JP6192487B2 - 多孔質グラフト共重合体粒子、その製造方法及びそれを用いた吸着材 - Google Patents
多孔質グラフト共重合体粒子、その製造方法及びそれを用いた吸着材 Download PDFInfo
- Publication number
- JP6192487B2 JP6192487B2 JP2013225906A JP2013225906A JP6192487B2 JP 6192487 B2 JP6192487 B2 JP 6192487B2 JP 2013225906 A JP2013225906 A JP 2013225906A JP 2013225906 A JP2013225906 A JP 2013225906A JP 6192487 B2 JP6192487 B2 JP 6192487B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- porous
- graft
- particles
- graft copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明において、多孔質とは、粒子中に複数個の細孔が存在することを意味している。なお、この細孔は、連続構造であってもよく、独立構造であってもよい。
また、本発明において、粒子とは粉体を含む概念である。
前記複合体から前記高分子重合体Bを抽出し、前記高分子重合体Aからなる多孔質体を得る工程IIと、
前記工程IまたはIIの後で、前記多孔質体を粒子化する工程IIIと、
前記粒子化された多孔質体に、グラフト鎖の導入を行う工程IVと、を備える、請求項1〜6のいずれか一項に記載の、細孔径の平均値が0.01μm〜50μmの細孔を表面に有する、多孔質グラフト共重合体粒子の製造方法である。
本発明は、高分子重合体A(幹ポリマー)に、グラフト鎖が導入されたグラフト共重合体であって、該共重合体は多孔質粒子状であり、前記粒子は、その表面が細孔径の平均値が0.01μm〜50μmの細孔を有する、多孔質グラフト共重合体粒子である。
本発明における高分子重合体Aは、成形性に優れた高分子重合体であり、オレフィン系樹脂、アミド系樹脂、キトサン系樹脂、セルロース系樹脂および(メタ)アクリル酸エステル系樹脂からなるグループから選ばれる少なくとも一つ以上の樹脂である。
アミド系樹脂としては、ナイロン6、ナイロン6,6、ナイロン6,10、ナイロン6,12、ナイロン11、ナイロン12、ナイロン4,6等が挙げられる。
キトサン系樹脂としては、( 1 → 4 ) − 2 − アセトアミド− 2 − デオキシ− β − D − グルカン構造を有するキチンの部分完全脱アセチル化構造体、および該構造体の脱アセチル化されたアミノ基の一部、または同一分子内にある水酸基の一部がアシル化反応、エーテル化反応、エステル化反応、その他の反応によって化学修飾されたキトサン誘導体等が挙げられる。
セルロース系樹脂としては、セルロース(パルプ、コットンリンター、再生セルロースなど)のほか、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート等のセルロースアシレート等が挙げられる。
(メタ)アクリル酸エステル系樹脂としては、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、(メタ)アクリル酸エステルと(メタ)アクリル酸やスチレン等の種々の共重合体などが挙げられる。
本発明の多孔質グラフト共重合体粒子において、グラフト鎖に導入される官能基は、金属等との親和性の観点から、ヒドロキシル基、アミノ基、アミド基、エーテル基、カルボキシル基、チオウレア基、イソチオウレア基、リン酸基、ホスホン酸基、アミドキシム基、ニトリル基、スルホニル基、N−メチルグルカミン基、エポキシ基及びチオール基からなるグループから選ばれる少なくとも一つ以上の官能基(吸着性官能基)を有する構造単位を含むことが好ましい。特に、貴金属等との親和性の観点から、アミノ基、エーテル基、チオウレア基、およびイソチオウレア基からなるグループから選ばれる少なくとも一つ以上の官能基を有する構造単位を含む、グラフト共重合体粒子であることがさらに好ましい。
グラフト鎖に導入される官能基は、官能基を有する不飽和単量体を幹ポリマー(基材)にグラフト重合することにより、官能基を有するグラフト鎖が形成される。グラフト重合に用いられる官能基を有する不飽和単量体の具体例について、以下に記載する。
グラフト重合に用いるアミノ基を有する不飽和単量体としては、特に限定されないが、例えば、化学式(1)で示される不飽和単量体を用いることができる。
また、Rbが炭素数2〜20の、置換していてもよいアルキレン鎖であり、末端に、先に例示した芳香族含窒素複素環の構造を有するものも用いることができる。
本発明のグラフト共重合体がグラフト鎖に有するチオウレア構造またはイソチオウレア構造は、特に限定されないが、例えば、下記の式(2)〜(5)に示す構造が挙げられる。
式(5)中、R1は炭素数1〜10の炭素鎖を表す。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、ペンチル基、ヘキシル基などの直鎖または分岐鎖アルキル基、シクロヘキシル基、アダマンチル基などのシクロアルキル基、フェニル基、ナフチル基などのアリール基などが挙げられる。また、R1は*であってもよい。
一つの構造を有するグラフト鎖を導入するために、(1)チオウレア基もしくはイソチオウレア基礎の少なくともいずれか一つの基を有する不飽和単量体を用いるか、(2)チウレア基もしくはイソチオウレア基に変換可能な不飽和単量体を用いることができる。(本明細書において、チオウレア基とイソチオウレア基を総称してチオウレア基と称することがある。)
イミノ二酢酸基を有するグラフト鎖の導入は、イミノ二酢酸基に変換可能な反応性基を有する不飽和単量体、例えば、グリシジル(メタ)アクリレートなどのエポキシ基を有する不飽和単量体、クロロメチルスチレンやクロロエチル(メタ)アクリレートなどのハロゲン化アルキル基を有する不飽和単量体などが用いられる。イミノ二酢酸基に変換する場合は、例えば、グリシジル(メタ)アクリレートなどのエポキシ基を有する不飽和単量体、クロロメチルスチレンやクロロエチル(メタ)アクリレートなどのハロゲン化アルキル基を有する不飽和単量体を重合した後、当該グラフト共重合体とイミノ二酢酸、またはその塩と反応させることにより導入できる。
エーテル基の具体例としては、オキシアルキレン基、フリル基またはテトラヒドロフリル基が挙げられるが、オキシアルキレン基としては、エチレングリコール基、ジエチレングリコール基、トリエチレングリコール基等のポリエチレングリコール基、プロピレングリコール基、ジプロピレングリコール基、トリプロピレングリコール基等のポリプロピレングリコール基、これらがモノエーテル化された官能基、フリル基としては、2−フリル基、3−フリル基、テトラヒドロフリル基としては、2−テトラヒドロフリル基、3−テトラヒドロフリル基、などを例示することができる。フリル基およびテトラヒドロフリル基は、一部が置換されていてもよい。アミド基の具体例としては、ジメチルアミド基、ジエチルアミド基、メチルエチルアミド基、ピロリドン基などを例示することができる。
エーテル基またはアミド基を導入するために、(1)クロロメチルスチレンやクロロエチル(メタ)アクリレートなどのハロゲン化アルキル基を有する不飽和単量体、またはグリシジルメタクリレートなどのエポキシ基を有する不飽和単量体が用いられる。これらの不飽和単量体を、予め基材となる重合体に、グラフト共重合の方法によって導入し、該基材と、前述の官能基を有する化合物を反応させることにより、エーテル基またはアミド基を有するグラフト鎖の導入が行われる。(2)前述の官能基を有する不飽和単量体を、基材となる重合体(幹ポリマー)を基点に重合し、グラフトポリマーを生成することにより、エーテル基またはアミド基を有するグラフト鎖の導入が行われる。
上記以外の金属吸着性官能基をグラフト鎖に導入する場合、前記官能基を有する単量体を直接グラフト重合することにより、グラフト鎖に導入するか、または、該金属吸着性の官能基に変換可能な反応基を有する単量体が用いられる。
金属吸着性を有する単量体としては、(メタ)アクリル酸、フマル酸などのカルボキシル基を有する単量体、モノ(2−メタクリロイルオキシエチル)アシッドホスフェートなどのリン酸基を有する単量体、4−スルホニルスチレン、2−アクリルアミド−2−メチルプロパンスルホン酸およびそれらの塩などのスルホニル基を有する単量体、チオ酢酸ビニル、1−アセチルチオ−2−ヒドロキシ−3−ブテンなどのチオール基を有する単量体、アクリロニトリルなどのニトリル基を有する単量体などが挙げられる。
金属吸着性の官能基に変換可能な反応基を有する単量体としては、アクリロニトリルをグラフト重合してグラフト鎖を形成し、グラフト後、ヒドロキシルアミンを反応させてニトリル基をアミドキシム基に変換させて金属吸着性官能基を導入することができる。また、グリシジルメタクリレートをグラフト重合してグラフト鎖を形成し、グラフト後、エポキシ基をメチルグルカミンと反応させて金属または半金属吸着性官能基を導入することができる。また、上記エポキシ基を(アミノメチル)ホスホン酸などと反応させて金属吸着性官能基を導入することができる。
本発明の多孔質グラフト共重合体粒子は、少なくとも表面に細孔が形成されていればよく、構造の内部まで細孔が形成されていなくてもよい。表面に形成される細孔は、その細孔径の平均値が0.01μm〜50μm程度であってもよく、好ましくは0.05μm〜20μm、より好ましくは0.2μm〜10μm程度であってもよい。細孔径の平均値が0.01μm未満の場合、十分な官能基導入量が得られない虞がある。細孔径の平均値が50μmより大きい場合、粒子の機械的強度が低く、反応性基材として用いた場合に基材が崩壊してしまう虞がある。これら細孔径の平均値は、後述する実施例に記載した方法により測定される値である。
本発明のグラフト共重合体粒子の粒子径は、適宜粉砕により調整すれば良いが、粒子径は10μm〜2000μmが好ましく、30μm〜1500μmがさらに好ましく、40μm〜1000μmが最も好ましい。粒子径が10μm以下の場合、微粉が舞い易いなど取り扱いが難しい。粒子径が2000μm以上の場合、金属等の吸着性能が充分に得られないことがある。細孔を有することで、官能基の多量導入が可能であり、吸着材として用いた場合、内部の吸着官能基まで活用でき、優れた吸着性能を発現できる。
本発明の多孔質グラフト共重合体粒子の製造方法としては、特に限定されないが、下記に好ましい製造方法を記載する。
この製造方法は、下記の4工程から構成される。
工程I:成形性に優れた高分子重合体Aと、他成分高分子重合体Bを溶融混合して所定形状のコンパウンド(複合体)を作製し、この溶融コンパウンドを冷却固化したものを得る。
工程II:得られた溶融コンパウンドから、高分子重合体Bを溶媒で抽出し、多孔質な高分子重合体A粒子を得る。
工程III:工程Iまたは工程IIの後で、冷却された溶融コンパウンドまたは多孔質高分子重合体Aを所定サイズの粒子になるように、切断、粉砕等により粒子化する。溶融コンパウンドを粒子化してから、工程IIにおける溶媒抽出を行ってもよく、また、溶媒抽出を行った後の多孔質化された高分子重合体Aを粒子化してもよい。
工程IV:多孔質重合体粒子に対して、重合性単量体(好ましくは、官能基を有する重合性単量体)をグラフト重合することにより、グラフト鎖が導入された多孔質グラフト共重合体粒子を得る。
なお、本発明において、「溶融物の冷却固化」とは、溶融物を凝固浴など用いることなく冷却固化することを意味している。
本発明に用いられる高分子重合体Bは、特に限定されず、一般に知られている高分子重合体が利用できる。高分子重合体Aと溶融混合できることが好ましく、例えば、デンプン;ゼラチン;セルロース誘導体;ポリビニルアミン、ポリアリルアミン等の水溶性アミン系ポリマー;ポリアクリル酸;ポリイソプロピルアクリルアミド等のポリアクリルアミド;ポリビニルピロリドン;ポリビニルアルコール;ポリエチレングリコール、ポリプロピレングリコール等のエーテル系ポリマー;スチレン系樹脂;フェノール系樹脂;ポリビニルブチラールなどのアセタール系樹脂;カーボネート系樹脂などが挙げられる。また、高分子重合体Aと同一にならなければ、オレフィン系樹脂;アミド系樹脂;(メタ)アクリル酸エステル系樹脂を用いることもできる。
高分子重合体Aと他成分高分子重合体Bを溶融混練する方法は特に限定されず、一軸押出機、二軸押出機、ブラベンダー、ニーダーなど公知の混練機を用いることができる。 溶融混練された、高分子重合体Aと高分子重合体Bとからなる複合体は、ストランド状などの形状で取り出され、冷却固化される。
冷却固化されたコンパウンドは、高分子重合体Aの貧溶媒で且つ高分子重合体Bの溶媒により高分子重合体Bを抽出処理されて、高分子重合体の多孔質体を得ることができる。
本発明に用いられる抽出溶剤は特に限定されないが、高分子重合体Aの貧溶媒で且つ高分子重合体Bの良溶媒であり、高分子重合体Aおよび高分子重合体Bと反応不活性の溶媒が好ましい。溶剤は単独で用いてもよいし、複数の溶剤を混合して使用してもよい。溶剤としては、例えば、水、メタノール、エタノール、1−プロパノール、イソプロパノール、1−ブタノール、2−ブタノール、テトラヒドロフラン、1,4−ジオキサン、ジエチルエーテル、クロロホルム、塩化メチレン、酢酸メチル、酢酸エチル、アセトニトリル、アセトン、ジメチルホルムアミド、ジメチルスルホキシド、ベンゼン、トルエン、キシレン、ヘキサンまたはヘプタンなどが挙げられる。
特に、高分子重合体Bが親水性高分子の場合、溶媒としては水やアルコールを用いるのが好ましい。抽出時の溶媒温度は、40℃〜120℃が好ましく、50℃〜100℃がさらに好ましい。
工程I(溶融固化された複合体を得た段階)または工程II(多孔質化された高分子重合体Aが得られた段階)の後で、前記複合体または前記多孔質化された高分子重合体Aを、切断および/または粉砕して、粒子化する。粒子径は、上記の範囲内において適宜選択される。
上記の多孔質高分子重合体粒子に対して、重合性単量体(好ましくは、官能基を有する重合性単量体)をグラフト重合することにより、高分子重合体A(幹ポリマー)にグラフト鎖を導入する。
グラフト鎖を有するグラフト鎖を導入する方法としては、種々の公知の方法が可能であり、例えば、重合開始剤を用いたラジカル重合を利用してグラフト鎖を導入する方法、電離放射線を用いてラジカルを発生させ、グラフト鎖を導入する方法などが挙げられる。これらのうち、グラフト鎖の導入効率が高い観点から、電離放射線を用いて、グラフト鎖を導入する方法が好ましく用いられる。特に、多孔質基材を用いることで、グラフト重合により効率的に官能基を導入することができる。
本発明のグラフト共重合体粒子は、本発明の効果を阻害しない範囲内で、架橋剤、無機微粒子、光安定剤、酸化防止剤などの添加剤を含んでいても良い。
本発明のグラフト共重合体粒子は、成形体、塗料、接着剤、各種の吸着材等の広範な用途に使用できるが、優れた金属吸着能、半金属吸着能を有しているため、特に、金属吸着材または半金属吸着材として用いるのが好ましい。
本発明の吸着材は、各種金属等(特に白金族金属)を、簡単な操作かつ、高効率で回収することができる。金属回収方法としては、本発明の吸着材を用いる限り特に限定されない。 例えば、金属回収方法は、本発明の吸着材と、目的とする金属を含有する金属含有液とを接触させ、前記吸着材に金属を吸着させる吸着工程を備えていてもよい。該工程においては、必要に応じて、液体中で吸着材を撹拌してもよい。
半金属としては、ホウ素、砒素、ゲルマニウム、セレン、アンチモン等が挙げられる。
なお、吸着量は、後述する実施例に記載した方法により測定される値である。
得られた吸着材を40℃、12時間真空乾燥した後、走査型電子顕微鏡を用い粒子表面を観察した。表面に形成されている細孔から任意に50個選択し、それぞれの細孔の長径を計測した。50個の長径を平均し、平均値を導出した。但し、1nm以下の場合、傷、付着物等との区別がつかないため、選択から除外した。
以下に示す式に従い算出した。
グラフト率[w/w(%)]=100×(付与したグラフト鎖の重量)/(基材の重量)
官能基導入反応を行う前後の質量変化をWとする。以下に示す式に従い算出した。
官能基量[mmol/g]=(反応基質1分子あたりの対象官能基数[個]×W[g]/反応基質分子量[g/mol])/(反応後の樹脂粒子質量)×1000
(実施例1〜3及び比較例1、2)
吸着材50mgを金属濃度が100mg/Lである1規定の塩酸溶液200mLに投入し、25℃にて60分間攪拌する。その後、溶液1mLをサンプリングし50mLにメスアップした後、ICP発光分析装置(日本ジャーレルアッシュ製、IRIS−AP)にて測定した金属濃度をC(mg/L)とする。以下の式より、金属吸着率を求める。
金属吸着率=100−50×C (%)
(実施例4及び比較例3)
吸着材50mgを、対象金属イオンの濃度が200mg/Lである0.2規定の硝酸溶液25mLに投入し、23℃にて24時間撹拌する。その後、溶液1mLをサンプリングし100mLにメスアップした後、ICP発光分析装置(日本ジャーレルアッシュ製、IRIS−AP)にて測定した金属濃度をC(mg/L)とする。以下の式より、金属吸着率を求める。
金属吸着率=100−50×C (%)
市販のポリエチレン(株式会社プライムポリマー社製 7000F)90質量部とポリビニルピロリドン(BASF社製、コリドンCL−M)10質量部をラボプラストミルにて、230℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径212μm〜425μmの粒子を作製した。さらに得られた粒子を80℃のイソプロパノール中で2時間攪拌してポリビニルピロリドンのみを抽出し、多孔質なポリエチレン重合体粒子を得た。該多孔質粒子に100kGyの電離放射線を照射し、0℃窒素置換したテトラヒドロフルフリルメタクリレートの40質量%イソプロパノール溶液に浸漬し、60分攪拌した後、80℃に昇温してグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ315%であった。該粒子の細孔径の平均値は2.4μm、官能基量は4.5mmol/gであった。結果を表1に示す。また、該粒子を、篩を用いて直径212μm〜425μmの粒子に分級することで、エーテル基がグラフトした吸着材を得た。該吸着材のAu吸着性能を評価した結果を表2に示す。
市販のポリプロピレン(日本ポリプロ株式会社製、ノバテックPP MA3)90質量部とポリビニルピロリドン(BASF社製、コリドンCL−M)10質量部をラボプラストミルにて、230℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径106μm〜300μmの粒子を作製した。さらに得られた粒子を80℃のイソプロパノール中で2時間攪拌してポリビニルピロリドンのみを抽出し、多孔質なポリプロピレン重合体粒子を得た。該多孔質粒子に100kGyの電離放射線を照射し、0℃窒素置換したグリシジルメタクリレートの40質量%イソプロパノール溶液に浸漬し、60分攪拌した後、80℃に昇温してグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ545%であった。さらに、該粒子を80℃に調整したジエチレントリアミンの50質量%イソプロパノール溶液に浸漬し、4時間反応させた。反応後、該粒子をメタノールで洗浄し、乾燥させることで、目的の粒子を得た。該粒子の細孔の長径の平均値は5.3μm、官能基量は10.4mmol/gであった。結果を表1に示す。また、該粒子を、篩を用いて直径106μm〜300μmの粒子に分級することで、アミノ基がグラフトした吸着材を得た。該吸着材のPd吸着性能を評価した結果を表2に示す。
市販のポリプロピレン(日本ポリプロ株式会社製、ノバテックPP MA3)70質量部とポリビニルピロリドン(BASF社製、コリドンCL−M)30質量部をラボプラストミルにて、230℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径425μm〜710μmの粒子を作製した。さらに得られた粒子を80℃のイソプロパノール中で2時間攪拌してポリビニルピロリドンのみを抽出し、多孔質なポリプロピレン重合体粒子を得た。該多孔質粒子に100kGyの電離放射線を照射し、0℃窒素置換したN,N′−ジエチルアクリルアミドの40質量%イソプロパノール溶液に浸漬し、60分攪拌した後、80℃に昇温してグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ105%であった。該粒子の細孔径の平均値は7.5μm、官能基量は4.0mmol/gであった。結果を表1に示す。また、該粒子を、篩を用いて直径425μm〜710μmの粒子に分級することで、アミド基がグラフトした吸着材を得た。該吸着材のAu吸着性能を評価した結果を表2に示す。
市販のナイロン6(セルバ社製、ポリアミド−6−パウダー)80質量部とポリエチレングリコール(和光株式会社製、ポリエチレングリコール20000)20質量部をラボプラストミルにて、230℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径425μm〜710μmの粒子を作製した。さらに得られた粒子を100℃の熱水中で2時間攪拌してポリビニルアルコールのみを抽出し、多孔質なナイロン6重合体粒子を得た。該多孔質粒子に100kGyの電離放射線を照射し、0℃窒素置換したグリシジルメタクリレートの40質量%イソプロパノール溶液に浸漬し、60分攪拌した後、80℃に昇温してグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ250%であった。該粒子を80℃に調整したジエチレントリアミンの50質量%イソプロパノール溶液に浸漬し、4時間反応後、該粒子をメタノールで洗浄し、さらに、該粒子を80℃に調整したイソチオシアン酸メチルの40質量%ジオキサン溶液に浸漬し、3時間反応させた。反応後、該粒子をメタノールで洗浄し、乾燥させることで、チオウレア基がグラフトした吸着材を得た。該吸着材の細孔径の平均値は1.8μm、官能基量は5.0mmol/gであった。結果を表1に示す。また、該粒子を、篩を用いて直径425μm〜710μmの粒子に分級することで、チオウレア基がグラフトした吸着材を得た。該吸着材のPt吸着性能を評価した結果を表2に示す。
市販のポリプロピレン(日本ポリプロ株式会社製、ノバテックPP MA3)(PP)90質量部とポリビニルピロリドン(BASF社製、コリドンCL−M)10質量部をラボプラストミルにて、230℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径106μm〜300μmの粒子を作製した。さらに得られた粒子を80℃のイソプロパノール中で2時間攪拌してポリビニルピロリドンのみを抽出し、多孔質なポリプロピレン重合体粒子を得た。該多孔質粒子に100kGyの電離放射線を照射し、80℃窒素置換したグリシジルメタクリレート(GMA)の40質量%イソプロパノール溶液に浸漬し、グラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ18%であった。さらに、該粒子を80℃に調整したジエチレントリアミン(DETA)の50質量%イソプロパノール溶液に浸漬し、4時間反応させた。反応後、該粒子をメタノールで洗浄し、乾燥させることで、目的の粒子を得た。該粒子の細孔の平均細孔径は5.3μm、官能基量は2.9mmol/gであった。結果を表1に示す。また、該粒子を、篩を用いて直径106μm〜300μmの粒子に分級することで、アミノ基がグラフトした吸着材を得た。該吸着材のPd吸着性能を評価した結果を表2に示す。
市販のポリエチレン(株式会社プライムポリマー社製 7000F)をラボプラストミルにて、230℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径212μm〜425μmの粒子を作製した。該粒子に100kGyの電離放射線を照射し、0℃窒素置換したテトラヒドロフルフリルメタクリレートの40質量%イソプロパノール溶液に浸漬し、60分攪拌した後、80℃に昇温してグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ70%であった。該粒子の官能基量は2.3mmol/gであった。結果を表1に示す。また、該粒子を、篩を用いて直径212μm〜425μmの粒子に分級することで、エーテル基がグラフトした吸着材を得た。該吸着材のAu吸着性能を評価した結果を表2に示す。
市販のポリプロピレン(日本ポリプロ株式会社製、ノバテックPP MA3)をラボプラストミルにて、230℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径425μm〜710μmの粒子を作製した。該粒子に100kGyの電離放射線を照射し、0℃窒素置換したN,N′−ジエチルアクリルアミドの40質量%イソプロパノール溶液に浸漬し、60分攪拌した後、80℃に昇温してグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ45%であった。該粒子の官能基量は2.4mmol/gであった。結果を表1に示す。また、該粒子を、篩を用いて直径425μm〜710μmの粒子に分級することで、アミド基がグラフトした吸着材を得た。該吸着材のAu吸着性能を評価した結果を表2に示す。
市販のナイロン6(セルバ社製、ポリアミド−6−パウダー)をラボプラストミルにて、230℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径300μm〜500μmの粒子を作製した。該粒子に100kGyの電離放射線を照射し、0℃窒素置換したグリシジルメタクリレートの40質量%イソプロパノール溶液に浸漬し、60分攪拌した後、80℃に昇温してグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ95%であった。該粒子を80℃に調整したトリメチルアミンの50質量%イソプロパノール溶液に浸漬し、4時間反応後、該粒子をメタノールで洗浄し、さらに、該粒子を80℃に調整したイソチオシアン酸メチルの40質量%ジオキサン溶液に浸漬し、3時間反応させた。反応後、該粒子をメタノールで洗浄し、乾燥させることで、チオウレア基がグラフトした粒子を得た。該粒子の官能基量は2.8mmol/gであった。結果を表1に示す。また、該粒子を、篩を用いて直径300μm〜500μmの粒子に分級することで、チオウレア基がグラフトした吸着材を得た。該吸着材のPt吸着性能を評価した結果を表2に示す。
Claims (13)
- オレフィン系樹脂、アミド系樹脂、セルロース系樹脂、キトサン系樹脂および(メタ)アクリル酸エステル系樹脂からなるグループから選ばれる少なくとも一つ以上の樹脂にグラフト鎖が導入されたグラフト共重合体であって、前記グラフト共重合体は、多孔質粒子状であり、グラフト率が前記樹脂に対して30〜900質量%であり、前記粒子は、細孔径の平均値が0.01μm〜50μmの細孔を表面に有する、多孔質グラフト共重合体粒子。
- 請求項1に記載の多孔質グラフト共重合体粒子において、前記グラフト鎖が官能基を有する構造単位を含む、多孔質グラフト共重合体粒子。
- 請求項1または2に記載の多孔質グラフト共重合体粒子において、前記グラフト鎖が金属吸着性の官能基を有する構造単位を含む、多孔質グラフト共重合体粒子。
- 請求項1〜3のいずれか一項に記載の多孔質グラフト共重合体粒子において、前記グラフト鎖が、ヒドロキシル基、アミノ基、アミド基、エーテル基、カルボキシル基、チオウレア基、イソチオウレア基、リン酸基、ホスホン酸基、アミドキシム基、ニトリル基、スルホニル基、N−メチルグルカミン基、エポキシ基およびチオール基からなるグループから選ばれる少なくとも一つ以上の官能基を有する構造単位を含む、多孔質グラフト共重合体粒子。
- 請求項1〜3のいずれか一項に記載の多孔質グラフト共重合体粒子において、前記グラフト鎖が、アミノ基、エーテル基、およびチオウレア基からなるグループから選ばれる少なくとも一つ以上の官能基を有する構造単位を含む、多孔質グラフト共重合体粒子。
- 請求項2〜5のいずれか一項に記載の多孔質グラフト共重合体粒子において、前記官能基が4.0mmol/g以上である、多孔質グラフト共重合体粒子。
- 請求項1〜6のいずれか一項に記載の多孔質グラフト共重合体粒子において、前記粒子の粒子径が10μm〜2000μmである多孔質グラフト共重合体粒子。
- オレフィン系樹脂、アミド系樹脂、キトサン系樹脂、セルロース系樹脂および(メタ)アクリル酸エステル系樹脂からなるグループから選ばれる少なくとも一つ以上の樹脂(高分子重合体A)と前記高分子重合体Aとは異なる樹脂(高分子重合体B)とを溶融混合し、得られた溶融物を冷却固化させて、複合体を得る工程Iと、
前記複合体から前記高分子重合体Bを抽出し、前記高分子重合体Aからなる多孔質体を得る工程IIと、
前記工程IまたはIIの後で、前記多孔質体を粒子化する工程IIIと、
前記粒子化された多孔質体に、グラフト鎖の導入を行う工程IVと、を備える、請求項1〜6のいずれか一項に記載の、細孔径の平均値が0.01μm〜50μmの細孔を表面に有する、多孔質グラフト共重合体粒子の製造方法。 - 請求項8の製造方法において、工程Iにおいて、前記高分子重合体A100質量部に対して前記高分子重合体Bを0.1質量部〜200質量部溶融混合する、多孔質グラフト共重合体粒子の製造方法。
- 請求項8または9の製造方法において、電離放射線を用いた放射線グラフト重合にて、グラフト鎖を導入する、多孔質グラフト共重合体粒子の製造方法。
- 請求項8〜10のいずれか一項に記載の製造方法において、放射線グラフト重合工程の開始温度が20℃以下であることを特徴とする、多孔質グラフト共重合体粒子の製造方法。
- 請求項8〜11のいずれか一項に記載の製造方法において、グラフト鎖は官能基を有する構造単位を含んでおり、グラフト重合後、官能基の変換を行う、多孔質グラフト共重合体の製造方法。
- 請求項1〜7のいずれか一項に記載の多孔質グラフト共重合体粒子からなる吸着材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013225906A JP6192487B2 (ja) | 2013-10-30 | 2013-10-30 | 多孔質グラフト共重合体粒子、その製造方法及びそれを用いた吸着材 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013225906A JP6192487B2 (ja) | 2013-10-30 | 2013-10-30 | 多孔質グラフト共重合体粒子、その製造方法及びそれを用いた吸着材 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015086294A JP2015086294A (ja) | 2015-05-07 |
JP6192487B2 true JP6192487B2 (ja) | 2017-09-06 |
Family
ID=53049461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013225906A Expired - Fee Related JP6192487B2 (ja) | 2013-10-30 | 2013-10-30 | 多孔質グラフト共重合体粒子、その製造方法及びそれを用いた吸着材 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6192487B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101904962B1 (ko) * | 2016-05-04 | 2018-10-08 | 연세대학교 산학협력단 | 티올 화합물을 포함하는 중금속 제거용 흡착제 및 이의 제조방법 |
KR101875737B1 (ko) * | 2017-01-02 | 2018-07-09 | 한국원자력연구원 | 포름알데히드 제거용 시트 및 이의 제조방법 |
JP7220894B2 (ja) * | 2018-11-29 | 2023-02-13 | 国立研究開発法人量子科学技術研究開発機構 | ジチオカルバミン酸基を有する金属吸着材とその製造方法及び金属抽出方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6392646A (ja) * | 1986-10-07 | 1988-04-23 | Hitachi Chem Co Ltd | 親水性多孔性架橋重合体粒子の製造法 |
ZA924249B (en) * | 1991-06-21 | 1993-03-31 | Himont Inc | Process for grafting vinyl monomers on particulate olefin polymers |
JP4170762B2 (ja) * | 2001-02-09 | 2008-10-22 | 冷化工業株式会社 | 機能性粒子及びその製造方法及びプラズマ処理方法 |
WO2003046063A1 (en) * | 2001-11-26 | 2003-06-05 | Amersham Biosciences Ab | Post-modification of a porous support |
EP1506239B1 (en) * | 2002-01-25 | 2006-03-22 | Phenomenex, Inc. | Surface graft modified resins and formation thereof |
CN103154107B (zh) * | 2010-09-29 | 2014-09-24 | 东丽株式会社 | 多孔体和其制造方法 |
WO2014069474A1 (ja) * | 2012-10-30 | 2014-05-08 | 株式会社クラレ | 多孔質グラフト共重合体粒子、その製造方法及びそれを用いた吸着材 |
-
2013
- 2013-10-30 JP JP2013225906A patent/JP6192487B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015086294A (ja) | 2015-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9943825B2 (en) | Porous graft copolymer particles, method for producing same, and adsorbent material using same | |
KR100861452B1 (ko) | 중금속 이온의 선택적 분리를 위한 표면 각인된 코어-쉘형태의 폴리아크릴레이트 미소구체의 제조 방법 | |
JP6192487B2 (ja) | 多孔質グラフト共重合体粒子、その製造方法及びそれを用いた吸着材 | |
WO2010122954A1 (ja) | キレート性高分子化合物含有金属吸着材 | |
JPWO2012036034A1 (ja) | アミドキシム修飾されたポリアクリロニトリル多孔質体 | |
TW201031484A (en) | Aqueous dispersions of silver particles | |
Bhattarai et al. | Preparation of polyaniline-coated polystyrene nanoparticles for the sorption of silver ions | |
JP6165599B2 (ja) | エチレン−ビニルアルコール系共重合体のグラフト共重合体、その製造方法及びそれを用いた金属吸着材 | |
JP4768659B2 (ja) | セルロースとグリシジルメタクリレートとを反応させた後、ポリエチレンイミンを反応させて得られるセルロースならびにそれを用いた金属の選択的分離剤および選択的分離方法 | |
Feng et al. | Removal of copper (II) from an aqueous solution with copper (II)‐imprinted chitosan microspheres | |
Ge et al. | Au nanoparticles in silsesquioxane-based hybrid networks by simultaneous recovery and reduction of Au (III) in wastewater | |
JP2014114447A (ja) | 芳香族含窒素複素環をグラフト鎖に有するグラフト共重合体、その製造方法およびそれを用いるイオン吸着材 | |
JP2016040032A (ja) | セルロース誘導体および/または架橋キトサン誘導体を含む吸着材ならびに金属イオンの吸着方法および回収方法 | |
JP6147162B2 (ja) | エチレン−ビニルアルコール系共重合体のグラフト共重合体、その製造方法及びそれを用いた金属イオン吸着材 | |
JP6992586B2 (ja) | 貴金属の除去方法、及び化合物の製造方法 | |
CN113457643B (zh) | 卟啉-紫罗碱阳离子型多孔聚合物及其制备方法与应用 | |
JP6139962B2 (ja) | エチレン−ビニルアルコール系共重合体のグラフト共重合体、その製造方法及びそれを用いた金属吸着材 | |
WO2012063591A1 (ja) | 金属多孔質体および金属含有多孔質体の製造方法ならびに金属多孔質体および金属含有多孔質体 | |
JP2014198330A (ja) | 金イオン吸着材、その製造方法及び金の回収方法 | |
WO2015137451A1 (ja) | 重合体、吸着材、並びにその製造方法 | |
Jeria‐Orell et al. | Novel hydrogels based on itaconic acid and citraconic acid: synthesis, metal ion binding, and swelling behavior | |
JP6147175B2 (ja) | エチレン−ビニルアルコール系グラフト共重合体粒子、その製造方法及び金属イオン吸着材 | |
JP2024085462A (ja) | 水系金属微粒子分散体及びその製造方法 | |
Liu et al. | Hg (II) removal with polyacrylamide grafted crosslinked poly (vinyl chloride) beads via surface‐initiated controlled/“living” radical polymerization | |
JP2016123905A (ja) | アニオン交換樹脂及びそれを用いた復水脱塩方法除去方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6192487 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |