度とあわせて、マグネシウム硬度を監視することで、シリカ濃度及びマグネシウム硬度が低下した場合にケイ酸マグネシウムでのスケール析出を早期に検知し、適切な対処をとることができる。
[対策データD9]
対策データD9では、濁度及びCODに着目し、濁度及びCODが上昇した場合、水処理設備100においてスライムが発生している可能性があると推定され、スライム防止剤の注入量増加が推定された状況への対策となる。
濁度のみを監視する場合、上述のように濁度が上昇するとブロー量を増加させるような対策をとり、スライム発生を検知できないばかりか、系内のスライム防止剤の濃度が低下し、かえってスライム障害を悪化させるおそれがある。しかし、濁度とあわせてCODを監視することで、濁度とともにCODが上昇することによりスライム発生を早期に検知し、適切な対処をとることができる。
水質管理装置110の演算部116は、メモリ118に記憶されている対策データを参照し、入力された水質パラメータの変化が、対策データ内の水質パラメータ変化と一致した場合、この水質パラメータ変化に対応する水処理状況及び対策を表示部114に表示する。ユーザは、表示部114に表示された対策に基づいて、水処理設備100に対して適切な処置を施すことができ、循環水系に発生する障害を抑制することができる。
演算部116が参照する対策データは、ユーザが入力部112を用いて選択してもよい。対策データが選択されると、入力すべき水質パラメータの入力画面が表示部114に表示される。
このように、本実施形態による水質管理装置110は、複数の水質パラメータの項目名と、水質パラメータの変化と、水処理設備100における推定される水処理状況と、水処理設備100へ施すべき対策とを組み合わせた対策データをメモリ118に記憶し、分析計104により現場で検出された2種以上の水質パラメータが入力されると、対策データを参照し、入力された水質パラメータに対応する水処理状況及び対策を表示部114に自動で表示する。2種以上の水質パラメータを用いることで、1種の水質パラメータの変化のみでは判断できない(見落としてしまう)障害の発生を検知することができ、水処理装置100に対して適切な処置を速やかに実行し、循環水系に発生する障害を抑制することができる。
また、ユーザは、水質管理装置110を用いることで、自身の裁量や経験レベルによらず、適切な対策を現場で速やかに確認し、実行することができる。
上記実施形態では、複数の分析計104を用いていたが、複数の水質パラメータを求めることができる分析計を用いてもよい。このような分析計を図5〜図7を用いて説明する。
図5、6は複数の水質パラメータを測定可能な分析計の外観斜視図であり、図7は分析計のブロック図である。図7の通り、分析計は、吸光度測定部1、電極測定部2、電気伝導率測定部3、操作部4、表示部5、演算部6、及びメモリ7を備えており、これらが筐体Hに設置されている。
図5、6の通り、筐体Hは、略々直方体形状の合成樹脂製のケースよりなり、その上面の一半側に操作部4と、液晶ディスプレイ等よりなる表示部5とが設けられている。操作部4は、ユーザによって操作されるボタン、スイッチ、タッチパネル等によって構成されている。
筐体Hの上面の他半側には、セル設置部10が凹段部状に設けられ、開閉回動可能なカバー11で覆われている。また、筐体Hの上面の他半側には、試料水容器20の配置部21が設けられており、この配置部21の上方に起立方向回動可能なセンサ設置盤15が設けられている。カバー11及びセンサ設置盤15はヒンジによって筐体Hに対し回動可能に取り付けられている。
セル設置部10には、吸光度測定用セル12A,12B,12Cの差込穴13A,13B,13Cが設けられている。筐体H内には、各差込穴12A〜12Cを挟んで対峙するようにそれぞれ発光素子、分光器及び受光素子が設けられている。分光器は省略される場合がある。セル12A〜12Cには予め規定量の発色試薬が封入されている。セル12A〜12C内の発色試薬は互いに別種のものである。
発色試薬は、測定対象成分によって異なり、例えば測定対象成分がシリカの場合はモリブデンを含有するものを使用することができ、酸消費量(pH4.8)を求める場合はブロモフェノールブルーを含有するものを使用することができ、酸消費量(pH8.3)を求める場合はフェノールフタレインを含有するものを使用することができる。また、硫酸イオンを測定する場合は、クロム酸バリウムを含有するものを使用することができる。
セル12A〜12Cのキャップを開け、セル12A〜12C内に規定量の試料水を注入した後、キャップを閉じ、試料水と発色試薬とを混合した後、セル12A〜12Cを差込穴13A〜13Cに差し込み、吸光度を測定することができる。このセル12A〜12Cと、各発光素子、分光器及び受光素子と、各素子の駆動回路と、受光信号処理回路とによって吸光度測定部1が構成されている。
センサ設置盤15はヒンジによって、図5の起立状態と、図6の倒伏状態とをとりうるように上下方向に回動可能となっている。センサ設置盤15には、電極測定部2を構成するイオン電極16、17、pHガラス電極18及び比較電極23と、電気伝導率測定部3を構成する電気伝導率計19とが、各々の下端側が倒伏装置のセンサ設置盤15の下面から下方に突出する形態にて設置されている。
この実施の形態では、イオン電極16は2価陽イオン選択性電極であり、イオン電極17はカルシウムイオン選択性電極である。
倒伏状態のセンサ設置盤15の下方には、試料水容器20が配置されており、センサ設置盤15が倒伏すると、イオン電極16,17、pHガラス電極18、比較電極23、及び電気伝導率計19の下端側が容器20内の試料水W(図5)に浸漬されるように構成されている。試料水容器20には把手20aが設けられており、この把手20aを摘んで試料水容器20を筐体Hの容器配置部21に出し入れすることが可能である。また、容器20に隣接するスペースSに各種電極の保護キャップが収納できるようになっている。
吸光度測定部1の発光素子には、LED、キセノンフラッシュランプやハロゲンランプ等を用いることができる。分光器には、干渉フィルタや色ガラスフィルタ等のフィルタ、水晶や溶融石英等のプリズム、又は平面回折格子や凹面回折格子等の回折格子を用いることができる。受光素子は、例えばフォトダイオードであり、試料からの透過光を電気信号に変換する。この電気信号に基づく透過光の強度、及び試料への入射光強度から、吸光度が求まる。吸光度の代りに透過率を求めてもよい。
予め測定対象成分の標準液の吸光度を測定して検量線が作成され、この検量線のデータがメモリ7に記憶されている。この検量線を参照することで、算出された吸光度から、試料水における測定対象成分の溶存成分濃度を求めることができる。吸光度や溶存成分濃度の算出は、吸光度測定部1の演算部(図示せず)が行ってもよいし、演算部6が行ってもよい。
電極測定部2を構成するイオン選択性電極及び比較電極は、測定対象イオンに対して高度の選択性を持ち、イオン濃度(溶存成分濃度)に応じた電位を生じる。イオン選択性電極は、比較電極と組み合わせることによって電池を構成し、その起電力(両電極間に生じる電位差)Eが電位差計により測定される。イオン選択性電極の電極電位をEind、比較電極の電極電位をEref、試料水Wと比較電極との間の電位差をEとすると、起電力Eは以下の数式4のようになる。
E=Eind−Eref+E …(4)
ここでErefは一定値であり、Eは適当な塩橋を用いることで無視できる。従って、EはEindの値のみによって定まることになり、測定対象イオン濃度は、この電池の起電力として表すことができる。予め、標準液を用いてイオン濃度と、電極間電位差との関係(検量線)を求めておくことで、電位差計の測定値から試料中の測定対象イオン濃度を求めることができる。例えば、2価陽イオン選択性電極16及び比較電極23を用いることで、全硬度(総硬度=カルシウム硬度+マグネシウム硬度)を求めることができる。また、カルシウムイオン選択性電極17及び比較電極23を用いることでカルシウム硬度を求めることができる。また、全硬度とカルシウム硬度との差分からマグネシウム硬度を求めることができる。検量線のデータはメモリ7に記憶されている。測定対象イオン濃度の算出は、電極測定部2の演算部(図示せず)が行ってもよいし、演算部6が行ってもよい。
電極測定部2を構成するpHガラス電極18及び比較電極23は、いわゆるガラス電極法により、試料水WのpHを測定する。具体的には、水素イオン活量に応答する特殊なガラス膜で作られたpHガラス電極18と、pHに無関係に一定の電位を示す比較電極23との間に発生した電位差を電位差計で測定し、pHを算出する。
電気伝導率測定部3を構成する電気伝導率計19は、いわゆる交流二電極法により試料水Wの電気伝導率を求める。具体的には、交流電源を用いて1対の電極間に交流電圧を印加し、この時に流れる電流を交流電流計により測定して試料水Wの液抵抗を求め、電気伝導率を算出する。電極にはステンレス鋼や白金などが用いられる。また、電気伝導率計19には測温抵抗体等の温度センサが内蔵されている。
セル12A〜12C及び試料水容器20に収容される試料水Wは、図2に示すような循環式冷却水系の循環水又は補給水である。
分析計の操作部4は、循環水モードと補給水モードとの切り替え設定を行う。循環水モードの設定時に吸光度測定部1、電極測定部2、電気伝導率測定部3により測定された値は、循環水の測定値としてメモリ7に記憶される。また、補給水モードの設定時に吸光度測定部1、電極測定部2、電気伝導率測定部3により測定された値は、補給水の測定値としてメモリ7に記憶される。
演算部6は、循環水モード設定時の測定値及び補給水モード設定時の測定値に基づいて、循環水中の塩類濃度が補給水と比較して何倍になっているかを示す指標である濃縮倍数を算出する。例えば、同一の溶存成分について、循環水モード設定時に測定された溶存成分濃度を補給水モード設定時に測定された溶存成分濃度で除算することで、濃縮倍数が算出される。また、例えば、循環水モード設定時に測定された電気伝導率を補給水モード設定時に測定された電気伝導率で除算することでも、濃縮倍数が算出される。
この分析計は、複数の濃縮倍数を取得できる。即ち、セル12A〜12Cの各吸光度から求めた溶存成分濃度に基づく濃縮倍数、イオン電極測定値により求めたイオン濃度に基づく濃縮倍数、電気伝導率に基づく濃縮倍数が算出される。
表示部5は、演算部6により算出された複数の濃縮倍数や、各測定部による測定値を表示する。メモリ7は、各測定部による測定値、検量線データ、演算部6により算出された複数の濃縮倍数などを記憶する。演算部6は、ランゲリア指数(飽和指数)、リズナー指数、マットソン比を求めてもよい。
ユーザは、表示部5に表示された複数の水質パラメータや濃縮倍数等を水質管理装置110に入力する。
図5〜7に示す分析計が、水質管理装置110の機能を備えていてもよい。すなわち、メモリ7に図4に示すような対策データが記憶され、演算部6は、メモリ7に記憶されている対策データを参照し、各測定部による測定値に対応する水処理状況及び対策を表示部5に自動で表示する。これにより、現場において、1台の分析計で、複数の水質パラメータの分析、水処理設備100における水処理状況の判断、及び水処理設備100へ施すべき対策の提示を行うことができる。
図8に示すように、水質管理システムに、水処理設備100における水処理状況の判断及び水処理設備100へ施すべき対策の選定を行う外部サーバ120と、分析計104の分析結果を有線/無線ネットワークを介して外部サーバ120へ送信するデータ通信装置130を設けてもよい。外部サーバ120は、対策データのデータベースを備え、データ通信装置130から分析計104の分析結果を受信すると、この分析結果に対応する水処理状況及び対策をデータ通信装置130に通知する。データ通信装置130には、スマートフォン等の携帯端末を用いることができ、外部サーバ120から通知された水処理状況及び対策を表示部に表示する。このように、水質管理装置110の機能の一部を外部サーバ120に持たせるようにしてもよい。また、現場で補給水の分析を実施しなかった場合には、過去の最新データをクラウド上から引用して使用してもよい。
また、図5〜7に示す分析計に通信部を設け、この通信部が、各測定部による測定値をメモリ7から取り出し、外部サーバ120へ出力してもよい。外部サーバ120は、分析計から測定値を受信すると、この測定値に対応する水処理状況及び対策を分析計に通知する。分析計は、通知された水処理状況及び対策を表示部5に表示する。ユーザが、現場において、表示部5に表示された対策を確認し、水処理装置100に対して適切な処置を速やかに実行することで、循環水系に発生する障害を抑制することができる。
以下に実施例を挙げて本発明をより具体的に説明する。
[実施例1]
図1に示す装置により、パイロットプラント(以下、第1プラント)の冷却水系の循環水で、スケール防止剤としてアクリル酸を主体とするポリマーの濃度を連続して分析し、分析した結果が一定となるように薬品注入量を自動制御した。この系では、別途、持ち運び可能な分析計によりTOCをバッチで測定した。なお、第1プラントの脇で、測定開始後の26日以降から、近辺での有機溶剤の取り扱いを想定して、冷却塔脇に有機溶剤の排気ダクトの一部を引っ張り、運転を継続した。測定結果を表1に示す。
Figure 0006202135
表1の通り、第1プラントでは、測定開始から28日以降で大気中から循環水系に流入した有機溶剤由来と推定されるTOCの増加が判明した。ここで、ポリマー濃度ではなく、TOCのみを指標とした薬品注入量の制御を実施していた場合、TOCの増加に伴って薬品注入量を減少させることで、循環水系内のポリマー濃度が減少してスケール付着のリスクが著しく上昇していたと推定される。
本プラントでは、TOCに加えて、ポリマー濃度を同時測定していたために、誤って薬品注入量を低減する判断を行うことがなく、適切な薬品の注入量が維持できた。
[実施例2]
図1に示す装置により、第1プラントとは別のパイロットプラント(以下、第2プラント)の冷却水系の循環水で、ORP測定値に基づいて、モノクロロスファミン酸を主体とするスライム防止剤を含む水処理薬品の注入量を制御した。この系では、別途、持ち運び可能な分析計によりpHをバッチで測定した。なお、第2プラントでは、測定開始後の4日後にプロセスからのリークを模擬して冷却水系内に塩酸を添加した。測定結果を表2に示す。
Figure 0006202135
表2の通り、第2プラントでは、5日以降にプロセスからの塩酸の混入を模擬した塩酸の投入を行ったため、pHの急激な低下が起こった。ここで、ORPのみを指標として薬品注入量を増加する制御を実施していた場合、塩酸の混入に気づかず、循環水系内のpH低下に加えて、酸化剤の過剰添加により、系内配管および熱交換器の腐食のリスクが著しく上昇していたことがわかった。
本プラントでは、ORPに加えて、pHを同時に測定することで、迅速にプロセスリークを模擬した塩酸の混入を検知することができた。
[実施例3]
図1に示す装置により、第1、2のプラントとは別のパイロットプラント(以下、第3プラント)に設置された循環水系の循環水及び補給水について、残留塩素およびシリカを測定した。本プラントでは、モノクロロスファミン酸を主体とするスライム防止剤を含む水処理薬品をタイマー注入した。また、夏場の渇水時期を想定して、実機冷却水の濁質をバッチで毎日投入した。それぞれの分析結果とシリカから算出した濃縮倍数の経時変化を表3に示す。
Figure 0006202135
表3の通り、第3のプラントでは、シリカ濃度から算出した濃縮倍数が5.1〜5.3倍で推移し、薬品注入量も期間中は同じ設定値で注入されていたにもかかわらず、全残留塩素の濃度が経時的に減少した。測定開始から22日の時点では、本プラントの管理値である全残留塩素濃度5mgCL/L)以上の条件を満足していたが、1〜22日における低下傾向を考慮すると、全残留塩素濃度が管理値を下回ることが予測されたため、薬品注入量を増加する対策を提示した。
ここで、本循環水系より分岐させた別の循環水系で、提示された対策に従って薬品注入ポンプのストロークを上げ、全残留塩素濃度が5mgCL/L以上を維持する調整を行った。試験開始から43日後の冷却塔ピットは清浄に保たれており、付属するスライムセンサ(センサに内蔵されている抵抗に電流を周期的に供給して発熱させ、加熱時温度と非加熱時温度を温度センサで測定するセンサ。センサにスライムが付着すると伝熱阻害を受けて、加熱時温度と非加熱時温度との温度差が上昇することからスライムの付着傾向を検知する)の温度上昇も認められなかったため、熱交換器を含めた循環水系が清浄に維持できていたことを確認した。
一方、ポンプストロークを現状のまま維持して運転を続けた循環水系では、全残留塩素濃度が29日後に3.5mgCL/Lとなり、管理値の5mgCL/Lを下回ったため、ポンプストロークを上げて調整したが、36日後では1.4mgCL/Lと依然として管理値以下であり、ポンプストロークをさらに上げたところ、43日後には5.3mgCL/Lと管理値まで回復した。このとき、冷却塔ピット内に藻類が見られ、スライムセンサ温度は0.4℃(伝熱効率やや不良の領域)となり、好適な水処理が実施できていなかった。
このように、過去の傾向を利用して薬注量を事前に変更することで、管理値を容易に維持することができ、かつ伝熱効率も維持できることが確認できた。
[実施例4]
図1に示す装置により、第1〜3のプラントとは別のパイロットプラント(以下、第4プラント)に設置された循環水系の循環水及び補給水について、持ち運び可能な分析計によりバッチでpH、薬品濃度、およびシリカ濃度を測定した。さらに測定したシリカ濃度から濃縮倍数を算出した。測定結果及び算出結果を以下の表4に示す。なお、本プラントでは、アルカリを含んだ冷却水用薬品をタイマー注入した。
Figure 0006202135
表4の通り、第4プラントでは、循環水のpHが9.5と銅材が腐食する領域であり、また、注入されている薬品量も750mg/Lと目標値の300mg/Lと比較して大幅に高くなっていた。この2項目からのみ判断すると、系内の薬品濃度の低減とpHの低下を目的として、薬品注入の設定タイマー間隔の延長とブロー量のアップ対応をする可能性が高いが、本プラントでは同時に測定しているシリカ濃度から循環水が濃縮していないことが判明していた。そのため、水質管理装置は、冷却塔の負荷が低く、薬品のみが注入され続けていたと判断し、系内の水をブローすることと、冷却塔が冬季等の停止状態である場合には冷却水を抜いて乾燥保管することを対策として提示した。
[実施例5]
図1に示す装置により、第1〜4のプラントとは別のパイロットプラント(以下、第5プラント)に設置された循環水系の循環水及び補給水について、電気伝導率、カルシウム硬度、酸消費量(pH4.8)及びシリカ濃度を測定し、さらにそれぞれの測定値から濃縮倍数を算出した。測定結果を以下の表5に示す。
Figure 0006202135
第5プラントでは、電気伝導率から算出した濃縮倍数(5.5倍)が、シリカ濃度から算出した濃縮倍数(5.2倍)と比較して高くなっていた。これは、薬品由来の電気伝導率の上昇があったためであり、現状の濃縮倍数は5.2倍と判断した。
また、シリカ濃度および電気伝導率から算出した濃縮倍数が5.2倍以上であったのに対し、カルシウム硬度および酸消費量(pH4.8)から算出した濃縮倍数は3.7〜3.8倍と大幅に低かった。水質管理装置は、カルシウム硬度成分と酸消費量(pH4.8)成分とが循環水系内で反応し、炭酸カルシウムの析出が起こっていると判断し、濃縮倍数を下げる操作を促す対策を提示した。
ここで、本循環水系より分岐した別の循環水系で、提示された対策に従って、各水質項目の濃縮倍数が3.8倍になるようブロー量を増加し、以下の表6の水質を維持した。1ヵ月後に開放点検した結果、熱交換器に炭酸カルシウムを主成分とするスケールの付着は認められなかった。
Figure 0006202135
一方、各水質項目が表5に示す値のまま運転を続けた循環水系を、1ヵ月後に開放点検した結果、熱交換器に炭酸カルシウムを主成分とするスケールの付着が認められた。
1 吸光度測定部
2 電極測定部
3 電気伝導率測定部
4 操作部
5 表示部
6 演算部
7 メモリ
10 セル設置部
12A〜12C セル
15 センサ設置盤
16,17 イオン電極
18 pHガラス電極
19 電気伝導率計
20 試料水容器
21 試料水容器配置部
23 比較電極
60 冷却塔
100 水処理設備
102 水処理装置
104 分析計
110 水質管理装置
112 入力部
114 表示部
116 演算部
118 メモリ

Claims (9)

  1. 水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
    複数の水質パラメータの変化と、該変化があった場合に前記水処理設備における推定される水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する記憶部と、
    前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
    前記演算部により選択された水処理状況を表示する表示部と、
    試料水の複数の水質パラメータを測定する複数の水質測定器と、
    を備え、
    前記演算部は、前記対策データを参照し、前記複数の水質測定器により測定された複数の水質パラメータに対応する水処理状況を選択し、
    前記水質測定器として、透過率又は吸光度を測定するための光学的測定器、1種又は2種のイオン電極、及び電気伝導率計のうちの少なくとも2個を有し、
    前記水質測定器の筐体の上面部に、起倒方向に回動可能なセンサ設置盤が設けられ、該センサ設置盤の下面から突出するようにイオン電極又は電気伝導率計よりなる水質測定器が設置されており、
    該筐体には、倒伏状態の該センサ設置盤の下方に試料水用の容器が配置されており、
    該センサ設置盤が倒伏した状態において、水質測定器の下端側が該容器内の試料水に浸漬されることを特徴とする水質管理装置。
  2. 水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
    複数の水質パラメータの変化と、該変化があった場合に前記水処理設備における推定される水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する記憶部と、
    前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
    前記演算部により選択された水処理状況を表示する表示部と、
    を備え、
    前記対策データには、ポリマー濃度が基準値濃度を維持し、かつ亜鉛濃度が該ポリマー濃度に基づく濃度より低い場合、前記水処理設備において腐食が発生し始めていると推定され、該水処理設備に対し防食剤の注入量増加という対策を施すことが規定されていることを特徴とする水質管理装置。
  3. 水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
    複数の水質パラメータの変化と、該変化があった場合に前記水処理設備における推定される水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する記憶部と、
    前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
    前記演算部により選択された水処理状況を表示する表示部と、
    を備え、
    前記対策データには、ポリマー濃度が基準値濃度を維持し、かつ全りん酸濃度が該ポリマー濃度に基づく濃度より低い場合、前記水処理設備において腐食が発生し始めていると推定され、該水処理設備に対し防食剤の注入量増加という対策を施すことが規定されていることを特徴とする水質管理装置。
  4. 水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
    複数の水質パラメータの変化と、該変化があった場合に前記水処理設備における推定される水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する記憶部と、
    前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
    前記演算部により選択された水処理状況を表示する表示部と、
    を備え、
    前記対策データには、塩化物イオン濃度及び硫酸イオン濃度が基準値濃度を維持し、かつマットソン比が1以下である場合、前記水処理設備において銅材の腐食が発生し始めていると推定され、該水処理設備に対し防食剤の注入量増加及びブロー量増加という対策を施すことが規定されていることを特徴とする水質管理装置。
  5. 水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
    複数の水質パラメータの変化と、該変化があった場合に前記水処理設備における推定される水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する記憶部と、
    前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
    前記演算部により選択された水処理状況を表示する表示部と、
    を備え、
    前記対策データには、濁度及び鉄濃度が上昇した場合、前記水処理設備において腐食又は持込み鉄による二次腐食が発生し始めていると推定され、該水処理設備に対し防食剤の注入量増加という対策を施すことが規定されていることを特徴とする水質管理装置。
  6. 水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
    複数の水質パラメータの変化と、該変化があった場合に前記水処理設備における推定される水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する記憶部と、
    前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
    前記演算部により選択された水処理状況を表示する表示部と、
    を備え、
    前記対策データには、濁度及び銅濃度が上昇した場合、前記水処理設備において腐食が発生し始めていると推定され、該水処理設備に対し防食剤の注入量増加という対策を施すことが規定されていることを特徴とする水質管理装置。
  7. 水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
    複数の水質パラメータの変化と、該変化があった場合に前記水処理設備における推定される水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する記憶部と、
    前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
    前記演算部により選択された水処理状況を表示する表示部と、
    を備え、
    前記対策データには、ポリマー濃度が基準値濃度を維持し、かつ循環水中のポリマー濃度に対するCOD(化学的酸素要求量)が上昇している場合、前記水処理設備において外部からのCOD成分の混入によりスライムが発生し始めていると推定され、該水処理設備に対しスライム防止剤の注入量増加という対策を施すことが規定されていることを特徴とする水質管理装置。
  8. 水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
    複数の水質パラメータの変化と、該変化があった場合に前記水処理設備における推定される水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する記憶部と、
    前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
    前記演算部により選択された水処理状況を表示する表示部と、
    を備え、
    前記対策データには、シリカ濃度及びマグネシウム硬度が低下している場合、前記水処理設備においてケイ酸マグネシウムでのスケールが析出していると推定され、該水処理設備に対しケイ酸マグネシウムスケール防止剤の注入量増加又はブロー量増加という対策を施すことが規定されていることを特徴とする水質管理装置。
  9. 水処理設備から採取された試料水について測定された複数の水質パラメータが入力される入力部と、
    複数の水質パラメータの変化と、該変化があった場合に前記水処理設備における推定される水処理状況と、前記水処理設備に施す対策とを組み合わせた対策データを記憶する記憶部と、
    前記対策データを参照し、入力された複数の水質パラメータに対応する水処理状況を選択する演算部と、
    前記演算部により選択された水処理状況を表示する表示部と、
    を備え、
    前記対策データには、濁度及びCOD(化学的酸素要求量)が上昇している場合、前記水処理設備においてスライムが発生していると推定され、該水処理設備に対しスライム防止剤の注入量増加という対策を施すことが規定されていることを特徴とする水質管理装置。
JP2016093228A 2016-05-06 2016-05-06 水質管理装置 Expired - Fee Related JP6202135B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016093228A JP6202135B2 (ja) 2016-05-06 2016-05-06 水質管理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016093228A JP6202135B2 (ja) 2016-05-06 2016-05-06 水質管理装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014086544A Division JP2015205237A (ja) 2014-04-18 2014-04-18 水質管理装置、水質管理システム、及び水質管理方法

Publications (2)

Publication Number Publication Date
JP2016179470A JP2016179470A (ja) 2016-10-13
JP6202135B2 true JP6202135B2 (ja) 2017-09-27

Family

ID=57131362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093228A Expired - Fee Related JP6202135B2 (ja) 2016-05-06 2016-05-06 水質管理装置

Country Status (1)

Country Link
JP (1) JP6202135B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101928816B1 (ko) * 2018-05-15 2019-03-14 주식회사 댄 냉각수 관리 시스템 및 제어방법
KR20190134385A (ko) * 2018-05-25 2019-12-04 지오씨 주식회사 포터블 수질 측정장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346204B2 (ja) * 2019-09-26 2023-09-19 大和ハウス工業株式会社 測定装置および測定方法
CN112748092A (zh) * 2021-01-18 2021-05-04 宁波方太厨具有限公司 一种在线水质硬度检测传感器和净水机及其使用方法
WO2022219373A1 (en) * 2021-04-13 2022-10-20 Rynan Technologies Pte. Ltd. Spectrophotometric system and method for wireless water quality management of aquaculture basin
CN113753979A (zh) * 2021-09-13 2021-12-07 上海岳塘环保工程有限公司 一种废水处理工艺中流程预警监控处理方法和装置
CN113917102B (zh) * 2021-10-09 2024-01-12 中国人民大学 通过参数校正获取铜短期水质基准的方法
CN117192057B (zh) * 2023-09-08 2024-05-28 湛蓝之源(广东)环保技术有限公司 一种水质检测方法、装置及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205249A (ja) * 2000-01-24 2001-07-31 Ffc:Kk 水質管理サービス提供システム
JP3624941B2 (ja) * 2000-03-17 2005-03-02 栗田工業株式会社 設備管理システム
JP2001263605A (ja) * 2000-03-17 2001-09-26 Kurita Water Ind Ltd 設備機器管理システム
US6845336B2 (en) * 2002-06-25 2005-01-18 Prasad S. Kodukula Water treatment monitoring system
JP2006300870A (ja) * 2005-04-25 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> 水質測定システム
JP4802665B2 (ja) * 2005-11-07 2011-10-26 栗田工業株式会社 水処理プラントの運転管理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101928816B1 (ko) * 2018-05-15 2019-03-14 주식회사 댄 냉각수 관리 시스템 및 제어방법
KR20190134385A (ko) * 2018-05-25 2019-12-04 지오씨 주식회사 포터블 수질 측정장치
KR102122053B1 (ko) 2018-05-25 2020-06-11 지오씨 주식회사 포터블 수질 측정장치

Also Published As

Publication number Publication date
JP2016179470A (ja) 2016-10-13

Similar Documents

Publication Publication Date Title
JP6202135B2 (ja) 水質管理装置
WO2015159711A1 (ja) 水質管理装置、水質管理システム、及び水質管理方法
JP5895967B2 (ja) 濃縮倍数測定装置、濃縮倍数測定方法、及び水質指標値測定方法
JP5818907B2 (ja) 設備機器及び給湯暖房システム
ES2741651T3 (es) Método y dispositivo para supervisar y controlar el estado de una corriente de proceso
CN106680520B (zh) 一种水质自动检测分析仪
Hamid et al. IoT based water quality monitoring system and evaluation
CN113401954A (zh) 一种工业循环冷却水的预测方法和装置
BR112015001689A2 (pt) desenvolvimento de projeto e implementação de sistema e algoritmo de controle baseados em analisador
JP2022118709A (ja) 次亜塩素酸ナトリウム光学濃度分析によるリアルタイム副産物定量測定装置
KR101519359B1 (ko) 온라인 다목적 클로라이드 분석기
JP2009024895A (ja) 水処理システム、及び冷却系循環水の処理方法
JP2005337585A (ja) ボイラ装置およびボイラ装置の腐食抑制方法
Meghana et al. Design and development of real-time water quality monitoring system
KR102555505B1 (ko) pH 전극을 활용한 회전 전극방식의 전기화학식 잔류염소센서를 장착한 수질다항목 측정시스템
JP4714209B2 (ja) Cod自動計測器およびそれを用いたcodの測定方法
Palmer et al. Isopiestic determination of the osmotic and activity coefficients of K2SO4 (aq) at the temperatures 298.15 and 323.15 K, and revision of the thermodynamic properties of the K2SO4+ H2O system
JP4543388B2 (ja) 水処理薬品の濃度管理方法
US20050036903A1 (en) Pewitt analyzer
US20220162096A1 (en) System for electro-chemically inhibiting biological growth in air treatment units
Beck et al. Novel Bare Amperometric Sensors to Provide Accurate Stabilized Bromine Dosing in Cooling Towers
JP2011215034A (ja) フッ素自動分析装置
JP2004322058A (ja) 水処理用薬品の濃度管理方法及び装置
CN217808789U (zh) 循环水处理系统及其控制装置
RU2798693C1 (ru) Система и способ мониторинга качества теплоносителя

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6202135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees