JP6182877B2 - ハンダペーストおよび導電性接着剤、その製造方法および半導体装置の製造方法 - Google Patents

ハンダペーストおよび導電性接着剤、その製造方法および半導体装置の製造方法 Download PDF

Info

Publication number
JP6182877B2
JP6182877B2 JP2013013520A JP2013013520A JP6182877B2 JP 6182877 B2 JP6182877 B2 JP 6182877B2 JP 2013013520 A JP2013013520 A JP 2013013520A JP 2013013520 A JP2013013520 A JP 2013013520A JP 6182877 B2 JP6182877 B2 JP 6182877B2
Authority
JP
Japan
Prior art keywords
solder
particles
solder paste
oxide film
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013013520A
Other languages
English (en)
Other versions
JP2014144465A (ja
Inventor
岡本 圭史郎
圭史郎 岡本
浩三 清水
浩三 清水
作山 誠樹
誠樹 作山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013013520A priority Critical patent/JP6182877B2/ja
Publication of JP2014144465A publication Critical patent/JP2014144465A/ja
Application granted granted Critical
Publication of JP6182877B2 publication Critical patent/JP6182877B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は半導体装置の実装技術に関する。
近年の高性能電子装置においては、例えば携帯電話機やデジタルカメラなどにおけるように、機能の拡充と小型化が平行して進行している。これに伴って半導体集積回路装置を配線基板上への実装する実装技術においても、半導体集積回路装置が形成された半導体チップを配線基板上に直接に実装することにより実装面積を縮小し、面積利用効率を高めることができるとともに、寄生容量や寄生インダクタンスによる電気特性の劣化を抑制できる、いわゆるフリップチップ実装技術の採用が拡がっている。
フリップチップ実装される半導体チップには、実装のためその回路形成面に、主に金属よりなる高さが数ミクロンないし100μm程度の突起物が電極バンプとして数個ないし数千個、例えば行列状に形成されている。実装時にはこれらの電極バンプが配線基板上の対応する配線パターンあるいは電極パッドに当接するように半導体チップが配線基板上に、前記半導体チップの回路形成面が前記配線基板に対面するように載置される。前記配線パターンにはハンダペーストが例えばスクリーン印刷法などにより塗布してあり、はんだペースト中のハンダ粉末を溶融(リフロー)させることにより、前記電極バンプは対応する配線パターンに、電気的にも機械的にもしっかりと接続される。
ハンダとしては、従来は鉛を含む鉛ハンダが広く使われていたが、近年では地球環境保護への関心が高まる中、半導体産業においても有害物質や産業廃棄物に対する法的規制(RoHS規制)やCO排出量削減など、環境問題が重要な課題となっている。
RoHS規制に関しては、従来の鉛(Pb)−スズ(Sn)系ハンダの代わりに生体に悪影響を与える鉛(Pb)を含まない、いわゆるPbフリーハンダの使用が研究されてきており、今日では特にSn−銀(Ag)−銅(Cu)系のPbフリーハンダが普及している。しかしSn−Ag−Cu系のPbフリーハンダは融点が従来のPb−Sn系ハンダに比べて40℃程度高いため、ハンダ接合において高温を必要とし、実装時の消費電力、従ってCO排出量は逆に増大している。またはんだ接合が従来よりも高温でなされるため、熱ストレスによる大型あるいは薄型部品の接続信頼性低下の問題が発生しやすくなる。また接合温度に対応した耐熱性を確保する必要から、配線基板の材料や、配線基板上に実装される部品の材料についても吟味が必要となり、材料のコストが増大してしまう問題も生じている。
特開2012−157873号公報 特開2003−112285号公報
一方従来、PbフリーハンダとしてSnにビスマス(Bi)を添加してSn−Bi系のハンダ合金とし、その融点を低下させ、ハンダ接合時の熱ストレスを軽減する試みも提案されている。Biを添加した場合、上記ハンダ合金の融点低下に加え、ハンダ合金にBiが含まれることでハンダ接合部の機械的強度が増大するという、好ましい効果も得ることができる。しかしかかる構成を採用した場合、ハンダ合金中のSnは熱が加わった場合電極パッドを構成するCuなどの金属に拡散し易いため、結果的にハンダ接合部に脆いBiを主体とする相が偏析してリフトオフが生じてしまったり、さらにハンダ接合部全体が脆くなって接合の信頼性が低下したりするなどの問題が生じることがある。このようなハンダ接合部の信頼性の低下は、ハンダ接合した電子装置が高温環境で長時間放置されるような環境におかれる場合には深刻な問題となる。例えば信頼性試験のため電子装置を高温環境で長時間保持した場合、かえってその電子装置の信頼性を損ねるなどの問題が生じることがある。
これに対し従来、Sn−Bi系のハンダ合金に例えば亜鉛(Zn)などのSnおよびBi以外の第三の元素を添加し、ハンダ合金中のSnが電極パッド中に拡散してしまう問題を回避する技術が提案されている。Znは溶融したSn−Bi系ハンダ合金中に拡散し、Sn−Bi系ハンダ合金と電極パッドとの界面において、前記電極パッドを構成するCuとCnZn系の化合物よりなる界面相を形成することが期待される。このCnZn系の界面相は、Sn−Bi系ハンダ合金中のSnに対してバリアとして作用する。しかしながらZnをSn−Bi系のハンダ合金に添加するとハンダの溶融温度が上昇するため、添加量は限られる。また、またせっかく添加したZnも、このように少量であると、やはり電極パッド中に固溶して吸収されてしまい、やがてはハンダ合金中のSnが電極パッド中に吸収されてしまい、ハンダ合金の組成がBiリッチに変化してしまうという経時変化の問題を十分に解決することができない。さらにZnは酸化し易く、Sn−Bi系ハンダ合金に添加しても所期のとおりに拡散しないという問題が生じる。
本発明は、Sn−Bi系のハンダ合金よりなる接合部を有する電子装置の製造において使用され、ハンダ合金中にSnおよびBi以外の第三の元素を、ハンダ合金の融点を実質的に変化させることなく多量に添加することができ、電極とハンダ合金の界面に、電極を構成する金属と前記第三の元素の化合物相を形成することにより、前記第三の元素あるいは前記ハンダ合金中のSnが電極中に吸収されてしまう問題を抑制できるハンダペーストあるいは導電性接着剤、かかるハンダペーストを使った半導体装置の製造方法、さらにかかる製造方法により製造された半導体装置を提供することをその概括的課題とする。
一の側面によるハンダペーストはSn−Bi系ハンダ合金の粉末と、SnおよびBiを除く第1の金属元素の酸化膜で被覆されたZn粒子と、フラックスと、を含み、前記第1の金属元素はAlまたはInである。
本発明によればハンダペースト中にZn粒子がSn−Bi系ハンダ合金の粒子とは別に、合金に固溶することなく含まれるため、Zn粒子の割合をSn−Bi系ハンダ合金の粒子に対して増加させてもSn−Bi系ハンダ合金の融点は実質的に変化しない。このため多量のZnを溶融したハンダ合金中に拡散により導入することができる。導入されたZnはハンダ合金と電極パッドとの界面に析出して安定な界面層を形成し、Sn−Bi系ハンダ合金中のSnが電極パッドに吸収されるのを防ぐバリア層を形成する。さらに本発明ではZn粒子の表面が、Znよりも酸素に対する親和性の高い第1の金属元素の薄い酸化膜で覆われているため、ハンダペースト中におけるZn粒子の酸化が効果的に抑制される。ハンダ接合の際には、前記第1の金属元素の薄い酸化膜がフラックスなどにより還元され、前記Zn粒子は溶融したハンダ合金中に拡散することが可能となる。
第1の実施形態によるハンダペーストの製造方法の概要を説明するフローチャートである。 第1の実施形態におけるZn粒子のアトマイズの概要を説明する図である。 第1の実施形態におけるZn粒子の構造を示す概略的断面図である。 図3のZn粒子中におけるIn,Znおよび酸素の分布を示すグラフである。 第1の実施形態によるハンダペーストの概略的構成を示す断面図である。 図5のハンダペーストを使ったハンダ接合を説明する断面図(その1)である。 図5のハンダペーストを使ったハンダ接合を説明する断面図(その2)である。 図5のハンダペーストを使ったハンダ接合を説明する断面図(その3)である。 Sn−BiハンダへのZn添加量と接合部の寿命の関係を示すグラフである。 第1の実施形態によるハンダペーストと従来のハンダペーストにおけるハンダ濡れ拡がり率とZn添加量との関係を比較して示すグラフである。 第2の実施形態による半導体装置の製造方法を説明する図(その1)である。 第2の実施形態による半導体装置の製造方法を説明する図(その2)である。 第2の実施形態による半導体装置の製造方法を説明する図(その3)である。 第3の実施形態による導電性接着剤の概略的造成を示す断面図である。 第3の実施形態による半導体装置の製造方法を説明する図(その1)である。 第3の実施形態による半導体装置の製造方法を説明する図(その2)である。
[第1の実施形態]
図1は、第1の実施形態によるハンダペーストの製造方法の概要を示すフローチャートである。
図1を参照するに、本実施形態ではステップ1においてSn−Bi系ハンダ合金の粒子が通常のアトマイズ法により、例えば30μmの平均粒径で形成される。このようにして得られた2成分系のSn−Biハンダ合金は139℃の共晶温度を有するが、さらに銀(Ag)やアンチモン(Sb),ニッケル(Ni),コバルト(Co)などの金属元素を含んでいてもよい。
一方、これとは別にステップ2においてZn粒子が、図2で説明するアトマイズ法により、酸素を含む雰囲気中において、例えば10μmの平均粒径で形成される。図1のプロセスにおいてステップ1とステップ2の順序は任意であり、同時に実行されてもよい。ステップ2で形成されるZn粒子は、以下に説明するようにZnの他に、Znよりも酸素との親和性の高いInやAl、Mg,Si,Cr,Mn,V,Ti,Li,Mg,Caなどの元素を少量含んでおり、アトマイズの際に、これらの元素の酸化物よりなる薄いが緻密な酸化膜が前記Zn粒子の表面に形成される。このような酸素との親和性の高い元素は前記Zn粒子中に取り込まれるおそれのある酸素原子をZn粒子の表面に酸化膜の形で固定し、Zn粒子内部に酸素が侵入してZnの酸化物が形成される問題を抑制する。
さて、このようにして得られたSn−Bi系のハンダ合金粒子とZn粒子とは、ステップ3において還元剤を含むフラックスと所定の割合で混合され、ステップ4に示すハンダペーストが得られる。このようにして得られたハンダペースト中においては、Sn−Bi系のハンダ合金粒子とZn粒子とは、フラックスに包まれた状態で互いに分離して存在している。本実施形態では、前記Sn−Bi系のハンダ合金粒子とZn粒子の全体に対して規格化してZn粒子の割合を、重量比で1%以上に設定する。
図2はアトマイズ法によるZn粒子の製造方法の概略を説明する図である。
図2を参照するに、容器21中は酸素ガス(O)を2〜5体積%の割合で含む窒素ガス(N)よりなる雰囲気(N+O)が供給されており、前記容器21中に保持したZnの地金を加熱することによりZnの融液22が形成される。例えばアトマイズ時に窒素ガスを500〜2000sccmの流量で、また酸素ガスを10〜100sccmの流量で供給する。アトマイズの際の地金の温度としては450℃〜550℃の温度範囲が使用可能であるが、Zn融液の酸化を抑制するため、500℃以下の温度でアトマイズを行うのが好ましい。本実施形態では前記Znの地金に、Znよりも酸素との親和性の高いInを少量、例えば0.5〜1.5重量%の割合で添加しており、このため前記Znの融液22も上記のように0.5〜1.5重量%の割合でInを含んでいる。
前記容器21にはその底に、径が10μm〜12μm、例えば11μmの開口部21Aが形成されており、前記融液22を前記容器21に設けた圧電素子21Bにより駆動することにより、前記融液22から溶融Znの液滴24Aが、前記容器21中と同じく酸素を含む窒素雰囲気(N+O)23中に排出される。溶融Znの液滴24Aは落下の途中で固化し、保持部25上にZn粒子24として堆積する。
図3は、このようにして得られたZn粒子24の断面を示す概略的断面図である。
図3を参照するに、Zn粒子は概略的にはZnよりなり実質的に酸素を含まない粒子本体21aと、前記粒子本体21aの表面に形成された、膜厚がせいぜい30nm以下の非常に薄いInの酸化膜(In)24bを含んでいる。一方、前記Zn粒子本体21a中にはほとんど酸素は含まれない。なお前記酸化膜24bの直下にInの薄い層が含まれる場合もある。この場合、Inの薄い層まで含めた酸化膜24bの膜厚は、通常は30nmを超えることがない。
図4は、前記図3のZn粒子のXPS法により求めた元素分布プロファイルを示す。図4中、横軸は前記酸化膜24bの表面からのエッチング時間を、縦軸はZnとInと酸素の濃度を原子%で示している。
図4を参照するに、Inおよび酸素はZn粒子24の表面に濃集しており、一方、Zn粒子の内部にはほとんど酸素が含まれないことがわかる。図4の結果は、前記Zn粒子24の表面にはInの酸化膜(In)24bが形成されていること、および前記Inの酸化膜24bの下には、酸素およびInはほとんど含まれず、ほとんどZnのみよりなる粒子本体21aが存在するという、図3で説明した、Zn粒子24の内部構造を支持するものである。図4の例では、前記Inの酸化膜(In)24bの厚さは、30nm以下である。
このようなZn粒子24の内部構造は、図2で示す酸素を含む雰囲気中で行われるZn粒子24のアトマイズの際に、Inの原子がZn粒子24内部を動き回り、Zn粒子24の表面に達すると雰囲気中の酸素と結合して酸化膜24bの形で固定される現象が生じていることを示唆している。また仮にZn粒子24の表面においてZn原子が酸素と結合しても、In原子がかかるZn原子から酸素を奪い、Inの酸化膜24bが成長すると同時に、酸素を奪われたZn原子は本体部24aに安定に集積する現象が生じているものと考えられる。
なおこのようなZn粒子において、酸素の量よりもInの量が多ければ、前記酸化膜24bの下に、前記Zn粒子の本体21aを覆って余剰のInが薄い層のかたちで残る場合がある。このような場合でも、残留しているInの層とInの酸化膜24bのトータルの膜厚は、通常30nmを超えることはない。
図5は、このようなZn粒子24を含むハンダペースト31の構造を概略的に示した断面図である。
図5を参照するに、ハンダペースト31は活性剤、ロジンおよび溶剤を含むフラックス32と、前記フラックス32中に分散されたSn−Bi系ハンダ合金粒子33と、前記フラックス32中に分散された、前記Zn粒子24とを含む。なお図5のハンダペースト31においてSn−Bi系ハンダ合金粒子33は、Sn−Bi系合金の地金を、窒素雰囲気など、酸素を含まない雰囲気中で公知のプロセスによりアトマイズすることで形成されている。
そこで図6のように配線基板上のCu配線パターン41と半導体チップのCu電極パッド42とを、例えばスクリーン印刷したハンダベースと31により接続し、この状態で前記ハンダペースト31をSn−Bi系合金の共晶温度である139℃まで加熱すると前記Sn−Bi系ハンダ合金粒子33は溶融し、図7に示すCu配線パターン41とCu電極パッド42とがSn−Bi系ハンダ合金33Aで接合されたハンダ接合構造33Sが得られる。図7の状態では前記Zn粒子24の表面の薄いIn酸化膜24bはフラックスの還元作用により還元されており、前記Sn−Bi系ハンダ合金33A中に実質的に酸素を含まないZn粒子の本体24aが分散した構造が生じている。この段階では前記Zn粒子24は前記Sn−Bi系ハンダ合金33A中に拡散していないため、ハンダ接合の温度は前記139℃の温度から実質的に上昇していない。
さらに図7のハンダ接合工程の後、前記Sn−Bi系ハンダ合金33Aを含むハンダ接合構造33Sを125℃程度の温度で保持した場合、前記Zn粒子24aからZnが前記Sn−Bi系ハンダ合金層33Aに拡散してその融点を上昇させる一方、このようにSn−Bi系ハンダ合金層33Aに拡散したZnはCu配線パターン41あるいはCu電極パッド42との界面に沿って、組成がCuZnで表される界面相33B,33Cをそれぞれ形成する。これらの界面相33B,33Cは前記Sn−Bi系ハンダ合金33A中のSnがCu電極パッド41,42へと拡散するのを阻止するバリア層として作用し、このため前記接合構造33Sでは長時間高温条件下に放置されてもSn−Bi系ハンダ合金33Aの組成がSnプア、従ってBiリッチになって脆くなり、ハンダ接合部が破壊される問題を回避することができる。
このように本実施形態によれば、Sn−Bi系ハンダ合金の融点を実質的に上昇させることなく1重量%を超える多量のZnを含むハンダ接合構造33Sを形成することができ、これによりハンダ接合構造33Sの接合寿命を5000時間以上に増大させることが可能となる。これは、Zn粒子の表面に図3の酸化膜24bのような酸化膜を形成しない従来の接合構造の寿命の2倍以上となっている。
図9は、Znの添加量が0.8重量%以下ではあるが、Sn−Bi系のハンダ合金にZnを添加した場合の接合部の寿命を示すグラフである。ただし図9中、縦軸は125℃における接合部の寿命、すなわち接合部が破壊するまでの時間を示しており、横軸はハンダ合金中におけるZnの添加量を重量%で示している。
図9を参照するに、Znの添加量が1重量%に達しなくても接合部の寿命は、Sn−Bi系ハンダ合金中に添加したZnの添加量により著しく増加しており、Znの添加量を、1重量%を超えて増大させた場合にはさらに寿命の改善が進むことが見込まれる。
図10は、Sn−Bi系ハンダ合金中に添加したZnの量とハンダの濡れ広がり率との関係を示すグラフである。図中、横軸がZn添加量、縦軸がハンダの濡れ広がり率を示している。黒四角で示すデータが本実施形態によるもの、黒丸で示すデータが、図3においてInの酸化膜24bを形成しなかった比較対照例を示す。
図10を参照するに、比較対照例ではZnの添加量とともにハンダの濡れ広がり率が急激に減少しており、ハンダの濡れ広がりがZn粒子に生じたZnの酸化膜により妨げられていることが読み取れる。これに対し本実施形態ではZnの添加量が増大してもハンダの濡れ広がり率が大きく減少することはなく、Znにハンダの濡れ広がりを妨げる酸化膜などが生じていないことが見て取れる。
本実施形態においてZn粒子に添加される元素はInに限定されるものではなく、アトマイズ時の温度においてZnよりも酸素との親和性の高い、より正確には、Znの酸化反応2Zn+O→2ZnOにおけるギブス自由エネルギ変化ΔG0よりも、酸化反応X+O→XOにおけるギブス自由エネルギ変化ΔG1がより大きな絶対値で負の値をとるような元素Xを使うことができる。以下の表1に、300℃の温度における前記元素Xについての酸化反応およびギブス自由エネルギ変化ΔGを、前記自由エネルギ変化ΔGと比較して示す。
Figure 0006182877
表1より、前記元素Xとしては、Inの他にAl,Si,Cr,Mn,V,Ti,Li,Mg,Caなどを使うことができるのがわかる。
本実施形態においてハンダ合金粒子とZn粒子とフラックスの混合比率は、例えば80〜95重量%:0.5〜5重量%:8〜13重量%とすることが可能である。
[第2の実施形態]
次に第1の実施形態で製造されたハンダペーストを使った、フリップチップ法による半導体装置の製造方法について、図11〜図13を参照しながら説明する。
図11を参照するに半導体チップ51にはその回路形成面51AにCu電極パッド51a〜51fが形成されており、前記Cu電極パッド51a〜51fにはSn−Bi系合金よりなるハンダバンプ52A〜52Fがそれぞれ形成されている。
一方前記半導体チップ51が実装される配線基板61には、前記Cu電極パッド51a〜51fにそれぞれ対応してCu配線パターン61a〜61fが形成されており、また前記配線基板61の裏面にはCu配線パターン71a,71b,71dおよび71fが形成されている。図示の例では、Cu配線パターン61aはCu配線パターン71aにCuビアプラグ81aを介して接続されており、Cu配線パターン61bおよび61cはCu配線パターン71bにそれぞれCuビアプラグ81bおよび81cを介して接続されており、Cu配線パターン61dおよび61eはCu配線パターン71dにそれぞれCuビアプラグ81d,81eを介して接続されており、Cu配線パターン61fはCu配線パターン71fにCuビアプラグ81fを介して接続されている。
前記配線パターン61a〜61f上にはハンダペースト62A〜62Fがスクリーン印刷法によりそれぞれ形成されている。
次に図12の工程において前記半導体チップ51は前記配線基板61上に、前記回路形成面51Aが配線基板61に対面する状態で載置され、前記ハンダバンプ52A〜52Fが前記ハンダペースト62A〜62Fにそれぞれ当接される。
さらに図13の工程において前記ハンダバンプ52A〜52Fおよびハンダペースト62A〜62Fをリフローさせることにより、電極パッド51aを配線パターン61aにハンダバンプ53Aにより、電極パッド51bを配線パターン61bにハンダバンプ53Bにより、電極パッド51cを配線パターン61cにハンダバンプ53Cにより、電極パッド51dを配線パターン61dにハンダバンプ53Dにより、電極パッド51eを配線パターン61eにハンダバンプ53Eにより、さらに電極パッド51fを配線パターン61fにハンダバンプ53Fにより、それぞれ電気的および機械的に結合する。
本実施形態では、前記ハンダペースト62A〜62Fとして、先に説明したSn−Bi系のハンダ合金粒子の他に表面に薄い酸化膜を有するZn粒子を含むハンダペーストを使うことにより、ハンダ接合後の熱処理によりZn粒子からZnがZnの酸化膜により妨げられることなく拡散し、Sn−Bi系ハンダ合金よりなるハンダバンプ、例えばハンダバンプ53AとCu配線パターン、例えばCu配線パターン61aあるいはCu電極パッド、例えばCu電極パッド51aとの界面に、組成がCuZnの界面相を形成する。かかる界面相は、Sn−Bi系ハンダ合金中のSnがCu配線パターンあるいはCu電極パッドに吸収されてハンダ合金の組成がBiリッチに変化し、ハンダ合金が脆くなる問題を回避することができる。
なお本実施形態において半導体チップ51のかわりに他の素子や部品、例えばキャパシタ部品などをフリップチップ実装することも可能である。
なお図11においてハンダペースト62A〜62Fを配線パターン61a〜61fの代わりにハンダバンプ52A〜52F上に形成することも可能である。
実施例1では先に図1で説明したプロセスに従って、まず組成がSn−57.5Bi−0.5Sbで平均粒径が30μmのはんだ合金粒子と、In酸化膜で表面が被覆された平均粒径が10μmのZn粒子とを、ロジン、活性剤および溶剤を含むフラックスと混合し、ハンダペーストを作成した。その際Zn粒子は、先に図2で説明したアトマイズ法により、Znを98.5〜99.5重量%の割合で、またInを0.5〜1.5重量%の割合で含むZn地金を、酸素ガスを体積比で20%含む窒素ガスの雰囲気条件下でアトマイズすることにより形成した。得られたZn粒子表面のIn酸化膜をXPS法で分析したところ、Zn粒子表面にごく薄いIn層が形成されており、さらにかかるごく薄いIn層の表面に薄い、厚さが5nm〜10nm程度の緻密な酸化膜が形成されているのが確認された。In層とIn酸化層を合わせたトータルの膜厚はたかだか30nmであった。このようにして作成したはんだペースト中には、はんだ合金粒子が87重量%の割合で、また前記In酸化膜を担持したZn粒子が3重量%の割合で、さらにフラックスが10重量%の割合で含まれていた。
次に図11の工程に対応して上記ハンダペーストをスクリーン印刷にて配線基板61上に塗布し、ハンダペースト62A〜62Fを形成した。さらに図12の工程に対応して、このように印刷されたはんだペースト52A〜52F上に半導体チップ51をチップマウンターで搭載した。さらに図13の工程に対応して、Nリフロープロセスを用いて半導体チップ51と配線基板61とをハンダ接合した。
より詳細に説明するとハンダ接合は、温度100〜120℃で90〜120秒間プリヒートを行い、170℃の最高温度で50〜60秒間保持することにより行った。接合後は、2〜3℃/秒の速度で冷却した。
なお本実施例では半導体チップ51として、8.5mm×8.5mmのサイズで周辺に約120個のSn−Bi系はんだバンプを前記ハンダバンプ52A〜52Fとして配置した素子を準備し、配線基板61として、半導体チップ51上のはんだバンプと同じ配置のCu電極パターンを有する40mm×40mmのFR−4基板を準備した。
このようにして作成した半導体装置について、回路基板側の引き出し配線を用いて接合部の導通を試験した結果、全ての接合部について導通していることが確認された。
さらに125℃,1000時間の高温放置試験後、落下高さ1.6m、基板歪み量4000μεを1サイクルとした落下衝撃試験を50サイクル繰り返しても、接続抵抗変化率は+5%以下であることが確認された。
さらにはんだ接合部の断面を走査型電子顕微鏡および電子線マイクロプローブアナライザで分析した結果、接合部全体にはんだ組織が微細に分散析出しており、はんだ接合部界面にCuZn相が生成していることが確認された。また、落下衝撃性劣化の原因となるはんだ組織の粗大化やBi相の偏析が生じていないことが確認された。
実施例1において、In酸化膜ではなくAl酸化膜が被覆されたZn粒子を用いて同様にハンダペーストを作製し、かかるハンダペーストを使って実施例1と同様な半導体装置を作成した。さらに作成した半導体装置に対し実施例1と同様にして導通測定および落下衝撃試験を実施したところ、落下衝撃試験50サイクル後においても接続抵抗値が+5%以下であることが確認された。
さらにはんだ接合部の断面を走査型電子顕微鏡および電子線マイクロプローブアナライザ(EPMA)で分析した結果、接合部全体にはんだ組織が微細に分散析出しており、はんだ接合部界面にCuZn相が生成していることが確認された。また、落下衝撃性劣化の原因となるはんだ組織の粗大化やBi相の偏析が生じていないことが確認された。
実施例1において、半導体チップ51のはんだバンプ52A〜52FとしてSn−Bi系のハンダバンプではなくSn−Ag−Cu系のハンダバンプを形成し、かかる半導体チップ51配線基板61上にフリップチップ実装することにより半導体装置を作製した。さらにこのようにして作成した半導体装置に対し、実施例1と同様にして導通測定および落下衝撃試験を実施した結果、落下衝撃試験50サイクル後においても接続抵抗値が+5%以下であることが確認された。
さらにはんだ接合部の断面を走査型電子顕微鏡および電子線マイクロプローブアナライザ(EPMA)で分析した結果、接合部全体にはんだ組織が微細に分散析出しており、はんだ接合部界面にCuZn相が生成していることが確認された。また、落下衝撃性劣化の原因となるはんだ組織の粗大化やBi相の偏析が生じていないことが確認された。
実施例2において、半導体チップ51のはんだバンプ52A〜52FとしてSn−Bi系のハンダバンプではなくSn−Ag−Cu系のハンダバンプを形成し、かかる半導体チップ51配線基板61上にフリップチップ実装することにより半導体装置を作製した。さらにこのようにして作成した半導体装置に対し、実施例1と同様にして導通測定および落下衝撃試験を実施した結果、落下衝撃試験50サイクル後においても接続抵抗値が+5%以下であることが確認された。
さらにはんだ接合部の断面を走査型電子顕微鏡および電子線マイクロプローブアナライザ(EPMA)で分析した結果、接合部全体にはんだ組織が微細に分散析出しており、はんだ接合部界面にCuZn相が生成していることが確認された。また、落下衝撃性劣化の原因となるはんだ組織の粗大化やBi相の偏析が生じていないことが確認された。
[比較例]
実施例1においてInの酸化膜を担持したZn粒子の代わりに酸化膜を含まないZn粒子を使ってハンダペーストを形成し、実施例1と同様にして半導体チップ51を配線基板61にフリップチップ実装し、半導体装置を作成した。さらにかかる半導体装置について導通測定および落下衝撃試験を実施した。その結果、落下衝撃試験3サイクル後に接続抵抗値が+50%以上増加することが確認された。
このような半導体装置について、ハンダ接合部の断面を走査型電子顕微鏡および電子線マイクロプローブアナライザ(EPMA)により分析した結果、ハンダとCu配線パターン、例えばCu配線パターン61aとの接合界面上にBiが層状に偏析しており、同箇所にてクラックが生じているのが確認された。
[第3の実施形態]
次に第3の実施形態による導電性接着剤71について説明する。ただし図中、先に説明した部分に対応する部分には同一の参照符号を付し、説明を省略する。
図14は、Zn粒子24を含む導電性接着剤71の構造を概略的に示した断面図である。
図14を参照するに、導電性接着剤71は活性剤、エポキシ主剤および硬化剤を含むバインダ72と、前記バインダ72中に分散されたSn−Bi系ハンダ合金粒子33と、前記フラックス32中に分散された、前記Zn粒子24とを含む。
図15および図16は、本実施形態による導電性接着剤71を使ったフリップチップ法による半導体装置の製造方法を説明する図である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図15を参照するに、前記配線パターン61a〜61f上には導電性接着剤71A〜71Fがスクリーン印刷法によりそれぞれ形成され、次に図14の工程において前記半導体チップ51は前記配線基板61上に、前記回路形成面51Aが配線基板61に対面する状態で載置され、前記ハンダバンプ52A〜52Fが前記導電性接着剤71A〜71Fにそれぞれ当接される。
さらに図16の工程において前記ハンダバンプ52A〜52Fがリフローされ、さらにバインダ72が硬化することより、電極パッド51aが配線パターン61aにハンダバンプ53Aにより、電極パッド51bが配線パターン61bにハンダバンプ53Bにより、電極パッド51cが配線パターン61cにハンダバンプ53Cにより、電極パッド51dが配線パターン61dにハンダバンプ53Dにより、電極パッド51eが配線パターン61eにハンダバンプ53Eにより、さらに電極パッド51fが配線パターン61fにハンダバンプ53Fにより、それぞれ電気的および機械的に結合される。
本実施形態でも、前記導電性接着剤71A〜71Fとして、先に説明したSn−Bi系のハンダ合金粒子の他に表面に薄い酸化膜を有するZn粒子を含むハンダペーストを使うことにより、リフロー後の熱処理によりZn粒子からZnがZnの酸化膜により妨げられることなく拡散し、Sn−Bi系ハンダ合金よりなるハンダバンプ、例えばハンダバンプ53AとCu配線パターン、例えばCu配線パターン61aあるいはCu電極パッド、例えばCu電極パッド51aとの界面に、組成がCuZnの界面相を形成する。かかる界面相は、Sn−Bi系ハンダ合金中のSnがCu配線パターンあるいはCu電極パッドに吸収されてハンダ合金の組成がBiリッチに変化し、ハンダ合金が脆くなる問題を回避することができる。
なお本実施形態において半導体チップ51のかわりに他の素子や部品、例えばキャパシタ部品などをフリップチップ実装することも可能である。
なお図11において導電性接着剤71A〜71Fを配線パターン61a〜61fの代わりにハンダバンプ52A〜52F上に形成することも可能である。
先に図1で説明したプロセスに従って、まず組成がSn−57.5Bi−0.5Sbで平均粒径が30μmのはんだ合金粒子と、In酸化膜で表面が被覆された平均粒径が10μmのZn粒子とを、活性剤、エポキシ主剤および硬化剤を含むバインダ成分と混合し、導電性接着剤71を作成した。その際Zn粒子は、先に図2で説明したアトマイズ法により、Znを98.5〜99.5重量%の割合で、またInを0.5〜1.5重量%の割合で含むZn地金を、酸素ガスを体積比で20%含む窒素ガスの雰囲気条件下でアトマイズすることにより形成した。得られたZn粒子表面のIn酸化膜をXPS法で分析したところ、Zn粒子表面にごく薄いIn層が形成されており、さらにかかるごく薄いIn層の表面に薄い、厚さが5nm〜10nm程度の緻密な酸化膜が形成されているのが確認された。In層とIn酸化層を合わせたトータルの膜厚はたかだか30nmであった。このようにして作成したはんだペースト中には、はんだ合金粒子が87重量%の割合で、また前記In酸化膜を担持したZn粒子が3重量%の割合で、さらにバインダが10重量%の割合で含まれていた。
次に図15の工程に対応して上記導電性接着剤71をスクリーン印刷にて配線基板61上に塗布し、導電性接着剤71A〜71Fを形成した。さらに図16の工程に対応して、このように印刷された未硬化の導電性接着剤71A〜71F上に半導体チップ51をチップマウンターで搭載し、180℃における150〜180秒間のNリフロープロセスを用いて半導体チップ51と配線基板61とを接合した。
本実施例でも半導体チップ51として、8.5mm×8.5mmのサイズで周辺に約120個のSn−Bi系はんだバンプを前記ハンダバンプ52A〜52Fとして配置した素子を準備し、配線基板61として、半導体チップ51上のはんだバンプと同じ配置のCu電極パターンを有する40mm×40mmのFR−4基板を準備した。
このようにして作成した半導体装置について、回路基板側の引き出し配線を用いて接合部の導通を試験した結果、全ての接合部について導通していることが確認された。
さらに125℃,1000時間の高温放置試験後、落下高さ1.6m、基板歪み量4000μεを1サイクルとした落下衝撃試験を50サイクル繰り返しても、接続抵抗変化率は+5%以下であることが確認された。
さらにはんだ接合部の断面を走査型電子顕微鏡および電子線マイクロプローブアナライザで分析した結果、接合部全体にはんだ組織が微細に分散析出しており、はんだ接合部界面にCuZn相が生成していることが確認された。また、落下衝撃性劣化の原因となるはんだ組織の粗大化やBi相の偏析が生じていないことが確認された。
以上、本発明を好ましい実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
21 容器
21A 開口部
21B 圧電素子
22 融液
23 N+O雰囲気
24 Zn粒子
24A 液滴
24a Zn本体部
24b In酸化膜
25 保持部
31 ハンダペースト
33,33A Sn−Bi系ハンダ合金
33B,33C CuZn界面相
33S 接合部
41,42 Cu電極
51 半導体チップ
51A 回路形成面
51a〜51f Cu電極パッド
52A〜52F ハンダバンプ
61a〜61f,71a〜71d 配線パターン
71,71A〜71F 導電性接着剤
72 バインダ部
81A〜81F Cuビアプラグ

Claims (9)

  1. Sn−Bi系ハンダ合金の粉末と、
    SnおよびBiを除く第1の金属元素の酸化膜で被覆されたZn粒子と、
    フラックスと、
    を含み、前記第1の金属元素はAlまたはInであることを特徴とするハンダペースト。
  2. 前記酸化膜は30nm以下の膜厚を有することを特徴とする請求項1記載のハンダペースト。
  3. 前記酸化膜は5nm〜10nmの膜厚を有することを特徴とする請求項1または2記載のハンダペースト。
  4. 前記ハンダペーストは前記Zn粒子を、前記Sn−Bi系ハンダ合金の粉末および前記Zn粒子の総量に対して1重量%以上の割合で含むことを特徴とする請求項1〜3のうち、いずれか一項記載のハンダペースト。
  5. Sn−Bi系ハンダ合金の粉末と、
    SnおよびBiを除く第1の金属元素の酸化膜で被覆されたZn粒子と、
    活性剤と、
    エポキシ主剤と、
    硬化剤と、
    を含み、前記第1の金属元素はAlまたはInであることを特徴とする導電性接着剤。
  6. 第1の金属元素を含むZnの地金を溶融させ融液を形成する工程と、
    前記融液を、酸素を含む雰囲気中においてアトマイズし、表面に前記第1の金属元素の酸化膜を担持したZn粒子を形成する工程と、
    前記Zn粒子をSn−Bi系ハンダ合金の粒子およびフラックスと混合する工程と、
    を含み、
    前記第1の金属元素はAlまたはInであることを特徴とするハンダペーストの製造方法。
  7. 第1の金属元素を含むZnの地金を溶融させ融液を形成する工程と、
    前記融液を、酸素を含む雰囲気中においてアトマイズし、表面に前記第1の金属元素の酸化膜を担持したZn粒子を形成する工程と、
    前記Zn粒子をSn−Bi系ハンダ合金の粒子およびバインダ成分と混合する工程と、
    を含み、
    前記第1の金属元素はAlまたはInであることを特徴とする導電性接着剤の製造方法。
  8. 配線パターンを担持する配線基板上に、回路形成面に電極バンプを有する半導体チップを、前記回路形成面が前記配線基板に対面し電極パッドが前記配線パターンにハンダペーストを介して当接するように配置する工程と、
    前記ハンダペーストをリフローさせ、前記電極パッドと前記配線パターンとをハンダ接合する工程と、
    を含み、
    前記ハンダペーストは請求項1〜4のいずれか一項に記載したものであることを特徴とする半導体装置の製造方法。
  9. 配線パターンを担持する配線基板上に、回路形成面に電極バンプを有する半導体チップを、前記回路形成面が前記配線基板に対面し電極パッドが前記配線パターンに導電性接着剤を介して当接するように配置する工程と、
    前記導電性接着剤を硬化させ、前記電極パッドと前記配線パターンとをハンダ接合する工程と、
    を含み、
    前記導電性接着剤は請求項5に記載したものであることを特徴とする半導体装置の製造方法。
JP2013013520A 2013-01-28 2013-01-28 ハンダペーストおよび導電性接着剤、その製造方法および半導体装置の製造方法 Expired - Fee Related JP6182877B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013520A JP6182877B2 (ja) 2013-01-28 2013-01-28 ハンダペーストおよび導電性接着剤、その製造方法および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013520A JP6182877B2 (ja) 2013-01-28 2013-01-28 ハンダペーストおよび導電性接着剤、その製造方法および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2014144465A JP2014144465A (ja) 2014-08-14
JP6182877B2 true JP6182877B2 (ja) 2017-08-23

Family

ID=51425167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013520A Expired - Fee Related JP6182877B2 (ja) 2013-01-28 2013-01-28 ハンダペーストおよび導電性接着剤、その製造方法および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP6182877B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106271189B (zh) * 2016-08-24 2018-09-14 上海交通大学 一种具有细小晶粒组织的焊丝或焊条的制备方法
KR20200098485A (ko) * 2017-12-22 2020-08-20 세키스이가가쿠 고교가부시키가이샤 땜납 입자, 도전 재료, 땜납 입자의 보관 방법, 도전 재료의 보관 방법, 도전 재료의 제조 방법, 접속 구조체 및 접속 구조체의 제조 방법
CN112384141A (zh) * 2019-03-29 2021-02-19 株式会社村田制作所 伸缩性安装基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112285A (ja) * 2001-10-01 2003-04-15 Matsushita Electric Ind Co Ltd ソルダーペースト
JP2003290974A (ja) * 2002-03-28 2003-10-14 Fujitsu Ltd 電子回路装置の接合構造及びそれに用いる電子部品
JP5093260B2 (ja) * 2010-02-12 2012-12-12 住友金属鉱山株式会社 Pbフリーはんだ合金

Also Published As

Publication number Publication date
JP2014144465A (ja) 2014-08-14

Similar Documents

Publication Publication Date Title
JP4753090B2 (ja) はんだペースト、及び電子装置
KR100776114B1 (ko) 땜납 접합용 페이스트 및 이를 이용한 땜납 접합 방법
JP4428448B2 (ja) 鉛フリーはんだ合金
US8952271B2 (en) Circuit board, semiconductor device, and method of manufacturing semiconductor device
US7632710B2 (en) Method for soldering electronic component and soldering structure of electronic component
JP5533665B2 (ja) 電子装置の製造方法、電子部品搭載用基板及びその製造方法
JP2004107728A (ja) 接合材料及び接合方法
KR102156373B1 (ko) 솔더 페이스트
WO2013132942A1 (ja) 接合方法、接合構造体およびその製造方法
JP6004253B2 (ja) ペースト用はんだ合金粉末、ペースト及びこれを用いたはんだバンプ
JP6182877B2 (ja) ハンダペーストおよび導電性接着剤、その製造方法および半導体装置の製造方法
JP4975342B2 (ja) 導電性接着剤
JP5169354B2 (ja) 接合材料及びそれを用いた接合方法
JP4022139B2 (ja) 電子装置及び電子装置の実装方法及び電子装置の製造方法
US20090085206A1 (en) Method of forming solder bumps on substrates
JP5699472B2 (ja) はんだ材料とその作製方法、及びこれを用いた半導体装置の製造方法
KR102122631B1 (ko) 유심 구조 땜납 범프 및 그 제조 방법
JP5147349B2 (ja) バンプ形成用ペースト、及びバンプ構造体
JP6004254B2 (ja) ペースト用はんだ合金粉末、ペースト及びこれを用いたはんだバンプ
JP6720515B2 (ja) Au−Snはんだ粉末及びこの粉末を含むはんだ用ペースト
JP6156136B2 (ja) はんだバンプの焼結芯を形成するための芯用ペースト
JP5630060B2 (ja) はんだ接合方法、半導体装置及びその製造方法
JP6379342B2 (ja) 半導体装置及びその製造方法
JP5857721B2 (ja) 電子装置およびその製造方法
JP2013157356A (ja) 電子回路モジュール部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6182877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees