JP6195127B2 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
JP6195127B2
JP6195127B2 JP2015093030A JP2015093030A JP6195127B2 JP 6195127 B2 JP6195127 B2 JP 6195127B2 JP 2015093030 A JP2015093030 A JP 2015093030A JP 2015093030 A JP2015093030 A JP 2015093030A JP 6195127 B2 JP6195127 B2 JP 6195127B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
fabric layer
negative electrode
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015093030A
Other languages
English (en)
Other versions
JP2016212984A (ja
Inventor
浩哉 梅山
浩哉 梅山
島村 治成
治成 島村
橋本 達也
達也 橋本
福本 友祐
友祐 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015093030A priority Critical patent/JP6195127B2/ja
Priority to US15/139,953 priority patent/US10050248B2/en
Priority to KR1020160051425A priority patent/KR101884057B1/ko
Priority to CN201610282241.9A priority patent/CN106099012B/zh
Publication of JP2016212984A publication Critical patent/JP2016212984A/ja
Application granted granted Critical
Publication of JP6195127B2 publication Critical patent/JP6195127B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)

Description

本発明は二次電池に関する。
リチウムイオン二次電池(リチウム二次電池)、ナトリウムイオン二次電池等の二次電池は、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として好ましく用いられている。
二次電池は、典型的に、正極活物質層を有する正極と、負極活物質層を有する負極とがセパレータを介して積層された電極体と、電解液とを備える。ここで、セパレータとしては、典型的に樹脂製の多孔質膜(フィルム)が用いられる。かかるセパレータは、例えば、正極と負極を電気的に絶縁する機能および電解液を保持する機能を備える。
かかる二次電池は、典型的に、電解液中の電荷担体(例えばリチウムイオン)が両電極間を行き来することで充放電を行う電池である。二次電池を充電する際には正極活物質層を構成する正極活物質内から電荷担体(典型的にはリチウムイオン)が放出(脱離)し、負極活物質層を構成する負極活物質内に電荷担体が吸蔵(挿入)される。放電時には逆に負極活物質内から電荷担体(典型的にはリチウムイオン)が放出(脱離)し、正極活物質内へ電荷担体が吸蔵(挿入)される。このように二次電池の充放電に伴い活物質内への電荷担体(典型的にはリチウムイオン)が吸蔵および放出されると、正負極活物質(即ち該活物質を有する正負極活物質層)が膨張および収縮する。
特開2002−008730号公報 特開2011−207149号公報 特開H05−205720号公報 特開H07−057715号公報
上記の構成の二次電池をハイレート充放電を繰り返す用途(例えば車載用途)に用いると、充放電に伴う正負極活物質(正負極活物質層)の膨張および収縮の繰り返しにより、電極体内(典型的にはセパレータ内)に保持していた電解液が電極体外に押し出されてしまう虞があった。このため、電極体内に保持される電解液の液量にムラが生じ、電極体内に電解液が多く存在する部分と電解液の液量が少ない(不足する)部分が生じる場合があった。
上記電極体のうち電解液が少ない(不足する)部分では、いわゆる液枯れが生じがちである。かかる電解液が少ない部分(典型的には液枯れが生じた部分)では、当該部分に存在する電解液が必要量を下回り、電池全体としての充放電性能が低下する傾向がある。また、上記電極体のうち電解液が相対的に多く存在する部分には電池反応が集中するため当該部分の劣化が促進される傾向がある。これらの事象はいずれも性能劣化(電池抵抗の増大や容量劣化など)の要因になるため好ましくない。特に高いハイレート充放電特性が要求される目的に使用される二次電池に対しては、このような電極体内の電解液の液量ムラに起因する性能劣化を抑えることが重要である。
例えば特許文献1〜4には、電極体内の電解液の保持性を向上する目的で電極体内に不織布層を有する技術が記載されている。
本発明は、上述した従来の課題を解決すべく創出されたものであり、その目的は、ハイレート充放電特性に優れた二次電池を提供することである。具体的には、電解液の保持に優れた電極体を備えた二次電池を提供することである。
本発明により、正極と、負極と、該正負極を電気的に隔離するセパレータとを有する電極体と、電解液とを備える二次電池が提供される。かかる二次電池は、上記セパレータと上記正極との間、及び/又は、上記セパレータと上記負極との間に不織布層を有する。そして、上記不織布層を構成する繊維のうちの少なくとも一部は、当該繊維の長さ方向の一方の端部に開口を有し、且つ、当該繊維の長さ方向に延びる非貫通孔が繊維一本につき一つ形成されている。ここで、上記非貫通孔の上記開口から当該非貫通孔の長さ方向の最深部までの長さLが、上記繊維の全長Lの50%以上である。
なお、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウムイオン二次電池等のいわゆる化学電池ならびに電気二重層キャパシタ等の物理電池を包含する用語である。
かかる構成によると、複数の繊維によって構成される不織布層内の空隙と、不織布層を構成する繊維に形成された非貫通孔と、に電解液を保持することが出来る。このため、不織布層内(即ち電極体内)に保持し得る電解液量を増大することができる。即ち、セパレータと正極との間或いはセパレータと負極との間に上記不織布層を備えることで、当該不織布層(即ち電極体)の電解液の保持性を向上することができる。
また、繊維に形成される空隙を非貫通孔とすることで、貫通孔を形成する場合と比較して、当該繊維の断面方向の圧力に対する強度を向上することができる。このため、充放電に伴い正極活物質層(負極活物質層)が膨張して不織布層が押圧(圧迫)される場合であっても、繊維に形成された空隙が押しつぶされることを抑制することができる。
上記構成の二次電池によると、電極体内での電解液の液量ムラに起因する電池性能の劣化を抑えることが可能であり、ハイレート充放電特性に優れた二次電池を提供することができる。
ここで開示される二次電池の好適な一態様では、上記非貫通孔の上記開口の面積Sが、上記開口が形成された上記繊維の端部を当該繊維の長手方向から平面視したときの繊維構成部分の面積Sと上記開口面積Sとの和S(S=S+S)の30%以上であり、当該非貫通孔は、上記開口から該非貫通孔の最深部までのサイズおよび形状がほぼ一定である。
開口の直径が大きい非貫通孔を形成することで、当該非貫通孔内に電解液を含浸しやすい。また、非貫通孔の開口から非貫通孔の最深部までの直径をほぼ一定とすることで、最深部の直径が開口の直径よりも小さい非貫通孔を形成する場合と比較して、非貫通孔内に多くの電解液を保持することができる。
ここで開示される二次電池の好適な一態様では、上記繊維一本あたりの上記非貫通孔の空隙容積Vが、上記繊維一本あたりの繊維構成部分の容積Vと上記非貫通孔の空隙容積Vとの和V(V=V+V)の20体積%以上である。かかる態様の繊維は繊維に占める空隙容積が大きいため、より多くの電解液を繊維内に保持することができる。これにより、不織布層(即ち電極体)の電解液の保液性を向上し得る。
ここで開示される二次電池の好適な一態様では、上記非貫通孔は、上記繊維の長手方向の中心軸を包含するように形成されている。かかる構成によると、上記繊維の断面方向の圧力に対する強度を向上することができるため、繊維に形成された空隙が押しつぶされることを高度に抑制することができる。
ここで開示される二次電池の好適な一態様では、上記不織布層は、当該不織布層を構成する繊維どうしを結着する結着材を含み、上記結着材により、上記不織布層を構成する一の繊維の一部が他の繊維の一部と結合されている。
かかる構成の不織布層は、不織布層を構成する繊維どうしが上記結着材により結合されているため、上記不織布層が押圧(圧迫)される場合であっても、複数の繊維で構成される空隙(網目構造)が押しつぶされにくい。即ち、充放電に伴って正極活物質層(負極活物質層)が膨張し、上記不織布層が押圧(圧迫)される場合であっても、上記複数の繊維で構成される空隙(網目構造)の形状を維持することが可能であり、かかる空隙(網目構造)中に電解液を保持し得る。このため、上記構成の不織布層を備えることによって、ハイレート充放電特性に優れた二次電池を提供することができる。
ここで開示される二次電池の好適な一態様では、上記不織布層に含まれる上記結着材の含有量が、上記不織布層全体の5質量%以上20質量%以下である。
不織布層に含まれる結着材の含有量を上記の範囲とすることで、繊維どうしを好適に結合し、且つ繊維間の空隙を好適に確保することができる。
本発明の一実施形態に係る二次電池の外形を模式的に示す斜視図である。 図1中のII−II線に沿う断面構造を模式的に示す縦断面図である。 一実施形態に係る捲回電極体の構成を示す模式図である。 図3中のIV−IV線に沿う断面構造を模式的に示す縦断面図であって、一実施形態に係る捲回電極体の正負極間の一部を拡大して模式的に示す部分断面図である。 本発明の一実施形態に係る繊維の構成を模式的に示す斜視図である。 図5中のVI−VI線に沿う断面構造を模式的に示す断面図である。 一実施形態に係る不織布層の構造を模式的に示す図である。 本発明の一実施形態に係る繊維の紡糸に用いるエレクトロスピニング装置の紡糸ノズルについて、当該紡糸ノズルの先端をコレクタ側から視た形状を模式的に示す図である。
以下、適宜図面を参照しながら、本発明の好適な実施形態を、リチウムイオン二次電池を例にして説明する。なお、本発明において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面において、同じ作用を奏する部材・部位に同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は必ずしも実際の寸法関係を反映するものではない。
なお、リチウムイオン二次電池は一例であり、本発明の技術思想はこれに限定されない。例えば、正負極間での電荷担体の移動に伴う電荷の移動により、繰り返し充放電が実現される各種の二次電池を適応対象とすることができる。具体的には、電荷担体としてリチウムイオンを利用するリチウムイオン二次電池以外に、その他の電荷担体(例えばマグネシウムイオン、ナトリウムイオン等)を備える他の二次電池(例えばマグネシウム二次電池、ナトリウムイオン二次電池等)にも本発明の技術思想は適用される。
ここで開示される二次電池は、正極とセパレータの間、及び/又は、負極とセパレータの間にここで開示する不織布層を有する以外は従来の二次電池と同様の構成をとり得る。
図1および図2に示すように、リチウムイオン二次電池100は、長尺状の正極(正極シート)50と長尺状の負極(負極シート)60とが長尺状のセパレータ(セパレータシート)70を介して扁平に捲回された形態の電極体(捲回電極体)20が、図示しない電解液とともに扁平な箱型形状の電池ケース30に収容された構成を有する。
ここで開示されるリチウムイオン二次電池100は、図1、2に示すように、電極体20と電解液(図示せず)とが電池ケース(即ち外装容器)30に収容された電池である。電池ケース30は、一端(電池の通常の使用状態における上端部に相当する。)に開口部を有する箱形(すなわち有底直方体状)のケース本体32と、該ケース本体32の開口部を封止する蓋体34とから構成される。図示するように、蓋体34には外部接続用の正極端子42および負極端子44が設けられている。また、蓋体34には、電池ケース30内部で発生したガスを電池ケース外部に排出するための安全弁36および電解液を当該電池ケース内に注入するための注入口(図示せず)とが設けられている。電池ケース30の材質としては、アルミニウムやアルミニウム合金、ステンレス鋼等の金属材料(合金製)、樹脂材料のものが好ましい。
≪電極体20≫
ここで開示される電極体20は、図4に示すように、正極50とセパレータ70の間、及び/又は、負極60とセパレータ70の間に、不織布層80を有する。かかる電極体20は、例えば積層型の電極体或いは捲回型の電極体であり得る。以下、特に限定することを意図したものではないが、捲回型の電極体(捲回電極体)20を例にして説明する。
本実施形態に係る捲回電極体20は、図3に示すように、組み立てる前段階において長尺状のシート構造(シート状電極体)である。かかる捲回電極体20は、正極集電体52の表面に正極活物質層54を備えた長尺な正極50と、負極集電体62上に負極活物質層64を備えた長尺な負極60と、2枚の長尺なセパレータ70と、不織布層80とを備える。以下、特に限定する事を意図するものではないが、本発明の一実施形態として、上記不織布層80が負極活物質層64の表面に形成された態様を例にして説明する。
上記捲回電極体20は、図3および図4に示すように、上記正極(正極シート)50と、負極活物質層64の表面(片面または両面、ここでは両面)に不織布層80が形成された負極(負極シート)60とを、長尺状のセパレータ(セパレータシート)70を介して重ね合わせて長尺方向に捲回されている。なお、かかる捲回電極体20は、上記捲回後に更に側面方向から押しつぶして拉げさせることによって扁平形状に成形し得る。
このように、不織布層80を負極60(負極活物質層64)の表面に形成し、当該負極60をセパレータ70と重ねあわせることで、負極60とセパレータ70との間に不織布層80を配置することができる。
なお、本実施形態では、上記不織布層80が負極60(負極活物質層64)の表面に形成された形態を例にして説明しているが、上記不織布層80がセパレータ70と正極50との間、及び/又はセパレータ70と負極60との間に配置される限りにおいて、本発明は当該形態に限定されない。例えば、上記不織布層80は、正極50(典型的には正極活物質層54)の表面(片面または両面)、或いはセパレータ70の表面(片面または両面)に形成してもよい。
例えば、不織布層80を正極50(正極活物質層54)の表面に形成し、当該正極50とセパレータ70とを重ねあわせることで、正極50とセパレータ70との間に不織布層80を配置することが可能である。また、不織布層80をセパレータ70の表面に形成し、当該不織布層80が正極50、及び/又は、負極60に対向するように、正極50、負極60、およびセパレータ70を重ねあわせることで、正極50とセパレータとの間、及び/又は、負極60とセパレータ70との間に不織布層80を配置することができる。
或いはまた、長尺なシート状の不織布層80を別に独立して作製し、当該不織布層80がセパレータ70と正極50との間、及び/又は、セパレータ70と負極60との間に配置されるように、不織布層80、正極50、負極60、およびセパレータ70を重ねあわせてもよい。
上記不織布層80は、負極60と一方のセパレータ70との間、又は正極50と一方のセパレータ70との間のうちの一か所以上に備えられていればよい。
好適な一実施形態では、負極60と一方のセパレータ70との間、又は正極50と一方のセパレータ70との間のうちの二か所以上(より好ましくは三箇所以上)に、上記不織布層を備える。なかでも、負極60と両方のセパレータ70との間、及び正極50と両方のセパレータ70との間に不織布層80を備える態様がより好ましい。これにより、電極体20内に保持可能な電解液量を増大することができる。また、負極活物質層64および正極活物質層54の近くに多くの電解液を保持することができ、負極活物質層64および正極活物質層54での電解液不足(典型的には液枯れ)を高度に抑制し得る。
上記負極60と両方のセパレータ70との間、及び正極50と両方のセパレータ70との間に不織布層80を備える電極体20は、例えば、セパレータ70の両面に上記不織布層80を形成し、当該セパレータ70を正極50および負極60と重ねあわせて作製すればよい。或いはまた、正極50(正極活物質54)の両面および負極60(負極活物質64)の両面上記不織布層80を形成し、当該正極50および負極60をセパレータ70と重ねあわせることによっても作製し得る。
捲回電極体20の捲回軸方向の中央部分には、図2〜4に示すように、捲回コア部分(即ち、正極50の正極活物質層54と、負極60の負極活物質層64と、セパレータ70とが積層されてなる積層構造)が形成されている。また、捲回電極体20の捲回軸方向の両端部では、正極活物質層非形成部分52aおよび負極活物質層非形成部分62aの一部が、それぞれ捲回コア部分から外方にはみ出ている。かかる正極側はみ出し部分(正極活物質層非形成部分52a)および負極側はみ出し部分(負極活物質層非形成部分62a)には、正極集電板42aおよび負極集電板44aがそれぞれ付設され、正極端子42および負極端子44とそれぞれ電気的に接続されている。
≪不織布層≫
ここで開示される不織布層80は、図7に示すように、複数の繊維10が集合して一体となった三次元構造を有する。典型的には、不織布層80は、複数の繊維10をランダムに積層して形成される。かかる不織布層80は、典型的に、当該不織布層80を構成する繊維10と繊維10の間に多くの空隙を有する。換言すると、上記不織布層80には、当該不織布層80を構成する繊維10によって形成された空隙が多く存在する。即ち、上記不織布層80は空隙率が大きい(典型的には40%以上、例えば50〜70%程度)。
上記不織布層80を構成する繊維10の間の空隙に電解液を保持することで、上記不織布層80を有する電極体20内に保持可能な電解液の液量を増大することができる。このため、電極体20内にかかる不織布層80を有することで、電極体20内で液枯れが発生することを好適に抑制し得る。
また、上記不織布層80は空隙率が大きいため、不織布層80中には電解液が含浸しやすい。したがって、電極体20中にかかる不織布層80を有することで、当該電極体20中へ電解液をスムーズに含浸させることができる。特に、捲回電極体20は電極の面積に対して電解液の入り口(浸透方向の端部)が特に狭くなりがちであり、電極体中に電解液の含浸ムラが生じやすい。このため、不織布層80を有することで電極体20内へ電解液を効率よく含浸させることがとりわけ効果的である。
不織布層80の平均厚みは特に限定されないが、不織布層80の平均厚みが大きすぎると、電池のエネルギー密度が低下する。このため、不織布層80の平均厚みは例えば30μm以下(より好ましくは20μm以下)が好ましい。一方で、極端に平均厚みが小さい不織布層80は、当該不織布層中への電解液の保持性が低下しがちであり、また、作製が困難になりがちである。このため、不織布層80の平均厚みは例えば5μm以上(より好ましくは10μm以上)が好ましい。かかる不織布層80の平均厚みは、例えば断面SEM画像の解析等によって求めることができる。
また、不織布層80に保持した電解液を正極活物質層54および負極活物質層64に供給し、当該電解液を電池反応に利用する観点からは、上記不織布層80は、電極体を構築した時に正極活物質層54と負極活物質層64とが対向する部分を少なくとも覆うサイズであることが好ましい。例えば、不織布層80の長尺方向に直交する幅方向の長さが、正極活物質層54の長尺方向に直交する幅方向の長さよりも大きい(好ましくは負極活物質層64の長尺方向に直交する方向の長さよりも大きい、より好ましくはセパレータ70の長尺方向に直交する幅方向の長さと同じ長さである)ことが好ましい。例えば、上記不織布層80を、セパレータ70と同じサイズとすればよい。
上記不織布層80を構成する繊維10の繊維長Lは特に限定されないが、長い繊維を用いることで、繊維どうしがよく絡まり、力学的強度が高くて潰れにくい不織布層80を形成し得る。このため、繊維10の長Lさは平均値で10mm以上が好ましく、30mm以上がより好ましく、さらに好ましくは50mm以上である。繊維長Lの上限は、例えば200mm以下、典型的には100mm以下とすればよい。
上記不織布層80を構成する繊維10の繊維径(直径)Rは特に限定されないが、細い繊維を用いることで、より多くの空隙を有する(即ち、空孔率の大きい)不織布層80を作製することができる。これにより、不織布層80中に保持可能な電解液の液量を増大する(即ち不織布層80の保液性を向上する)ことができる。また、繊維径Rの小さい繊維10は、より薄い不織布層80を作製する観点からも好ましい。このため、上記繊維10の繊維径(直径)Rは、平均値で例えば200nm以下(好ましくは150nm以下)とすることが好ましい。一方で、繊維径Rの下限は特に限定されないが、繊維径Rが小さすぎると不織布層80の力学的強度が低下する虞がある。また、繊維径Rが小さすぎる繊維10は切れやすく、不織布層80の形成が困難な場合がある。このため、繊維径Rは平均値で例えば50nm以上とすればよい。通常、およそ100nm程度の繊維径Rの繊維10であり得る。
上記不織布層80を構成する繊維10のうちの一部の繊維(好ましくは実質的に全ての繊維)は、図5および図6に示すように、当該繊維10の長さ方向の一方の端部に開口14を有し、且つ、当該繊維の長さ方向に延びる非貫通孔12が、繊維一本につき一つ形成された繊維である。
そして、かかる非貫通孔12は、上記開口14から当該非貫通孔の長さ方向の最深部16までの長さL(以下、当該長さを「非貫通孔の深さ」ともいう)が、上記繊維の全長Lの50%以上である。上記非貫通孔12の深さLを大きくするほど、当該非貫通孔12に保持し得る電解液の液量を増大することができる。このため、上記非貫通孔12の深さLは、上記繊維10の全長Lの60%以上が好ましく、70%以上がより好ましい。一方で、繊維10の全長Lに対する上記非貫通孔の深さLが大きすぎると、繊維10の断面方向の強度が低下する(典型的には上記非貫通孔12が潰れ易くなる)場合がある。このため、上記非貫通孔12の深さLは、上記繊維の全長Lの95%以下(例えば90%以下)が好ましい。
なお、電解液の保持性の観点から、上記非貫通孔12の深さLは平均値で5mm以上が好ましく、10mm以上がより好ましく、さらに好ましくは20mm以上である。一方で、上記非貫通孔12が深すぎると、当該非貫通孔12の深部へ電解液が含浸しづらい傾向がある。また、深すぎる非貫通孔12の深部に含浸した電解液は、電極体20で電解液が不足した部分に供給しづらい。このため、上記非貫通孔12の深さLは、平均値で80mm以下が好ましく、50mm以下が好ましい。
また、上記繊維10の長さ方向の一方の端部に形成された開口14から当該非貫通孔12の最深部16までの形状およびサイズがほぼ一定である形状の非貫通孔12は、電解液が含浸しやすく、また含浸した電解液を電極体20内(例えば負極活物質層64および正極活物質層54)に供給しやすいため好ましい。開口14の形状は特に限定されないが、例えば繊維10の断面に相似の形状であり得る。開口14が略円形(円形、楕円形を含む。好ましくは円形)の非貫通孔12は、電解液の含浸および供給を円滑に行い得るため好ましい。
また、上記非貫通孔12の上記開口14の面積(サイズ)Sは、上記繊維10の端部のうちの上記非貫通孔12の開口が形成された端部を当該繊維10の長手方向から平面視したときの繊維構成部分18の面積Sと上記開口14の面積Sとの和S(S=S+S)の30%以上が好ましく、40%以上がより好ましい。開口14の面積(サイズ)Sが大きな非貫通孔12は、電解液が含浸しやすく、また含浸した電解液を電極体20内(例えば負極活物質層64および正極活物質層54)に供給しやすい。上記非貫通孔12の開口14の面積Sの上限は特に限定されないが、繊維10の強度(繊維10の断面方向の力に対する強度)を確保する観点からは、上記非貫通孔12の開口14の面積Sは、上記開口14が形成された繊維10の端部を当該繊維10の長手方向から平面視したときの繊維構成部分18の面積Sと上記開口14の面積Sとの和Sの95%以下(例えば90%以下)とし得る。
例えば、上記非貫通孔12の開口14は、当該開口14の直径Rが繊維10の直径(即ち繊維径)Rの40%以上(例えば50%以上)95%以下(例えば90%以下)の略円形状(好ましくは円形)であり得る。
また、繊維10に占める非貫通孔12の空隙容積Vが大きいほど、繊維10内に保持し得る電解液の液量を増大することができる。このため、繊維10一本あたりの上記非貫通孔12の空隙容積Vは、当該繊維10一本あたりの繊維構成部分18の容積Vと前記非貫通孔12の空隙容積Vとの和V(V=V+V)の20体積%以上が好ましく、30体積%以上がより好ましく、40体積%以上がさらに好ましい。一方で、繊維10に占める上記非貫通孔12の空隙容積Vが大きすぎると、繊維10の強度が低下しがち(非貫通孔12が潰れ易くなりがち)である。このため、繊維10一本あたりの上記非貫通孔12の空隙容積Vは、当該繊維10一本あたりの繊維構成部分18の容積Vと前記非貫通孔の空隙容積Vとの和Vの80体積%以下が好ましく、70体積%以下がより好ましい。
また好ましくは、上記非貫通孔12は上記繊維10の長手方向の中心軸Aを包含するように形成されている。これにより、非貫通孔12内への電解液の含浸性と、繊維10の強度を高度に両立し得る。例えば、上記非貫通孔12の長手方向の中心軸Aと上記繊維10の長手方向の中心軸Aとが略平行となるように非貫通孔12を形成し得る。上記非貫通孔12の長手方向の中心軸Aと上記繊維10の長手方向の中心軸Aとのズレ(当該中心軸A、Aどうしが最も離れている箇所の距離)は、繊維径(繊維10の直径)Rの10%以下が好ましく、5%以下がより好ましい。上記非貫通孔12の長手方向の中心軸Aと上記繊維の長手方向の中心軸Aとが実質的に一致する態様がより好ましい。
上記繊維10を構成する材料は、所望の形状(上記非貫通孔を有する形状)の繊維を作製可能であり、且つ繊維10に形成した上記非貫通孔12の形状を維持し得る強度を有する材料から構成される。また、上記繊維10を構成する材料は、耐電解液性(特に耐電解液腐蝕性)を有する材料であることが好ましい。このような材料としては、合成樹脂材料が挙げられる。上記繊維10の構成材料として合成樹脂を用いることで、所望の形状の繊維10を比較的容易に形成することができる。
上記繊維10を構成する合成樹脂としては、例えば、アラミド、ナイロン(例えばナイロン12、ナイロン66)等のポリアミド樹脂;ポリフェニレンサルファイド(PPS)、ポリビニルアルコール(PVA)、ポリアミドイミド、ポリスルホン、ポリアクリロニトリル等を好適に使用することができる。これらの合成樹脂材料は、一種を単独で、或いは二種以上を組み合わせて使用し得る。
上記不織布層80は、例えば、繊維10が結合することなく絡み合って一体のシート状となっていても良いし、繊維10が交点において直接結合していても良いし、図7に示すように繊維10が交点において結着材(バインダ)82を介して結合していても良い。好ましくは上記不織布層80を構成する一の繊維10の一部が他の繊維10の一部と結合されており、より好ましくは当該繊維10どうしが結着材82を介して結合されている。これにより、不織布層80が有する繊維間の空隙(網目構造)を高度に維持することができる。即ち、充放電に伴って正極活物質層54(負極活物質層64)が膨張し、上記不織布層80が押圧(圧迫)される場合であっても、上記複数の繊維10で構成される空隙(網目構造)の形状を維持し得る。
上記結着材(バインダ)82は特に限定されず、二次電池の製造に従来から用いられる公知の材料を使用し得る。例えば、スチレンブタジエンラバー(SBR)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)、アクリル系樹脂等を好適に使用し得る。
不織布層80に含まれる結着材82の量は、不織布層全体の5質量%以上20質量%以下が好ましい。例えば、不織布層全体のおよそ12質量%とすることができる。不織布層80に含まれる結着材の量が少なすぎると、繊維10の結合が不十分になりがちである。一方で、不織布層80に含まれる結着材82の含有量が多すぎると不織布層80の空隙率が低下しがちである。不織布層80に含まれる結着材82の含有量を上記の範囲とすることで、繊維10どうしを好適に結合し、且つ不織布層80内の空隙を好適に確保することができる。
上記不織布層80の作製方法は特に限定されず、従来公知の方法により作製し得る。
例えば、不織布層80の作製方法の好適例として、エレクトロスピニング法(電界紡糸法、静電紡糸法ともいう)が挙げられる。エレクトロスピニング法とは、大まかにいうと、溶液状の紡糸材料(典型的にはポリマー溶液、ポリマー分散液)が収容された当該紡糸ノズルの先端(紡糸口)に高電圧を印加し、これにより帯電した上記紡糸材料を紡糸ノズルから噴射して繊維10を紡糸する方法である。かかる繊維10をコレクタ(対電極、捕集電極基板ともいう)に回収することで、不織布層80を作製することができる。なお、必要に応じて圧延処理(プレス処理)を行うことで、不織布層80の性状(平均厚み、空孔率、坪量)等を調整し得る。
エレクトロスピニング法によって不織布層80を作製する方法の一態様について、以下に簡単に説明する。
まず、上記繊維10を構成する材料(典型的には合成樹脂成分)と必要に応じて用いられる材料とを適当な溶媒(例えば水、NMP等)に溶解(溶融、分散)して溶液状の繊維形成用組成物を調製する。かかる繊維形成用組成物を紡糸ノズル内(典型的には当該紡糸ノズルに連結された溶液タンク内)に収容し、当該繊維形成用組成物を紡糸ノズルの先端(紡糸口)から適当なスピード(供給量)で供給する(典型的には押し出す)。そして、紡糸ノズルの先端(紡糸口)に高電圧(一般的に繊維を回収するコレクタに対しておよそ10〜30kV、例えば10〜15kV)を印加することで、帯電した上記繊維形成用組成物が紡糸ノズルから噴射される。上記繊維形成用組成物中の溶媒は、一般的に紡糸ノズルから噴射された後速やかに蒸発する。こうして、エレクトロスピニング法により上記繊維形成用組成物から、所望の繊維10が作製(紡糸)される。得られた繊維10をコレクタ上にシート状に積層して回収することで、不織布層80を形成することができる。
上記エレクトロスピニング法によると、負極60(或いは正極50またはセパレータ70)の表面に不織布層80を直接形成することができる。
例えば、負極60(負極活物質層64)の表面に直接不織布層80を形成する場合であれば、上記コレクタ上に負極60を載置し、上記エレクトロスピニング法により得られた繊維10を当該負極60の表面に積層すればよい。なお、正極50(正極活物質54)およびセパレータ70の表面に直接不織布層80を形成する場合も同様である。
かかる不織布層80は、好ましくは、負極活物質層64(或いは正極活物質層54またはセパレータ70)の表面全体に、即ち負極活物質層64(或いは正極活物質層54またはセパレータ70)の長手方向および幅方向の全体に亘って形成されている。
上記エレクトロスピニング法によると、上記非貫通孔12を有する繊維10を比較的容易に作製(紡糸)することができる。エレクトロスピニング法によって上記非貫通孔12を有する繊維10を作製する方法の一態様について、以下に簡単に説明する。
まず、図8に示すように、空気(ガス)を供給するための第一供給口92と、繊維10の構成材料(即ち、上述した溶液状の繊維形成用組成物)を噴射(供給)するための第二供給口94とを有する紡糸ノズルであって、第二供給口94が第一供給口92の周囲を取り囲むように(典型的には同心円状に)配置された紡糸ノズル90を準備する。そして、上記第一供給口92から空気を供給するタイミングおよびスピード(空気の供給量)と、上記第二供給口94から繊維形成用組成物を供給する(押し出す)タイミングおよびスピード(繊維形成用組成物の供給量)を適宜調整することで、上記非貫通孔12を有する繊維10を作製し得る。
例えば、上記第一供給口92から繊維10の長手方向に空隙を形成し得る量(スピード)の空気を供給しつつ、上記第二供給口94から繊維形成用組成物の供給を開始し、そして当該第二供給口94からの繊維形成用組成物の供給を停止するよりも前に上記第一供給口92からの空気の供給量(スピード)を減ずる(典型的には空気の供給を停止する)。これにより、長尺な繊維10であって、当該繊維10の長さ方向の一方の端部に開口24を有する非貫通孔12を有する繊維10を作製(紡糸)することができる。
或いはまた、上記第二供給口94からの上記繊維形成用組成物の供給を開始した後で(上記繊維形成用組成物の供給に遅れて)上記第一供給口92からの空気の供給を開始し、そして上記第二供給口94からの繊維形成用組成物の供給を停止するまで上記第一供給口92から繊維10の長手方向に空隙を形成し得る量(スピード)の空気を供給しつづけることによっても、繊維10の長さ方向の一方の端部に開口14を有する非貫通孔12を有する繊維10を作製(紡糸)することができる。
また、上記繊維10の形状(繊維径、繊維長、非貫通孔12のサイズ等)は、上記繊維形成用組成物の組成、上記紡糸ノズル90の先端(紡糸口)の形状(例えば各供給口のサイズ等)、記第一供給口92から空気を供給するタイミングおよびスピード、上記第二供給口94から繊維形成用組成物を供給するタイミングおよびスピード、上記紡糸ノズル90の先端(紡糸口)に印加する電圧の大きさ等を調節することで調整し得る。
また、上記不織布層80を構成する一の繊維10の一部が他の繊維10の一部と結着材82を介して結合された不織布層80(図7)は、例えば、当該不織布層80を構成する繊維10の表面に結着材82を付与しつつ当該繊維10を積層して不織布層80を形成することで作製することができる。例えば、図8に示すように、結着材82を供給するための第三供給口96を上記第二供給口94を取り囲むように(典型的には同心円状に)配置した紡糸ノズル90を準備し、当該第三供給口96から適当なタイミングで結着材82を供給することで、上記繊維10の表面に結着材82を付与することができる。かかる方法は、上記繊維10の表面のうちの上記非貫通孔12以外の部分に結着材82を付与する方法として好ましく、当該繊維10の非貫通孔12(例えば当該非貫通孔12の開口14)が結着材82で埋められ難いため好ましい。
例えば、上記第三供給口96から結着材82を供給するスピード(供給量)およびタイミング等を調整することで、所望量の結着材82を繊維10の表面に付与し得る(即ち、不織布層80内の結着材82の含有量を調整し得る)。
上記エレクトロスピニング法は、直径が数ナノnm〜サブミクロン程度の繊維径が極めての小さい繊維10(典型的にはナノファイバー)を容易に作製することが可能であり、また、繊維径のみでなく、繊維の形態や、繊維中の合成樹脂成分の配合比、不織布層中の繊維の配向性等を比較的容易に調整可能である。また、かかるエレクトロスピニング法は、平均厚みの小さい不織布層80の作製にも適している。
≪正極≫
正極50を構成する正極集電体52としては、導電性の良好な金属(例えばアルミニウム、ニッケル、チタン、ステンレス鋼等)からなる導電性材料を好適に採用し得る。正極活物質層54は、少なくとも正極活物質を含む。かかる正極活物質としては、例えば、層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5、LiFePO等)を好適に使用し得る。また、正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、アセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、PVDF等を使用し得る。
≪負極≫
負極60を構成する負極集電体62としては、導電性の良好な金属(例えば、銅、ニッケル、チタン、ステンレス鋼等)からなる導電性材料を好適に採用し得る。負極活物質層64は、少なくとも負極活物質を含む。かかる負極活物質としては、例えば、黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。また、上記炭素材料(コアとなる炭素材料)の表面を非晶質炭素膜で被覆してもよい。負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、スチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。
≪セパレータ≫
セパレータ70は、樹脂製のセパレータ基材のみからなるセパレータであり得る。或いはまた、電池内が高温(例えば150℃以上、典型的には200℃以上)になった場合でも軟化や溶融をせず、形状を保持し得る性質(若干の変形は許容され得る)を有する耐熱層をセパレータ基材(基材層)の片面または両面に備えたセパレータであってもよい。
基材層を構成するセパレータ基材の好適例としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔質樹脂シートが挙げられる。なかでも、ポリオレフィン系の多孔質樹脂(例えばPEやPP)は、シャットダウン温度が電池の耐熱温度よりも充分に低いため好ましい。
上記セパレータ基材(基材層)は、1種の多孔質樹脂からなる単層構造であってもよく、あるいは材質や性状(厚みや空孔率等)の異なる2種以上の多孔質樹脂シートが積層された構造(例えば、PEとPPが積層された二層構造のものや、ポリエチレン(PE)層の両面にポリプロピレン(PP)層が積層された三層構造)であってもよい。
上記耐熱層は多孔質であり、例えば、耐熱性微粒子とバインダとを含む。かかる耐熱性微粒子は、二次電池用セパレータの耐熱層中で無機フィラーとして用いられるものを好適に採用し得る。かかる無機フィラーとしては、例えばアルミナ、ベーマイト、シリカ、チタニア、カルシア、マグネシア、ジルコニア、窒化ホウ素、窒化アルミニウム等が挙げられる。これらの化合物は融点が高く、耐熱性に優れる。これら無機フィラーは、1種を単独で、あるいは2種以上を組み合わせて用いることができる。
フィラーの形態は特に限定されず、例えば粒子状、繊維状、板状(フレーク状)等であり得る。また、フィラーの平均粒径は、例えば0.2μm)であって、およそ1.8μm以下(例えば1.2μm以下、典型的には1.0μm以下)とし得る。また、フィラーの比表面積は、凡そ1.3m/g以上(例えば2m/g以上、典型的には2.8m/g以上)であって、50m/g以下とし得る。フィラーの粒子径および比表面積を上記範囲とすることで、基材層に対する耐熱層の密着度や耐熱層の多孔度、さらにはセパレータ70の透気度を好適範囲に調整し得る。
本明細書において、フィラーの平均粒径とは、一般的なレーザー回折・光散乱法に基づく粒度分布測定に基づいて測定した体積基準の粒度分布において、微粒子側からの累積50体積%に相当する粒径(D50粒径、メジアン径ともいう。)をいう。無機フィラーの粒径は、例えば粉砕や篩分け等の手法により調整することができる。また、本明細書中において「比表面積」とは、一般的なBET比表面積を採用するものとする。
耐熱層に含まれるバインダとしては、例えば、アクリル系樹脂、アラミド樹脂、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース(CMC)等を好ましく使用し得る。これらバインダは、1種を単独で、あるいは2種以上を組み合わせて用いることができる。
好ましい一態様では、耐熱層全体の質量(固形分含量換算)に占めるフィラーおよびバインダの合計量が凡そ90質量%以上(例えば95質量%以上)である。実質的にフィラーおよびバインダのみから構成される耐熱層であってもよい。また、耐熱層中のバインダの割合は、耐熱層全体の例えば3質量%以上(典型的には10質量%以上)70質量%以下(典型的には50質量%以下)とし得る。耐熱層中のバインダ量を上記範囲とすることで、基材層と耐熱層との接着性(典型的には剥離強度)を向上することができる。
捲回電極体20に備えられた2枚のセパレータ70には、それぞれ材質や性状(即ち基材層および耐熱層の構成)が異なるものを採用してもよい。また、基材層の両面に耐熱層を形成する場合、それぞれの耐熱層の性状や構成(例えば含まれるフィラーの種類や割合、空孔率、平均厚み等)が異なっていてもよい。また、基材層の片面のみに耐熱層を形成する場合、該耐熱層を正極50および負極60の何れに対向させてもよい。
≪電解液≫
電解液としては、典型的には適当な非水系の溶媒(典型的には有機溶媒)中に支持塩を含有させたもの(即ち非水電解液)を用いることができる。
上記非水系の溶媒としては、一般的な非水電解液二次電池に用いられる各種の有機溶媒を特に制限なく使用し得る。例えば、カーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を、特に限定なく用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、プロピレンカーボネート(PC)等を好適に採用し得る。
支持塩としては、例えばLiPF、LiClO、LiAsF、Li(CFSON、LiBF、LiCFSO等のリチウム塩を好適に採用し得る。かかる支持塩は、一種のみを単独で、または二種以上を組み合わせて用いることができる。特にLiPFが好ましい。このため、該支持塩の濃度は例えば、0.1mol/L以上(例えば0.8mol/L以上)であって、2mol/L以下(例えば1.5mol/L以下)とすることが好ましい。好ましくは、1.1mol/Lである。
さらに、非水電解液中には本発明の効果を著しく損なわない限りにおいて、上述した非水溶媒、支持塩以外の成分をさらに含みうる。かかる任意成分は、例えば、電池の出力性能の向上、保存性の向上(保存中における容量低下の抑制等)、サイクル特性の向上、初期充放電効率の向上等の1または2以上の目的で使用されるものであり得る。好ましい添加剤の例として、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物(例えばリチウムビスオキサラトホウ酸塩(LiBF(C)やリチウムジフルオロビスオキサラトリン酸塩(LiPF(C等)、ビニレンカーボナート(VC)、ビニルエチレンカーボネート(VEC)、フルオロエチレンカーボナート(FEC)、エチレンサルファイト(ES)、プロパンサルトン(PS)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、フルオロリン酸塩(モノフルオロリン酸塩(LiPOF)やジフルオロリン酸塩(LiPO)等)等の被膜形成剤;分散剤;増粘剤;等の各種添加剤が挙げられる。かかる添加剤は、1種を単独で、または2種以上を適宜組み合わせて用いてもよい。
ここで開示される二次電池は、ハイレート充放電を繰り返す用途に用いた場合であっても、当該ハイレート充放電の繰り返しに起因する電極体内の電解液の液量ムラの発生が抑制された二次電池である。このため、かかる二次電池はハイレート充放電特性に優れる。したがって、ここで開示される二次電池は、その特徴を活かして、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)等の車両に搭載される駆動用電源として好適に利用し得る。また、本発明によれば、ここに開示される二次電池を、好ましくは動力源(典型的には複数個の二次電池が相互に電気的に接続されてなる組電池)として備えた車両が提供される。
以下、本発明に関する実施例(試験例)を説明するが、本発明をかかる実施例(試験例)に示すものに限定することを意図したものではない。
以下の材料、プロセスによって、以下の材料、プロセスによって、表1に示す例1〜19に係るリチウムイオン二次電池(非水電解液二次電池)を構築した。
<例1>
負極の作製は以下の手順で行った。まず、負極活物質粉末として非晶質炭素で表面がコートされた黒鉛(C)を準備した。そして、かかる黒鉛(C)と、バインダとしてのスタジエンブタジエンゴム(SBR)と、増粘剤としてのCMCとを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、スラリー状の負極活物質層形成用組成物を調製した。かかる組成物を、厚み10μmの長尺状の銅箔(負極集電体)の両面に帯状に塗布して乾燥、プレスすることにより、負極シートを作製した。なお、上記負極の平均厚みが約80μm(負極活物質層の片面当たりの平均厚みが約35μm)となるように、上記負極活物質層形成用組成物の塗付量およびプレス条件を調整した。
次に、上記負極の負極活物質層(ここでは両方の負極活物質層)上に、エレクトロスピニング法により不織布層を形成した。
上記エレクトロスピニング法には高電圧電源と、溶液タンクと、ニードルノズル(紡糸ノズル)とシリンジポンプとを備えるエレクトロスピニング装置を用いた。紡糸口(ニードルノズル先端)への印加電圧は10kV〜15kV、紡糸口と不織布層形成面(ここではセパレータの耐熱層表面)との距離(電極間距離)は10〜20cmとした。そして、コレクタ(対電極、捕集電極基板ともいう)上に、不織布層を形成する面がニードルノズル(紡糸ノズル)に対向するように負極を載置した。
ここで、上記ニードルノズルとして、当該ノズルの先端(紡糸口)が、図8に示すように3つの供給口が同心円状に配置された形状、即ち、当該ニードルノズルの最中心に位置する第一供給口の周囲を取り囲んで第二供給口が同心円状に配置され、さらに当該第二供給口を取り囲んで第三供給口が同心円状に配置された形状のものを用いた。
繊維の構成材料としては、PVAを用いた。かかるPVAを水中に溶解して溶液状の繊維形成用組成物を調製し、上記ニードルノズルの第二供給口に繋がれた溶液タンク内に収容した。かかる繊維形成用組成物は、シリンジポンプによって、上記溶液タンクからニードルノズル(紡糸ノズル)の第二供給口へ押し出した。即ち、上記ニードルノズルの第二供給口から、上記繊維形成用組成物を供給した。
また、結着材としてはSBRを用いた。かかるSBRを水中に分散して結着材溶液を調製し、上記ニードルノズルの第三供給口に繋がれた溶液タンク内に収容した。
以下の手順で、不織布層を構成する繊維をエレクトロスピニング法により紡糸した。
まず、上記第一供給口から、繊維の長手方向に空隙を形成し得る量(スピード)の空気を供給しつつ、上記第二供給口から繊維形成用組成物の供給を開始した。このとき、上記繊維形成用組成物の供給は、0.2mL/分〜0.3mL/分の供給量(供給スピード)で供給した。
そして、上記繊維形成用組成物の供給を開始してから数秒後(およそ2〜3秒後)に繊維形成用組成物および空気の供給を停止した。ここで、上記第二供給口からの繊維形成用組成物の供給を停止するよりも前に、上記第二供給口からの繊維構成材料の供給量を1/10程度まで減らし、また上記第一供給口からの空気の供給量を、上記繊維の長手方向に空隙を形成し得ない程度まで減らした。
なお、上記繊維の紡糸は、不織布層中の結着材の含有量が不織布層全体の10質量%となる量の上記結着材溶液を、上記ニードルノズルの第三供給口から供給しながら行った。そして、上述のとおりにエレクトロスピニング法により紡糸して得られた繊維を上記負極上(負極活物質層上)に堆積することにより、負極(負極活物質層)上に平均厚みが10μmの不織布層を形成した。
上述の材料およびプロセスにより紡糸した繊維は、当該繊維の長さ方向の一方の端部に開口を有し、且つ、当該繊維の長さ方向に延びる非貫通孔が、当該繊維一本につき一つ形成されていた。そして、上記非貫通孔の上記開口から当該非貫通孔の長さ方向の最深部までの長さLは、上記繊維の全長Lのおよそ70%であった。また、上記非貫通孔の開口は略円形状であり、当該非貫通孔の開口の面積Sは、上記繊維の非貫通孔が形成された端部を当該繊維の長手方向から平面視したときの繊維構成部分の面積Sと当該開口面積Sとの和S(S=S+S)に対して凡そ50%であった。また、上記非貫通孔は、上記繊維の長手方向の中心軸を包含するように形成されており、当該非貫通孔の開口から最深部までのサイズおよび形状はほぼ一定であった。さらに、上記繊維一本あたりの上記非貫通孔の空隙容積Vは、上記繊維一本あたりの繊維構成部分の容積Vと上記非貫通孔の空隙容積Vとの和V(V=V+V)の凡そ40体積%であった。
なお、上記不織布層を構成する繊維の形状および上記不織布層の平均厚みは走査型電子顕微鏡(SEM)により撮影した画像を画像解析することによって求めた。
正極の作製は以下の手順で行った。正極活物質粉末としてのLiNi0.33Co0.33Mn0.33(LNCM)と、導電材としてのABと、バインダとしてのPVDFとを、LNCM:AB:PVDF=90:8:2の質量比でNMPと混合し、スラリー状の正極活物質層形成用組成物を調製した。かかる組成物を、厚み15μmの長尺状のアルミニウム箔(正極集電体)の両面に帯状に塗布して乾燥、プレスすることにより、正極シートを作製した。なお、上記正極の平均厚みが約65μm(正極活物質層の片面当たりの平均厚みが約25μm)となるように、上記正極活物質層形成用組成物の塗付量およびプレス条件を調整した。
セパレータは、以下の手順で作製した。まず、セパレータ基材(基材層)として、多孔質ポリエチレン層の両面に多孔質ポリプロピレン層が形成された三層構造の基材シートを準備した。また、無機フィラーとしてのアルミナと、バインダとしてのアクリル系バインダとを、これらの材料の質量比が、無機フィラー:バインダ=97:3となるようにNMPと混合することにより上記耐熱層形成用のペースト状組成物を調製した。次いで、かかる耐熱層形成用組成物を上記セパレータ基材の片面の全体に塗布して乾燥することにより、セパレータ基材の片面に耐熱層(平均厚み5μm)を有するセパレータを作製した。
上記のとおり作製した正極および負極それぞれ1枚と、セパレータ2枚を用いて捲回電極体を作製した。即ち、上記負極活物質層の表面に不織布層を形成した負極と、正極とを、セパレータを間に介して長手方向に積層した。このとき、互いの活物質層非形成部分が反対側に位置し、且つセパレータの耐熱層(即ち耐熱層上の不織布層)が負極(負極活物質層)に対向する方向となるように積層した。
そして、かかる積層した正極、負極およびセパレータを、セパレータの断面積あたりおよそ1N/mmの捲回テンションを負荷しつつ、長尺方向に130回(即ち捲回数が130回)巻き取った(捲回した)。そして、かかる捲回体(捲回後の正極、負極およびセパレータ)を、捲回軸に直交する一の方向に押しつぶして拉げることで、扁平形状の捲回電極体を作製した。なお、上記捲回電極体は、捲回軸方向(長手方向)の長さが130mmであり、当該捲回軸方向に直交する方向(短手方向)の長さが50mmであった。
次いで、上記各例にかかる捲回電極体をアルミニウム製の角型電池容器(角型電池ケース)の内部に収容し、電池ケースの開口部から電解液を注入し、当該開口部を気密に封止して各例に係るリチウムイオン二次電池を作製した。上記電解液としては、ECとEMCとDMCとをEC:EMC:DMC=30:30:40の体積比で含む混合溶媒に、支持塩としてのLiPFを1.1mol/Lの濃度で溶解させ、さらに添加剤としてリチウムビスオキサラトホウ酸リチウム(LiBF(C)又はジフルオロリン酸塩(LiPO)を含む非水電解液を用いた。
<例2〜例6>
上記不織布層の平均厚みを3μm〜40μm(表1の「不織布層の厚み」の欄に記載の厚み)に変更した以外は例1と同様の材料およびプロセスにて、例2〜例6に係る電池を作製した。
<例7〜例11>
上記不織布層に含まれる結着材の量を当該不織布層全体の2質量%〜30質量%(表1の「結着材の含有量」の欄に記載の含有量)に変更し、不織布層の平均厚みを18μmに変更した以外は例1と同様の材料およびプロセスにて、例7〜例11に係る電池を作製した。
<例12〜例16>
不織布層を構成する繊維の材質を表1の「樹脂成分」に示す合成樹脂(例えば、アラミド、ナイロン66、ナイロン12、ポリアミドイミド、ポリスルホン)に変更し、不織布層の平均厚みを12μmに変更した以外は例1と同様の材料およびプロセスにて、例12〜例16に係る電池を作製した。
<例17>
不織布層を構成する繊維を中実な形状の繊維に変更した以外は例1と同様の材料およびプロセスにて、例17に係る電池を作製した。
具体的には、上記繊維の紡糸条件(上記ニードルノズル(紡糸ノズル)における第一供給口および第二供給口からの供給条件)について、上記第一供給口から上記繊維形成用組成物を供給し、上記第二供給口からは上記繊維形成用組成物を供給しない以外は上記例1にかかる電池と同様の材料およびプロセスにて例17に係る電池を作製した。
<例18>
不織布層を構成する繊維を中空な形状(繊維の内部に空隙を有し、かつ当該空隙が繊維外に貫通していない形状)の繊維に変更した以外は例1と同様の材料およびプロセスにて、例18に係る電池を作製した。
具体的には、上記繊維の紡糸条件(上記ニードルノズル(紡糸ノズル)における第一供給口および第二供給口からの供給条件)について、上記第二供給口からの上記繊維形成用組成物の供給を開始した後で(上記繊維形成用組成物の供給を開始後0.1〜1秒経過後)、上記第一供給口からの空気の供給を開始した以外は上記例1にかかる電池と同様の材料およびプロセスにて例18に係る電池を作製した。
<例19>
不織布層を構成する繊維を、繊維の長さ方向に貫通する貫通孔を有する形状(所謂ストロー形状)の繊維に変更した以外は例1と同様の材料およびプロセスにて、例19に係る電池を作製した。
具体的には、上記繊維の紡糸条件(上記ニードルノズル(紡糸ノズル)における第一供給口および第二供給口からの供給条件)について、上記第二供給口からの上記繊維形成用組成物の供給を停止する際に上記第一供給口からの空気の供給を継続した以外は上記例1にかかる電池と同様の材料およびプロセスにて例18に係る電池を作製した。
[初期電池抵抗(IV抵抗)の測定]
次に、上述のとおりに構築した各電池の初期抵抗(IV抵抗)を測定した。まず、各電池に対して、25℃の温度条件下で、SOC(State of Charge:充電状態)が60%の状態となるまで定電流(CC)充電を行った後、10Cのレートで10秒間のCC充電を行って、電圧上昇の値(V)を測定した。そして、測定された電圧上昇の値(V)を、対応する電流値で除してIV抵抗(mΩ)を算出し(典型的には、電流(I)−電圧(V)のプロット値の一次近似直線の傾きからIV抵抗(mΩ)を算出し)、その平均値を初期電池抵抗とした。
ここで、「SOC」(State of Charge)とは、特記しない場合、電池が通常使用される電圧範囲を基準とする、該電池の充電状態をいうものとする。例えば、端子間電圧(開回路電圧(OCV))が4.1V(上限電圧)〜3.0V(下限電圧)の条件で測定される定格容量を基準とする充電状態をいうものとする。
[充放電サイクル試験]
次に、上記初期抵抗を測定した後の各例にかかる電池について、25℃の温度条件下において充放電を1000サイクル繰り返す充放電サイクル試験を行い、該サイクル試験後の抵抗増加率(%)を算出した。具体的には以下のとおりである。
上記充放電サイクル試験は、25℃の温度条件下において、2.5Cの充電レートで240秒間の定電流充電(CC充電)を行い、その後120秒間休止し、続いて30Cの放電レートで20秒間の定電流放電(CC放電)を行い、その後120秒間休止を行う充放電を1サイクルとした。上記充放電サイクル試験終了後の各電池の電池抵抗(IV抵抗)を、上記初期電池抵抗測定と同様の方法で測定した。そして、以下の式:抵抗増加率(%)=(充放電サイクル試験後のIV抵抗−初期電池抵抗)÷初期電池抵抗×100;から抵抗増加率(%)を算出した。結果を表1の該当欄に示す。
Figure 0006195127
表1に示すように、例1〜16に係る電池は、中実形状の繊維、中空形状の繊維、ストロー形状の繊維(貫通孔を備える繊維)のうちのいずれかの繊維で構成された不織布層を備える例17〜19に係る電池と比較して、ハイレート充放電後の抵抗上昇率が小さかった。即ち、不織布の構成繊維として、繊維の長さ方向の一方の端部に開口を有し、且つ、当該繊維の長さ方向に延びる非貫通孔が、当該繊維一本につき一つ形成されており、当該非貫通孔の前記開口から当該非貫通孔の長さ方向の最深部までの長さLが、上記繊維の全長Lの50%以上である繊維を用いることで、優れたハイレート特性を発揮し得ることを確認した。
例1、例3〜例5に係る電池は、例2および例6に係る電池と比較して、ハイレート充放電後の抵抗上昇率が小さかった。例1、例3〜例5に係る電池は、不織布層の厚みが異なる以外は同様の構成の電池である。これらの結果から、不織布層の厚み5μm以上30μm以下が好ましいことを確認した。
例8〜例10に係る電池は、例7および例11に係る電池と比較して、ハイレート充放電後の抵抗上昇率が小さかった。例7〜例11に係る電池は、不織布層中の結着材の含有量が異なる以外は同様の構成の電池である。これらの結果から、不織布層中に含まれる結着材の含有量は不織布層全体の5質量%以上20質量%以下が好ましいことを確認した。
また、例12〜例16に係る電池はいずれもハイレート充放電後の抵抗上昇率が小さかった。これらの結果から、不織布層を構成する繊維の材質として、例1〜例11に係る電池の不織布層の形成に用いたPVA以外に、アラミド、ナイロン(例えばナイロン66、ナイロン12)等のポリアミド樹脂、ポリアミドイミド、ポリスルホンを好適に使用し得ることを確認した。
以上、本発明の具体例を詳細に説明したが、上記実施形態及び実施例は例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
10 繊維
12 非貫通孔
14 開口
16 非貫通孔の最深部
18 繊維構成部分
20 捲回電極体
30 電池ケース
32 電池ケース本体
34 蓋体
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極(正極シート)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極(負極シート)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータ(セパレータシート)
80 不織布層
82 結着材
90 紡糸ノズル
92 第一供給口
94 第二供給口
96 第三供給口
100 二次電池(非水電解液二次電池)

Claims (6)

  1. 正極と、負極と、該正負極を電気的に隔離するセパレータとを有する電極体と、電解液とを備える二次電池であって、
    前記セパレータと前記正極との間、及び/又は、前記セパレータと前記負極との間に不織布層を有し、
    前記不織布層を構成する実質的に全ての繊維に、当該繊維の長さ方向の一方の端部に開口を有し、且つ、当該繊維の長さ方向に延びる非貫通孔が、当該繊維一本につき一つ形成されており、
    ここで、前記非貫通孔の前記開口から当該非貫通孔の長さ方向の最深部までの長さLが、前記繊維の全長L70%以上である、二次電池。
  2. 前記非貫通孔の前記開口の面積Sが、前記開口が形成された前記繊維の端部を当該繊維の長手方向から平面視したときの繊維構成部分の面積Sと前記開口面積Sとの和S(S=S+S)の50%以上であり、
    前記非貫通孔は、前記開口から当該非貫通孔の最深部までのサイズおよび形状がほぼ一定である、請求項1に記載の二次電池。
  3. 前記繊維一本あたりの前記非貫通孔の空隙容積Vが、前記繊維一本あたりの繊維構成部分の容積Vと前記非貫通孔の空隙容積Vとの和V(V=V+V)の40体積%以上である、請求項1又は2に記載の二次電池。
  4. 前記非貫通孔は、前記繊維の長手方向の中心軸を包含するように形成されている、請求項1〜3のいずれか一項に記載の二次電池。
  5. 前記不織布層は、当該不織布層を構成する繊維どうしを結着する結着材を含み、
    前記結着材により、前記不織布層を構成する一の繊維の一部が他の繊維の一部と結合されている、請求項1〜4のいずれか一項に記載の二次電池。
  6. 前記不織布層に含まれる前記結着材の含有量が、前記不織布層全体の5質量%以上20質量%以下である、請求項5に記載の二次電池。
JP2015093030A 2015-04-30 2015-04-30 二次電池 Active JP6195127B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015093030A JP6195127B2 (ja) 2015-04-30 2015-04-30 二次電池
US15/139,953 US10050248B2 (en) 2015-04-30 2016-04-27 Secondary battery
KR1020160051425A KR101884057B1 (ko) 2015-04-30 2016-04-27 2차 전지
CN201610282241.9A CN106099012B (zh) 2015-04-30 2016-04-29 二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015093030A JP6195127B2 (ja) 2015-04-30 2015-04-30 二次電池

Publications (2)

Publication Number Publication Date
JP2016212984A JP2016212984A (ja) 2016-12-15
JP6195127B2 true JP6195127B2 (ja) 2017-09-13

Family

ID=57204254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015093030A Active JP6195127B2 (ja) 2015-04-30 2015-04-30 二次電池

Country Status (4)

Country Link
US (1) US10050248B2 (ja)
JP (1) JP6195127B2 (ja)
KR (1) KR101884057B1 (ja)
CN (1) CN106099012B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622214B (zh) * 2016-09-22 2018-04-21 財團法人工業技術研究院 金屬離子二次電池
WO2019010474A1 (en) * 2017-07-07 2019-01-10 University Of Pittsburgh-Of The Commonwealth System Of Higher Education ELECTROFILING PVDF-HFP: NEW COMPOSITE POLYMER ELECTROLYTES (CPES) HAVING INCREASED IONIC CONDUCTIVITIES FOR LITHIUM SULFUR BATTERIES
CN111033819B (zh) * 2017-08-28 2023-05-19 阿莫绿色技术有限公司 电极及利用其的二次电池和电极的制备方法
JP6783735B2 (ja) * 2017-09-19 2020-11-11 株式会社東芝 リチウムイオン二次電池用の電極群、二次電池、電池パック及び車両
WO2019163933A1 (ja) * 2018-02-26 2019-08-29 株式会社ダイセル 二次電池用セパレータ
CN109193028B (zh) * 2018-08-20 2020-09-18 杉杉新材料(衢州)有限公司 一种锂离子电池用非水电解液及使用该非水电解液的锂离子电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3107174B2 (ja) * 1992-01-29 2000-11-06 日本バイリーン株式会社 電池用セパレータ
JP3226363B2 (ja) 1992-12-22 2001-11-05 日本バイリーン株式会社 アルカリ電池用セパレータ
JPH0757715A (ja) 1993-08-19 1995-03-03 Toshiba Battery Co Ltd 電池用電解液保持材
US6221486B1 (en) * 1999-12-09 2001-04-24 Zms, Llc Expandable polymeric fibers and their method of production
JP4408174B2 (ja) * 2000-01-12 2010-02-03 日本バイリーン株式会社 電池用セパレータ
JP2002008730A (ja) 2000-06-27 2002-01-11 Fdk Corp リチウム二次電池
JP2010021043A (ja) * 2008-07-11 2010-01-28 Sony Corp セパレータ、セパレータの製造方法および電池
JP2011207149A (ja) * 2010-03-30 2011-10-20 Ube Industries Ltd 複合多孔質フィルムの製造方法
JP2011249008A (ja) * 2010-05-21 2011-12-08 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータ
US20120183862A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Battery separator
JP6060079B2 (ja) * 2011-09-09 2017-01-11 旭化成株式会社 ポリケトン多孔膜
JP5376036B2 (ja) 2012-10-25 2013-12-25 日産自動車株式会社 非水電解質二次電池
JP6337777B2 (ja) * 2012-12-12 2018-06-06 日本電気株式会社 セパレータ、電極素子、蓄電デバイスおよび前記セパレータの製造方法
KR101292657B1 (ko) 2013-02-06 2013-08-23 톱텍에이치앤에스 주식회사 역구조를 갖는 하이브리드 난워븐 세퍼레이터

Also Published As

Publication number Publication date
US20160322621A1 (en) 2016-11-03
US10050248B2 (en) 2018-08-14
JP2016212984A (ja) 2016-12-15
KR101884057B1 (ko) 2018-07-31
CN106099012B (zh) 2018-09-28
CN106099012A (zh) 2016-11-09
KR20160129743A (ko) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6195127B2 (ja) 二次電池
JP5474622B2 (ja) 蓄電デバイス
US10211440B2 (en) Nonaqueous electrolyte secondary battery
US9601737B2 (en) Lithium-ion secondary battery separator
JP5828346B2 (ja) リチウム二次電池
WO2015170785A2 (ja) リチウム二次電池
KR102243458B1 (ko) 비수 전해질 이차전지, 및, 비수 전해질 이차전지의 제조 방법
KR101846767B1 (ko) 비수 전해질 2차 전지
JP2016213133A (ja) 非水電解液二次電池
JP6609946B2 (ja) リチウムイオン二次電池用電極、その製造方法及びリチウムイオン二次電池
JP2015060719A (ja) 非水電解質電池
WO2018131094A1 (ja) 電気化学デバイス
JP6702903B2 (ja) 二次電池
JP6924047B2 (ja) 二次電池
JP2016122635A (ja) 非水電解液二次電池
JP2016085853A (ja) 非水電解液二次電池用のセパレータおよびその利用
JP2020057522A (ja) 非水電解液二次電池用捲回電極体
JP7096978B2 (ja) 非水電解質二次電池
JP2016225223A (ja) 非水電解液二次電池
JP2018092764A (ja) 二次電池
JP2017084649A (ja) 非水電解液二次電池
JP2017027689A (ja) リチウム二次電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170802

R151 Written notification of patent or utility model registration

Ref document number: 6195127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250