JP6199576B2 - 試験回路、半導体集積装置、及び試験方法 - Google Patents

試験回路、半導体集積装置、及び試験方法 Download PDF

Info

Publication number
JP6199576B2
JP6199576B2 JP2013033240A JP2013033240A JP6199576B2 JP 6199576 B2 JP6199576 B2 JP 6199576B2 JP 2013033240 A JP2013033240 A JP 2013033240A JP 2013033240 A JP2013033240 A JP 2013033240A JP 6199576 B2 JP6199576 B2 JP 6199576B2
Authority
JP
Japan
Prior art keywords
current
circuit
capacitance
value
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013033240A
Other languages
English (en)
Other versions
JP2014165254A (ja
Inventor
哲章 四辻
哲章 四辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2013033240A priority Critical patent/JP6199576B2/ja
Publication of JP2014165254A publication Critical patent/JP2014165254A/ja
Application granted granted Critical
Publication of JP6199576B2 publication Critical patent/JP6199576B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

本発明は、機能回路に含まれる回路素子の電気的特性値を調整するための試験を行う試験回路、試験結果に基づいて当該電気的特性値を調整する制御回路を含む半導体集積装置、及び当該試験を行う試験方法に関する。
半導体集積装置には、容量素子及び/又は抵抗素子から構成される例えばフィルタなどの機能回路が含まれる場合がある。機能回路の特性は、容量素子や抵抗素子の電気的特性値によって定まる。例えば低域通過フィルタ回路の場合、その回路特性は容量値と抵抗値の積すなわち時定数によって決定される。ところで、これらの電気的特性値は、一般的に製造プロセスにおけるバラツキによって個体毎に設計目標値からのズレを生ずる。かかるズレが生じた場合、所望の回路特性が得られなくなってしまう。例えば低域通過フィルタ回路の場合、時定数のバラツキにより、不要な高周波数信号を除去できなくなったり、逆に必要な周波数成分の信号まで除去してしまうといった不具合を生じてしまう。それ故、個体毎に電気的特性値を設計目標値に合わせることが重要である。例えば特許文献1には、コンデンサと抵抗とからなる低域通過フィルタにクロック信号を入力し、フィルタ通過による遅延時間に基づいて回路素子の電気的特性値のズレを自動調整するフィルタ回路が開示されている。
特開2003−347901号公報
特許文献1の技術においては、方形波からなるクロック信号を用いている。クロック信号の遅延時間は、その方形波の立上り又は立下りエッジがフィルタに入力された時点から、フィルタ通過後の方形波の立上り又は立下りエッジが所定閾値に達した時点までの期間として測定されると考えられる。ところで、方形波のようにレベル変化する信号においては、波形の立上り及び立下りエッジにいわゆる波形なまりが生じる。波形なまりによって、方形波の立上り又は立下りエッジが所定閾値に達するまでの時間が変化し、遅延時間にズレが生じる。波形なまりの大きさは、クロック信号を生成する回路の製造バラツキに起因して変化する。それ故、たとえ容量値や抵抗値のズレが生じていなくとも、個体毎に遅延時間のズレが生じてしまう。この場合、遅延時間のズレが、容量値や抵抗値のバラツキに起因するのか、クロック信号生成回路自体の製造バラツキに起因するのかの切り分けがつかなくなる。かかる状況の下で容量値や抵抗値を調整するので、調整精度が低くなってしまうという問題がある。また、特許文献1にも記載されているように、クロック信号の代わりに正弦波信号を低域通過フィルタに入力して振幅又は位相の変化を測定する方法を用いた場合には、正確な正弦波信号を生成するための専用回路が別途必要となり、実装面積及びコストの観点から望ましくない。更に、方形波や正弦波のような交流信号を測定するための高機能且つ高精度の機材を用いること自体がコストアップに繋がるという問題もある。
本発明は上記した如き問題点に鑑みてなされたものであって、製造バラツキによる回路素子の電気的特性値の個体間のズレを高精度で調整可能とするための試験を行う試験回路、試験結果に基づいて電気的特性値を調整する機能を有する半導体集積装置、及び当該試験を行う試験方法を提供することを目的とする。また、本発明は、上記試験機能及び調整機能を低コストで提供することができる試験回路、半導体集積装置及び試験方法を提供することを目的とする。
本発明による試験回路は、機能回路が形成された半導体基板上に形成されて前記機能回路に含まれる回路素子の電気的特性値の調整のための試験を行う試験回路であって、抵抗素子と、可変容量素子と、前記可変容量素子及び前記抵抗素子の各々に互いに独立した電流路を介して直流電流を供給する電流供給回路と、前記可変容量素子に生じた容量側電圧と前記抵抗素子に生じた抵抗側電圧とを比較して得られる比較結果に応じて前記可変容量素子の容量値を調整すると共に当該調整の度合を調整量情報信号として出力する容量調整出力部と、を含み、前記容量調整出力部は、前記可変容量素子の放電、充電及び帯電維持動作を選択的に実行する充放電手段を有し、前記充放電手段が前記帯電維持動作を実行しているときに前記可変容量素子の容量値を増減させることを特徴とする。
本発明による半導体集積装置は、半導体基板上に形成されて回路素子から構成される機能回路と、前記半導体基板と同一基板上に形成されて前記回路素子の電気的特性値の調整のための試験を行う試験回路と、前記試験回路による試験の結果得られた調整量情報信号に基づいて前記回路素子の電気的特性値を調整する制御回路と、を含む半導体集積装置であって、前記試験回路は、抵抗素子と、可変容量素子と、前記可変容量素子及び前記抵抗素子の各々に互いに独立した電流路を介して直流電流を供給する電流供給回路と、前記可変容量素子に生じた容量側電圧と前記抵抗素子に生じた抵抗側電圧とを比較して得られる比較結果に応じて前記可変容量素子の容量値を調整すると共に当該調整の度合を前記調整量情報信号として出力する容量調整出力部と、を含み、前記容量調整出力部は、前記可変容量素子の放電、充電及び帯電維持動作を選択的に実行する充放電手段を有し、前記充放電手段が前記帯電維持動作を実行しているときに前記可変容量素子の容量値を増減させることを特徴とする。
本発明による試験方法は、半導体基板上に形成された機能回路に含まれる回路素子の電気的特性値の調整のための試験を行う試験方法であって、前記半導体基板上に形成された可変容量素子及び抵抗素子の各々に互いに独立した電流路を介して直流電流を供給する定電流供給ステップと、前記可変容量素子に生じた容量側電圧と前記抵抗素子に生じた抵抗側電圧とを比較して得られる比較結果に応じて前記可変容量素子の容量値を調整すると共に当該調整の度合を調整量情報信号として出力する容量調整出力ステップと、を含み、前記容量調整出力ステップは、前記可変容量素子の放電、充電及び帯電維持動作を選択的に実行する充放電ステップと、前記充放電ステップが前記帯電維持動作を実行しているときに前記可変容量素子の容量値を増減させるステップと、を有することを特徴とする。
本発明の試験回路、半導体集積装置及び試験方法によれば、製造バラツキによる回路素子の電気的特性値の個体間のズレを高精度で調整するための情報を生成し、電気特性を調整することができる。また、本発明によれば、低コストで特性値調整に資する情報を生成して電気的特性値を調整することができる。
本発明である半導体集積装置の構成を示すブロック図である。 図1の試験回路の構成を示すブロック図である。 図2の可変容量素子の構成例を示す回路図である。 図2の試験回路の第1の実施例である詳細構成を示すブロック図である。 容量値調整処理ルーチンを示すフローチャートである。 容量値調整時における各種信号のタイムチャートである。 図4の構成において電流値測定のための構成を更に含む試験回路の構成を示すブロック図である。 図4のカレントミラー回路をカスコード構成としたときの回路図である。 図2の試験回路の第2の実施例である詳細構成を示すブロック図である。 図9の構成において電流値測定のための構成を更に含む試験回路の構成を示すブロック図である。
以下、本発明に係る実施例について添付の図面を参照しつつ詳細に説明する。
<第1の実施例>
図1には、本発明の実施例である半導体集積装置1の構成が示されている。半導体集積装置1には、少なくとも1つの機能回路2−1〜2−n(nは正の整数)が含まれる。機能回路2−1〜2−nの各々は、抵抗素子及び/又は容量素子(図示せず)を用いて構成されるフィルタや増幅器などのアナログ回路である。当該抵抗素子の抵抗値及び/又は当該容量素子の容量値は可変であり、制御回路3からの調整信号ADによって定まる。制御回路3は、試験回路4からの調整量情報kに基づいて調整信号ADを生成し、同一の調整信号ADを機能回路2−1〜2−nの各々に供給する。試験回路4は、製造バラツキによる抵抗値及び/又は容量値の変動の影響を吸収して各半導体集積装置1が同一の特性を呈するように当該抵抗値及び/又は容量値(以下、電気的特性値と称する)を調整するための調整量情報kを生成する。
以下、図2を参照しつつ、試験回路4の構成について説明する。試験回路4には、試験用の容量素子30及び抵抗素子40が含まれる。
容量素子30の一端はノードn1及びスイッチ21を介して電流源11に接続され、他端は第2電源に接続されている。また、容量素子30の一端はノードn1を介して比較部50の一方の入力端子にも接続されている。スイッチ21がオンしているときには、電流源11の電流Irefが容量素子30に供給される。容量素子30の容量値は、後述の容量調整信号生成部61から供給される容量調整信号TRに応じて増減する。
抵抗素子40の一端はノードn2を介して電流源12に接続され、他端は第2電源に接続されている。また、抵抗素子40の一端はノードn2を介して比較部50の他方の入力端子にも接続されている。電流源12の電流Irefが抵抗素子40に供給される。容量素子30及び抵抗素子40の各々には互いに独立した電流路を介して電流Irefが供給される。
ノードn1と第2電源との間には、容量素子と並列にスイッチ22が接続されている。スイッチ21及び22の各々は、後述の切替信号生成部62から供給される切替信号Φ1及びΦ2に応じてオン/オフする。電流源11及び電流源12の各々は、第1電源に接続されている。
比較部50は、一方の入力端子に入力される電圧Vと、他方の入力端子に入力される電圧Vとを比較して、その比較結果COを出力する。電圧Vは、容量素子30によってノードn1に生じた電圧である。電圧Vは、抵抗素子40によってノードn2に生じた電圧である。
容量調整信号生成部61は、比較部50から出力される比較結果COに基づいて容量調整信号TRを生成する。容量調整信号生成部61は、容量素子30が帯電保持状態にあるときに容量調整信号TRを容量素子30に供給してその容量値を増減させる。容量調整信号生成部61は、容量値の増減調整の結果得られた調整量情報kを出力する。調整量情報kは、容量値の調整の度合いを示す情報である。また、調整量情報kは、抵抗値と容量値の積である時定数の調整の度合いを示す情報でもある。また、図7を参照して後述するように、調整量情報kから容量値のバラツキの度合いを求めることもできる。調整量情報kは、例えば、標準値を”1”とし、電気的特性値を増加させる場合には”1”よりも大きい値、電気的特性値を減少させる場合には”1”よりも小さい値とする調整係数である。
切替信号生成部62は、切替信号Φ1及びΦ2を生成してスイッチ21及び22に供給する。切替信号生成部62は、例えば外部回路(図示せず)からの調整開始指令に応じて切替信号Φ1及びΦ2の生成及び供給を開始する。切替信号Φ1及びΦ2の詳細については後述する(図4及び図5)。以下、比較部50と容量調整信号生成部61と切替信号生成部62とをまとめて容量調整出力部60と称する。
図3には、容量素子30の構成例が示されている。容量素子30は容量調整信号TRに応じて容量値が増減する可変容量である。複数の容量C1〜Cm(mは2以上の整数)が並列接続されており、容量C1〜Cmの各々の一端はノードn1に接続され、他端はスイッチS1〜Smを介して第2電源に接続されている。スイッチS1〜Smは、容量調整信号TRに応じてオン/オフする。スイッチS1〜Sm各々のオン/オフ状態に応じて容量素子30の容量値が定まる。
以下、図4を参照しつつ、試験回路4の詳細構成について図2と異なる部分を主として説明する。
図4においては、図2の第1電源をVDDとし、第2電源をGNDとしている。また、図4においては、図2の電流源11及び12が1つの電流源10として示されている。また、図4においては、図2のスイッチ21が2つのスイッチ21a及び21bとして示されている。抵抗素子40には、トランジスタ83及び86から構成される第1のカレントミラー回路101によって、電流源10の電流Irefと同一の電流が供給される。容量素子30には、トランジスタ83及び85から構成される第2のカレントミラー回路102によって、電流源10の電流Irefと同一の電流がスイッチ21aを介して供給される。
トランジスタ83と対をなしてカレントミラー回路103を構成するトランジスタ84と、各々の電流路がトランジスタ85及び84の電流路と直列接続され且つ一対となってカレントミラー回路104を構成するトランジスタ82及び81と、からなる充放電補助回路110を含む。以下、トランジスタについて”電流路”というときは、トランジスタのソース−ドレイン間の電流路をいう。トランジスタ84のドレインとトランジスタ81のゲート及びドレインの接続点であるノードn3と接地電位との間にはスイッチ21bが接続されている。充放電補助回路110においては、容量素子30の放電及び帯電時にはトランジスタ81及び82からなるカレントミラー回路が電流を流し、容量素子30の充電時には当該カレントミラー回路に電流を流さないようにして、容量素子30の充放電を補助する。
なお、図4の例とは逆に、図2の第1電源をGNDとし、第2電源をVDDとすることも可能である。また、抵抗素子40に供給する電流は、必ずしも電流Irefと同一の電流である必要はない。例えば、抵抗素子40に供給する電流を電流Irefのi倍(iは正の有理数)とし、抵抗素子40の抵抗値を1/iとすることもできる。この場合、抵抗素子40のサイズを1/iに減らすことができる。また、容量素子30に供給する電流は、必ずしも電流Irefと同一の電流である必要はない。例えば、容量素子30に供給する電流を電流Irefの1/j倍(jは正の有理数)とし、容量素子30の容量値を1/jとすることもできる。この場合、容量素子30のサイズを1/jに減らすことができる。
以下、図2及び図5を参照しつつ、容量調整部60による容量値調整処理について説明する。切替信号生成部62は、例えば外部回路(図示せず)からの調整開始指令に応じて切替信号Φ1及びΦ2の生成及び供給を開始する。
先ず、切替信号生成部62は、容量素子30に蓄積されている電荷を放電させるための切替信号Φ1及びΦ2を生成し、これをスイッチ21及び22に供給する(ステップS1)。例えば、切替信号Φ1の信号レベルは”L”であり、切替信号Φ2の信号レベルは”H”である。このとき、スイッチ21はオフし、スイッチ22はオンする。これにより、容量素子30に蓄積されている電荷が第2電源に放電される。
次に、切替信号生成部62は、容量素子30を充電するための切替信号Φ1及びΦ2を生成し、これをスイッチ21及び22に供給する(ステップS2)。例えば、切替信号Φ1の信号レベルは”H”であり、切替信号Φ2の信号レベルは”L”である。このとき、スイッチ21はオンし、スイッチ22はオフする。電流源11の電流Irefが容量素子30に供給されて、容量素子30が充電される。
次に、切替信号生成部62は、容量素子30に帯電している電荷を保持するための切替信号Φ1及びΦ2を生成し、これをスイッチ21及び22に供給する(ステップS3)。例えば、切替信号Φ1の信号レベルは”L”であり、切替信号Φ2の信号レベルは”L”である。このとき、スイッチ21及び22の各々はオフする。容量素子30は、電流源11とも第2電源とも接続されていない状態にあるので、容量素子30に帯電している電荷は保持される。
次に、容量調整信号生成部61は、容量素子30が帯電保持状態にあるときに比較部50がノードn1の電圧Vとノードn2の電圧Vとを比較して得られた比較結果COを取り込む(ステップS4)。なお、容量調整信号生成部61は、切替信号生成部62から供給される切替信号Φ1及びΦ2の信号レベルから、容量素子30が帯電保持状態にあるか否かを判別できる。
次に、容量調整信号生成部61は、比較結果COから電圧Vと電圧Vとが等しい又は略一致か否かを判別する(ステップS5)。容量調整信号生成部61は、電圧Vと電圧Vとが等しい又は略一致と判別した場合には、現在の調整係数(以下、現在調整係数kcと称する)を調整量情報kとして出力し(ステップS6)、当該ルーチンを終了する。現在調整係数kcは、例えば、標準値を”1”とし、後述のステップS8又はS9の動作によって変化する。容量調整信号生成部61は、以下のステップに進むことなく電圧Vと電圧Vとが等しい又は略一致と判別した場合には、現在調整係数kc=1を調整量情報k=1として出力して当該ルーチンを終了する。なお、上記の「等しい又は略一致」は、電圧Vと電圧Vとが完全に一致する場合だけでなく、電圧Vと電圧Vとの差分が所定範囲内に収まっていることを意味する。
容量調整信号生成部61は、電圧Vと電圧Vとが異なると判別した場合には、次に、電圧Vが電圧Vよりも大きいか否かを判別する(ステップS7)。
容量調整信号生成部61は、電圧Vが電圧Vよりも大きいと判別した場合には、容量素子30の容量値を減少させる容量調整信号TRを容量素子30に供給する(ステップS8)。この場合、容量調整信号生成部61は、現在調整係数kcを標準値”1”よりも小さい例えば”0.98”とし、容量素子30の基準容量値を0.98倍に減少させる容量調整信号TRを容量素子30に供給する。
容量調整信号生成部61は、電圧Vが電圧Vよりも小さいと判別した場合には、容量素子30の容量値を増加させる容量調整信号TRを容量素子30に供給する(ステップS9)。この場合、容量調整信号生成部61は、現在調整係数kcを標準値”1”よりも大きい例えば”1.02”とし、容量素子30の基準容量値を1.02倍に増加させる容量調整信号TRを容量素子30に供給する。
ステップS7又はS8の動作後、ステップS1に戻り、電圧Vと電圧Vとが同一又は略一致となるまで同様の動作が行なわれる。現在調整係数kcは、ステップS8に進む毎に例えば”0.02”刻みでkc=0.96、0.94、・・・というように減少し、一方、ステップS9に進む毎に例えば”0.02”刻みでkc=1.04、1.06、・・・というように増加する。容量調整信号生成部61は、電圧Vと電圧Vとが同一又は略一致であると判別した時点における現在調整係数kcを調整量情報kとして出力して当該ルーチンを終了する。
上記した動作により、機能回路2−1〜2−n(図1)を構成する容量素子の容量値と抵抗素子の抵抗値との積すなわち時定数を調整するための調整係数(調整量情報)kが得られる。
以下、図6を参照しつつ、図2の第1電源をVDDとし、第2電源をGNDとして、図5の容量値調整処理ルーチン実行時における各信号の状態について説明する。
先ず、切替信号Φ1が”L”、切替信号Φ2が”H”となり、スイッチ21がオフ状態、スイッチ22がオン状態となる。これにより、容量素子30に蓄積されている電荷が接地電圧GNDに放電される。電圧Vは低下し、放電期間T内に接地電圧GNDに等しくなる。これによって、容量素子30の電荷蓄積状態が初期化される。
次に、切替信号Φ1が”H”、切替信号Φ2が”L”となり、スイッチ21がオン状態、スイッチ22がオフ状態となる。これにより、電流源11の電流Irefによって容量素子30が充電される。電圧Vは、充電期間T中、徐々に上昇し、最終的に現在調整係数kcに応じた電圧値となる。
次に、切替信号Φ1が”L”、切替信号Φ2が”L”となり、スイッチ21がオフ状態、スイッチ22がオフ状態となる。容量素子30は、電流源11及び接地電圧GNDのいずれにも接続されず、容量素子30に帯電している電荷が保持される。電圧Vは、保持期間T中に亘って一定電圧値のまま維持される。
以上で、第1サイクルCY1が終了する。第2サイクルCY2、及び第3サイクルにおいても、同様に、放電状態、充電状態、帯電保持状態の順に状態が変化する。第1サイクルCY1から第3サイクルCY3にかけて電圧Vは段階的に大きくなる。これは、サイクル毎に現在調整係数kcが減少したからである。すなわち、第1サイクルCY1における電圧Vは電圧Vよりも小さいので、次の第2サイクルCY2においては、現在調整係数kcは標準値”1”よりも小さい値例えば”0.98”に設定され、容量素子30の設定容量値が基準容量値の0.98となる。第2サイクルCY2における電圧Vも電圧Vよりも小さいので、次の第3サイクルCY3においては、現在調整係数kcは現調整係数”0.98”よりも小さい値例えば”0.96”に設定され、容量素子30の設定容量値が基準容量値の0.96倍となる。第3サイクルCY3において電圧Vは電圧Vと等しくなるので、現在調整係数kc=0.96が調整量情報kとして出力される。容量値調整処理は、この時点で終了する。
各サイクルの充電期間Tは一定である。各サイクルにおける電圧Vの電圧値は充電期間Tの長さと現在調整係数kcの値とによって定まるところ、充電期間Tの長さをサイクル毎に変えてしまうと、現在調整係数kcをサイクル毎に漸次的に変化させて調整することとの関係から、容量素子30の容量値を適切な値に調整できなくなるからである。また、調整対象となる全ての半導体集積装置1についても、充電期間Tを共通の一定値として調整する。一方、各サイクルの放電期間T及び保持期間Tは一定である必要はない。また、各サイクルの周期も一定である必要はない。
容量調整処理において、充電期間Tを各個体で共通の一定値として、電圧Vと電圧Vとが等しくなるように容量素子30の容量値を調整する理由は以下の通りである。
ノードn1の電圧Vは、V=Iref×Rによって表される。ここで、Irefは電流源12の電流値であり、Rは抵抗素子40の抵抗値である。ノードn2の電圧Vは、V=(Iref×T)/Cによって表される。ここで、Irefは電流源11の電流値であり、Tは所定の充電時間であり、Cは調整後容量値である。Cは、Rとの積がTとなるように、調整係数kを用いて調整された調整後の容量値であり、Rとの関係で個体毎に定まる。これらの式より、電圧Vは、V=(T)/(R)によって表される。
電圧Vと電圧Vとが等しい場合には、V=V=(T)/(R)が成り立つ。この式を整理すると、T=Rが導かれる。この式より、抵抗素子40の抵抗値Rと調整後容量値Cとの積すなわち時定数が、所定の充電時間Tに等しくなるように調整すれば良いことがわかる。Cは、C=k×Cによって表される。ここで、kは調整係数であり、Cは容量素子30の容量値である。これらの式から、Tを一定とし、T=R×k×Cが成り立つように個体毎に調整係数(調整量情報)kを決定すれば、各個体の時定数を共通の一定値にすることができる。
試験回路4は上記のようにして決定した調整量情報kを制御回路3に供給する。制御回路3は、調整量情報kに基づいて調整信号ADを生成し、同一の調整信号ADを機能回路2−1〜2−nの各々に供給する。これにより、機能回路2−1〜2−nの各々の時定数を目標値に調整することができる。
以下、更に、抵抗値のバラツキの度合い、及び容量値のバラツキの度合いについても算出することができる構成について説明する。
図7には、電流源10の電流Irefの電流値を外部測定するための構成を更に含む試験回路4の構成を示すブロック図である。試験回路4には、トランジスタ83と対をなしてカレントミラー回路を構成するトランジスタ87が更に含まれる。トランジスタ87の電流路には、電流Irefの電流値に応じた電流値を有する電流Imが流れる。
固体毎の抵抗値のバラツキ度合いDは以下の計算により求められる。電流Im及び電圧Vをモニタし、抵抗素子40の実抵抗値RmをRm=V/Imから算出する。抵抗素子40の目標抵抗値を”Rt”とすると、当該個体における抵抗値のバラツキ度合いDはD=Rm/Rtによって算出される。すなわち、抵抗値のバラツキ度合いDは実抵抗値Rmと目標抵抗値Rtの比率である。
固体毎の容量値のバラツキ度合いDは以下の計算により求められる。調整後容量値CをC=T/Rmから算出する。ここで、充電時間Tは既知の一定値であり、実抵抗値Rmは上記で算出済みである。容量素子30の実容量値CmをCm=C/kから算出する。ここで、kは最終的な調整係数すなわち調整量情報であり、容量調整信号生成部61によって決定される。容量素子30の目標容量値を”Ct”とすると、当該個体における容量値のバラツキ度合いDはD=Cm/Ctによって算出される。すなわち、容量値のバラツキ度合いDは実容量値Cmと目標容量値Ctの比率である。
電流Im及び電圧Vのモニタや上記の各計算は、制御回路3(図1)によって行なわれる。制御回路3は、抵抗値及び/又は容量値のバラツキ度合いD及び/又はDに基づいて調整信号ADを生成し、同一の調整信号ADを機能回路2−1〜2−nの各々に供給することができる。これにより、機能回路2−1〜2−nの各々の抵抗値及び/又は容量値を調整することができる。
上記したように、本実施例の半導体集積装置1においては、試験用の容量素子30及び抵抗素子40の各々に定電流を供給し、容量素子30側のノードn1に生じた電圧Vと抵抗素子40側のノードn2に生じた電圧Vとを比較して時定数の調整量情報を決定する。容量素子30の充電時間Tを各個体で共通の一定値とし、且つ固体毎に電圧Vと電圧Vとが一致するように容量素子30の容量値を調整することにより、各個体の時定数を共通の一定値とすることができる。更に、電流源10の電流値をモニタすることにより、抵抗値及び/又は容量値のバラツキ度合いを算出することができ、各個体の抵抗値及び/又は容量値を共通の一定値とすることもできる。
本発明においては、ノードn1及びn2に生じる直流電圧すなわち電圧V及び電圧Vを用いて時定数調整のための情報を得ることができる。この点で、本発明は、方形波からなる交流の電圧信号を用いて調整を行う従来技術と異なる。従来技術においては、方形波の波形なまりに起因する遅延時間のズレから調整精度が低下してしまうという問題がある。これに対して、本発明においては、直流電圧V及び電圧Vを用いるので、このような問題は生じず、高精度の調整が可能となる。
また、正弦波信号をフィルタに入力して調整する別の従来技術の場合、正確な正弦波信号を生成するための専用回路が別途必要となり、実装面積及びコストの点から問題がある。これに対して、本発明においては正弦波信号を生成する必要がないので、実装面積を小さくできてコストも抑えられる。更に、本発明においては、方形波や正弦波のような交流信号を測定するための高機能且つ高精度の機材を用いる必要も無いので、コストを更に抑えることができる。
また、本発明においては、容量素子30の充電時間Tは各充放電サイクルで一定であるが、放電時間T及び帯電保持時間Tは必ずしも一定にする必要がない。すなわち、各充放電サイクルの周期は必ずしも一定にする必要がない。それ故、当該周期に対応する周波数成分のノイズが生じないという効果も奏する。
なお、図4のカレントミラー回路(101〜104うちの少なくとも1つ)をカスコード構成にすることができる。図8(a)には、図4のカレントミラー回路103をカスコード構成にしたときの一例が示されている。カレントミラー回路101及び102についても同様のカスコード構成とすることができる。また、図8(b)には、図4のカレントミラー回路104をカスコード構成にしたときの一例が示されている。カスコード構成とすることによって、カレントミラー回路により電流Irefをコピーする際にチャネル長変調効果等によって生じ得るコピー誤差を低減することができる。
<第2の実施例>
本実施例の試験回路4の基本構成は、第1の実施例と同様に図2に示される。本実施例の試験回路4の詳細構成は図9に示される。以下、図9を参照しつつ、本実施例における試験回路4の詳細構成について第1の実施例と異なる部分を主として説明する。
図9の構成においては、図4の構成における充放電補助回路110が含まれず、その代わりに充放電補助抵抗42が含まれる。充放電補助抵抗42の一端はトランジスタ85のドレインに接続され、他端はスイッチ21bを介して接地電圧GNDに接続されている。スイッチ21bには切替信号Φ1のレベル反転信号が供給される。インバータ90が、切替信号生成部62から出力された切替信号Φ1の信号レベルを反転させてスイッチ21bに供給する。容量素子30の放電及び帯電時にはスイッチ21bがオンして充放電補助抵抗42を介して接地電位GNDに電流が流れ、容量素子30の充電時にはスイッチ21bがオフして接地電位GNDに電流が流れないようにして、容量素子30の充放電を補助する。その他の構成は図4の構成と同様である。
図10には、電流源10の電流Irefの電流値を外部測定するための構成を更に含む試験回路4の構成を示すブロック図である。試験回路4には、トランジスタ83と対をなしてカレントミラー回路を構成するトランジスタ87が更に含まれる。トランジスタ87の電流路には、電流Irefの電流値に応じた電流値を有する電流Imが流れる。
容量値調整処理ルーチンは、第1の実施例と同様に図5に示される。また、当該ルーチン実行時における各信号の状態は、第1の実施例と同様に図6に示される。また、各個体の時定数を共通の一定値にするための調整方法、及び抵抗値のバラツキ度合い及び容量値のバラツキ度合いの算出方法も第1の実施例と同様である。
本実施例の試験回路4は、第1の実施例における充放電補助回路110を含まない、より簡単な構成である。かかる構成により、実装面積をより小さくし、コストもより抑えることができる。また、充放電補助回路110を構成するトランジスタ自体の製造バラツキを考慮する必要もなくなるという効果も奏する。
1 半導体集積装置
2−1〜2−n 機能回路
3 制御回路
4 試験回路
10、11、12 電流源
21、21a、21b、22 スイッチ
30 試験用可変容量コンデンサ
40 試験用抵抗
42 充放電補助抵抗
50 比較部
60 容量調整部
61 容量調整信号生成部
62 切替信号生成部
81〜87、81a〜84b トランジスタ
90 インバータ
101〜104 カレントミラー回路
110 充放電補助回路

Claims (11)

  1. 機能回路が形成された半導体基板上に形成されて前記機能回路に含まれる回路素子の電気的特性値の調整のための試験を行う試験回路であって、
    抵抗素子と、
    可変容量素子と、
    前記可変容量素子及び前記抵抗素子の各々に互いに独立した電流路を介して直流電流を供給する電流供給回路と、
    前記可変容量素子に生じた容量側電圧と前記抵抗素子に生じた抵抗側電圧とを比較して得られる比較結果に応じて前記可変容量素子の容量値を調整すると共に当該調整の度合を調整量情報信号として出力する容量調整出力部と、を含み、
    前記容量調整出力部は、前記可変容量素子の放電、充電及び帯電維持動作を選択的に実行する充放電手段を有し、前記充放電手段が前記帯電維持動作を実行しているときに前記可変容量素子の容量値を増減させることを特徴とする試験回路。
  2. 前記容量調整出力部は、前記抵抗側電圧が前記容量側電圧よりも大きいと判別した場合に前記可変容量素子の設定容量値を減少させ、且つ前記抵抗側電圧が前記容量側電圧よりも小さいと判別した場合に前記可変容量素子の設定容量値を増加させ、前記抵抗側電圧と前記容量側電圧とが等しい又は略一致した場合に当該減少又は増加の度合を前記調整量情報信号として出力することを特徴とする請求項1に記載の試験回路。
  3. 前記容量調整出力部は、前記可変容量素子の容量値と前記抵抗素子の抵抗値の積によって得られる時定数と、前記可変容量素子の充電時間とが対応するように前記容量値を調整することを特徴とする請求項に記載の試験回路。
  4. 前記電流供給回路は、
    直流電流を生成する電流源と、
    前記直流電流の電流値に応じた電流を前記抵抗素子に供給する第1カレントミラー回路と、
    前記直流電流の電流値に応じた電流を前記容量素子に供給する第2カレントミラー回路と、からなることを特徴とする請求項1乃至のいずれか1つに記載の試験回路。
  5. 前記第1カレントミラー回路は、前記電流源に電流路が接続された第1トランジスタと、これと対を成す第2トランジスタと、からなり、
    前記第2カレントミラー回路は、前記第1トランジスタと、これと対を成す第3トランジスタと、からなり、
    前記充放電手段は、
    切替信号を生成する切替信号生成部と、
    前記可変容量素子と並列に設けられて前記切替信号に応じてオンオフする第1スイッチと、
    前記第3トランジスタの電流路と前記容量素子との間に設けられて前記切替信号に応じてオンオフする第2スイッチと、
    前記第1トランジスタと対をなしてカレントミラー回路を構成する第4トランジスタと、
    各々の電流路が前記第3及び第4トランジスタの電流路と直列接続され且つ一対となってカレントミラー回路を構成する第5及び第6トランジスタと、
    前記第6トランジスタの動作端子間に設けられて前記切替信号に応じてオンオフする第3スイッチと、からなることを特徴とする請求項に記載の試験回路。
  6. 前記第1カレントミラー回路は、前記電流源に電流路が接続された第1トランジスタと、これと対を成す第2トランジスタと、からなり、
    前記第2カレントミラー回路は、前記第1トランジスタと、これと対を成す第3トランジスタと、からなり、
    前記充放電手段は、
    切替信号を生成する信号生成部と、
    前記可変容量素子と並列に設けられて前記切替信号に応じてオンオフする第1スイッチと、
    前記第3トランジスタの電流路と前記容量素子との間に設けられて前記切替信号に応じてオンオフする第2スイッチと、
    前記第3トランジスタの電流路に直列接続された切替用抵抗素子と、
    前記切替用抵抗素子に直列接続されて前記切替信号に応じてオンオフする第3スイッチと、からなることを特徴とする請求項に記載の試験回路。
  7. 前記切替信号は、1つの充放電周期内において前記可変容量素子の充電、放電及び帯電維持の状態を切り替えるために前記第1乃至第3スイッチを切り替える信号であり、各充放電周期内の充電期間は同一であることを特徴とする請求項5又は6に記載の試験回路。
  8. 前記充放電周期は一定でないことを特徴とする請求項に記載の試験回路。
  9. 前記第1トランジスタと対をなしてカレントミラー回路を構成する第7トランジスタを更に含み、前記電流源の電流値に応じた電流値を有する電流を前記第7トランジスタの電流路を介して出力することを特徴とする請求項5又は6に記載の試験回路。
  10. 半導体基板上に形成されて回路素子から構成される機能回路と、前記半導体基板と同一基板上に形成されて前記回路素子の電気的特性値の調整のための試験を行う試験回路と、前記試験回路による試験の結果得られた調整量情報信号に基づいて前記回路素子の電気的特性値を調整する制御回路と、を含む半導体集積装置であって、
    前記試験回路は、
    抵抗素子と、
    可変容量素子と、
    前記可変容量素子及び前記抵抗素子の各々に互いに独立した電流路を介して直流電流を供給する電流供給回路と、
    前記可変容量素子に生じた容量側電圧と前記抵抗素子に生じた抵抗側電圧とを比較して得られる比較結果に応じて前記可変容量素子の容量値を調整すると共に当該調整の度合を前記調整量情報信号として出力する容量調整出力部と、を含み、
    前記容量調整出力部は、前記可変容量素子の放電、充電及び帯電維持動作を選択的に実行する充放電手段を有し、前記充放電手段が前記帯電維持動作を実行しているときに前記可変容量素子の容量値を増減させることを特徴とする半導体集積装置。
  11. 半導体基板上に形成された機能回路に含まれる回路素子の電気的特性値の調整のための試験を行う試験方法であって、
    前記半導体基板上に形成された可変容量素子及び抵抗素子の各々に互いに独立した電流路を介して直流電流を供給する定電流供給ステップと、
    前記可変容量素子に生じた容量側電圧と前記抵抗素子に生じた抵抗側電圧とを比較して得られる比較結果に応じて前記可変容量素子の容量値を調整すると共に当該調整の度合を調整量情報信号として出力する容量調整出力ステップと、を含み、
    前記容量調整出力ステップは、前記可変容量素子の放電、充電及び帯電維持動作を選択的に実行する充放電ステップと、
    前記充放電ステップが前記帯電維持動作を実行しているときに前記可変容量素子の容量値を増減させるステップと、を有することを特徴とする試験方法。
JP2013033240A 2013-02-22 2013-02-22 試験回路、半導体集積装置、及び試験方法 Active JP6199576B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033240A JP6199576B2 (ja) 2013-02-22 2013-02-22 試験回路、半導体集積装置、及び試験方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033240A JP6199576B2 (ja) 2013-02-22 2013-02-22 試験回路、半導体集積装置、及び試験方法

Publications (2)

Publication Number Publication Date
JP2014165254A JP2014165254A (ja) 2014-09-08
JP6199576B2 true JP6199576B2 (ja) 2017-09-20

Family

ID=51615620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033240A Active JP6199576B2 (ja) 2013-02-22 2013-02-22 試験回路、半導体集積装置、及び試験方法

Country Status (1)

Country Link
JP (1) JP6199576B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4184391B2 (ja) * 2006-06-21 2008-11-19 シャープ株式会社 比較回路、および赤外線受信機
JP4844403B2 (ja) * 2007-01-19 2011-12-28 富士通株式会社 半導体集積回路
US7477098B2 (en) * 2007-02-08 2009-01-13 Mediatek Singapore Pte Ltd Method and apparatus for tuning an active filter
JP5120154B2 (ja) * 2007-11-01 2013-01-16 株式会社デンソー 信号形成回路
JP2009284130A (ja) * 2008-05-21 2009-12-03 Panasonic Corp フィルタ回路および半導体装置
JP2012175420A (ja) * 2011-02-22 2012-09-10 Yamaha Corp 定電流回路
US8552797B2 (en) * 2011-08-04 2013-10-08 St-Ericsson Sa High accuracy RC calibradion circuit

Also Published As

Publication number Publication date
JP2014165254A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
JP5280449B2 (ja) 基準周波数生成回路、半導体集積回路、電子機器
TWI720285B (zh) 電壓產生裝置及其校準方法
JP5867652B2 (ja) モジュールおよび容量検出方法
CN102739240A (zh) 恒流产生电路以及包括其的微处理器
JP7115939B2 (ja) ボルテージレギュレータ
US9852860B2 (en) Parameter setting circuit of a power conversion apparatus and a method for generating a current
US9425680B2 (en) Switching regulator with ripple-based control and method for switching regulator with ripple-based control
US20130030741A1 (en) Method and system for measuring the impedance of the power distribution network in programmable logic device applications
JP2015154453A (ja) 電源電圧調整装置
JP2008535316A (ja) デジタル時定数トラッキング技術及び装置
JP4852004B2 (ja) トリミング方法
JP4451731B2 (ja) 集積回路のrc時定数と目標値の比率を求める方法および装置
JP2009031093A5 (ja)
JP6199576B2 (ja) 試験回路、半導体集積装置、及び試験方法
US10541089B2 (en) Barium-strontium-titanium (BST) capacitor configuration method
US20150084717A1 (en) Measurement device, semiconductor device and impedance adjustment method
US9705485B1 (en) High-resolution current and method for generating a current
JP2011151452A (ja) 半導体装置及びオフセット補正方法
JP6185168B2 (ja) 熱式流量計
KR100897304B1 (ko) 반도체 메모리 장치의 전압 레벨 비교 회로 및 이를 이용한전압 조정 회로
JP6530608B2 (ja) 電源電圧監視回路およびそれを備えた電源回路
JPH06244677A (ja) フィルタ回路
JP2016090379A (ja) 測定装置
JP7289973B2 (ja) ボルテージレギュレータ
JP5701564B2 (ja) 半導体集積回路及び測定温度検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170824

R150 Certificate of patent or registration of utility model

Ref document number: 6199576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150